Introduce routines in each game module to encode a set of game
[sgt/puzzles] / cube.c
1 /*
2 * cube.c: Cube game.
3 */
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <string.h>
8 #include <assert.h>
9 #include <ctype.h>
10 #include <math.h>
11
12 #include "puzzles.h"
13
14 const char *const game_name = "Cube";
15 const int game_can_configure = TRUE;
16
17 #define MAXVERTICES 20
18 #define MAXFACES 20
19 #define MAXORDER 4
20 struct solid {
21 int nvertices;
22 float vertices[MAXVERTICES * 3]; /* 3*npoints coordinates */
23 int order;
24 int nfaces;
25 int faces[MAXFACES * MAXORDER]; /* order*nfaces point indices */
26 float normals[MAXFACES * 3]; /* 3*npoints vector components */
27 float shear; /* isometric shear for nice drawing */
28 float border; /* border required around arena */
29 };
30
31 static const struct solid tetrahedron = {
32 4,
33 {
34 0.0F, -0.57735026919F, -0.20412414523F,
35 -0.5F, 0.28867513459F, -0.20412414523F,
36 0.0F, -0.0F, 0.6123724357F,
37 0.5F, 0.28867513459F, -0.20412414523F,
38 },
39 3, 4,
40 {
41 0,2,1, 3,1,2, 2,0,3, 1,3,0
42 },
43 {
44 -0.816496580928F, -0.471404520791F, 0.333333333334F,
45 0.0F, 0.942809041583F, 0.333333333333F,
46 0.816496580928F, -0.471404520791F, 0.333333333334F,
47 0.0F, 0.0F, -1.0F,
48 },
49 0.0F, 0.3F
50 };
51
52 static const struct solid cube = {
53 8,
54 {
55 -0.5F,-0.5F,-0.5F, -0.5F,-0.5F,+0.5F,
56 -0.5F,+0.5F,-0.5F, -0.5F,+0.5F,+0.5F,
57 +0.5F,-0.5F,-0.5F, +0.5F,-0.5F,+0.5F,
58 +0.5F,+0.5F,-0.5F, +0.5F,+0.5F,+0.5F,
59 },
60 4, 6,
61 {
62 0,1,3,2, 1,5,7,3, 5,4,6,7, 4,0,2,6, 0,4,5,1, 3,7,6,2
63 },
64 {
65 -1.0F,0.0F,0.0F, 0.0F,0.0F,+1.0F,
66 +1.0F,0.0F,0.0F, 0.0F,0.0F,-1.0F,
67 0.0F,-1.0F,0.0F, 0.0F,+1.0F,0.0F
68 },
69 0.3F, 0.5F
70 };
71
72 static const struct solid octahedron = {
73 6,
74 {
75 -0.5F, -0.28867513459472505F, 0.4082482904638664F,
76 0.5F, 0.28867513459472505F, -0.4082482904638664F,
77 -0.5F, 0.28867513459472505F, -0.4082482904638664F,
78 0.5F, -0.28867513459472505F, 0.4082482904638664F,
79 0.0F, -0.57735026918945009F, -0.4082482904638664F,
80 0.0F, 0.57735026918945009F, 0.4082482904638664F,
81 },
82 3, 8,
83 {
84 4,0,2, 0,5,2, 0,4,3, 5,0,3, 1,4,2, 5,1,2, 4,1,3, 1,5,3
85 },
86 {
87 -0.816496580928F, -0.471404520791F, -0.333333333334F,
88 -0.816496580928F, 0.471404520791F, 0.333333333334F,
89 0.0F, -0.942809041583F, 0.333333333333F,
90 0.0F, 0.0F, 1.0F,
91 0.0F, 0.0F, -1.0F,
92 0.0F, 0.942809041583F, -0.333333333333F,
93 0.816496580928F, -0.471404520791F, -0.333333333334F,
94 0.816496580928F, 0.471404520791F, 0.333333333334F,
95 },
96 0.0F, 0.5F
97 };
98
99 static const struct solid icosahedron = {
100 12,
101 {
102 0.0F, 0.57735026919F, 0.75576131408F,
103 0.0F, -0.93417235896F, 0.17841104489F,
104 0.0F, 0.93417235896F, -0.17841104489F,
105 0.0F, -0.57735026919F, -0.75576131408F,
106 -0.5F, -0.28867513459F, 0.75576131408F,
107 -0.5F, 0.28867513459F, -0.75576131408F,
108 0.5F, -0.28867513459F, 0.75576131408F,
109 0.5F, 0.28867513459F, -0.75576131408F,
110 -0.80901699437F, 0.46708617948F, 0.17841104489F,
111 0.80901699437F, 0.46708617948F, 0.17841104489F,
112 -0.80901699437F, -0.46708617948F, -0.17841104489F,
113 0.80901699437F, -0.46708617948F, -0.17841104489F,
114 },
115 3, 20,
116 {
117 8,0,2, 0,9,2, 1,10,3, 11,1,3, 0,4,6,
118 4,1,6, 5,2,7, 3,5,7, 4,8,10, 8,5,10,
119 9,6,11, 7,9,11, 0,8,4, 9,0,6, 10,1,4,
120 1,11,6, 8,2,5, 2,9,7, 3,10,5, 11,3,7,
121 },
122 {
123 -0.356822089773F, 0.87267799625F, 0.333333333333F,
124 0.356822089773F, 0.87267799625F, 0.333333333333F,
125 -0.356822089773F, -0.87267799625F, -0.333333333333F,
126 0.356822089773F, -0.87267799625F, -0.333333333333F,
127 -0.0F, 0.0F, 1.0F,
128 0.0F, -0.666666666667F, 0.745355992501F,
129 0.0F, 0.666666666667F, -0.745355992501F,
130 0.0F, 0.0F, -1.0F,
131 -0.934172358963F, -0.12732200375F, 0.333333333333F,
132 -0.934172358963F, 0.12732200375F, -0.333333333333F,
133 0.934172358963F, -0.12732200375F, 0.333333333333F,
134 0.934172358963F, 0.12732200375F, -0.333333333333F,
135 -0.57735026919F, 0.333333333334F, 0.745355992501F,
136 0.57735026919F, 0.333333333334F, 0.745355992501F,
137 -0.57735026919F, -0.745355992501F, 0.333333333334F,
138 0.57735026919F, -0.745355992501F, 0.333333333334F,
139 -0.57735026919F, 0.745355992501F, -0.333333333334F,
140 0.57735026919F, 0.745355992501F, -0.333333333334F,
141 -0.57735026919F, -0.333333333334F, -0.745355992501F,
142 0.57735026919F, -0.333333333334F, -0.745355992501F,
143 },
144 0.0F, 0.8F
145 };
146
147 enum {
148 TETRAHEDRON, CUBE, OCTAHEDRON, ICOSAHEDRON
149 };
150 static const struct solid *solids[] = {
151 &tetrahedron, &cube, &octahedron, &icosahedron
152 };
153
154 enum {
155 COL_BACKGROUND,
156 COL_BORDER,
157 COL_BLUE,
158 NCOLOURS
159 };
160
161 enum { LEFT, RIGHT, UP, DOWN, UP_LEFT, UP_RIGHT, DOWN_LEFT, DOWN_RIGHT };
