Copy-to-clipboard facility for Fifteen, Sixteen and Twiddle.
[sgt/puzzles] / twiddle.c
1 /*
2 * twiddle.c: Puzzle involving rearranging a grid of squares by
3 * rotating subsquares. Adapted and generalised from a
4 * door-unlocking puzzle in Metroid Prime 2 (the one in the Main
5 * Gyro Chamber).
6 */
7
8 #include <stdio.h>
9 #include <stdlib.h>
10 #include <string.h>
11 #include <assert.h>
12 #include <ctype.h>
13 #include <math.h>
14
15 #include "puzzles.h"
16
17 #define TILE_SIZE 48
18 #define BORDER (TILE_SIZE / 2)
19 #define HIGHLIGHT_WIDTH (TILE_SIZE / 20)
20 #define COORD(x) ( (x) * TILE_SIZE + BORDER )
21 #define FROMCOORD(x) ( ((x) - BORDER + TILE_SIZE) / TILE_SIZE - 1 )
22
23 #define PI 3.141592653589793238462643383279502884197169399
24
25 #define ANIM_PER_RADIUS_UNIT 0.13F
26 #define FLASH_FRAME 0.13F
27
28 enum {
29 COL_BACKGROUND,
30 COL_TEXT,
31 COL_HIGHLIGHT,
32 COL_HIGHLIGHT_GENTLE,
33 COL_LOWLIGHT,
34 COL_LOWLIGHT_GENTLE,
35 NCOLOURS
36 };
37
38 struct game_params {
39 int w, h, n;
40 int rowsonly;
41 int orientable;
42 };
43
44 struct game_state {
45 int w, h, n;
46 int orientable;
47 int *grid;
48 int completed;
49 int movecount;
50 int lastx, lasty, lastr; /* coordinates of last rotation */
51 };
52
53 static game_params *default_params(void)
54 {
55 game_params *ret = snew(game_params);
56
57 ret->w = ret->h = 3;
58 ret->n = 2;
59 ret->rowsonly = ret->orientable = FALSE;
60
61 return ret;
62 }
63
64
65 static void free_params(game_params *params)
66 {
67 sfree(params);
68 }
69
70 static game_params *dup_params(game_params *params)
71 {
72 game_params *ret = snew(game_params);
73 *ret = *params; /* structure copy */
74 return ret;
75 }
76
77 static int game_fetch_preset(int i, char **name, game_params **params)
78 {
79 static struct {
80 char *title;
81 game_params params;
82 } presets[] = {
83 { "3x3 rows only", { 3, 3, 2, TRUE, FALSE } },
84 { "3x3 normal", { 3, 3, 2, FALSE, FALSE } },
85 { "3x3 orientable", { 3, 3, 2, FALSE, TRUE } },
86 { "4x4 normal", { 4, 4, 2, FALSE } },
87 { "4x4 orientable", { 4, 4, 2, FALSE, TRUE } },
88 { "4x4 radius 3", { 4, 4, 3, FALSE } },
89 { "5x5 radius 3", { 5, 5, 3, FALSE } },
90 { "6x6 radius 4", { 6, 6, 4, FALSE } },
91 };
92
93 if (i < 0 || i >= lenof(presets))
94 return FALSE;
95
96 *name = dupstr(presets[i].title);
97 *params = dup_params(&presets[i].params);
98
99 return TRUE;
100 }
101
102 static game_params *decode_params(char const *string)
103 {
104 game_params *ret = snew(game_params);
105
106 ret->w = ret->h = atoi(string);
107 ret->n = 2;
108 ret->rowsonly = ret->orientable = FALSE;
109 while (*string && isdigit(*string)) string++;
110 if (*string == 'x') {
111 string++;
112 ret->h = atoi(string);
113 while (*string && isdigit(*string)) string++;
114 }
115 if (*string == 'n') {
116 string++;
117 ret->n = atoi(string);
118 while (*string && isdigit(*string)) string++;
119 }
120 while (*string) {
121 if (*string == 'r') {
122 ret->rowsonly = TRUE;
123 } else if (*string == 'o') {
124 ret->orientable = TRUE;
125 }
126 string++;
127 }
128
129 return ret;
130 }
131
132 static char *encode_params(game_params *params)
133 {
134 char buf[256];
135 sprintf(buf, "%dx%dn%d%s%s", params->w, params->h, params->n,
136 params->rowsonly ? "r" : "",
137 params->orientable ? "o" : "");
138 return dupstr(buf);
139 }
140
141 static config_item *game_configure(game_params *params)
142 {
143 config_item *ret;
144 char buf[80];
145
146 ret = snewn(6, config_item);
