Introduce routines in each game module to encode a set of game
[sgt/puzzles] / net.c
1 /*
2 * net.c: Net game.
3 */
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <string.h>
8 #include <assert.h>
9 #include <ctype.h>
10 #include <math.h>
11
12 #include "puzzles.h"
13 #include "tree234.h"
14
15 const char *const game_name = "Net";
16 const int game_can_configure = TRUE;
17
18 #define PI 3.141592653589793238462643383279502884197169399
19
20 #define MATMUL(xr,yr,m,x,y) do { \
21 float rx, ry, xx = (x), yy = (y), *mat = (m); \
22 rx = mat[0] * xx + mat[2] * yy; \
23 ry = mat[1] * xx + mat[3] * yy; \
24 (xr) = rx; (yr) = ry; \
25 } while (0)
26
27 /* Direction and other bitfields */
28 #define R 0x01
29 #define U 0x02
30 #define L 0x04
31 #define D 0x08
32 #define LOCKED 0x10
33 #define ACTIVE 0x20
34 /* Corner flags go in the barriers array */
35 #define RU 0x10
36 #define UL 0x20
37 #define LD 0x40
38 #define DR 0x80
39
40 /* Rotations: Anticlockwise, Clockwise, Flip, general rotate */
41 #define A(x) ( (((x) & 0x07) << 1) | (((x) & 0x08) >> 3) )
42 #define C(x) ( (((x) & 0x0E) >> 1) | (((x) & 0x01) << 3) )
43 #define F(x) ( (((x) & 0x0C) >> 2) | (((x) & 0x03) << 2) )
44 #define ROT(x, n) ( ((n)&3) == 0 ? (x) : \
45 ((n)&3) == 1 ? A(x) : \
46 ((n)&3) == 2 ? F(x) : C(x) )
47
48 /* X and Y displacements */
49 #define X(x) ( (x) == R ? +1 : (x) == L ? -1 : 0 )
50 #define Y(x) ( (x) == D ? +1 : (x) == U ? -1 : 0 )
51
52 /* Bit count */
53 #define COUNT(x) ( (((x) & 0x08) >> 3) + (((x) & 0x04) >> 2) + \
54 (((x) & 0x02) >> 1) + ((x) & 0x01) )
55
56 #define TILE_SIZE 32
57 #define TILE_BORDER 1
58 #define WINDOW_OFFSET 16
59
60 #define ROTATE_TIME 0.13F
61 #define FLASH_FRAME 0.07F
62
63 enum {
64 COL_BACKGROUND,
65 COL_LOCKED,
66 COL_BORDER,
67 COL_WIRE,
68 COL_ENDPOINT,
69 COL_POWERED,
70 COL_BARRIER,
71 NCOLOURS
72 };
73
74 struct game_params {
75 int width;
76 int height;
77 int wrapping;
78 float barrier_probability;
79 };
80
81 struct game_state {
82 int width, height, cx, cy, wrapping, completed, last_rotate_dir;
83 unsigned char *tiles;
84 unsigned char *barriers;
85 };
86
87 #define OFFSET(x2,y2,x1,y1,dir,state) \
88 ( (x2) = ((x1) + (state)->width + X((dir))) % (state)->width, \
89 (y2) = ((y1) + (state)->height + Y((dir))) % (state)->height)
90
91 #define index(state, a, x, y) ( a[(y) * (state)->width + (x)] )
92 #define tile(state, x, y) index(state, (state)->tiles, x, y)
93 #define barrier(state, x, y) index(state, (state)->barriers, x, y)
94
95 struct xyd {
96 int x, y, direction;
97 };
98
99 static int xyd_cmp(void *av, void *bv) {
100 struct xyd *a = (struct xyd *)av;
101 struct xyd *b = (struct xyd *)bv;
102 if (a->x < b->x)
103 return -1;
104 if (a->x > b->x)
105 return +1;
106 if (a->y < b->y)
107 return -1;
108 if (a->y > b->y)
109 return +1;
110 if (a->direction < b->direction)
111 return -1;
112 if (a->direction > b->direction)
113 return +1;
114 return 0;
115 };
116
117 static struct xyd *new_xyd(int x, int y, int direction)
118 {
119 struct xyd *xyd = snew(struct xyd);
120 xyd->x = x;
121 xyd->y = y;
122 xyd->direction = direction;
123 return xyd;
124 }
125
126 /* ----------------------------------------------------------------------
127 * Manage game parameters.
128 */
129 game_params *default_params(void)
130 {
131 game_params *ret = snew(game_params);
132
133 ret->width = 5;
134 ret->height = 5;
135 ret->wrapping = FALSE;
136 ret->barrier_probability = 0.0;
137
138 return ret;
139 }
140
141 int game_fetch_preset(int i, char **name, game_params **params)
142 {
143 game_params *ret;
144 char str[80];
145 static const struct { int x, y, wrap; } values[] = {
146 {5, 5, FALSE},
147 {7, 7, FALSE},
148 {9, 9, FALSE},
149 {11, 11, FALSE},
150 {13, 11, FALSE},
151 {5, 5, TRUE},
152 {7, 7, TRUE},
153 {9, 9, TRUE},
154 {11, 11, TRUE},
155 {13, 11, TRUE},
156 };
157
158 if (i < 0 || i >= lenof(values))
159 return FALSE;
160
161 ret = snew(game_params);
162 ret->width = values[i].x;
163 ret->height = values[i].y;
164 ret->wrapping = values[i].wrap;
165 ret->barrier_probability = 0.0;
166
167 sprintf(str, "%dx%d%s", ret->width, ret->height,
168 ret->wrapping ? " wrapping" : "");
169
170 *name = dupstr(str);
171 *params = ret;
172 return TRUE;
173 }
174
175 void free_params(game_params *params)
176 {
177 sfree(params);
178 }
179
180 game_params *dup_params(game_params *params)
181 {
182 game_params *ret = snew(game_params);
183 *ret = *params; /* structure copy */
184 return ret;
185 }
186
187 game_params *decode_params(char const *string)
188 {
189 game_params *ret = default_params();
190 char const *p = string;
191
192 ret->width = atoi(p);
193 while (*p && isdigit(*p)) p++;
194 if (*p == 'x') {
195 p++;
196 ret->height = atoi(p);
197 while (*p && isdigit(*p)) p++;
198 if ( (ret->wrapping = (*p == 'w')) != 0 )
199 p++;
200 if (*p == 'b')
201 ret->barrier_probability = atof(p+1);
202 } else {
203 ret->height = ret->width;
204 }
205
206 return ret;
207 }
208
209 char *encode_params(game_params *params)
210 {
211 char ret[400];
212 int len;
213
214 len = sprintf(ret, "%dx%d", params->width, params->height);
215 if (params->wrapping)
216 ret[len++] = 'w';
217 if (params->barrier_probability)
218 len += sprintf(ret+len, "b%g", params->barrier_probability);
219 assert(len < lenof(ret));
220 ret[len] = '\0';
221
222 return dupstr(ret);
223 }
224
225 config_item *game_configure(game_params *params)
226 {
227 config_item *ret;
228 char buf[80];
229
230 ret = snewn(5, config_item);
231
232 ret[0].name = "Width";
233 ret[0].type = C_STRING;
234 sprintf(buf, "%d", params->width);
235 ret[0].sval = dupstr(buf);
236 ret[0].ival = 0;
237
238 ret[1].name = "Height";
239 ret[1].type = C_STRING;