162
163 #define GRID_SCALE 48.0F
164 #define ROLLTIME 0.13F
165
166 #define SQ(x) ( (x) * (x) )
167
168 #define MATMUL(ra,m,a) do { \
169 float rx, ry, rz, xx = (a)[0], yy = (a)[1], zz = (a)[2], *mat = (m); \
170 rx = mat[0] * xx + mat[3] * yy + mat[6] * zz; \
171 ry = mat[1] * xx + mat[4] * yy + mat[7] * zz; \
172 rz = mat[2] * xx + mat[5] * yy + mat[8] * zz; \
173 (ra)[0] = rx; (ra)[1] = ry; (ra)[2] = rz; \
174 } while (0)
175
176 #define APPROXEQ(x,y) ( SQ(x-y) < 0.1 )
177
178 struct grid_square {
179 float x, y;
180 int npoints;
181 float points[8]; /* maximum */
182 int directions[8]; /* bit masks showing point pairs */
183 int flip;
184 int blue;
185 int tetra_class;
186 };
187
188 struct game_params {
189 int solid;
190 /*
191 * Grid dimensions. For a square grid these are width and
192 * height respectively; otherwise the grid is a hexagon, with
193 * the top side and the two lower diagonals having length d1
194 * and the remaining three sides having length d2 (so that
195 * d1==d2 gives a regular hexagon, and d2==0 gives a triangle).
196 */
197 int d1, d2;
198 };
199
200 struct game_state {
201 struct game_params params;
202 const struct solid *solid;
203 int *facecolours;
204 struct grid_square *squares;
205 int nsquares;
206 int current; /* index of current grid square */
207 int sgkey[2]; /* key-point indices into grid sq */
208 int dgkey[2]; /* key-point indices into grid sq */
209 int spkey[2]; /* key-point indices into polyhedron */
210 int dpkey[2]; /* key-point indices into polyhedron */
211 int previous;
212 float angle;
213 int completed;
214 int movecount;
215 };
216
217 game_params *default_params(void)
218 {
219 game_params *ret = snew(game_params);
220
221 ret->solid = CUBE;
222 ret->d1 = 4;
223 ret->d2 = 4;
224
225 return ret;
226 }
227
228 int game_fetch_preset(int i, char **name, game_params **params)
229 {
230 game_params *ret = snew(game_params);
231 char *str;
232
233 switch (i) {
234 case 0:
235 str = "Cube";
236 ret->solid = CUBE;
237 ret->d1 = 4;
238 ret->d2 = 4;
239 break;
240 case 1:
241 str = "Tetrahedron";
242 ret->solid = TETRAHEDRON;
243 ret->d1 = 1;
244 ret->d2 = 2;
245 break;
246 case 2:
247 str = "Octahedron";
248 ret->solid = OCTAHEDRON;
249 ret->d1 = 2;
250 ret->d2 = 2;
251 break;
252 case 3:
253 str = "Icosahedron";
254 ret->solid = ICOSAHEDRON;
255 ret->d1 = 3;
256 ret->d2 = 3;
257 break;
258 default:
259 sfree(ret);
260 return FALSE;
261 }
262
263 *name = dupstr(str);
264 *params = ret;
265 return TRUE;
266 }
267
268 void free_params(game_params *params)
269 {
270 sfree(params);
271 }
272
273 game_params *dup_params(game_params *params)
274 {
275 game_params *ret = snew(game_params);
276 *ret = *params; /* structure copy */
277 return ret;
278 }
279
280 game_params *decode_params(char const *string)
281 {
282 game_params *ret = default_params();
283
284 switch (*string) {
285 case 't': ret->solid = TETRAHEDRON; string++; break;
286 case 'c': ret->solid = CUBE; string++; break;
287 case 'o': ret->solid = OCTAHEDRON; string++; break;
288 case 'i': ret->solid = ICOSAHEDRON; string++; break;
289 default: break;
290 }
291 ret->d1 = ret->d2 = atoi(string);
292 while (*string && isdigit(*string)) string++;
293 if (*string == 'x') {
294 string++;
295 ret->d2 = atoi(string);
296 }
297
298 return ret;
299 }
300
301 char *encode_params(game_params *params)
302 {
303 char data[256];
304
305 assert(params->solid >= 0 && params->solid < 4);
306 sprintf(data, "%c%dx%d", "tcoi"[params->solid], params->d1, params->d2);
307
308 return dupstr(data);
309 }
310
311 static void enum_grid_squares(game_params *params,
312 void (*callback)(void *, struct grid_square *),
313 void *ctx)
314 {
315 const struct solid *solid = solids[params->solid];
316
317 if (solid->order == 4) {
318 int x, y;
319
320 for (y = 0; y < params->d2; y++)
321 for (x = 0; x < params->d1; x++) {
322 struct grid_square sq;
323
324 sq.x = (float)x;
325 sq.y = (float)y;
326 sq.points[0] = x - 0.5F;
327 sq.points[1] = y - 0.5F;
328 sq.points[2] = x - 0.5F;
329 sq.points[3] = y + 0.5F;
330 sq.points[4] = x + 0.5F;
331 sq.points[5] = y + 0.5F;
332 sq.points[6] = x + 0.5F;
333 sq.points[7] = y - 0.5F;
334 sq.npoints = 4;
335
336 sq.directions[LEFT] = 0x03; /* 0,1 */
337 sq.directions[RIGHT] = 0x0C; /* 2,3 */
338 sq.directions[UP] = 0x09; /* 0,3 */
339 sq.directions[DOWN] = 0x06; /* 1,2 */
340 sq.directions[UP_LEFT] = 0; /* no diagonals in a square */
341 sq.directions[UP_RIGHT] = 0; /* no diagonals in a square */
342 sq.directions[DOWN_LEFT] = 0; /* no diagonals in a square */
343 sq.directions[DOWN_RIGHT] = 0; /* no diagonals in a square */
344
345 sq.flip = FALSE;
346
347 /*
348 * This is supremely irrelevant, but just to avoid
349 * having any uninitialised structure members...