147
148 ret[0].name = "Width";
149 ret[0].type = C_STRING;
150 sprintf(buf, "%d", params->w);
151 ret[0].sval = dupstr(buf);
152 ret[0].ival = 0;
153
154 ret[1].name = "Height";
155 ret[1].type = C_STRING;
156 sprintf(buf, "%d", params->h);
157 ret[1].sval = dupstr(buf);
158 ret[1].ival = 0;
159
160 ret[2].name = "Rotation radius";
161 ret[2].type = C_STRING;
162 sprintf(buf, "%d", params->n);
163 ret[2].sval = dupstr(buf);
164 ret[2].ival = 0;
165
166 ret[3].name = "One number per row";
167 ret[3].type = C_BOOLEAN;
168 ret[3].sval = NULL;
169 ret[3].ival = params->rowsonly;
170
171 ret[4].name = "Orientation matters";
172 ret[4].type = C_BOOLEAN;
173 ret[4].sval = NULL;
174 ret[4].ival = params->orientable;
175
176 ret[5].name = NULL;
177 ret[5].type = C_END;
178 ret[5].sval = NULL;
179 ret[5].ival = 0;
180
181 return ret;
182 }
183
184 static game_params *custom_params(config_item *cfg)
185 {
186 game_params *ret = snew(game_params);
187
188 ret->w = atoi(cfg[0].sval);
189 ret->h = atoi(cfg[1].sval);
190 ret->n = atoi(cfg[2].sval);
191 ret->rowsonly = cfg[3].ival;
192 ret->orientable = cfg[4].ival;
193
194 return ret;
195 }
196
197 static char *validate_params(game_params *params)
198 {
199 if (params->n < 2)
200 return "Rotation radius must be at least two";
201 if (params->w < params->n)
202 return "Width must be at least the rotation radius";
203 if (params->h < params->n)
204 return "Height must be at least the rotation radius";
205 return NULL;
206 }
207
208 /*
209 * This function actually performs a rotation on a grid. The `x'
210 * and `y' coordinates passed in are the coordinates of the _top
211 * left corner_ of the rotated region. (Using the centre would have
212 * involved half-integers and been annoyingly fiddly. Clicking in
213 * the centre is good for a user interface, but too inconvenient to
214 * use internally.)
215 */
216 static void do_rotate(int *grid, int w, int h, int n, int orientable,
217 int x, int y, int dir)
218 {
219 int i, j;
220
221 assert(x >= 0 && x+n <= w);
222 assert(y >= 0 && y+n <= h);
223 dir &= 3;
224 if (dir == 0)
225 return; /* nothing to do */
226
227 grid += y*w+x; /* translate region to top corner */
228
229 /*
230 * If we were leaving the result of the rotation in a separate
231 * grid, the simple thing to do would be to loop over each
232 * square within the rotated region and assign it from its
233 * source square. However, to do it in place without taking
234 * O(n^2) memory, we need to be marginally more clever. What
235 * I'm going to do is loop over about one _quarter_ of the
236 * rotated region and permute each element within that quarter
237 * with its rotational coset.
238 *
239 * The size of the region I need to loop over is (n+1)/2 by
240 * n/2, which is an obvious exact quarter for even n and is a
241 * rectangle for odd n. (For odd n, this technique leaves out
242 * one element of the square, which is of course the central
243 * one that never moves anyway.)
244 */
245 for (i = 0; i < (n+1)/2; i++) {
246 for (j = 0; j < n/2; j++) {
247 int k;
248 int g[4];
249 int p[4] = {
250 j*w+i,
251 i*w+(n-j-1),
252 (n-j-1)*w+(n-i-1),
253 (n-i-1)*w+j
254 };
255
256 for (k = 0; k < 4; k++)
257 g[k] = grid[p[k]];
258
259 for (k = 0; k < 4; k++) {
260 int v = g[(k+dir) & 3];
261 if (orientable)
262 v ^= ((v+dir) ^ v) & 3; /* alter orientation */
263 grid[p[k]] = v;
264 }
265 }
266 }
267
268 /*
269 * Don't forget the orientation on the centre square, if n is
270 * odd.
