Added "dual" option to grid generators
[sgt/puzzles] / loopy.c
1 /*
2 * loopy.c:
3 *
4 * An implementation of the Nikoli game 'Loop the loop'.
5 * (c) Mike Pinna, 2005, 2006
6 * Substantially rewritten to allowing for more general types of grid.
7 * (c) Lambros Lambrou 2008
8 *
9 * vim: set shiftwidth=4 :set textwidth=80:
10 */
11
12 /*
13 * Possible future solver enhancements:
14 *
15 * - There's an interesting deductive technique which makes use
16 * of topology rather than just graph theory. Each _face_ in
17 * the grid is either inside or outside the loop; you can tell
18 * that two faces are on the same side of the loop if they're
19 * separated by a LINE_NO (or, more generally, by a path
20 * crossing no LINE_UNKNOWNs and an even number of LINE_YESes),
21 * and on the opposite side of the loop if they're separated by
22 * a LINE_YES (or an odd number of LINE_YESes and no
23 * LINE_UNKNOWNs). Oh, and any face separated from the outside
24 * of the grid by a LINE_YES or a LINE_NO is on the inside or
25 * outside respectively. So if you can track this for all
26 * faces, you figure out the state of the line between a pair
27 * once their relative insideness is known.
28 * + The way I envisage this working is simply to keep an edsf
29 * of all _faces_, which indicates whether they're on
30 * opposite sides of the loop from one another. We also
31 * include a special entry in the edsf for the infinite
32 * exterior "face".
33 * + So, the simple way to do this is to just go through the
34 * edges: every time we see an edge in a state other than
35 * LINE_UNKNOWN which separates two faces that aren't in the
36 * same edsf class, we can rectify that by merging the
37 * classes. Then, conversely, an edge in LINE_UNKNOWN state
38 * which separates two faces that _are_ in the same edsf
39 * class can immediately have its state determined.
40 * + But you can go one better, if you're prepared to loop
41 * over all _pairs_ of edges. Suppose we have edges A and B,
42 * which respectively separate faces A1,A2 and B1,B2.
43 * Suppose that A,B are in the same edge-edsf class and that
44 * A1,B1 (wlog) are in the same face-edsf class; then we can
45 * immediately place A2,B2 into the same face-edsf class (as
46 * each other, not as A1 and A2) one way round or the other.
47 * And conversely again, if A1,B1 are in the same face-edsf
48 * class and so are A2,B2, then we can put A,B into the same
49 * face-edsf class.
50 * * Of course, this deduction requires a quadratic-time
51 * loop over all pairs of edges in the grid, so it should
52 * be reserved until there's nothing easier left to be
53 * done.
54 *
55 * - The generalised grid support has made me (SGT) notice a
56 * possible extension to the loop-avoidance code. When you have
57 * a path of connected edges such that no other edges at all
58 * are incident on any vertex in the middle of the path - or,
59 * alternatively, such that any such edges are already known to
60 * be LINE_NO - then you know those edges are either all
61 * LINE_YES or all LINE_NO. Hence you can mentally merge the
62 * entire path into a single long curly edge for the purposes
63 * of loop avoidance, and look directly at whether or not the
64 * extreme endpoints of the path are connected by some other
65 * route. I find this coming up fairly often when I play on the
66 * octagonal grid setting, so it might be worth implementing in
67 * the solver.
68 *
69 * - (Just a speed optimisation.) Consider some todo list queue where every
70 * time we modify something we mark it for consideration by other bits of
71 * the solver, to save iteration over things that have already been done.