350 */
351 sq.tetra_class = 0;
352
353 callback(ctx, &sq);
354 }
355 } else {
356 int row, rowlen, other, i, firstix = -1;
357 float theight = (float)(sqrt(3) / 2.0);
358
359 for (row = 0; row < params->d1 + params->d2; row++) {
360 if (row < params->d2) {
361 other = +1;
362 rowlen = row + params->d1;
363 } else {
364 other = -1;
365 rowlen = 2*params->d2 + params->d1 - row;
366 }
367
368 /*
369 * There are `rowlen' down-pointing triangles.
370 */
371 for (i = 0; i < rowlen; i++) {
372 struct grid_square sq;
373 int ix;
374 float x, y;
375
376 ix = (2 * i - (rowlen-1));
377 x = ix * 0.5F;
378 y = theight * row;
379 sq.x = x;
380 sq.y = y + theight / 3;
381 sq.points[0] = x - 0.5F;
382 sq.points[1] = y;
383 sq.points[2] = x;
384 sq.points[3] = y + theight;
385 sq.points[4] = x + 0.5F;
386 sq.points[5] = y;
387 sq.npoints = 3;
388
389 sq.directions[LEFT] = 0x03; /* 0,1 */
390 sq.directions[RIGHT] = 0x06; /* 1,2 */
391 sq.directions[UP] = 0x05; /* 0,2 */
392 sq.directions[DOWN] = 0; /* invalid move */
393
394 /*
395 * Down-pointing triangle: both the up diagonals go
396 * up, and the down ones go left and right.
397 */
398 sq.directions[UP_LEFT] = sq.directions[UP_RIGHT] =
399 sq.directions[UP];
400 sq.directions[DOWN_LEFT] = sq.directions[LEFT];
401 sq.directions[DOWN_RIGHT] = sq.directions[RIGHT];
402
403 sq.flip = TRUE;
404
405 if (firstix < 0)
406 firstix = ix & 3;
407 ix -= firstix;
408 sq.tetra_class = ((row+(ix&1)) & 2) ^ (ix & 3);
409
410 callback(ctx, &sq);
411 }
412
413 /*
414 * There are `rowlen+other' up-pointing triangles.
415 */
416 for (i = 0; i < rowlen+other; i++) {
417 struct grid_square sq;
418 int ix;
419 float x, y;
420
421 ix = (2 * i - (rowlen+other-1));
422 x = ix * 0.5F;
423 y = theight * row;
424 sq.x = x;
425 sq.y = y + 2*theight / 3;
426 sq.points[0] = x + 0.5F;
427 sq.points[1] = y + theight;
428 sq.points[2] = x;
429 sq.points[3] = y;
430 sq.points[4] = x - 0.5F;
431 sq.points[5] = y + theight;
432 sq.npoints = 3;
433
434 sq.directions[LEFT] = 0x06; /* 1,2 */
435 sq.directions[RIGHT] = 0x03; /* 0,1 */
436 sq.directions[DOWN] = 0x05; /* 0,2 */
437 sq.directions[UP] = 0; /* invalid move */
438
439 /*
440 * Up-pointing triangle: both the down diagonals go
441 * down, and the up ones go left and right.
442 */
443 sq.directions[DOWN_LEFT] = sq.directions[DOWN_RIGHT] =
444 sq.directions[DOWN];
445 sq.directions[UP_LEFT] = sq.directions[LEFT];
446 sq.directions[UP_RIGHT] = sq.directions[RIGHT];
447
448 sq.flip = FALSE;
449
450 if (firstix < 0)
451 firstix = (ix - 1) & 3;
452 ix -= firstix;
453 sq.tetra_class = ((row+(ix&1)) & 2) ^ (ix & 3);
454
455 callback(ctx, &sq);
456 }
457 }
458 }
459 }
460
461 static int grid_area(int d1, int d2, int order)
462 {
463 /*
464 * An NxM grid of squares has NM squares in it.
465 *
466 * A grid of triangles with dimensions A and B has a total of
467 * A^2 + B^2 + 4AB triangles in it. (You can divide it up into
468 * a side-A triangle containing A^2 subtriangles, a side-B
469 * triangle containing B^2, and two congruent parallelograms,
470 * each with side lengths A and B, each therefore containing AB
471 * two-triangle rhombuses.)
472 */
473 if (order == 4)
474 return d1 * d2;
475 else
476 return d1*d1 + d2*d2 + 4*d1*d2;
477 }
478
479 config_item *game_configure(game_params *params)
480 {
481 config_item *ret = snewn(4, config_item);
482 char buf[80];
483
484 ret[0].name = "Type of solid";
485 ret[0].type = C_CHOICES;
486 ret[0].sval = ":Tetrahedron:Cube:Octahedron:Icosahedron";
487 ret[0].ival = params->solid;
488
489 ret[1].name = "Width / top";
490 ret[1].type = C_STRING;
491 sprintf(buf, "%d", params->d1);
492 ret[1].sval = dupstr(buf);
493 ret[1].ival = 0;
494
495 ret[2].name = "Height / bottom";
496 ret[2].type = C_STRING;
497 sprintf(buf, "%d", params->d2);
498 ret[2].sval = dupstr(buf);
499 ret[2].ival = 0;
500
501 ret[3].name = NULL;
502 ret[3].type = C_END;
503 ret[3].sval = NULL;
504 ret[3].ival = 0;
505
506 return ret;
507 }
508
509 game_params *custom_params(config_item *cfg)
510 {
511 game_params *ret = snew(game_params);
512
513 ret->solid = cfg[0].ival;
514 ret->d1 = atoi(cfg[1].sval);
515 ret->d2 = atoi(cfg[2].sval);
516
517 return ret;
518 }
519
520 static void count_grid_square_callback(void *ctx, struct grid_square *sq)
521 {
522 int *classes = (int *)ctx;
523 int thisclass;
524
525 if (classes[4] == 4)
526 thisclass = sq->tetra_class;
527 else if (classes[4] == 2)
528 thisclass = sq->flip;
529 else
530 thisclass = 0;
531
532 classes[thisclass]++;
533 }
534
535 char *validate_params(game_params *params)
536 {
537 int classes[5];
538 int i;
539
540 if (params->solid < 0 || params->solid >= lenof(solids))
541 return "Unrecognised solid type";
542
543 if (solids[params->solid]->order == 4) {
544 if (params->d1 <= 0 || params->d2 <= 0)
545 return "Both grid dimensions must be greater than zero";
546 } else {
547 if (params->d1 <= 0 && params->d2 <= 0)
548 return "At least one grid dimension must be greater than zero";
549 }
550
551 for (i = 0; i < 4; i++)
552 classes[i] = 0;
553 if (params->solid == TETRAHEDRON)
554 classes[4] = 4;
555 else if (params->solid == OCTAHEDRON)
556 classes[4] = 2;
557 else
558 classes[4] = 1;
559 enum_grid_squares(params, count_grid_square_callback, classes);
560
561 for (i = 0; i < classes[4]; i++)
562 if (classes[i] < solids[params->solid]->nfaces / classes[4])
563 return "Not enough grid space to place all blue faces";
564
565 if (grid_area(params->d1, params->d2, solids[params->solid]->order) <
566 solids[params->solid]->nfaces + 1)
567 return "Not enough space to place the solid on an empty square";
568
569 return NULL;
570 }
571
572 struct grid_data {
573 int *gridptrs[4];
574 int nsquares[4];
575 int nclasses;
576 int squareindex;
577 };
578
579 static void classify_grid_square_callback(void *ctx, struct grid_square *sq)
580 {
581 struct grid_data *data = (struct grid_data *)ctx;
582 int thisclass;
583
584 if (data->nclasses == 4)
585 thisclass = sq->tetra_class;
586 else if (data->nclasses == 2)
587 thisclass = sq->flip;
588 else
589 thisclass = 0;
590
591 data->gridptrs[thisclass][data->nsquares[thisclass]++] =
592 data->squareindex++;
593 }
594
595 char *new_game_seed(game_params *params, random_state *rs)
596 {
597 struct grid_data data;
598 int i, j, k, m, area, facesperclass;
599 int *flags;
600 char *seed, *p;
601
602 /*
603 * Enumerate the grid squares, dividing them into equivalence
604 * classes as appropriate. (For the tetrahedron, there is one
605 * equivalence class for each face; for the octahedron there
606 * are two classes; for the other two solids there's only one.)