271 */
272 if (orientable && (n & 1)) {
273 int v = grid[n/2*(w+1)];
274 v ^= ((v+dir) ^ v) & 3; /* alter orientation */
275 grid[n/2*(w+1)] = v;
276 }
277 }
278
279 static int grid_complete(int *grid, int wh, int orientable)
280 {
281 int ok = TRUE;
282 int i;
283 for (i = 1; i < wh; i++)
284 if (grid[i] < grid[i-1])
285 ok = FALSE;
286 if (orientable) {
287 for (i = 0; i < wh; i++)
288 if (grid[i] & 3)
289 ok = FALSE;
290 }
291 return ok;
292 }
293
294 static char *new_game_seed(game_params *params, random_state *rs)
295 {
296 int *grid;
297 int w = params->w, h = params->h, n = params->n, wh = w*h;
298 int i;
299 char *ret;
300 int retlen;
301 int total_moves;
302
303 /*
304 * Set up a solved grid.
305 */
306 grid = snewn(wh, int);
307 for (i = 0; i < wh; i++)
308 grid[i] = ((params->rowsonly ? i/w : i) + 1) * 4;
309
310 /*
311 * Shuffle it. This game is complex enough that I don't feel up
312 * to analysing its full symmetry properties (particularly at
313 * n=4 and above!), so I'm going to do it the pedestrian way
314 * and simply shuffle the grid by making a long sequence of
315 * randomly chosen moves.
316 */
317 total_moves = w*h*n*n*2;
318 for (i = 0; i < total_moves; i++) {
319 int x, y;
320
321 x = random_upto(rs, w - n + 1);
322 y = random_upto(rs, h - n + 1);
323 do_rotate(grid, w, h, n, params->orientable,
324 x, y, 1 + random_upto(rs, 3));
325
326 /*
327 * Optionally one more move in case the entire grid has
328 * happened to come out solved.
329 */
330 if (i == total_moves - 1 && grid_complete(grid, wh,
331 params->orientable))
332 i--;
333 }
334
335 /*
336 * Now construct the game seed, by describing the grid as a
337 * simple sequence of integers. They're comma-separated, unless
338 * the puzzle is orientable in which case they're separated by
339 * orientation letters `u', `d', `l' and `r'.
340 */
341 ret = NULL;
342 retlen = 0;
343 for (i = 0; i < wh; i++) {
344 char buf[80];
345 int k;
346
347 k = sprintf(buf, "%d%c", grid[i] / 4,
348 params->orientable ? "uldr"[grid[i] & 3] : ',');
349
350 ret = sresize(ret, retlen + k + 1, char);
351 strcpy(ret + retlen, buf);
352 retlen += k;
353 }
354 if (!params->orientable)
355 ret[retlen-1] = '\0'; /* delete last comma */
356
357 sfree(grid);
358 return ret;
359 }
360
361 static char *validate_seed(game_params *params, char *seed)
362 {
363 char *p, *err;
364 int w = params->w, h = params->h, wh = w*h;
365 int i;
366
367 p = seed;
368 err = NULL;
369
370 for (i = 0; i < wh; i++) {
371 if (*p < '0' || *p > '9')
372 return "Not enough numbers in string";
373 while (*p >= '0' && *p <= '9')
374 p++;
375 if (!params->orientable && i < wh-1) {
376 if (*p != ',')
377 return "Expected comma after number";
378 } else if (params->orientable && i < wh) {
379 if (*p != 'l' && *p != 'r' && *p != 'u' && *p != 'd')
380 return "Expected orientation letter after number";
381 } else if (i == wh-1 && *p) {
382 return "Excess junk at end of string";
383 }
384
385 if (*p) p++; /* eat comma */
386 }
387
388 return NULL;
389 }
390
391 static game_state *new_game(game_params *params, char *seed)
392 {
393 game_state *state = snew(game_state);
394 int w = params->w, h = params->h, n = params->n, wh = w*h;
395 int i;
396 char *p;
397
398 state->w = w;
399 state->h = h;
400 state->n = n;
401 state->orientable = params->orientable;
402 state->completed = 0;
403 state->movecount = 0;
404 state->lastx = state->lasty = state->lastr = -1;
405
406 state->grid = snewn(wh, int);
407
408 p = seed;
409
410 for (i = 0; i < wh; i++) {