240 sprintf(buf, "%d", params->height);
241 ret[1].sval = dupstr(buf);
242 ret[1].ival = 0;
243
244 ret[2].name = "Walls wrap around";
245 ret[2].type = C_BOOLEAN;
246 ret[2].sval = NULL;
247 ret[2].ival = params->wrapping;
248
249 ret[3].name = "Barrier probability";
250 ret[3].type = C_STRING;
251 sprintf(buf, "%g", params->barrier_probability);
252 ret[3].sval = dupstr(buf);
253 ret[3].ival = 0;
254
255 ret[4].name = NULL;
256 ret[4].type = C_END;
257 ret[4].sval = NULL;
258 ret[4].ival = 0;
259
260 return ret;
261 }
262
263 game_params *custom_params(config_item *cfg)
264 {
265 game_params *ret = snew(game_params);
266
267 ret->width = atoi(cfg[0].sval);
268 ret->height = atoi(cfg[1].sval);
269 ret->wrapping = cfg[2].ival;
270 ret->barrier_probability = (float)atof(cfg[3].sval);
271
272 return ret;
273 }
274
275 char *validate_params(game_params *params)
276 {
277 if (params->width <= 0 && params->height <= 0)
278 return "Width and height must both be greater than zero";
279 if (params->width <= 0)
280 return "Width must be greater than zero";
281 if (params->height <= 0)
282 return "Height must be greater than zero";
283 if (params->width <= 1 && params->height <= 1)
284 return "At least one of width and height must be greater than one";
285 if (params->barrier_probability < 0)
286 return "Barrier probability may not be negative";
287 if (params->barrier_probability > 1)
288 return "Barrier probability may not be greater than 1";
289 return NULL;
290 }
291
292 /* ----------------------------------------------------------------------
293 * Randomly select a new game seed.
294 */
295
296 char *new_game_seed(game_params *params, random_state *rs)
297 {
298 /*
299 * The full description of a Net game is far too large to
300 * encode directly in the seed, so by default we'll have to go
301 * for the simple approach of providing a random-number seed.
302 *
303 * (This does not restrict me from _later on_ inventing a seed
304 * string syntax which can never be generated by this code -
305 * for example, strings beginning with a letter - allowing me
306 * to type in a precise game, and have new_game detect it and
307 * understand it and do something completely different.)
308 */
309 char buf[40];
310 sprintf(buf, "%lu", random_bits(rs, 32));
311 return dupstr(buf);
312 }
313
314 char *validate_seed(game_params *params, char *seed)
315 {
316 /*
317 * Since any string at all will suffice to seed the RNG, there
318 * is no validation required.
319 */
320 return NULL;
321 }
322
323 /* ----------------------------------------------------------------------
324 * Construct an initial game state, given a seed and parameters.
325 */
326
327 game_state *new_game(game_params *params, char *seed)
328 {
329 random_state *rs;
330 game_state *state;
331 tree234 *possibilities, *barriers;
332 int w, h, x, y, nbarriers;
333
334 assert(params->width > 0 && params->height > 0);
335 assert(params->width > 1 || params->height > 1);
336
337 /*
338 * Create a blank game state.
339 */
340 state = snew(game_state);
341 w = state->width = params->width;
342 h = state->height = params->height;
343 state->cx = state->width / 2;
344 state->cy = state->height / 2;
345 state->wrapping = params->wrapping;
346 state->last_rotate_dir = +1; /* *shrug* */
347 state->completed = FALSE;
348 state->tiles = snewn(state->width * state->height, unsigned char);
349 memset(state->tiles, 0, state->width * state->height);
350 state->barriers = snewn(state->width * state->height, unsigned char);
351 memset(state->barriers, 0, state->width * state->height);
352
353 /*
354 * Set up border barriers if this is a non-wrapping game.
355 */
356 if (!state->wrapping) {
357 for (x = 0; x < state->width; x++) {
358 barrier(state, x, 0) |= U;
359 barrier(state, x, state->height-1) |= D;
360 }
361 for (y = 0; y < state->height; y++) {
362 barrier(state, 0, y) |= L;
363 barrier(state, state->width-1, y) |= R;
364 }
365 }
366
367 /*
368 * Seed the internal random number generator.
369 */
370 rs = random_init(seed, strlen(seed));
371
372 /*
373 * Construct the unshuffled grid.
374 *
375 * To do this, we simply start at the centre point, repeatedly
376 * choose a random possibility out of the available ways to
377 * extend a used square into an unused one, and do it. After
378 * extending the third line out of a square, we remove the
379 * fourth from the possibilities list to avoid any full-cross
380 * squares (which would make the game too easy because they
381 * only have one orientation).
382 *
383 * The slightly worrying thing is the avoidance of full-cross
384 * squares. Can this cause our unsophisticated construction
385 * algorithm to paint itself into a corner, by getting into a
386 * situation where there are some unreached squares and the
387 * only way to reach any of them is to extend a T-piece into a
388 * full cross?
389 *
390 * Answer: no it can't, and here's a proof.
391 *
392 * Any contiguous group of such unreachable squares must be
393 * surrounded on _all_ sides by T-pieces pointing away from the
394 * group. (If not, then there is a square which can be extended
395 * into one of the `unreachable' ones, and so it wasn't
396 * unreachable after all.) In particular, this implies that
397 * each contiguous group of unreachable squares must be
398 * rectangular in shape (any deviation from that yields a
399 * non-T-piece next to an `unreachable' square).
400 *
401 * So we have a rectangle of unreachable squares, with T-pieces
402 * forming a solid border around the rectangle. The corners of
403 * that border must be connected (since every tile connects all
404 * the lines arriving in it), and therefore the border must
405 * form a closed loop around the rectangle.