72 */
73
74 #include <stdio.h>
75 #include <stdlib.h>
76 #include <stddef.h>
77 #include <string.h>
78 #include <assert.h>
79 #include <ctype.h>
80 #include <math.h>
81
82 #include "puzzles.h"
83 #include "tree234.h"
84 #include "grid.h"
85 #include "loopgen.h"
86
87 /* Debugging options */
88
89 /*
90 #define DEBUG_CACHES
91 #define SHOW_WORKING
92 #define DEBUG_DLINES
93 */
94
95 /* ----------------------------------------------------------------------
96 * Struct, enum and function declarations
97 */
98
99 enum {
100 COL_BACKGROUND,
101 COL_FOREGROUND,
102 COL_LINEUNKNOWN,
103 COL_HIGHLIGHT,
104 COL_MISTAKE,
105 COL_SATISFIED,
106 COL_FAINT,
107 NCOLOURS
108 };
109
110 struct game_state {
111 grid *game_grid; /* ref-counted (internally) */
112
113 /* Put -1 in a face that doesn't get a clue */
114 signed char *clues;
115
116 /* Array of line states, to store whether each line is
117 * YES, NO or UNKNOWN */
118 char *lines;
119
120 unsigned char *line_errors;
121
122 int solved;
123 int cheated;
124
125 /* Used in game_text_format(), so that it knows what type of
126 * grid it's trying to render as ASCII text. */
127 int grid_type;
128 };
129
130 enum solver_status {
131 SOLVER_SOLVED, /* This is the only solution the solver could find */
132 SOLVER_MISTAKE, /* This is definitely not a solution */
133 SOLVER_AMBIGUOUS, /* This _might_ be an ambiguous solution */
134 SOLVER_INCOMPLETE /* This may be a partial solution */
135 };
136
137 /* ------ Solver state ------ */
138 typedef struct solver_state {
139 game_state *state;
140 enum solver_status solver_status;
141 /* NB looplen is the number of dots that are joined together at a point, ie a
142 * looplen of 1 means there are no lines to a particular dot */
143 int *looplen;
144
145 /* Difficulty level of solver. Used by solver functions that want to
146 * vary their behaviour depending on the requested difficulty level. */
147 int diff;
148
149 /* caches */
150 char *dot_yes_count;
151 char *dot_no_count;
152 char *face_yes_count;
153 char *face_no_count;
154 char *dot_solved, *face_solved;
155 int *dotdsf;
156
157 /* Information for Normal level deductions:
158 * For each dline, store a bitmask for whether we know:
159 * (bit 0) at least one is YES
160 * (bit 1) at most one is YES */
161 char *dlines;
162
163 /* Hard level information */
164 int *linedsf;
165 } solver_state;
166
167 /*
168 * Difficulty levels. I do some macro ickery here to ensure that my
169 * enum and the various forms of my name list always match up.
170 */
171
172 #define DIFFLIST(A) \
173 A(EASY,Easy,e) \
174 A(NORMAL,Normal,n) \
175 A(TRICKY,Tricky,t) \
176 A(HARD,Hard,h)
177 #define ENUM(upper,title,lower) DIFF_ ## upper,
178 #define TITLE(upper,title,lower) #title,
179 #define ENCODE(upper,title,lower) #lower
180 #define CONFIG(upper,title,lower) ":" #title
181 enum { DIFFLIST(ENUM) DIFF_MAX };
182 static char const *const diffnames[] = { DIFFLIST(TITLE) };
183 static char const diffchars[] = DIFFLIST(ENCODE);
184 #define DIFFCONFIG DIFFLIST(CONFIG)
185
186 /*
187 * Solver routines, sorted roughly in order of computational cost.
188 * The solver will run the faster deductions first, and slower deductions are
189 * only invoked when the faster deductions are unable to make progress.
190 * Each function is associated with a difficulty level, so that the generated
191 * puzzles are solvable by applying only the functions with the chosen
192 * difficulty level or lower.
193 */
194 #define SOLVERLIST(A) \