411 state->grid[i] = 4 * atoi(p);
412 while (*p >= '0' && *p <= '9')
413 p++;
414 if (*p) {
415 if (params->orientable) {
416 switch (*p) {
417 case 'l': state->grid[i] |= 1; break;
418 case 'd': state->grid[i] |= 2; break;
419 case 'r': state->grid[i] |= 3; break;
420 }
421 }
422 p++;
423 }
424 }
425
426 return state;
427 }
428
429 static game_state *dup_game(game_state *state)
430 {
431 game_state *ret = snew(game_state);
432
433 ret->w = state->w;
434 ret->h = state->h;
435 ret->n = state->n;
436 ret->orientable = state->orientable;
437 ret->completed = state->completed;
438 ret->movecount = state->movecount;
439 ret->lastx = state->lastx;
440 ret->lasty = state->lasty;
441 ret->lastr = state->lastr;
442
443 ret->grid = snewn(ret->w * ret->h, int);
444 memcpy(ret->grid, state->grid, ret->w * ret->h * sizeof(int));
445
446 return ret;
447 }
448
449 static void free_game(game_state *state)
450 {
451 sfree(state->grid);
452 sfree(state);
453 }
454
455 static char *game_text_format(game_state *state)
456 {
457 char *ret, *p, buf[80];
458 int i, x, y, col, o, maxlen;
459
460 /*
461 * First work out how many characters we need to display each
462 * number. We're pretty flexible on grid contents here, so we
463 * have to scan the entire grid.
464 */
465 col = 0;
466 for (i = 0; i < state->w * state->h; i++) {
467 x = sprintf(buf, "%d", state->grid[i] / 4);
468 if (col < x) col = x;
469 }
470 o = (state->orientable ? 1 : 0);
471
472 /*
473 * Now we know the exact total size of the grid we're going to
474 * produce: it's got h rows, each containing w lots of col+o,
475 * w-1 spaces and a trailing newline.
476 */
477 maxlen = state->h * state->w * (col+o+1);
478
479 ret = snewn(maxlen, char);
480 p = ret;
481
482 for (y = 0; y < state->h; y++) {
483 for (x = 0; x < state->w; x++) {
484 int v = state->grid[state->w*y+x];
485 sprintf(buf, "%*d", col, v/4);
486 memcpy(p, buf, col);
487 p += col;
488 if (o)
489 *p++ = "^<v>"[v & 3];
490 if (x+1 == state->w)
491 *p++ = '\n';
492 else
493 *p++ = ' ';
494 }
495 }
496
497 assert(p - ret == maxlen);
498 *p = '\0';
499 return ret;
500 }
501
502 static game_ui *new_ui(game_state *state)
503 {
504 return NULL;
505 }
506
507 static void free_ui(game_ui *ui)
508 {
509 }
510
511 static game_state *make_move(game_state *from, game_ui *ui, int x, int y,
512 int button)
513 {
514 int w = from->w, h = from->h, n = from->n, wh = w*h;
515 game_state *ret;
516 int dir;
517
518 if (button == LEFT_BUTTON || button == RIGHT_BUTTON) {
519 /*
520 * Determine the coordinates of the click. We offset by n-1
521 * half-blocks so that the user must click at the centre of
522 * a rotation region rather than at the corner.
523 */
524 x -= (n-1) * TILE_SIZE / 2;
525 y -= (n-1) * TILE_SIZE / 2;
526 x = FROMCOORD(x);
527 y = FROMCOORD(y);
528 if (x < 0 || x > w-n || y < 0 || y > w-n)
529 return NULL;
530
531 /*
532 * This is a valid move. Make it.
533 */
534 ret = dup_game(from);
535 ret->movecount++;
536 dir = (button == LEFT_BUTTON ? 1 : -1);
537 do_rotate(ret->grid, w, h, n, ret->orientable, x, y, dir);
538 ret->lastx = x;
539 ret->lasty = y;
540 ret->lastr = dir;
541
542 /*
543 * See if the game has been completed. To do this we simply
544 * test that the grid contents are in increasing order.
545 */
546 if (!ret->completed && grid_complete(ret->grid, wh, ret->orientable))
547 ret->completed = ret->movecount;
548 return ret;
549 }
550 return NULL;
551 }
552
553 /* ----------------------------------------------------------------------
554 * Drawing routines.