406 *
407 * But this can't have happened in the first place, since we
408 * _know_ we've avoided creating closed loops! Hence, no such
409 * situation can ever arise, and the naive grid construction
410 * algorithm will guaranteeably result in a complete grid
411 * containing no unreached squares, no full crosses _and_ no
412 * closed loops. []
413 */
414 possibilities = newtree234(xyd_cmp);
415
416 if (state->cx+1 < state->width)
417 add234(possibilities, new_xyd(state->cx, state->cy, R));
418 if (state->cy-1 >= 0)
419 add234(possibilities, new_xyd(state->cx, state->cy, U));
420 if (state->cx-1 >= 0)
421 add234(possibilities, new_xyd(state->cx, state->cy, L));
422 if (state->cy+1 < state->height)
423 add234(possibilities, new_xyd(state->cx, state->cy, D));
424
425 while (count234(possibilities) > 0) {
426 int i;
427 struct xyd *xyd;
428 int x1, y1, d1, x2, y2, d2, d;
429
430 /*
431 * Extract a randomly chosen possibility from the list.
432 */
433 i = random_upto(rs, count234(possibilities));
434 xyd = delpos234(possibilities, i);
435 x1 = xyd->x;
436 y1 = xyd->y;
437 d1 = xyd->direction;
438 sfree(xyd);
439
440 OFFSET(x2, y2, x1, y1, d1, state);
441 d2 = F(d1);
442 #ifdef DEBUG
443 printf("picked (%d,%d,%c) <-> (%d,%d,%c)\n",
444 x1, y1, "0RU3L567D9abcdef"[d1], x2, y2, "0RU3L567D9abcdef"[d2]);
445 #endif
446
447 /*
448 * Make the connection. (We should be moving to an as yet
449 * unused tile.)
450 */
451 tile(state, x1, y1) |= d1;
452 assert(tile(state, x2, y2) == 0);
453 tile(state, x2, y2) |= d2;
454
455 /*
456 * If we have created a T-piece, remove its last
457 * possibility.
458 */
459 if (COUNT(tile(state, x1, y1)) == 3) {
460 struct xyd xyd1, *xydp;
461
462 xyd1.x = x1;
463 xyd1.y = y1;
464 xyd1.direction = 0x0F ^ tile(state, x1, y1);
465
466 xydp = find234(possibilities, &xyd1, NULL);
467
468 if (xydp) {
469 #ifdef DEBUG
470 printf("T-piece; removing (%d,%d,%c)\n",
471 xydp->x, xydp->y, "0RU3L567D9abcdef"[xydp->direction]);
472 #endif
473 del234(possibilities, xydp);
474 sfree(xydp);
475 }
476 }
477
478 /*
479 * Remove all other possibilities that were pointing at the
480 * tile we've just moved into.
481 */
482 for (d = 1; d < 0x10; d <<= 1) {
483 int x3, y3, d3;
484 struct xyd xyd1, *xydp;
485
486 OFFSET(x3, y3, x2, y2, d, state);
487 d3 = F(d);
488
489 xyd1.x = x3;
490 xyd1.y = y3;
491 xyd1.direction = d3;
492
493 xydp = find234(possibilities, &xyd1, NULL);
494
495 if (xydp) {
496 #ifdef DEBUG
497 printf("Loop avoidance; removing (%d,%d,%c)\n",
498 xydp->x, xydp->y, "0RU3L567D9abcdef"[xydp->direction]);
499 #endif
500 del234(possibilities, xydp);
501 sfree(xydp);
502 }
503 }
504
505 /*
506 * Add new possibilities to the list for moving _out_ of
507 * the tile we have just moved into.
508 */
509 for (d = 1; d < 0x10; d <<= 1) {
510 int x3, y3;
511
512 if (d == d2)
513 continue; /* we've got this one already */
514
515 if (!state->wrapping) {
516 if (d == U && y2 == 0)
517 continue;
518 if (d == D && y2 == state->height-1)
519 continue;
520 if (d == L && x2 == 0)
521 continue;
522 if (d == R && x2 == state->width-1)
523 continue;
524 }
525
526 OFFSET(x3, y3, x2, y2, d, state);
527
528 if (tile(state, x3, y3))
529 continue; /* this would create a loop */
530
531 #ifdef DEBUG
532 printf("New frontier; adding (%d,%d,%c)\n",
533 x2, y2, "0RU3L567D9abcdef"[d]);
534 #endif
535 add234(possibilities, new_xyd(x2, y2, d));
536 }
537 }
538 /* Having done that, we should have no possibilities remaining. */
539 assert(count234(possibilities) == 0);
540 freetree234(possibilities);
541
542 /*
543 * Now compute a list of the possible barrier locations.
544 */
545 barriers = newtree234(xyd_cmp);
546 for (y = 0; y < state->height; y++) {
547 for (x = 0; x < state->width; x++) {
548
549 if (!(tile(state, x, y) & R) &&
550 (state->wrapping || x < state->width-1))
551 add234(barriers, new_xyd(x, y, R));
552 if (!(tile(state, x, y) & D) &&
553 (state->wrapping || y < state->height-1))
554 add234(barriers, new_xyd(x, y, D));
555 }
556 }
557
558 /*
559 * Now shuffle the grid.
560 */
561 for (y = 0; y < state->height; y++) {
562 for (x = 0; x < state->width; x++) {
563 int orig = tile(state, x, y);
564 int rot = random_upto(rs, 4);
565 tile(state, x, y) = ROT(orig, rot);
566 }
567 }
568
569 /*
570 * And now choose barrier locations. (We carefully do this
571 * _after_ shuffling, so that changing the barrier rate in the
572 * params while keeping the game seed the same will give the
573 * same shuffled grid and _only_ change the barrier locations.
574 * Also the way we choose barrier locations, by repeatedly
575 * choosing one possibility from the list until we have enough,
576 * is designed to ensure that raising the barrier rate while
577 * keeping the seed the same will provide a superset of the
578 * previous barrier set - i.e. if you ask for 10 barriers, and
579 * then decide that's still too hard and ask for 20, you'll get
580 * the original 10 plus 10 more, rather than getting 20 new
581 * ones and the chance of remembering your first 10.)
582 */
583 nbarriers = (int)(params->barrier_probability * count234(barriers));
584 assert(nbarriers >= 0 && nbarriers <= count234(barriers));
585
586 while (nbarriers > 0) {
587 int i;
588 struct xyd *xyd;
589 int x1, y1, d1, x2, y2, d2;
590
591 /*
592 * Extract a randomly chosen barrier from the list.