195 A(trivial_deductions, DIFF_EASY) \
196 A(dline_deductions, DIFF_NORMAL) \
197 A(linedsf_deductions, DIFF_HARD) \
198 A(loop_deductions, DIFF_EASY)
199 #define SOLVER_FN_DECL(fn,diff) static int fn(solver_state *);
200 #define SOLVER_FN(fn,diff) &fn,
201 #define SOLVER_DIFF(fn,diff) diff,
202 SOLVERLIST(SOLVER_FN_DECL)
203 static int (*(solver_fns[]))(solver_state *) = { SOLVERLIST(SOLVER_FN) };
204 static int const solver_diffs[] = { SOLVERLIST(SOLVER_DIFF) };
205 static const int NUM_SOLVERS = sizeof(solver_diffs)/sizeof(*solver_diffs);
206
207 struct game_params {
208 int w, h;
209 int diff;
210 int type;
211 int dual;
212 };
213
214 /* line_drawstate is the same as line_state, but with the extra ERROR
215 * possibility. The drawing code copies line_state to line_drawstate,
216 * except in the case that the line is an error. */
217 enum line_state { LINE_YES, LINE_UNKNOWN, LINE_NO };
218 enum line_drawstate { DS_LINE_YES, DS_LINE_UNKNOWN,
219 DS_LINE_NO, DS_LINE_ERROR };
220
221 #define OPP(line_state) \
222 (2 - line_state)
223
224
225 struct game_drawstate {
226 int started;
227 int tilesize;
228 int flashing;
229 int *textx, *texty;
230 char *lines;
231 char *clue_error;
232 char *clue_satisfied;
233 };
234
235 static char *validate_desc(game_params *params, char *desc);
236 static int dot_order(const game_state* state, int i, char line_type);
237 static int face_order(const game_state* state, int i, char line_type);
238 static solver_state *solve_game_rec(const solver_state *sstate);
239
240 #ifdef DEBUG_CACHES
241 static void check_caches(const solver_state* sstate);
242 #else
243 #define check_caches(s)
244 #endif
245
246 /* ------- List of grid generators ------- */
247 #define GRIDLIST(A) \
248 A(Squares,GRID_SQUARE,3,3) \
249 A(Triangular,GRID_TRIANGULAR,3,3) \
250 A(Honeycomb,GRID_HONEYCOMB,3,3) \
251 A(Snub-Square,GRID_SNUBSQUARE,3,3) \
252 A(Cairo,GRID_CAIRO,3,4) \
253 A(Great-Hexagonal,GRID_GREATHEXAGONAL,3,3) \
254 A(Octagonal,GRID_OCTAGONAL,3,3) \
255 A(Kites,GRID_KITE,3,3) \
256 A(Floret,GRID_FLORET,1,2) \
257 A(Dodecagonal,GRID_DODECAGONAL,2,2) \
258 A(Great-Dodecagonal,GRID_GREATDODECAGONAL,2,2) \
259 A(Penrose (kite/dart),GRID_PENROSE_P2,3,3) \
260 A(Penrose (rhombs),GRID_PENROSE_P3,3,3) \
261
262 #define GRID_NAME(title,type,amin,omin) #title,
263 #define GRID_CONFIG(title,type,amin,omin) ":" #title
264 #define GRID_TYPE(title,type,amin,omin) type,
265 #define GRID_SIZES(title,type,amin,omin) \
266 {amin, omin, \
267 "Width and height for this grid type must both be at least " #amin, \
268 "At least one of width and height for this grid type must be at least " #omin,},
269 static char const *const gridnames[] = { GRIDLIST(GRID_NAME) };
270 static char const *const dualnames[] = { "", "(dual) " };
271 #define GRID_CONFIGS GRIDLIST(GRID_CONFIG)
272 static grid_type grid_types[] = { GRIDLIST(GRID_TYPE) };
273 #define NUM_GRID_TYPES (sizeof(grid_types) / sizeof(grid_types[0]))
274 static const struct {
275 int amin, omin;
276 char *aerr, *oerr;
277 } grid_size_limits[] = { GRIDLIST(GRID_SIZES) };
278
279 /* Generates a (dynamically allocated) new grid, according to the
280 * type and size requested in params. Does nothing if the grid is already
281 * generated. */
282 static grid *loopy_generate_grid(game_params *params, char *grid_desc)
283 {
284 return grid_new(grid_types[params->type], params->w, params->h, params->dual, grid_desc);
285 }
286
287 /* ----------------------------------------------------------------------