555 */
556
557 struct game_drawstate {
558 int started;
559 int w, h, bgcolour;
560 int *grid;
561 };
562
563 static void game_size(game_params *params, int *x, int *y)
564 {
565 *x = TILE_SIZE * params->w + 2 * BORDER;
566 *y = TILE_SIZE * params->h + 2 * BORDER;
567 }
568
569 static float *game_colours(frontend *fe, game_state *state, int *ncolours)
570 {
571 float *ret = snewn(3 * NCOLOURS, float);
572 int i;
573 float max;
574
575 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
576
577 /*
578 * Drop the background colour so that the highlight is
579 * noticeably brighter than it while still being under 1.
580 */
581 max = ret[COL_BACKGROUND*3];
582 for (i = 1; i < 3; i++)
583 if (ret[COL_BACKGROUND*3+i] > max)
584 max = ret[COL_BACKGROUND*3+i];
585 if (max * 1.2F > 1.0F) {
586 for (i = 0; i < 3; i++)
587 ret[COL_BACKGROUND*3+i] /= (max * 1.2F);
588 }
589
590 for (i = 0; i < 3; i++) {
591 ret[COL_HIGHLIGHT * 3 + i] = ret[COL_BACKGROUND * 3 + i] * 1.2F;
592 ret[COL_HIGHLIGHT_GENTLE * 3 + i] = ret[COL_BACKGROUND * 3 + i] * 1.1F;
593 ret[COL_LOWLIGHT * 3 + i] = ret[COL_BACKGROUND * 3 + i] * 0.8F;
594 ret[COL_LOWLIGHT_GENTLE * 3 + i] = ret[COL_BACKGROUND * 3 + i] * 0.9F;
595 ret[COL_TEXT * 3 + i] = 0.0;
596 }
597
598 *ncolours = NCOLOURS;
599 return ret;
600 }
601
602 static game_drawstate *game_new_drawstate(game_state *state)
603 {
604 struct game_drawstate *ds = snew(struct game_drawstate);
605 int i;
606
607 ds->started = FALSE;
608 ds->w = state->w;
609 ds->h = state->h;
610 ds->bgcolour = COL_BACKGROUND;
611 ds->grid = snewn(ds->w*ds->h, int);
612 for (i = 0; i < ds->w*ds->h; i++)
613 ds->grid[i] = -1;
614
615 return ds;
616 }
617
618 static void game_free_drawstate(game_drawstate *ds)
619 {
620 sfree(ds);
621 }
622
623 struct rotation {
624 int cx, cy, cw, ch; /* clip region */
625 int ox, oy; /* rotation origin */
626 float c, s; /* cos and sin of rotation angle */
627 int lc, rc, tc, bc; /* colours of tile edges */
628 };
629
630 static void rotate(int *xy, struct rotation *rot)
631 {
632 if (rot) {
633 float xf = xy[0] - rot->ox, yf = xy[1] - rot->oy;
634 float xf2, yf2;
635
636 xf2 = rot->c * xf + rot->s * yf;
637 yf2 = - rot->s * xf + rot->c * yf;
638
639 xy[0] = xf2 + rot->ox + 0.5; /* round to nearest */
640 xy[1] = yf2 + rot->oy + 0.5; /* round to nearest */
641 }
642 }
643
644 static void draw_tile(frontend *fe, game_state *state, int x, int y,
645 int tile, int flash_colour, struct rotation *rot)
646 {
647 int coords[8];
648 char str[40];
649
650 if (rot)
651 clip(fe, rot->cx, rot->cy, rot->cw, rot->ch);
652
653 /*
654 * We must draw each side of the tile's highlight separately,
655 * because in some cases (during rotation) they will all need
656 * to be different colours.