593 */
594 i = random_upto(rs, count234(barriers));
595 xyd = delpos234(barriers, i);
596
597 assert(xyd != NULL);
598
599 x1 = xyd->x;
600 y1 = xyd->y;
601 d1 = xyd->direction;
602 sfree(xyd);
603
604 OFFSET(x2, y2, x1, y1, d1, state);
605 d2 = F(d1);
606
607 barrier(state, x1, y1) |= d1;
608 barrier(state, x2, y2) |= d2;
609
610 nbarriers--;
611 }
612
613 /*
614 * Clean up the rest of the barrier list.
615 */
616 {
617 struct xyd *xyd;
618
619 while ( (xyd = delpos234(barriers, 0)) != NULL)
620 sfree(xyd);
621
622 freetree234(barriers);
623 }
624
625 /*
626 * Set up the barrier corner flags, for drawing barriers
627 * prettily when they meet.
628 */
629 for (y = 0; y < state->height; y++) {
630 for (x = 0; x < state->width; x++) {
631 int dir;
632
633 for (dir = 1; dir < 0x10; dir <<= 1) {
634 int dir2 = A(dir);
635 int x1, y1, x2, y2, x3, y3;
636 int corner = FALSE;
637
638 if (!(barrier(state, x, y) & dir))
639 continue;
640
641 if (barrier(state, x, y) & dir2)
642 corner = TRUE;
643
644 x1 = x + X(dir), y1 = y + Y(dir);
645 if (x1 >= 0 && x1 < state->width &&
646 y1 >= 0 && y1 < state->height &&
647 (barrier(state, x1, y1) & dir2))
648 corner = TRUE;
649
650 x2 = x + X(dir2), y2 = y + Y(dir2);
651 if (x2 >= 0 && x2 < state->width &&
652 y2 >= 0 && y2 < state->height &&
653 (barrier(state, x2, y2) & dir))
654 corner = TRUE;
655
656 if (corner) {
657 barrier(state, x, y) |= (dir << 4);
658 if (x1 >= 0 && x1 < state->width &&
659 y1 >= 0 && y1 < state->height)
660 barrier(state, x1, y1) |= (A(dir) << 4);
661 if (x2 >= 0 && x2 < state->width &&
662 y2 >= 0 && y2 < state->height)
663 barrier(state, x2, y2) |= (C(dir) << 4);
664 x3 = x + X(dir) + X(dir2), y3 = y + Y(dir) + Y(dir2);
665 if (x3 >= 0 && x3 < state->width &&
666 y3 >= 0 && y3 < state->height)
667 barrier(state, x3, y3) |= (F(dir) << 4);
668 }
669 }
670 }
671 }
672
673 random_free(rs);
674
675 return state;
676 }
677
678 game_state *dup_game(game_state *state)
679 {
680 game_state *ret;
681
682 ret = snew(game_state);
683 ret->width = state->width;
684 ret->height = state->height;
685 ret->cx = state->cx;
686 ret->cy = state->cy;
687 ret->wrapping = state->wrapping;
688 ret->completed = state->completed;
689 ret->last_rotate_dir = state->last_rotate_dir;
690 ret->tiles = snewn(state->width * state->height, unsigned char);
691 memcpy(ret->tiles, state->tiles, state->width * state->height);
692 ret->barriers = snewn(state->width * state->height, unsigned char);
693 memcpy(ret->barriers, state->barriers, state->width * state->height);
694
695 return ret;
696 }
697
698 void free_game(game_state *state)
699 {
700 sfree(state->tiles);
701 sfree(state->barriers);
702 sfree(state);
703 }
704
705 /* ----------------------------------------------------------------------
706 * Utility routine.
707 */
708
709 /*
710 * Compute which squares are reachable from the centre square, as a
711 * quick visual aid to determining how close the game is to
712 * completion. This is also a simple way to tell if the game _is_
713 * completed - just call this function and see whether every square
714 * is marked active.
715 */
716 static unsigned char *compute_active(game_state *state)
717 {
718 unsigned char *active;
719 tree234 *todo;
720 struct xyd *xyd;
721
722 active = snewn(state->width * state->height, unsigned char);
723 memset(active, 0, state->width * state->height);
724
725 /*
726 * We only store (x,y) pairs in todo, but it's easier to reuse
727 * xyd_cmp and just store direction 0 every time.
728 */
729 todo = newtree234(xyd_cmp);
730 index(state, active, state->cx, state->cy) = ACTIVE;
731 add234(todo, new_xyd(state->cx, state->cy, 0));
732
733 while ( (xyd = delpos234(todo, 0)) != NULL) {
734 int x1, y1, d1, x2, y2, d2;
735
736 x1 = xyd->x;
737 y1 = xyd->y;
738 sfree(xyd);
739
740 for (d1 = 1; d1 < 0x10; d1 <<= 1) {
741 OFFSET(x2, y2, x1, y1, d1, state);
742 d2 = F(d1);
743
744 /*
745 * If the next tile in this direction is connected to
746 * us, and there isn't a barrier in the way, and it
747 * isn't already marked active, then mark it active and
748 * add it to the to-examine list.
749 */
750 if ((tile(state, x1, y1) & d1) &&
751 (tile(state, x2, y2) & d2) &&
752 !(barrier(state, x1, y1) & d1) &&
753 !index(state, active, x2, y2)) {
754 index(state, active, x2, y2) = ACTIVE;
755 add234(todo, new_xyd(x2, y2, 0));
756 }
757 }
758 }
759 /* Now we expect the todo list to have shrunk to zero size. */
760 assert(count234(todo) == 0);
761 freetree234(todo);
762
763 return active;
764 }
765
766 struct game_ui {
767 int cur_x, cur_y;
768 int cur_visible;
769 };
770
771 game_ui *new_ui(game_state *state)
772 {
773 game_ui *ui = snew(game_ui);
774 ui->cur_x = state->width / 2;
775 ui->cur_y = state->height / 2;
776 ui->cur_visible = FALSE;
777
778 return ui;
779 }
780
781 void free_ui(game_ui *ui)
782 {
783 sfree(ui);
784 }
785
786 /* ----------------------------------------------------------------------
787 * Process a move.
788 */
789 game_state *make_move(game_state *state, game_ui *ui, int x, int y, int button)
790 {
791 game_state *ret, *nullret;
792 int tx, ty, orig;
793
794 nullret = NULL;
795
796 if (button == LEFT_BUTTON ||
797 button == MIDDLE_BUTTON ||
798 button == RIGHT_BUTTON) {
799
800 if (ui->cur_visible) {
801 ui->cur_visible = FALSE;
802 nullret = state;
803 }
804
805 /*
806 * The button must have been clicked on a valid tile.