607 */
608
609 area = grid_area(params->d1, params->d2, solids[params->solid]->order);
610 if (params->solid == TETRAHEDRON)
611 data.nclasses = 4;
612 else if (params->solid == OCTAHEDRON)
613 data.nclasses = 2;
614 else
615 data.nclasses = 1;
616 data.gridptrs[0] = snewn(data.nclasses * area, int);
617 for (i = 0; i < data.nclasses; i++) {
618 data.gridptrs[i] = data.gridptrs[0] + i * area;
619 data.nsquares[i] = 0;
620 }
621 data.squareindex = 0;
622 enum_grid_squares(params, classify_grid_square_callback, &data);
623
624 facesperclass = solids[params->solid]->nfaces / data.nclasses;
625
626 for (i = 0; i < data.nclasses; i++)
627 assert(data.nsquares[i] >= facesperclass);
628 assert(data.squareindex == area);
629
630 /*
631 * So now we know how many faces to allocate in each class. Get
632 * on with it.
633 */
634 flags = snewn(area, int);
635 for (i = 0; i < area; i++)
636 flags[i] = FALSE;
637
638 for (i = 0; i < data.nclasses; i++) {
639 for (j = 0; j < facesperclass; j++) {
640 int n = random_upto(rs, data.nsquares[i]);
641
642 assert(!flags[data.gridptrs[i][n]]);
643 flags[data.gridptrs[i][n]] = TRUE;
644
645 /*
646 * Move everything else up the array. I ought to use a
647 * better data structure for this, but for such small
648 * numbers it hardly seems worth the effort.
649 */
650 while (n < data.nsquares[i]-1) {
651 data.gridptrs[i][n] = data.gridptrs[i][n+1];
652 n++;
653 }
654 data.nsquares[i]--;
655 }
656 }
657
658 /*
659 * Now we know precisely which squares are blue. Encode this
660 * information in hex. While we're looping over this, collect
661 * the non-blue squares into a list in the now-unused gridptrs
662 * array.
663 */
664 seed = snewn(area / 4 + 40, char);
665 p = seed;
666 j = 0;
667 k = 8;
668 m = 0;
669 for (i = 0; i < area; i++) {
670 if (flags[i]) {
671 j |= k;
672 } else {
673 data.gridptrs[0][m++] = i;
674 }
675 k >>= 1;
676 if (!k) {
677 *p++ = "0123456789ABCDEF"[j];
678 k = 8;
679 j = 0;
680 }
681 }
682 if (k != 8)
683 *p++ = "0123456789ABCDEF"[j];
684
685 /*
686 * Choose a non-blue square for the polyhedron.
687 */
688 sprintf(p, ",%d", data.gridptrs[0][random_upto(rs, m)]);
689
690 sfree(data.gridptrs[0]);
691 sfree(flags);
692
693 return seed;
694 }
695
696 static void add_grid_square_callback(void *ctx, struct grid_square *sq)
697 {
698 game_state *state = (game_state *)ctx;
699
700 state->squares[state->nsquares] = *sq; /* structure copy */
701 state->squares[state->nsquares].blue = FALSE;
702 state->nsquares++;
703 }
704
705 static int lowest_face(const struct solid *solid)
706 {
707 int i, j, best;
708 float zmin;
709
710 best = 0;
711 zmin = 0.0;
712 for (i = 0; i < solid->nfaces; i++) {
713 float z = 0;
714
715 for (j = 0; j < solid->order; j++) {
716 int f = solid->faces[i*solid->order + j];
717 z += solid->vertices[f*3+2];
718 }
719
720 if (i == 0 || zmin > z) {
721 zmin = z;
722 best = i;
723 }
724 }
725
726 return best;
727 }
728
729 static int align_poly(const struct solid *solid, struct grid_square *sq,
730 int *pkey)
731 {
732 float zmin;
733 int i, j;
734 int flip = (sq->flip ? -1 : +1);
735
736 /*
737 * First, find the lowest z-coordinate present in the solid.
738 */
739 zmin = 0.0;
740 for (i = 0; i < solid->nvertices; i++)
741 if (zmin > solid->vertices[i*3+2])
742 zmin = solid->vertices[i*3+2];
743
744 /*
745 * Now go round the grid square. For each point in the grid
746 * square, we're looking for a point of the polyhedron with the
747 * same x- and y-coordinates (relative to the square's centre),
748 * and z-coordinate equal to zmin (near enough).