657 */
658
659 /* The centre point is common to all sides. */
660 coords[4] = x + TILE_SIZE / 2;
661 coords[5] = y + TILE_SIZE / 2;
662 rotate(coords+4, rot);
663
664 /* Right side. */
665 coords[0] = x + TILE_SIZE - 1;
666 coords[1] = y + TILE_SIZE - 1;
667 rotate(coords+0, rot);
668 coords[2] = x + TILE_SIZE - 1;
669 coords[3] = y;
670 rotate(coords+2, rot);
671 draw_polygon(fe, coords, 3, TRUE, rot ? rot->rc : COL_LOWLIGHT);
672 draw_polygon(fe, coords, 3, FALSE, rot ? rot->rc : COL_LOWLIGHT);
673
674 /* Bottom side. */
675 coords[2] = x;
676 coords[3] = y + TILE_SIZE - 1;
677 rotate(coords+2, rot);
678 draw_polygon(fe, coords, 3, TRUE, rot ? rot->bc : COL_LOWLIGHT);
679 draw_polygon(fe, coords, 3, FALSE, rot ? rot->bc : COL_LOWLIGHT);
680
681 /* Left side. */
682 coords[0] = x;
683 coords[1] = y;
684 rotate(coords+0, rot);
685 draw_polygon(fe, coords, 3, TRUE, rot ? rot->lc : COL_HIGHLIGHT);
686 draw_polygon(fe, coords, 3, FALSE, rot ? rot->lc : COL_HIGHLIGHT);
687
688 /* Top side. */
689 coords[2] = x + TILE_SIZE - 1;
690 coords[3] = y;
691 rotate(coords+2, rot);
692 draw_polygon(fe, coords, 3, TRUE, rot ? rot->tc : COL_HIGHLIGHT);
693 draw_polygon(fe, coords, 3, FALSE, rot ? rot->tc : COL_HIGHLIGHT);
694
695 /*
696 * Now the main blank area in the centre of the tile.
697 */
698 if (rot) {
699 coords[0] = x + HIGHLIGHT_WIDTH;
700 coords[1] = y + HIGHLIGHT_WIDTH;
701 rotate(coords+0, rot);
702 coords[2] = x + HIGHLIGHT_WIDTH;
703 coords[3] = y + TILE_SIZE - 1 - HIGHLIGHT_WIDTH;
704 rotate(coords+2, rot);
705 coords[4] = x + TILE_SIZE - 1 - HIGHLIGHT_WIDTH;
706 coords[5] = y + TILE_SIZE - 1 - HIGHLIGHT_WIDTH;
707 rotate(coords+4, rot);
708 coords[6] = x + TILE_SIZE - 1 - HIGHLIGHT_WIDTH;
709 coords[7] = y + HIGHLIGHT_WIDTH;
710 rotate(coords+6, rot);
711 draw_polygon(fe, coords, 4, TRUE, flash_colour);
712 draw_polygon(fe, coords, 4, FALSE, flash_colour);
713 } else {
714 draw_rect(fe, x + HIGHLIGHT_WIDTH, y + HIGHLIGHT_WIDTH,
715 TILE_SIZE - 2*HIGHLIGHT_WIDTH, TILE_SIZE - 2*HIGHLIGHT_WIDTH,
716 flash_colour);
717 }
718
719 /*
720 * Next, the colour bars for orientation.
721 */
722 if (state->orientable) {
723 int xdx, xdy, ydx, ydy;
724 int cx, cy, displ, displ2;
725 switch (tile & 3) {
726 case 0:
727 xdx = 1, xdy = 0;
728 ydx = 0, ydy = 1;
729 break;
730 case 1:
731 xdx = 0, xdy = -1;
732 ydx = 1, ydy = 0;
733 break;
734 case 2:
735 xdx = -1, xdy = 0;
736 ydx = 0, ydy = -1;
737 break;
738 default /* case 3 */:
739 xdx = 0, xdy = 1;
740 ydx = -1, ydy = 0;
741 break;
742 }
743
744 cx = x + TILE_SIZE / 2;
745 cy = y + TILE_SIZE / 2;
746 displ = TILE_SIZE / 2 - HIGHLIGHT_WIDTH - 2;
747 displ2 = TILE_SIZE / 3 - HIGHLIGHT_WIDTH;
748
749 coords[0] = cx - displ * xdx + displ2 * ydx;
750 coords[1] = cy - displ * xdy + displ2 * ydy;
751 rotate(coords+0, rot);
752 coords[2] = cx + displ * xdx + displ2 * ydx;
753 coords[3] = cy + displ * xdy + displ2 * ydy;
754 rotate(coords+2, rot);
755 coords[4] = cx - displ * ydx;
756 coords[5] = cy - displ * ydy;
757 rotate(coords+4, rot);
758 draw_polygon(fe, coords, 3, TRUE, COL_LOWLIGHT_GENTLE);
759 draw_polygon(fe, coords, 3, FALSE, COL_LOWLIGHT_GENTLE);
760 }
761