807 */
808 x -= WINDOW_OFFSET + TILE_BORDER;
809 y -= WINDOW_OFFSET + TILE_BORDER;
810 if (x < 0 || y < 0)
811 return nullret;
812 tx = x / TILE_SIZE;
813 ty = y / TILE_SIZE;
814 if (tx >= state->width || ty >= state->height)
815 return nullret;
816 if (x % TILE_SIZE >= TILE_SIZE - TILE_BORDER ||
817 y % TILE_SIZE >= TILE_SIZE - TILE_BORDER)
818 return nullret;
819 } else if (button == CURSOR_UP || button == CURSOR_DOWN ||
820 button == CURSOR_RIGHT || button == CURSOR_LEFT) {
821 if (button == CURSOR_UP && ui->cur_y > 0)
822 ui->cur_y--;
823 else if (button == CURSOR_DOWN && ui->cur_y < state->height-1)
824 ui->cur_y++;
825 else if (button == CURSOR_LEFT && ui->cur_x > 0)
826 ui->cur_x--;
827 else if (button == CURSOR_RIGHT && ui->cur_x < state->width-1)
828 ui->cur_x++;
829 else
830 return nullret; /* no cursor movement */
831 ui->cur_visible = TRUE;
832 return state; /* UI activity has occurred */
833 } else if (button == 'a' || button == 's' || button == 'd' ||
834 button == 'A' || button == 'S' || button == 'D') {
835 tx = ui->cur_x;
836 ty = ui->cur_y;
837 if (button == 'a' || button == 'A')
838 button = LEFT_BUTTON;
839 else if (button == 's' || button == 'S')
840 button = MIDDLE_BUTTON;
841 else if (button == 'd' || button == 'D')
842 button = RIGHT_BUTTON;
843 } else
844 return nullret;
845
846 /*
847 * The middle button locks or unlocks a tile. (A locked tile
848 * cannot be turned, and is visually marked as being locked.
849 * This is a convenience for the player, so that once they are
850 * sure which way round a tile goes, they can lock it and thus
851 * avoid forgetting later on that they'd already done that one;
852 * and the locking also prevents them turning the tile by
853 * accident. If they change their mind, another middle click
854 * unlocks it.)
855 */
856 if (button == MIDDLE_BUTTON) {
857 ret = dup_game(state);
858 tile(ret, tx, ty) ^= LOCKED;
859 return ret;
860 }
861
862 /*
863 * The left and right buttons have no effect if clicked on a
864 * locked tile.
865 */
866 if (tile(state, tx, ty) & LOCKED)
867 return nullret;
868
869 /*
870 * Otherwise, turn the tile one way or the other. Left button
871 * turns anticlockwise; right button turns clockwise.
872 */
873 ret = dup_game(state);
874 orig = tile(ret, tx, ty);
875 if (button == LEFT_BUTTON) {
876 tile(ret, tx, ty) = A(orig);
877 ret->last_rotate_dir = +1;
878 } else {
879 tile(ret, tx, ty) = C(orig);
880 ret->last_rotate_dir = -1;
881 }
882
883 /*
884 * Check whether the game has been completed.
885 */
886 {
887 unsigned char *active = compute_active(ret);
888 int x1, y1;
889 int complete = TRUE;
890
891 for (x1 = 0; x1 < ret->width; x1++)
892 for (y1 = 0; y1 < ret->height; y1++)
893 if (!index(ret, active, x1, y1)) {
894 complete = FALSE;
895 goto break_label; /* break out of two loops at once */
896 }
897 break_label:
898
899 sfree(active);
900
901 if (complete)
902 ret->completed = TRUE;
903 }
904
905 return ret;
906 }
907
908 /* ----------------------------------------------------------------------
909 * Routines for drawing the game position on the screen.
910 */
911
912 struct game_drawstate {
913 int started;
914 int width, height;
915 unsigned char *visible;
916 };
917
918 game_drawstate *game_new_drawstate(game_state *state)
919 {
920 game_drawstate *ds = snew(game_drawstate);
921
922 ds->started = FALSE;
923 ds->width = state->width;
924 ds->height = state->height;
925 ds->visible = snewn(state->width * state->height, unsigned char);
926 memset(ds->visible, 0xFF, state->width * state->height);
927
928 return ds;
929 }
930
931 void game_free_drawstate(game_drawstate *ds)
932 {
933 sfree(ds->visible);
934 sfree(ds);
935 }
936
937 void game_size(game_params *params, int *x, int *y)
938 {
939 *x = WINDOW_OFFSET * 2 + TILE_SIZE * params->width + TILE_BORDER;
940 *y = WINDOW_OFFSET * 2 + TILE_SIZE * params->height + TILE_BORDER;
941 }
942
943 float *game_colours(frontend *fe, game_state *state, int *ncolours)
944 {
945 float *ret;
946
947 ret = snewn(NCOLOURS * 3, float);
948 *ncolours = NCOLOURS;
949
950 /*
951 * Basic background colour is whatever the front end thinks is
952 * a sensible default.
953 */
954 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
955
956 /*
957 * Wires are black.
958 */
959 ret[COL_WIRE * 3 + 0] = 0.0F;
960 ret[COL_WIRE * 3 + 1] = 0.0F;
961 ret[COL_WIRE * 3 + 2] = 0.0F;
962
963 /*
964 * Powered wires and powered endpoints are cyan.
965 */
966 ret[COL_POWERED * 3 + 0] = 0.0F;
967 ret[COL_POWERED * 3 + 1] = 1.0F;
968 ret[COL_POWERED * 3 + 2] = 1.0F;
969
970 /*
971 * Barriers are red.
972 */
973 ret[COL_BARRIER * 3 + 0] = 1.0F;
974 ret[COL_BARRIER * 3 + 1] = 0.0F;
975 ret[COL_BARRIER * 3 + 2] = 0.0F;
976
977 /*
978 * Unpowered endpoints are blue.
979 */
980 ret[COL_ENDPOINT * 3 + 0] = 0.0F;
981 ret[COL_ENDPOINT * 3 + 1] = 0.0F;
982 ret[COL_ENDPOINT * 3 + 2] = 1.0F;
983
984 /*
985 * Tile borders are a darker grey than the background.
986 */
987 ret[COL_BORDER * 3 + 0] = 0.5F * ret[COL_BACKGROUND * 3 + 0];
988 ret[COL_BORDER * 3 + 1] = 0.5F * ret[COL_BACKGROUND * 3 + 1];
989 ret[COL_BORDER * 3 + 2] = 0.5F * ret[COL_BACKGROUND * 3 + 2];
990
991 /*
992 * Locked tiles are a grey in between those two.