749 */
750 for (j = 0; j < sq->npoints; j++) {
751 int matches, index;
752
753 matches = 0;
754 index = -1;
755
756 for (i = 0; i < solid->nvertices; i++) {
757 float dist = 0;
758
759 dist += SQ(solid->vertices[i*3+0] * flip - sq->points[j*2+0] + sq->x);
760 dist += SQ(solid->vertices[i*3+1] * flip - sq->points[j*2+1] + sq->y);
761 dist += SQ(solid->vertices[i*3+2] - zmin);
762
763 if (dist < 0.1) {
764 matches++;
765 index = i;
766 }
767 }
768
769 if (matches != 1 || index < 0)
770 return FALSE;
771 pkey[j] = index;
772 }
773
774 return TRUE;
775 }
776
777 static void flip_poly(struct solid *solid, int flip)
778 {
779 int i;
780
781 if (flip) {
782 for (i = 0; i < solid->nvertices; i++) {
783 solid->vertices[i*3+0] *= -1;
784 solid->vertices[i*3+1] *= -1;
785 }
786 for (i = 0; i < solid->nfaces; i++) {
787 solid->normals[i*3+0] *= -1;
788 solid->normals[i*3+1] *= -1;
789 }
790 }
791 }
792
793 static struct solid *transform_poly(const struct solid *solid, int flip,
794 int key0, int key1, float angle)
795 {
796 struct solid *ret = snew(struct solid);
797 float vx, vy, ax, ay;
798 float vmatrix[9], amatrix[9], vmatrix2[9];
799 int i;
800
801 *ret = *solid; /* structure copy */
802
803 flip_poly(ret, flip);
804
805 /*
806 * Now rotate the polyhedron through the given angle. We must
807 * rotate about the Z-axis to bring the two vertices key0 and
808 * key1 into horizontal alignment, then rotate about the
809 * X-axis, then rotate back again.
810 */
811 vx = ret->vertices[key1*3+0] - ret->vertices[key0*3+0];
812 vy = ret->vertices[key1*3+1] - ret->vertices[key0*3+1];
813 assert(APPROXEQ(vx*vx + vy*vy, 1.0));
814
815 vmatrix[0] = vx; vmatrix[3] = vy; vmatrix[6] = 0;
816 vmatrix[1] = -vy; vmatrix[4] = vx; vmatrix[7] = 0;
817 vmatrix[2] = 0; vmatrix[5] = 0; vmatrix[8] = 1;
818
819 ax = (float)cos(angle);
820 ay = (float)sin(angle);
821
822 amatrix[0] = 1; amatrix[3] = 0; amatrix[6] = 0;
823 amatrix[1] = 0; amatrix[4] = ax; amatrix[7] = ay;
824 amatrix[2] = 0; amatrix[5] = -ay; amatrix[8] = ax;
825
826 memcpy(vmatrix2, vmatrix, sizeof(vmatrix));
827 vmatrix2[1] = vy;
828 vmatrix2[3] = -vy;
829
830 for (i = 0; i < ret->nvertices; i++) {
831 MATMUL(ret->vertices + 3*i, vmatrix, ret->vertices + 3*i);
832 MATMUL(ret->vertices + 3*i, amatrix, ret->vertices + 3*i);
833 MATMUL(ret->vertices + 3*i, vmatrix2, ret->vertices + 3*i);
834 }
835 for (i = 0; i < ret->nfaces; i++) {
836 MATMUL(ret->normals + 3*i, vmatrix, ret->normals + 3*i);
837 MATMUL(ret->normals + 3*i, amatrix, ret->normals + 3*i);
838 MATMUL(ret->normals + 3*i, vmatrix2, ret->normals + 3*i);
839 }
840
841 return ret;
842 }
843
844 char *validate_seed(game_params *params, char *seed)
845 {
846 int area = grid_area(params->d1, params->d2, solids[params->solid]->order);
847 int i, j;
848
849 i = (area + 3) / 4;
850 for (j = 0; j < i; j++) {
851 int c = seed[j];
852 if (c >= '0' && c <= '9') continue;
853 if (c >= 'A' && c <= 'F') continue;
854 if (c >= 'a' && c <= 'f') continue;
855 return "Not enough hex digits at start of string";
856 /* NB if seed[j]=='\0' that will also be caught here, so we're safe */
857 }
858
859 if (seed[i] != ',')
860 return "Expected ',' after hex digits";
861
862 i++;
863 do {
864 if (seed[i] < '0' || seed[i] > '9')
865 return "Expected decimal integer after ','";
866 i++;
867 } while (seed[i]);
868
869 return NULL;
870 }
871
872 game_state *new_game(game_params *params, char *seed)
873 {
874 game_state *state = snew(game_state);
875 int area;
876
877 state->params = *params; /* structure copy */
878 state->solid = solids[params->solid];
879
880 area = grid_area(params->d1, params->d2, state->solid->order);
881 state->squares = snewn(area, struct grid_square);
882 state->nsquares = 0;
883 enum_grid_squares(params, add_grid_square_callback, state);
884 assert(state->nsquares == area);
885
886 state->facecolours = snewn(state->solid->nfaces, int);
887 memset(state->facecolours, 0, state->solid->nfaces * sizeof(int));
888
889 /*
890 * Set up the blue squares and polyhedron position according to
891 * the game seed.
892 */
893 {
894 char *p = seed;
895 int i, j, v;
896
897 j = 8;
898 v = 0;
899 for (i = 0; i < state->nsquares; i++) {
900 if (j == 8) {
901 v = *p++;
902 if (v >= '0' && v <= '9')
903 v -= '0';
904 else if (v >= 'A' && v <= 'F')
905 v -= 'A' - 10;
906 else if (v >= 'a' && v <= 'f')
907 v -= 'a' - 10;
908 else
909 break;
910 }
911 if (v & j)
912 state->squares[i].blue = TRUE;
913 j >>= 1;
914 if (j == 0)
915 j = 8;
916 }
917
918 if (*p == ',')
919 p++;
920
921 state->current = atoi(p);
922 if (state->current < 0 || state->current >= state->nsquares)
923 state->current = 0; /* got to do _something_ */
924 }
925
926 /*
927 * Align the polyhedron with its grid square and determine
928 * initial key points.