288 * Preprocessor magic
289 */
290
291 /* General constants */
292 #define PREFERRED_TILE_SIZE 32
293 #define BORDER(tilesize) ((tilesize) / 2)
294 #define FLASH_TIME 0.5F
295
296 #define BIT_SET(field, bit) ((field) & (1<<(bit)))
297
298 #define SET_BIT(field, bit) (BIT_SET(field, bit) ? FALSE : \
299 ((field) |= (1<<(bit)), TRUE))
300
301 #define CLEAR_BIT(field, bit) (BIT_SET(field, bit) ? \
302 ((field) &= ~(1<<(bit)), TRUE) : FALSE)
303
304 #define CLUE2CHAR(c) \
305 ((c < 0) ? ' ' : c < 10 ? c + '0' : c - 10 + 'A')
306
307 /* ----------------------------------------------------------------------
308 * General struct manipulation and other straightforward code
309 */
310
311 static game_state *dup_game(game_state *state)
312 {
313 game_state *ret = snew(game_state);
314
315 ret->game_grid = state->game_grid;
316 ret->game_grid->refcount++;
317
318 ret->solved = state->solved;
319 ret->cheated = state->cheated;
320
321 ret->clues = snewn(state->game_grid->num_faces, signed char);
322 memcpy(ret->clues, state->clues, state->game_grid->num_faces);
323
324 ret->lines = snewn(state->game_grid->num_edges, char);
325 memcpy(ret->lines, state->lines, state->game_grid->num_edges);
326
327 ret->line_errors = snewn(state->game_grid->num_edges, unsigned char);
328 memcpy(ret->line_errors, state->line_errors, state->game_grid->num_edges);
329
330 ret->grid_type = state->grid_type;
331 return ret;
332 }
333
334 static void free_game(game_state *state)
335 {
336 if (state) {
337 grid_free(state->game_grid);
338 sfree(state->clues);
339 sfree(state->lines);
340 sfree(state->line_errors);
341 sfree(state);
342 }
343 }
344
345 static solver_state *new_solver_state(game_state *state, int diff) {
346 int i;
347 int num_dots = state->game_grid->num_dots;
348 int num_faces = state->game_grid->num_faces;
349 int num_edges = state->game_grid->num_edges;
350 solver_state *ret = snew(solver_state);
351
352 ret->state = dup_game(state);
353
354 ret->solver_status = SOLVER_INCOMPLETE;
355 ret->diff = diff;
356
357 ret->dotdsf = snew_dsf(num_dots);
358 ret->looplen = snewn(num_dots, int);
359
360 for (i = 0; i < num_dots; i++) {
361 ret->looplen[i] = 1;
362 }
363
364 ret->dot_solved = snewn(num_dots, char);
365 ret->face_solved = snewn(num_faces, char);
366 memset(ret->dot_solved, FALSE, num_dots);
367 memset(ret->face_solved, FALSE, num_faces);
368
369 ret->dot_yes_count = snewn(num_dots, char);
370 memset(ret->dot_yes_count, 0, num_dots);
371 ret->dot_no_count = snewn(num_dots, char);
372 memset(ret->dot_no_count, 0, num_dots);
373 ret->face_yes_count = snewn(num_faces, char);
374 memset(ret->face_yes_count, 0, num_faces);
375 ret->face_no_count = snewn(num_faces, char);
376 memset(ret->face_no_count, 0, num_faces);
377
378 if (diff < DIFF_NORMAL) {
379 ret->dlines = NULL;
380 } else {
381 ret->dlines = snewn(2*num_edges, char);
382 memset(ret->dlines, 0, 2*num_edges);
383 }
384
385 if (diff < DIFF_HARD) {
386 ret->linedsf = NULL;
387 } else {
388 ret->linedsf = snew_dsf(state->game_grid->num_edges);
389 }
390
391 return ret;
392 }
393
394 static void free_solver_state(solver_state *sstate) {
395 if (sstate) {
396 free_game(sstate->state);
397 sfree(sstate->dotdsf);
398 sfree(sstate->looplen);
399 sfree(sstate->dot_solved);
400 sfree(sstate->face_solved);
401 sfree(sstate->dot_yes_count);
402 sfree(sstate->dot_no_count);
403 sfree(sstate->face_yes_count);
404 sfree(sstate->face_no_count);
405