993 */
994 ret[COL_LOCKED * 3 + 0] = 0.75F * ret[COL_BACKGROUND * 3 + 0];
995 ret[COL_LOCKED * 3 + 1] = 0.75F * ret[COL_BACKGROUND * 3 + 1];
996 ret[COL_LOCKED * 3 + 2] = 0.75F * ret[COL_BACKGROUND * 3 + 2];
997
998 return ret;
999 }
1000
1001 static void draw_thick_line(frontend *fe, int x1, int y1, int x2, int y2,
1002 int colour)
1003 {
1004 draw_line(fe, x1-1, y1, x2-1, y2, COL_WIRE);
1005 draw_line(fe, x1+1, y1, x2+1, y2, COL_WIRE);
1006 draw_line(fe, x1, y1-1, x2, y2-1, COL_WIRE);
1007 draw_line(fe, x1, y1+1, x2, y2+1, COL_WIRE);
1008 draw_line(fe, x1, y1, x2, y2, colour);
1009 }
1010
1011 static void draw_rect_coords(frontend *fe, int x1, int y1, int x2, int y2,
1012 int colour)
1013 {
1014 int mx = (x1 < x2 ? x1 : x2);
1015 int my = (y1 < y2 ? y1 : y2);
1016 int dx = (x2 + x1 - 2*mx + 1);
1017 int dy = (y2 + y1 - 2*my + 1);
1018
1019 draw_rect(fe, mx, my, dx, dy, colour);
1020 }
1021
1022 static void draw_barrier_corner(frontend *fe, int x, int y, int dir, int phase)
1023 {
1024 int bx = WINDOW_OFFSET + TILE_SIZE * x;
1025 int by = WINDOW_OFFSET + TILE_SIZE * y;
1026 int x1, y1, dx, dy, dir2;
1027
1028 dir >>= 4;
1029
1030 dir2 = A(dir);
1031 dx = X(dir) + X(dir2);
1032 dy = Y(dir) + Y(dir2);
1033 x1 = (dx > 0 ? TILE_SIZE+TILE_BORDER-1 : 0);
1034 y1 = (dy > 0 ? TILE_SIZE+TILE_BORDER-1 : 0);
1035
1036 if (phase == 0) {
1037 draw_rect_coords(fe, bx+x1, by+y1,
1038 bx+x1-TILE_BORDER*dx, by+y1-(TILE_BORDER-1)*dy,
1039 COL_WIRE);
1040 draw_rect_coords(fe, bx+x1, by+y1,
1041 bx+x1-(TILE_BORDER-1)*dx, by+y1-TILE_BORDER*dy,
1042 COL_WIRE);
1043 } else {
1044 draw_rect_coords(fe, bx+x1, by+y1,
1045 bx+x1-(TILE_BORDER-1)*dx, by+y1-(TILE_BORDER-1)*dy,
1046 COL_BARRIER);
1047 }
1048 }
1049
1050 static void draw_barrier(frontend *fe, int x, int y, int dir, int phase)
1051 {
1052 int bx = WINDOW_OFFSET + TILE_SIZE * x;
1053 int by = WINDOW_OFFSET + TILE_SIZE * y;
1054 int x1, y1, w, h;
1055
1056 x1 = (X(dir) > 0 ? TILE_SIZE : X(dir) == 0 ? TILE_BORDER : 0);
1057 y1 = (Y(dir) > 0 ? TILE_SIZE : Y(dir) == 0 ? TILE_BORDER : 0);
1058 w = (X(dir) ? TILE_BORDER : TILE_SIZE - TILE_BORDER);
1059 h = (Y(dir) ? TILE_BORDER : TILE_SIZE - TILE_BORDER);
1060
1061 if (phase == 0) {
1062 draw_rect(fe, bx+x1-X(dir), by+y1-Y(dir), w, h, COL_WIRE);
1063 } else {
1064 draw_rect(fe, bx+x1, by+y1, w, h, COL_BARRIER);
1065 }
1066 }
1067
1068 static void draw_tile(frontend *fe, game_state *state, int x, int y, int tile,
1069 float angle, int cursor)
1070 {
1071 int bx = WINDOW_OFFSET + TILE_SIZE * x;
1072 int by = WINDOW_OFFSET + TILE_SIZE * y;
1073 float matrix[4];
1074 float cx, cy, ex, ey, tx, ty;
1075 int dir, col, phase;
1076
1077 /*
1078 * When we draw a single tile, we must draw everything up to
1079 * and including the borders around the tile. This means that
1080 * if the neighbouring tiles have connections to those borders,
1081 * we must draw those connections on the borders themselves.
1082 *
1083 * This would be terribly fiddly if we ever had to draw a tile
1084 * while its neighbour was in mid-rotate, because we'd have to
1085 * arrange to _know_ that the neighbour was being rotated and
1086 * hence had an anomalous effect on the redraw of this tile.
1087 * Fortunately, the drawing algorithm avoids ever calling us in
1088 * this circumstance: we're either drawing lots of straight
1089 * tiles at game start or after a move is complete, or we're
1090 * repeatedly drawing only the rotating tile. So no problem.
1091 */
1092
1093 /*
1094 * So. First blank the tile out completely: draw a big
1095 * rectangle in border colour, and a smaller rectangle in
1096 * background colour to fill it in.
1097 */
1098 draw_rect(fe, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER,
1099 COL_BORDER);
1100 draw_rect(fe, bx+TILE_BORDER, by+TILE_BORDER,
1101 TILE_SIZE-TILE_BORDER, TILE_SIZE-TILE_BORDER,
1102 tile & LOCKED ? COL_LOCKED : COL_BACKGROUND);
1103
1104 /*
1105 * Draw an inset outline rectangle as a cursor, in whichever of
1106 * COL_LOCKED and COL_BACKGROUND we aren't currently drawing
1107 * in.
1108 */
1109 if (cursor) {
1110 draw_line(fe, bx+TILE_SIZE/8, by+TILE_SIZE/8,
1111 bx+TILE_SIZE/8, by+TILE_SIZE-TILE_SIZE/8,
1112 tile & LOCKED ? COL_BACKGROUND : COL_LOCKED);
1113 draw_line(fe, bx+TILE_SIZE/8, by+TILE_SIZE/8,
1114 bx+TILE_SIZE-TILE_SIZE/8, by+TILE_SIZE/8,
1115 tile & LOCKED ? COL_BACKGROUND : COL_LOCKED);
1116 draw_line(fe, bx+TILE_SIZE-TILE_SIZE/8, by+TILE_SIZE/8,
1117 bx+TILE_SIZE-TILE_SIZE/8, by+TILE_SIZE-TILE_SIZE/8,
1118 tile & LOCKED ? COL_BACKGROUND : COL_LOCKED);
1119 draw_line(fe, bx+TILE_SIZE/8, by+TILE_SIZE-TILE_SIZE/8,
1120 bx+TILE_SIZE-TILE_SIZE/8, by+TILE_SIZE-TILE_SIZE/8,
1121 tile & LOCKED ? COL_BACKGROUND : COL_LOCKED);
1122 }
1123
1124 /*
1125 * Set up the rotation matrix.