929 */
930 {
931 int pkey[4];
932 int ret;
933
934 ret = align_poly(state->solid, &state->squares[state->current], pkey);
935 assert(ret);
936
937 state->dpkey[0] = state->spkey[0] = pkey[0];
938 state->dpkey[1] = state->spkey[0] = pkey[1];
939 state->dgkey[0] = state->sgkey[0] = 0;
940 state->dgkey[1] = state->sgkey[0] = 1;
941 }
942
943 state->previous = state->current;
944 state->angle = 0.0;
945 state->completed = 0;
946 state->movecount = 0;
947
948 return state;
949 }
950
951 game_state *dup_game(game_state *state)
952 {
953 game_state *ret = snew(game_state);
954
955 ret->params = state->params; /* structure copy */
956 ret->solid = state->solid;
957 ret->facecolours = snewn(ret->solid->nfaces, int);
958 memcpy(ret->facecolours, state->facecolours,
959 ret->solid->nfaces * sizeof(int));
960 ret->nsquares = state->nsquares;
961 ret->squares = snewn(ret->nsquares, struct grid_square);
962 memcpy(ret->squares, state->squares,
963 ret->nsquares * sizeof(struct grid_square));
964 ret->dpkey[0] = state->dpkey[0];
965 ret->dpkey[1] = state->dpkey[1];
966 ret->dgkey[0] = state->dgkey[0];
967 ret->dgkey[1] = state->dgkey[1];
968 ret->spkey[0] = state->spkey[0];
969 ret->spkey[1] = state->spkey[1];
970 ret->sgkey[0] = state->sgkey[0];
971 ret->sgkey[1] = state->sgkey[1];
972 ret->previous = state->previous;
973 ret->angle = state->angle;
974 ret->completed = state->completed;
975 ret->movecount = state->movecount;
976
977 return ret;
978 }
979
980 void free_game(game_state *state)
981 {
982 sfree(state);
983 }
984
985 game_ui *new_ui(game_state *state)
986 {
987 return NULL;
988 }
989
990 void free_ui(game_ui *ui)
991 {
992 }
993
994 game_state *make_move(game_state *from, game_ui *ui, int x, int y, int button)
995 {
996 int direction;
997 int pkey[2], skey[2], dkey[2];
998 float points[4];
999 game_state *ret;
1000 float angle;
1001 int i, j, dest, mask;
1002 struct solid *poly;
1003
1004 /*
1005 * All moves are made with the cursor keys.
1006 */
1007 if (button == CURSOR_UP)
1008 direction = UP;
1009 else if (button == CURSOR_DOWN)
1010 direction = DOWN;
1011 else if (button == CURSOR_LEFT)
1012 direction = LEFT;
1013 else if (button == CURSOR_RIGHT)
1014 direction = RIGHT;
1015 else if (button == CURSOR_UP_LEFT)
1016 direction = UP_LEFT;
1017 else if (button == CURSOR_DOWN_LEFT)
1018 direction = DOWN_LEFT;
1019 else if (button == CURSOR_UP_RIGHT)
1020 direction = UP_RIGHT;
1021 else if (button == CURSOR_DOWN_RIGHT)
1022 direction = DOWN_RIGHT;
1023 else
1024 return NULL;
1025
1026 /*
1027 * Find the two points in the current grid square which
1028 * correspond to this move.
1029 */
1030 mask = from->squares[from->current].directions[direction];
1031 if (mask == 0)
1032 return NULL;
1033 for (i = j = 0; i < from->squares[from->current].npoints; i++)
1034 if (mask & (1 << i)) {
1035 points[j*2] = from->squares[from->current].points[i*2];
1036 points[j*2+1] = from->squares[from->current].points[i*2+1];
1037 skey[j] = i;
1038 j++;
1039 }
1040 assert(j == 2);
1041
1042 /*
1043 * Now find the other grid square which shares those points.
1044 * This is our move destination.
1045 */
1046 dest = -1;
1047 for (i = 0; i < from->nsquares; i++)
1048 if (i != from->current) {
1049 int match = 0;
1050 float dist;
1051
1052 for (j = 0; j < from->squares[i].npoints; j++) {
1053 dist = (SQ(from->squares[i].points[j*2] - points[0]) +
1054 SQ(from->squares[i].points[j*2+1] - points[1]));
1055 if (dist < 0.1)
1056 dkey[match++] = j;
1057 dist = (SQ(from->squares[i].points[j*2] - points[2]) +
1058 SQ(from->squares[i].points[j*2+1] - points[3]));
1059 if (dist < 0.1)
1060 dkey[match++] = j;
1061 }
1062
1063 if (match == 2) {
1064 dest = i;
1065 break;
1066 }
1067 }
1068
1069 if (dest < 0)
1070 return NULL;
1071
1072 ret = dup_game(from);
1073 ret->current = i;
1074
1075 /*
1076 * So we know what grid square we're aiming for, and we also
1077 * know the two key points (as indices in both the source and
1078 * destination grid squares) which are invariant between source
1079 * and destination.
1080 *
1081 * Next we must roll the polyhedron on to that square. So we
1082 * find the indices of the key points within the polyhedron's
1083 * vertex array, then use those in a call to transform_poly,
1084 * and align the result on the new grid square.
1085 */
1086 {
1087 int all_pkey[4];
1088 align_poly(from->solid, &from->squares[from->current], all_pkey);
1089 pkey[0] = all_pkey[skey[0]];
1090 pkey[1] = all_pkey[skey[1]];
1091 /*
1092 * Now pkey[0] corresponds to skey[0] and dkey[0], and
1093 * likewise [1].
1094 */
1095 }
1096
1097 /*
1098 * Now find the angle through which to rotate the polyhedron.
1099 * Do this by finding the two faces that share the two vertices
1100 * we've found, and taking the dot product of their normals.
1101 */
1102 {
1103 int f[2], nf = 0;
1104 float dp;
1105
1106 for (i = 0; i < from->solid->nfaces; i++) {
1107 int match = 0;
1108 for (j = 0; j < from->solid->order; j++)
1109 if (from->solid->faces[i*from->solid->order + j] == pkey[0] ||
1110 from->solid->faces[i*from->solid->order + j] == pkey[1])
1111 match++;
1112 if (match == 2) {
1113 assert(nf < 2);
1114 f[nf++] = i;
1115 }
1116 }
1117
1118 assert(nf == 2);
1119
1120 dp = 0;
1121 for (i = 0; i < 3; i++)
1122 dp += (from->solid->normals[f[0]*3+i] *
1123 from->solid->normals[f[1]*3+i]);
1124 angle = (float)acos(dp);
1125 }
1126
1127 /*
1128 * Now transform the polyhedron. We aren't entirely sure
1129 * whether we need to rotate through angle or -angle, and the
1130 * simplest way round this is to try both and see which one
1131 * aligns successfully!