406 /* OK, because sfree(NULL) is a no-op */
407 sfree(sstate->dlines);
408 sfree(sstate->linedsf);
409
410 sfree(sstate);
411 }
412 }
413
414 static solver_state *dup_solver_state(const solver_state *sstate) {
415 game_state *state = sstate->state;
416 int num_dots = state->game_grid->num_dots;
417 int num_faces = state->game_grid->num_faces;
418 int num_edges = state->game_grid->num_edges;
419 solver_state *ret = snew(solver_state);
420
421 ret->state = state = dup_game(sstate->state);
422
423 ret->solver_status = sstate->solver_status;
424 ret->diff = sstate->diff;
425
426 ret->dotdsf = snewn(num_dots, int);
427 ret->looplen = snewn(num_dots, int);
428 memcpy(ret->dotdsf, sstate->dotdsf,
429 num_dots * sizeof(int));
430 memcpy(ret->looplen, sstate->looplen,
431 num_dots * sizeof(int));
432
433 ret->dot_solved = snewn(num_dots, char);
434 ret->face_solved = snewn(num_faces, char);
435 memcpy(ret->dot_solved, sstate->dot_solved, num_dots);
436 memcpy(ret->face_solved, sstate->face_solved, num_faces);
437
438 ret->dot_yes_count = snewn(num_dots, char);
439 memcpy(ret->dot_yes_count, sstate->dot_yes_count, num_dots);
440 ret->dot_no_count = snewn(num_dots, char);
441 memcpy(ret->dot_no_count, sstate->dot_no_count, num_dots);
442
443 ret->face_yes_count = snewn(num_faces, char);
444 memcpy(ret->face_yes_count, sstate->face_yes_count, num_faces);
445 ret->face_no_count = snewn(num_faces, char);
446 memcpy(ret->face_no_count, sstate->face_no_count, num_faces);
447
448 if (sstate->dlines) {
449 ret->dlines = snewn(2*num_edges, char);
450 memcpy(ret->dlines, sstate->dlines,
451 2*num_edges);
452 } else {
453 ret->dlines = NULL;
454 }
455
456 if (sstate->linedsf) {
457 ret->linedsf = snewn(num_edges, int);
458 memcpy(ret->linedsf, sstate->linedsf,
459 num_edges * sizeof(int));
460 } else {
461 ret->linedsf = NULL;
462 }
463
464 return ret;
465 }
466
467 static game_params *default_params(void)
468 {
469 game_params *ret = snew(game_params);
470
471 #ifdef SLOW_SYSTEM
472 ret->h = 7;
473 ret->w = 7;
474 #else
475 ret->h = 10;
476 ret->w = 10;
477 #endif
478 ret->diff = DIFF_EASY;
479 ret->type = 0;
480 ret->dual = 0;
481
482 return ret;
483 }
484
485 static game_params *dup_params(game_params *params)
486 {
487 game_params *ret = snew(game_params);
488
489 *ret = *params; /* structure copy */
490 return ret;
491 }
492
493 static const game_params presets[] = {
494 #ifdef SMALL_SCREEN
495 { 7, 7, DIFF_EASY, 0, 0 },
496 { 7, 7, DIFF_NORMAL, 0, 0 },
497 { 7, 7, DIFF_HARD, 0, 0 },
498 { 7, 7, DIFF_HARD, 1, 0 },
499 { 7, 7, DIFF_HARD, 2, 0 },
500 { 5, 5, DIFF_HARD, 3, 0 },
501 { 7, 7, DIFF_HARD, 4, 0 },
502 { 5, 4, DIFF_HARD, 5, 0 },
503 { 5, 5, DIFF_HARD, 6, 0 },
504 { 5, 5, DIFF_HARD, 7, 0 },
505 { 3, 3, DIFF_HARD, 8, 0 },
506 { 3, 3, DIFF_HARD, 9, 0 },
507 { 3, 3, DIFF_HARD, 10, 0 },
508 { 6, 6, DIFF_HARD, 11, 0 },
509 { 6, 6, DIFF_HARD, 12, 0 },
510 #else
511 { 7, 7, DIFF_EASY, 0, 0 },
512 { 10, 10, DIFF_EASY, 0, 0 },
513 { 7, 7, DIFF_NORMAL, 0, 0 },
514 { 10, 10, DIFF_NORMAL, 0, 0 },
515 { 7, 7, DIFF_HARD, 0, 0 },
516 { 10, 10, DIFF_HARD, 0, 0 },
517 { 10, 10, DIFF_HARD, 1, 0 },
518 { 12, 10, DIFF_HARD, 2, 0 },
519 { 7, 7, DIFF_HARD, 3, 0 },
520 { 9, 9, DIFF_HARD, 4, 0 },
521 { 5, 4, DIFF_HARD, 5, 0 },
522 { 7, 7, DIFF_HARD, 6, 0 },
523 { 5, 5, DIFF_HARD, 7, 0 },
524 { 5, 5, DIFF_HARD, 8, 0 },
525 { 5, 4, DIFF_HARD, 9, 0 },
526 { 5, 4, DIFF_HARD, 10, 0 },
527 { 10, 10, DIFF_HARD, 11, 0 },
528 { 10, 10, DIFF_HARD, 12, 0 }
529 #endif
530 };
531