1126 */
1127 matrix[0] = (float)cos(angle * PI / 180.0);
1128 matrix[1] = (float)-sin(angle * PI / 180.0);
1129 matrix[2] = (float)sin(angle * PI / 180.0);
1130 matrix[3] = (float)cos(angle * PI / 180.0);
1131
1132 /*
1133 * Draw the wires.
1134 */
1135 cx = cy = TILE_BORDER + (TILE_SIZE-TILE_BORDER) / 2.0F - 0.5F;
1136 col = (tile & ACTIVE ? COL_POWERED : COL_WIRE);
1137 for (dir = 1; dir < 0x10; dir <<= 1) {
1138 if (tile & dir) {
1139 ex = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * X(dir);
1140 ey = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * Y(dir);
1141 MATMUL(tx, ty, matrix, ex, ey);
1142 draw_thick_line(fe, bx+(int)cx, by+(int)cy,
1143 bx+(int)(cx+tx), by+(int)(cy+ty),
1144 COL_WIRE);
1145 }
1146 }
1147 for (dir = 1; dir < 0x10; dir <<= 1) {
1148 if (tile & dir) {
1149 ex = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * X(dir);
1150 ey = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * Y(dir);
1151 MATMUL(tx, ty, matrix, ex, ey);
1152 draw_line(fe, bx+(int)cx, by+(int)cy,
1153 bx+(int)(cx+tx), by+(int)(cy+ty), col);
1154 }
1155 }
1156
1157 /*
1158 * Draw the box in the middle. We do this in blue if the tile
1159 * is an unpowered endpoint, in cyan if the tile is a powered
1160 * endpoint, in black if the tile is the centrepiece, and
1161 * otherwise not at all.
1162 */
1163 col = -1;
1164 if (x == state->cx && y == state->cy)
1165 col = COL_WIRE;
1166 else if (COUNT(tile) == 1) {
1167 col = (tile & ACTIVE ? COL_POWERED : COL_ENDPOINT);
1168 }
1169 if (col >= 0) {
1170 int i, points[8];
1171
1172 points[0] = +1; points[1] = +1;
1173 points[2] = +1; points[3] = -1;
1174 points[4] = -1; points[5] = -1;
1175 points[6] = -1; points[7] = +1;
1176
1177 for (i = 0; i < 8; i += 2) {
1178 ex = (TILE_SIZE * 0.24F) * points[i];
1179 ey = (TILE_SIZE * 0.24F) * points[i+1];
1180 MATMUL(tx, ty, matrix, ex, ey);
1181 points[i] = bx+(int)(cx+tx);
1182 points[i+1] = by+(int)(cy+ty);
1183 }
1184
1185 draw_polygon(fe, points, 4, TRUE, col);
1186 draw_polygon(fe, points, 4, FALSE, COL_WIRE);
1187 }
1188
1189 /*
1190 * Draw the points on the border if other tiles are connected
1191 * to us.
1192 */
1193 for (dir = 1; dir < 0x10; dir <<= 1) {
1194 int dx, dy, px, py, lx, ly, vx, vy, ox, oy;
1195
1196 dx = X(dir);
1197 dy = Y(dir);
1198
1199 ox = x + dx;
1200 oy = y + dy;
1201
1202 if (ox < 0 || ox >= state->width || oy < 0 || oy >= state->height)
1203 continue;
1204
1205 if (!(tile(state, ox, oy) & F(dir)))
1206 continue;
1207
1208 px = bx + (int)(dx>0 ? TILE_SIZE + TILE_BORDER - 1 : dx<0 ? 0 : cx);
1209 py = by + (int)(dy>0 ? TILE_SIZE + TILE_BORDER - 1 : dy<0 ? 0 : cy);
1210 lx = dx * (TILE_BORDER-1);
1211 ly = dy * (TILE_BORDER-1);
1212 vx = (dy ? 1 : 0);
1213 vy = (dx ? 1 : 0);
1214
1215 if (angle == 0.0 && (tile & dir)) {
1216 /*
1217 * If we are fully connected to the other tile, we must
1218 * draw right across the tile border. (We can use our
1219 * own ACTIVE state to determine what colour to do this
1220 * in: if we are fully connected to the other tile then
1221 * the two ACTIVE states will be the same.)
1222 */
1223 draw_rect_coords(fe, px-vx, py-vy, px+lx+vx, py+ly+vy, COL_WIRE);
1224 draw_rect_coords(fe, px, py, px+lx, py+ly,
1225 (tile & ACTIVE) ? COL_POWERED : COL_WIRE);
1226 } else {
1227 /*
1228 * The other tile extends into our border, but isn't
1229 * actually connected to us. Just draw a single black
1230 * dot.
1231 */
1232 draw_rect_coords(fe, px, py, px, py, COL_WIRE);
1233 }
1234 }
1235
1236 /*
1237 * Draw barrier corners, and then barriers.
1238 */
1239 for (phase = 0; phase < 2; phase++) {
1240 for (dir = 1; dir < 0x10; dir <<= 1)
1241 if (barrier(state, x, y) & (dir << 4))
1242 draw_barrier_corner(fe, x, y, dir << 4, phase);
1243 for (dir = 1; dir < 0x10; dir <<= 1)
1244 if (barrier(state, x, y) & dir)
1245 draw_barrier(fe, x, y, dir, phase);
1246 }
1247
1248 draw_update(fe, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER);
1249 }
1250
1251 void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate,
1252 game_state *state, game_ui *ui, float t, float ft)
1253 {
1254 int x, y, tx, ty, frame;
1255 unsigned char *active;
1256 float angle = 0.0;
1257
1258 /*
1259 * Clear the screen and draw the exterior barrier lines if this
1260 * is our first call.