1132 *
1133 * Unfortunately, _both_ will align successfully if this is a
1134 * cube, which won't tell us anything much. So for that
1135 * particular case, I resort to gross hackery: I simply negate
1136 * the angle before trying the alignment, depending on the
1137 * direction. Which directions work which way is determined by
1138 * pure trial and error. I said it was gross :-/
1139 */
1140 {
1141 int all_pkey[4];
1142 int success;
1143
1144 if (from->solid->order == 4 && direction == UP)
1145 angle = -angle; /* HACK */
1146
1147 poly = transform_poly(from->solid,
1148 from->squares[from->current].flip,
1149 pkey[0], pkey[1], angle);
1150 flip_poly(poly, from->squares[ret->current].flip);
1151 success = align_poly(poly, &from->squares[ret->current], all_pkey);
1152
1153 if (!success) {
1154 angle = -angle;
1155 poly = transform_poly(from->solid,
1156 from->squares[from->current].flip,
1157 pkey[0], pkey[1], angle);
1158 flip_poly(poly, from->squares[ret->current].flip);
1159 success = align_poly(poly, &from->squares[ret->current], all_pkey);
1160 }
1161
1162 assert(success);
1163 }
1164
1165 /*
1166 * Now we have our rotated polyhedron, which we expect to be
1167 * exactly congruent to the one we started with - but with the
1168 * faces permuted. So we map that congruence and thereby figure
1169 * out how to permute the faces as a result of the polyhedron
1170 * having rolled.
1171 */
1172 {
1173 int *newcolours = snewn(from->solid->nfaces, int);
1174
1175 for (i = 0; i < from->solid->nfaces; i++)
1176 newcolours[i] = -1;
1177
1178 for (i = 0; i < from->solid->nfaces; i++) {
1179 int nmatch = 0;
1180
1181 /*
1182 * Now go through the transformed polyhedron's faces
1183 * and figure out which one's normal is approximately
1184 * equal to this one.
1185 */
1186 for (j = 0; j < poly->nfaces; j++) {
1187 float dist;
1188 int k;
1189
1190 dist = 0;
1191
1192 for (k = 0; k < 3; k++)
1193 dist += SQ(poly->normals[j*3+k] -
1194 from->solid->normals[i*3+k]);
1195
1196 if (APPROXEQ(dist, 0)) {
1197 nmatch++;
1198 newcolours[i] = ret->facecolours[j];
1199 }
1200 }
1201
1202 assert(nmatch == 1);
1203 }
1204
1205 for (i = 0; i < from->solid->nfaces; i++)
1206 assert(newcolours[i] != -1);
1207
1208 sfree(ret->facecolours);
1209 ret->facecolours = newcolours;
1210 }
1211
1212 ret->movecount++;
1213
1214 /*
1215 * And finally, swap the colour between the bottom face of the
1216 * polyhedron and the face we've just landed on.
1217 *
1218 * We don't do this if the game is already complete, since we
1219 * allow the user to roll the fully blue polyhedron around the
1220 * grid as a feeble reward.
1221 */
1222 if (!ret->completed) {
1223 i = lowest_face(from->solid);
1224 j = ret->facecolours[i];
1225 ret->facecolours[i] = ret->squares[ret->current].blue;
1226 ret->squares[ret->current].blue = j;
1227
1228 /*
1229 * Detect game completion.
1230 */
1231 j = 0;
1232 for (i = 0; i < ret->solid->nfaces; i++)
1233 if (ret->facecolours[i])
1234 j++;
1235 if (j == ret->solid->nfaces)
1236 ret->completed = ret->movecount;
1237 }
1238
1239 sfree(poly);
1240
1241 /*
1242 * Align the normal polyhedron with its grid square, to get key
1243 * points for non-animated display.
1244 */
1245 {
1246 int pkey[4];
1247 int success;
1248
1249 success = align_poly(ret->solid, &ret->squares[ret->current], pkey);
1250 assert(success);
1251
1252 ret->dpkey[0] = pkey[0];
1253 ret->dpkey[1] = pkey[1];
1254 ret->dgkey[0] = 0;
1255 ret->dgkey[1] = 1;
1256 }
1257
1258
1259 ret->spkey[0] = pkey[0];
1260 ret->spkey[1] = pkey[1];
1261 ret->sgkey[0] = skey[0];
1262 ret->sgkey[1] = skey[1];
1263 ret->previous = from->current;
1264 ret->angle = angle;
1265
1266 return ret;
1267 }
1268
1269 /* ----------------------------------------------------------------------
1270 * Drawing routines.
1271 */
1272
1273 struct bbox {
1274 float l, r, u, d;
1275 };
1276
1277 struct game_drawstate {
1278 int ox, oy; /* pixel position of float origin */
1279 };
1280
1281 static void find_bbox_callback(void *ctx, struct grid_square *sq)
1282 {
1283 struct bbox *bb = (struct bbox *)ctx;
1284 int i;
1285
1286 for (i = 0; i < sq->npoints; i++) {
1287 if (bb->l > sq->points[i*2]) bb->l = sq->points[i*2];
1288 if (bb->r < sq->points[i*2]) bb->r = sq->points[i*2];
1289 if (bb->u > sq->points[i*2+1]) bb->u = sq->points[i*2+1];
1290 if (bb->d < sq->points[i*2+1]) bb->d = sq->points[i*2+1];
1291 }
1292 }
1293
1294 static struct bbox find_bbox(game_params *params)
1295 {
1296 struct bbox bb;
1297
1298 /*
1299 * These should be hugely more than the real bounding box will
1300 * be.
1301 */
1302 bb.l = 2.0F * (params->d1 + params->d2);
1303 bb.r = -2.0F * (params->d1 + params->d2);
1304 bb.u = 2.0F * (params->d1 + params->d2);
1305 bb.d = -2.0F * (params->d1 + params->d2);
1306 enum_grid_squares(params, find_bbox_callback, &bb);
1307
1308 return bb;
1309 }
1310
1311 void game_size(game_params *params, int *x, int *y)
1312 {
1313 struct bbox bb = find_bbox(params);
1314 *x = (int)((bb.r - bb.l + 2*solids[params->solid]->border) * GRID_SCALE);
1315 *y = (int)((bb.d - bb.u + 2*solids[params->solid]->border) * GRID_SCALE);
1316 }
1317
1318 float *game_colours(frontend *fe, game_state *state, int *ncolours)
1319 {
1320 float *ret = snewn(3 * NCOLOURS, float);
1321
1322 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
1323
1324 ret[COL_BORDER * 3 + 0] = 0.0;
1325 ret[COL_BORDER * 3 + 1] = 0.0;
1326 ret[COL_BORDER * 3 + 2] = 0.0;
1327
1328 ret[COL_BLUE * 3 + 0] = 0.0;
1329 ret[COL_BLUE * 3 + 1] = 0.0;
1330 ret[COL_BLUE * 3 + 2] = 1.0;
1331
1332 *ncolours = NCOLOURS;
1333 return ret;
1334 }
1335
1336 game_drawstate *game_new_drawstate(game_state *state)
1337 {
1338 struct game_drawstate *ds = snew(struct game_drawstate);
1339 struct bbox bb = find_bbox(&state->params);
1340
1341 ds->ox = (int)(-(bb.l - state->solid->border) * GRID_SCALE);
1342 ds->oy = (int)(-(bb.u - state->solid->border) * GRID_SCALE);
1343
1344 return ds;
1345 }
1346
1347 void game_free_drawstate(game_drawstate *ds)
1348 {
1349 sfree(ds);
1350 }
1351
1352 void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate,
1353 game_state *state, game_ui *ui,
1354 float animtime, float flashtime)
1355 {
1356 int i, j;
1357 struct bbox bb = find_bbox(&state->params);
1358 struct solid *poly;
1359 int *pkey, *gkey;
1360 float t[3];
1361 float angle;
1362 game_state *newstate;
1363 int square;
1364
1365 draw_rect(fe, 0, 0, (int)((bb.r-bb.l+2.0F) * GRID_SCALE),
1366 (int)((bb.d-bb.u+2.0F) * GRID_SCALE), COL_BACKGROUND);
1367
1368 if (oldstate && oldstate->movecount > state->movecount) {
1369 game_state *t;
1370
1371 /*
1372 * This is an Undo. So reverse the order of the states, and
1373 * run the roll timer backwards.