532 static int game_fetch_preset(int i, char **name, game_params **params)
533 {
534 game_params *tmppar;
535 char buf[80];
536
537 if (i < 0 || i >= lenof(presets))
538 return FALSE;
539
540 tmppar = snew(game_params);
541 *tmppar = presets[i];
542 *params = tmppar;
543 sprintf(buf, "%dx%d %s %s- %s", tmppar->h, tmppar->w,
544 gridnames[tmppar->type], dualnames[tmppar->dual],
545 diffnames[tmppar->diff]);
546 *name = dupstr(buf);
547
548 return TRUE;
549 }
550
551 static void free_params(game_params *params)
552 {
553 sfree(params);
554 }
555
556 static void decode_params(game_params *params, char const *string)
557 {
558 params->h = params->w = atoi(string);
559 params->diff = DIFF_EASY;
560 params->dual = 0;
561 while (*string && isdigit((unsigned char)*string)) string++;
562 if (*string == 'x') {
563 string++;
564 params->h = atoi(string);
565 while (*string && isdigit((unsigned char)*string)) string++;
566 }
567 if (*string == 'l') {
568 string++;
569 params->dual = 1;
570 }
571 if (*string == 't') {
572 string++;
573 params->type = atoi(string);
574 while (*string && isdigit((unsigned char)*string)) string++;
575 }
576 if (*string == 'd') {
577 int i;
578 string++;
579 for (i = 0; i < DIFF_MAX; i++)
580 if (*string == diffchars[i])
581 params->diff = i;
582 if (*string) string++;
583 }
584 }
585
586 static char *encode_params(game_params *params, int full)
587 {
588 char str[80];
589 sprintf(str, "%dx%dt%d%s", params->w, params->h, params->type,
590 params->dual ? "l" : "");
591 if (full)
592 sprintf(str + strlen(str), "d%c", diffchars[params->diff]);
593 return dupstr(str);
594 }
595
596 static config_item *game_configure(game_params *params)
597 {
598 config_item *ret;
599 char buf[80];
600
601 ret = snewn(6, config_item);
602
603 ret[0].name = "Width";
604 ret[0].type = C_STRING;
605 sprintf(buf, "%d", params->w);
606 ret[0].sval = dupstr(buf);
607 ret[0].ival = 0;
608
609 ret[1].name = "Height";
610 ret[1].type = C_STRING;
611 sprintf(buf, "%d", params->h);
612 ret[1].sval = dupstr(buf);
613 ret[1].ival = 0;
614
615 ret[2].name = "Grid type";
616 ret[2].type = C_CHOICES;
617 ret[2].sval = GRID_CONFIGS;
618 ret[2].ival = params->type;
619
620 ret[3].name = "Difficulty";
621 ret[3].type = C_CHOICES;
622 ret[3].sval = DIFFCONFIG;
623 ret[3].ival = params->diff;
624
625 ret[4].name = "Dual";
626 ret[4].type = C_BOOLEAN;
627 ret[4].sval = NULL;
628 ret[4].ival = params->dual;
629
630 ret[5].name = NULL;
631 ret[5].type = C_END;
632 ret[5].sval = NULL;
633 ret[5].ival = 0;
634
635 return ret;
636 }
637
638 static game_params *custom_params(config_item *cfg)
639 {
640 game_params *ret = snew(game_params);
641
642 ret->w = atoi(cfg[0].sval);
643 ret->h = atoi(cfg[1].sval);
644 ret->type = cfg[2].ival;
645 ret->diff = cfg[3].ival;
646 ret->dual = cfg[4].ival;
647
648 return ret;
649 }
650
651 static char *validate_params(game_params *params, int full)
652 {
653 if (params->type < 0 || params->type >= NUM_GRID_TYPES)
654 return "Illegal grid type";
655 if (params->w < grid_size_limits[params->type].amin ||
656 params->h < grid_size_limits[params->type].amin)
657 return grid_size_limits[params->type].aerr;
658 if (params->w < grid_size_limits[params->type].omin &&
659 params->h < grid_size_limits[params->type].omin)
660 return grid_size_limits[params->type].oerr;
661
662 /*
663 * This shouldn't be able to happen at all, since decode_params
664 * and custom_params will never generate anything that isn't
665 * within range.