1261 */
1262 if (!ds->started) {
1263 int phase;
1264
1265 ds->started = TRUE;
1266
1267 draw_rect(fe, 0, 0,
1268 WINDOW_OFFSET * 2 + TILE_SIZE * state->width + TILE_BORDER,
1269 WINDOW_OFFSET * 2 + TILE_SIZE * state->height + TILE_BORDER,
1270 COL_BACKGROUND);
1271 draw_update(fe, 0, 0,
1272 WINDOW_OFFSET*2 + TILE_SIZE*state->width + TILE_BORDER,
1273 WINDOW_OFFSET*2 + TILE_SIZE*state->height + TILE_BORDER);
1274
1275 for (phase = 0; phase < 2; phase++) {
1276
1277 for (x = 0; x < ds->width; x++) {
1278 if (barrier(state, x, 0) & UL)
1279 draw_barrier_corner(fe, x, -1, LD, phase);
1280 if (barrier(state, x, 0) & RU)
1281 draw_barrier_corner(fe, x, -1, DR, phase);
1282 if (barrier(state, x, 0) & U)
1283 draw_barrier(fe, x, -1, D, phase);
1284 if (barrier(state, x, ds->height-1) & DR)
1285 draw_barrier_corner(fe, x, ds->height, RU, phase);
1286 if (barrier(state, x, ds->height-1) & LD)
1287 draw_barrier_corner(fe, x, ds->height, UL, phase);
1288 if (barrier(state, x, ds->height-1) & D)
1289 draw_barrier(fe, x, ds->height, U, phase);
1290 }
1291
1292 for (y = 0; y < ds->height; y++) {
1293 if (barrier(state, 0, y) & UL)
1294 draw_barrier_corner(fe, -1, y, RU, phase);
1295 if (barrier(state, 0, y) & LD)
1296 draw_barrier_corner(fe, -1, y, DR, phase);
1297 if (barrier(state, 0, y) & L)
1298 draw_barrier(fe, -1, y, R, phase);
1299 if (barrier(state, ds->width-1, y) & RU)
1300 draw_barrier_corner(fe, ds->width, y, UL, phase);
1301 if (barrier(state, ds->width-1, y) & DR)
1302 draw_barrier_corner(fe, ds->width, y, LD, phase);
1303 if (barrier(state, ds->width-1, y) & R)
1304 draw_barrier(fe, ds->width, y, L, phase);
1305 }
1306 }
1307 }
1308
1309 tx = ty = -1;
1310 if (oldstate && (t < ROTATE_TIME)) {
1311 /*
1312 * We're animating a tile rotation. Find the turning tile,
1313 * if any.
1314 */
1315 for (x = 0; x < oldstate->width; x++)
1316 for (y = 0; y < oldstate->height; y++)
1317 if ((tile(oldstate, x, y) ^ tile(state, x, y)) & 0xF) {
1318 tx = x, ty = y;
1319 goto break_label; /* leave both loops at once */
1320 }
1321 break_label:
1322
1323 if (tx >= 0) {
1324 if (tile(state, tx, ty) == ROT(tile(oldstate, tx, ty),
1325 state->last_rotate_dir))
1326 angle = state->last_rotate_dir * 90.0F * (t / ROTATE_TIME);
1327 else
1328 angle = state->last_rotate_dir * -90.0F * (t / ROTATE_TIME);
1329 state = oldstate;
1330 }
1331 }
1332
1333 frame = -1;
1334 if (ft > 0) {
1335 /*
1336 * We're animating a completion flash. Find which frame
1337 * we're at.
1338 */
1339 frame = (int)(ft / FLASH_FRAME);
1340 }
1341
1342 /*
1343 * Draw any tile which differs from the way it was last drawn.
1344 */
1345 active = compute_active(state);
1346
1347 for (x = 0; x < ds->width; x++)
1348 for (y = 0; y < ds->height; y++) {
1349 unsigned char c = tile(state, x, y) | index(state, active, x, y);
1350
1351 /*
1352 * In a completion flash, we adjust the LOCKED bit
1353 * depending on our distance from the centre point and
1354 * the frame number.
1355 */
1356 if (frame >= 0) {
1357 int xdist, ydist, dist;
1358 xdist = (x < state->cx ? state->cx - x : x - state->cx);
1359 ydist = (y < state->cy ? state->cy - y : y - state->cy);
1360 dist = (xdist > ydist ? xdist : ydist);
1361
1362 if (frame >= dist && frame < dist+4) {
1363 int lock = (frame - dist) & 1;
1364 lock = lock ? LOCKED : 0;
1365 c = (c &~ LOCKED) | lock;
1366 }
1367 }
1368
1369 if (index(state, ds->visible, x, y) != c ||
1370 index(state, ds->visible, x, y) == 0xFF ||
1371 (x == tx && y == ty) ||
1372 (ui->cur_visible && x == ui->cur_x && y == ui->cur_y)) {
1373 draw_tile(fe, state, x, y, c,
1374 (x == tx && y == ty ? angle : 0.0F),
1375 (ui->cur_visible && x == ui->cur_x && y == ui->cur_y));
1376 if ((x == tx && y == ty) ||
1377 (ui->cur_visible && x == ui->cur_x && y == ui->cur_y))
1378 index(state, ds->visible, x, y) = 0xFF;
1379 else
1380 index(state, ds->visible, x, y) = c;
1381 }
1382 }
1383
1384 /*
1385 * Update the status bar.
1386 */
1387 {
1388 char statusbuf[256];
1389 int i, n, a;
1390
1391 n = state->width * state->height;
1392 for (i = a = 0; i < n; i++)
1393 if (active[i])
1394 a++;
1395
1396 sprintf(statusbuf, "%sActive: %d/%d",
1397 (state->completed ? "COMPLETED! " : ""), a, n);
1398
1399 status_bar(fe, statusbuf);
1400 }
1401
1402 sfree(active);
1403 }
1404
1405 float game_anim_length(game_state *oldstate, game_state *newstate)
1406 {
1407 int x, y;
1408
1409 /*
1410 * If there's a tile which has been rotated, allow time to
1411 * animate its rotation.
1412 */
1413 for (x = 0; x < oldstate->width; x++)
1414 for (y = 0; y < oldstate->height; y++)
1415 if ((tile(oldstate, x, y) ^ tile(newstate, x, y)) & 0xF) {
1416 return ROTATE_TIME;
1417 }
1418
1419 return 0.0F;
1420 }
1421
1422 float game_flash_length(game_state *oldstate, game_state *newstate)
1423 {
1424 /*
1425 * If the game has just been completed, we display a completion
1426 * flash.
1427 */
1428 if (!oldstate->completed && newstate->completed) {
1429 int size;
1430 size = 0;
1431 if (size < newstate->cx+1)
1432 size = newstate->cx+1;
1433 if (size < newstate->cy+1)
1434 size = newstate->cy+1;
1435 if (size < newstate->width - newstate->cx)
1436 size = newstate->width - newstate->cx;
1437 if (size < newstate->height - newstate->cy)
1438 size = newstate->height - newstate->cy;
1439 return FLASH_FRAME * (size+4);
1440 }
1441
1442 return 0.0F;
1443 }
1444
1445 int game_wants_statusbar(void)
1446 {
1447 return TRUE;
1448 }