1374 */
1375 t = oldstate;
1376 oldstate = state;
1377 state = t;
1378
1379 animtime = ROLLTIME - animtime;
1380 }
1381
1382 if (!oldstate) {
1383 oldstate = state;
1384 angle = 0.0;
1385 square = state->current;
1386 pkey = state->dpkey;
1387 gkey = state->dgkey;
1388 } else {
1389 angle = state->angle * animtime / ROLLTIME;
1390 square = state->previous;
1391 pkey = state->spkey;
1392 gkey = state->sgkey;
1393 }
1394 newstate = state;
1395 state = oldstate;
1396
1397 for (i = 0; i < state->nsquares; i++) {
1398 int coords[8];
1399
1400 for (j = 0; j < state->squares[i].npoints; j++) {
1401 coords[2*j] = ((int)(state->squares[i].points[2*j] * GRID_SCALE)
1402 + ds->ox);
1403 coords[2*j+1] = ((int)(state->squares[i].points[2*j+1]*GRID_SCALE)
1404 + ds->oy);
1405 }
1406
1407 draw_polygon(fe, coords, state->squares[i].npoints, TRUE,
1408 state->squares[i].blue ? COL_BLUE : COL_BACKGROUND);
1409 draw_polygon(fe, coords, state->squares[i].npoints, FALSE, COL_BORDER);
1410 }
1411
1412 /*
1413 * Now compute and draw the polyhedron.
1414 */
1415 poly = transform_poly(state->solid, state->squares[square].flip,
1416 pkey[0], pkey[1], angle);
1417
1418 /*
1419 * Compute the translation required to align the two key points
1420 * on the polyhedron with the same key points on the current
1421 * face.
1422 */
1423 for (i = 0; i < 3; i++) {
1424 float tc = 0.0;
1425
1426 for (j = 0; j < 2; j++) {
1427 float grid_coord;
1428
1429 if (i < 2) {
1430 grid_coord =
1431 state->squares[square].points[gkey[j]*2+i];
1432 } else {
1433 grid_coord = 0.0;
1434 }
1435
1436 tc += (grid_coord - poly->vertices[pkey[j]*3+i]);
1437 }
1438
1439 t[i] = tc / 2;
1440 }
1441 for (i = 0; i < poly->nvertices; i++)
1442 for (j = 0; j < 3; j++)
1443 poly->vertices[i*3+j] += t[j];
1444
1445 /*
1446 * Now actually draw each face.
1447 */
1448 for (i = 0; i < poly->nfaces; i++) {
1449 float points[8];
1450 int coords[8];
1451
1452 for (j = 0; j < poly->order; j++) {
1453 int f = poly->faces[i*poly->order + j];
1454 points[j*2] = (poly->vertices[f*3+0] -
1455 poly->vertices[f*3+2] * poly->shear);
1456 points[j*2+1] = (poly->vertices[f*3+1] -
1457 poly->vertices[f*3+2] * poly->shear);
1458 }
1459
1460 for (j = 0; j < poly->order; j++) {
1461 coords[j*2] = (int)floor(points[j*2] * GRID_SCALE) + ds->ox;
1462 coords[j*2+1] = (int)floor(points[j*2+1] * GRID_SCALE) + ds->oy;
1463 }
1464
1465 /*
1466 * Find out whether these points are in a clockwise or
1467 * anticlockwise arrangement. If the latter, discard the
1468 * face because it's facing away from the viewer.
1469 *
1470 * This would involve fiddly winding-number stuff for a
1471 * general polygon, but for the simple parallelograms we'll
1472 * be seeing here, all we have to do is check whether the
1473 * corners turn right or left. So we'll take the vector
1474 * from point 0 to point 1, turn it right 90 degrees,
1475 * and check the sign of the dot product with that and the
1476 * next vector (point 1 to point 2).
1477 */
1478 {
1479 float v1x = points[2]-points[0];
1480 float v1y = points[3]-points[1];
1481 float v2x = points[4]-points[2];
1482 float v2y = points[5]-points[3];
1483 float dp = v1x * v2y - v1y * v2x;
1484
1485 if (dp <= 0)
1486 continue;
1487 }
1488
1489 draw_polygon(fe, coords, poly->order, TRUE,
1490 state->facecolours[i] ? COL_BLUE : COL_BACKGROUND);
1491 draw_polygon(fe, coords, poly->order, FALSE, COL_BORDER);
1492 }
1493 sfree(poly);
1494
1495 draw_update(fe, 0, 0, (int)((bb.r-bb.l+2.0F) * GRID_SCALE),
1496 (int)((bb.d-bb.u+2.0F) * GRID_SCALE));
1497
1498 /*
1499 * Update the status bar.
1500 */
1501 {
1502 char statusbuf[256];
1503
1504 sprintf(statusbuf, "%sMoves: %d",
1505 (state->completed ? "COMPLETED! " : ""),
1506 (state->completed ? state->completed : state->movecount));
1507
1508 status_bar(fe, statusbuf);
1509 }
1510 }
1511
1512 float game_anim_length(game_state *oldstate, game_state *newstate)
1513 {
1514 return ROLLTIME;
1515 }
1516
1517 float game_flash_length(game_state *oldstate, game_state *newstate)
1518 {
1519 return 0.0F;
1520 }
1521
1522 int game_wants_statusbar(void)
1523 {
1524 return TRUE;
1525 }