666 */
667 assert(params->diff < DIFF_MAX);
668
669 return NULL;
670 }
671
672 /* Returns a newly allocated string describing the current puzzle */
673 static char *state_to_text(const game_state *state)
674 {
675 grid *g = state->game_grid;
676 char *retval;
677 int num_faces = g->num_faces;
678 char *description = snewn(num_faces + 1, char);
679 char *dp = description;
680 int empty_count = 0;
681 int i;
682
683 for (i = 0; i < num_faces; i++) {
684 if (state->clues[i] < 0) {
685 if (empty_count > 25) {
686 dp += sprintf(dp, "%c", (int)(empty_count + 'a' - 1));
687 empty_count = 0;
688 }
689 empty_count++;
690 } else {
691 if (empty_count) {
692 dp += sprintf(dp, "%c", (int)(empty_count + 'a' - 1));
693 empty_count = 0;
694 }
695 dp += sprintf(dp, "%c", (int)CLUE2CHAR(state->clues[i]));
696 }
697 }
698
699 if (empty_count)
700 dp += sprintf(dp, "%c", (int)(empty_count + 'a' - 1));
701
702 retval = dupstr(description);
703 sfree(description);
704
705 return retval;
706 }
707
708 #define GRID_DESC_SEP '_'
709
710 /* Splits up a (optional) grid_desc from the game desc. Returns the
711 * grid_desc (which needs freeing) and updates the desc pointer to
712 * start of real desc, or returns NULL if no desc. */
713 static char *extract_grid_desc(char **desc)
714 {
715 char *sep = strchr(*desc, GRID_DESC_SEP), *gd;
716 int gd_len;
717
718 if (!sep) return NULL;
719
720 gd_len = sep - (*desc);
721 gd = snewn(gd_len+1, char);
722 memcpy(gd, *desc, gd_len);
723 gd[gd_len] = '\0';
724
725 *desc = sep+1;
726
727 return gd;
728 }
729
730 /* We require that the params pass the test in validate_params and that the
731 * description fills the entire game area */
732 static char *validate_desc(game_params *params, char *desc)
733 {
734 int count = 0;
735 grid *g;
736 char *grid_desc, *ret;
737
738 /* It's pretty inefficient to do this just for validation. All we need to
739 * know is the precise number of faces. */
740 grid_desc = extract_grid_desc(&desc);
741 ret = grid_validate_desc(grid_types[params->type], params->w, params->h, params->dual, grid_desc);
742 if (ret) return ret;
743
744 g = loopy_generate_grid(params, grid_desc);
745 if (grid_desc) sfree(grid_desc);
746
747 for (; *desc; ++desc) {
748 if ((*desc >= '0' && *desc <= '9') || (*desc >= 'A' && *desc <= 'Z')) {
749 count++;
750 continue;
751 }
752 if (*desc >= 'a') {
753 count += *desc - 'a' + 1;
754 continue;
755 }
756 return "Unknown character in description";
757 }
758
759 if (count < g->num_faces)
760 return "Description too short for board size";
761 if (count > g->num_faces)
762 return "Description too long for board size";
763
764 grid_free(g);
765
766 return NULL;
767 }
768
769 /* Sums the lengths of the numbers in range [0,n) */
770 /* See equivalent function in solo.c for justification of this. */
771 static int len_0_to_n(int n)
772 {
773 int len = 1; /* Counting 0 as a bit of a special case */
774 int i;
775
776 for (i = 1; i < n; i *= 10) {
777 len += max(n - i, 0);
778 }
779
780 return len;
781 }
782
783 static char *encode_solve_move(const game_state *state)
784 {
785 int len;
786 char *ret, *p;
787 int i;
788 int num_edges = state->game_grid->num_edges;
789
790 /* This is going to return a string representing the moves needed to set
791 * every line in a grid to be the same as the ones in 'state'. The exact
792 * length of this string is predictable. */
793
794 len = 1; /* Count the 'S' prefix */
795 /* Numbers in all lines */
796 len += len_0_to_n(num_edges);
797 /* For each line we also have a letter */
798 len += num_edges;
799
800 ret = snewn(len + 1, char);
801 p = ret;
802
803 p += sprintf(p, "S");
804
805 for (i = 0; i < num_edges; i++) {
806 switch (state->lines[i]) {
807 case LINE_YES:
808 p += sprintf(p, "%dy", i);
809 break;
810 case LINE_NO:
811 p += sprintf(p, "%dn", i);
812 break;
813 }
814 }
815
816 /* No point in doing sums like that if they're going to be wrong */
817 assert(strlen(ret) <= (size_t)len);
818 return ret;
819 }
820
821 static game_ui *new_ui(game_state *state)
822 {
823 return NULL;
824 }
825
826 static void free_ui(game_ui *ui)
827 {
828 }
829
830 static char *encode_ui(game_ui *ui)
831 {
832 return NULL;
833 }
834
835 static void decode_ui(game_ui *ui, char *encoding)
836 {
837 }
838
839 static void game_changed_state(game_ui *ui, game_state *oldstate,
840 game_state *newstate)
841 {
842 }
843
844 static void game_compute_size(game_params *params, int tilesize,
845 int *x, int *y)
846 {
847 int grid_width, grid_height, rendered_width, rendered_height;
848 int g_tilesize;
849
850 grid_compute_size(grid_types[params->type], params->w, params->h,
851 &g_tilesize, &grid_width, &grid_height);
852
853 /* multiply first to minimise rounding error on integer division */
854 rendered_width = grid_width * tilesize / g_tilesize;
855 rendered_height = grid_height * tilesize / g_tilesize;
856 *x = rendered_width + 2 * BORDER(tilesize) + 1;
857 *y = rendered_height + 2 * BORDER(tilesize) + 1;
858 }
859
860 static void game_set_size(drawing *dr, game_drawstate *ds,
861 game_params *params, int tilesize)
862 {
863 ds->tilesize = tilesize;
864 }
865
866 static float *game_colours(frontend *fe, int *ncolours)
867 {
868 float *ret = snewn(4 * NCOLOURS, float);
869
870 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
871
872 ret[COL_FOREGROUND * 3 + 0] = 0.0F;
873 ret[COL_FOREGROUND * 3 + 1] = 0.0F;
874 ret[COL_FOREGROUND * 3 + 2] = 0.0F;
875
876 /*
877 * We want COL_LINEUNKNOWN to be a yellow which is a bit darker
878 * than the background. (I previously set it to 0.8,0.8,0, but
879 * found that this went badly with the 0.8,0.8,0.8 favoured as a
880 * background by the Java frontend.)