762 coords[0] = x + TILE_SIZE/2;
763 coords[1] = y + TILE_SIZE/2;
764 rotate(coords+0, rot);
765 sprintf(str, "%d", tile / 4);
766 draw_text(fe, coords[0], coords[1],
767 FONT_VARIABLE, TILE_SIZE/3, ALIGN_VCENTRE | ALIGN_HCENTRE,
768 COL_TEXT, str);
769
770 if (rot)
771 unclip(fe);
772
773 draw_update(fe, x, y, TILE_SIZE, TILE_SIZE);
774 }
775
776 static int highlight_colour(float angle)
777 {
778 int colours[32] = {
779 COL_LOWLIGHT,
780 COL_LOWLIGHT_GENTLE,
781 COL_LOWLIGHT_GENTLE,
782 COL_LOWLIGHT_GENTLE,
783 COL_HIGHLIGHT_GENTLE,
784 COL_HIGHLIGHT_GENTLE,
785 COL_HIGHLIGHT_GENTLE,
786 COL_HIGHLIGHT,
787 COL_HIGHLIGHT,
788 COL_HIGHLIGHT,
789 COL_HIGHLIGHT,
790 COL_HIGHLIGHT,
791 COL_HIGHLIGHT,
792 COL_HIGHLIGHT,
793 COL_HIGHLIGHT,
794 COL_HIGHLIGHT,
795 COL_HIGHLIGHT,
796 COL_HIGHLIGHT_GENTLE,
797 COL_HIGHLIGHT_GENTLE,
798 COL_HIGHLIGHT_GENTLE,
799 COL_LOWLIGHT_GENTLE,
800 COL_LOWLIGHT_GENTLE,
801 COL_LOWLIGHT_GENTLE,
802 COL_LOWLIGHT,
803 COL_LOWLIGHT,
804 COL_LOWLIGHT,
805 COL_LOWLIGHT,
806 COL_LOWLIGHT,
807 COL_LOWLIGHT,
808 COL_LOWLIGHT,
809 COL_LOWLIGHT,
810 COL_LOWLIGHT,
811 };
812
813 return colours[(int)((angle + 2*PI) / (PI/16)) & 31];
814 }
815
816 static float game_anim_length(game_state *oldstate, game_state *newstate,
817 int dir)
818 {
819 return ANIM_PER_RADIUS_UNIT * sqrt(newstate->n-1);
820 }
821
822 static float game_flash_length(game_state *oldstate, game_state *newstate,
823 int dir)
824 {
825 if (!oldstate->completed && newstate->completed)
826 return 2 * FLASH_FRAME;
827 else
828 return 0.0F;
829 }
830
831 static void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate,
832 game_state *state, int dir, game_ui *ui,
833 float animtime, float flashtime)
834 {
835 int i, bgcolour;
836 struct rotation srot, *rot;
837 int lastx = -1, lasty = -1, lastr = -1;
838
839 if (flashtime > 0) {
840 int frame = (int)(flashtime / FLASH_FRAME);
841 bgcolour = (frame % 2 ? COL_LOWLIGHT : COL_HIGHLIGHT);
842 } else
843 bgcolour = COL_BACKGROUND;
844
845 if (!ds->started) {
846 int coords[6];
847
848 draw_rect(fe, 0, 0,
849 TILE_SIZE * state->w + 2 * BORDER,
850 TILE_SIZE * state->h + 2 * BORDER, COL_BACKGROUND);
851 draw_update(fe, 0, 0,
852 TILE_SIZE * state->w + 2 * BORDER,
853 TILE_SIZE * state->h + 2 * BORDER);
854
855 /*
856 * Recessed area containing the whole puzzle.
857 */
858 coords[0] = COORD(state->w) + HIGHLIGHT_WIDTH - 1;
859 coords[1] = COORD(state->h) + HIGHLIGHT_WIDTH - 1;
860 coords[2] = COORD(state->w) + HIGHLIGHT_WIDTH - 1;
861 coords[3] = COORD(0) - HIGHLIGHT_WIDTH;
862 coords[4] = COORD(0) - HIGHLIGHT_WIDTH;
863 coords[5] = COORD(state->h) + HIGHLIGHT_WIDTH - 1;
864 draw_polygon(fe, coords, 3, TRUE, COL_HIGHLIGHT);
865 draw_polygon(fe, coords, 3, FALSE, COL_HIGHLIGHT);
866
867 coords[1] = COORD(0) - HIGHLIGHT_WIDTH;
868 coords[0] = COORD(0) - HIGHLIGHT_WIDTH;
869 draw_polygon(fe, coords, 3, TRUE, COL_LOWLIGHT);
870 draw_polygon(fe, coords, 3, FALSE, COL_LOWLIGHT);
871
872 ds->started = TRUE;
873 }
874
875 /*
876 * If we're drawing any rotated tiles, sort out the rotation
877 * parameters, and also zap the rotation region to the
878 * background colour before doing anything else.
879 */
880 if (oldstate) {
881 float angle;
882 float anim_max = game_anim_length(oldstate, state, dir);
883
884 if (dir > 0) {
885 lastx = state->lastx;
886 lasty = state->lasty;
887 lastr = state->lastr;
888 } else {
889 lastx = oldstate->lastx;
890 lasty = oldstate->lasty;
891 lastr = -oldstate->lastr;
892 }
893
894 rot = &srot;
895 rot->cx = COORD(lastx);
896 rot->cy = COORD(lasty);
897 rot->cw = rot->ch = TILE_SIZE * state->n;
898 rot->ox = rot->cx + rot->cw/2;
899 rot->oy = rot->cy + rot->ch/2;
900 angle = (-PI/2 * lastr) * (1.0 - animtime / anim_max);
901 rot->c = cos(angle);
902 rot->s = sin(angle);
903
904 /*
905 * Sort out the colours of the various sides of the tile.
906 */
907 rot->lc = highlight_colour(PI + angle);
908 rot->rc = highlight_colour(angle);
909 rot->tc = highlight_colour(PI/2 + angle);
910 rot->bc = highlight_colour(-PI/2 + angle);
911
912 draw_rect(fe, rot->cx, rot->cy, rot->cw, rot->ch, bgcolour);
913 } else
914 rot = NULL;
915
916 /*
917 * Now draw each tile.
918 */
919 for (i = 0; i < state->w * state->h; i++) {
920 int t;
921 int tx = i % state->w, ty = i / state->w;
922
923 /*
924 * Figure out what should be displayed at this location.
925 * Usually it will be state->grid[i], unless we're in the
926 * middle of animating an actual rotation and this cell is
927 * within the rotation region, in which case we set -1
928 * (always display).
929 */
930 if (oldstate && lastx >= 0 && lasty >= 0 &&
931 tx >= lastx && tx < lastx + state->n &&
932 ty >= lasty && ty < lasty + state->n)
933 t = -1;
934 else
935 t = state->grid[i];
936
937 if (ds->bgcolour != bgcolour || /* always redraw when flashing */
938 ds->grid[i] != t || ds->grid[i] == -1 || t == -1) {
939 int x = COORD(tx), y = COORD(ty);
940
941 draw_tile(fe, state, x, y, state->grid[i], bgcolour, rot);
942 ds->grid[i] = t;
943 }
944 }
945 ds->bgcolour = bgcolour;
946
947 /*
948 * Update the status bar.
949 */
950 {
951 char statusbuf[256];
952
953 /*
954 * Don't show the new status until we're also showing the
955 * new _state_ - after the game animation is complete.
956 */
957 if (oldstate)
958 state = oldstate;
959
960 sprintf(statusbuf, "%sMoves: %d",
961 (state->completed ? "COMPLETED! " : ""),
962 (state->completed ? state->completed : state->movecount));
963
964 status_bar(fe, statusbuf);
965 }
966 }
967
968 static int game_wants_statusbar(void)
969 {
970 return TRUE;
971 }
972
973 #ifdef COMBINED
974 #define thegame twiddle
975 #endif
976
977 const struct game thegame = {
978 "Twiddle", "games.twiddle",
979 default_params,
980 game_fetch_preset,
981 decode_params,
982 encode_params,
983 free_params,
984 dup_params,
985 TRUE, game_configure, custom_params,
986 validate_params,
987 new_game_seed,
988 validate_seed,
989 new_game,
990 dup_game,
991 free_game,
992 TRUE, game_text_format,
993 new_ui,
994 free_ui,
995 make_move,
996 game_size,
997 game_colours,
998 game_new_drawstate,
999 game_free_drawstate,
1000 game_redraw,
1001 game_anim_length,
1002 game_flash_length,
1003 game_wants_statusbar,
1004 };