881 */
882 ret[COL_LINEUNKNOWN * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] * 0.9F;
883 ret[COL_LINEUNKNOWN * 3 + 1] = ret[COL_BACKGROUND * 3 + 1] * 0.9F;
884 ret[COL_LINEUNKNOWN * 3 + 2] = 0.0F;
885
886 ret[COL_HIGHLIGHT * 3 + 0] = 1.0F;
887 ret[COL_HIGHLIGHT * 3 + 1] = 1.0F;
888 ret[COL_HIGHLIGHT * 3 + 2] = 1.0F;
889
890 ret[COL_MISTAKE * 3 + 0] = 1.0F;
891 ret[COL_MISTAKE * 3 + 1] = 0.0F;
892 ret[COL_MISTAKE * 3 + 2] = 0.0F;
893
894 ret[COL_SATISFIED * 3 + 0] = 0.0F;
895 ret[COL_SATISFIED * 3 + 1] = 0.0F;
896 ret[COL_SATISFIED * 3 + 2] = 0.0F;
897
898 /* We want the faint lines to be a bit darker than the background.
899 * Except if the background is pretty dark already; then it ought to be a
900 * bit lighter. Oy vey.
901 */
902 ret[COL_FAINT * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] * 0.9F;
903 ret[COL_FAINT * 3 + 1] = ret[COL_BACKGROUND * 3 + 1] * 0.9F;
904 ret[COL_FAINT * 3 + 2] = ret[COL_BACKGROUND * 3 + 2] * 0.9F;
905
906 *ncolours = NCOLOURS;
907 return ret;
908 }
909
910 static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
911 {
912 struct game_drawstate *ds = snew(struct game_drawstate);
913 int num_faces = state->game_grid->num_faces;
914 int num_edges = state->game_grid->num_edges;
915 int i;
916
917 ds->tilesize = 0;
918 ds->started = 0;
919 ds->lines = snewn(num_edges, char);
920 ds->clue_error = snewn(num_faces, char);
921 ds->clue_satisfied = snewn(num_faces, char);
922 ds->textx = snewn(num_faces, int);
923 ds->texty = snewn(num_faces, int);
924 ds->flashing = 0;
925
926 memset(ds->lines, LINE_UNKNOWN, num_edges);
927 memset(ds->clue_error, 0, num_faces);
928 memset(ds->clue_satisfied, 0, num_faces);
929 for (i = 0; i < num_faces; i++)
930 ds->textx[i] = ds->texty[i] = -1;
931
932 return ds;
933 }
934
935 static void game_free_drawstate(drawing *dr, game_drawstate *ds)
936 {
937 sfree(ds->textx);
938 sfree(ds->texty);
939 sfree(ds->clue_error);
940 sfree(ds->clue_satisfied);
941 sfree(ds->lines);
942 sfree(ds);
943 }
944
945 static int game_timing_state(game_state *state, game_ui *ui)
946 {
947 return TRUE;
948 }
949
950 static float game_anim_length(game_state *oldstate, game_state *newstate,
951 int dir, game_ui *ui)
952 {
953 return 0.0F;
954 }
955
956 static int game_can_format_as_text_now(game_params *params)
957 {
958 if (params->type != 0)
959 return FALSE;
960 return TRUE;
961 }
962
963 static char *game_text_format(game_state *state)
964 {
965 int w, h, W, H;
966 int x, y, i;
967 int cell_size;
968 char *ret;
969 grid *g = state->game_grid;
970 grid_face *f;
971
972 assert(state->grid_type == 0);
973
974 /* Work out the basic size unit */
975 f = g->faces; /* first face */
976 assert(f->order == 4);
977 /* The dots are ordered clockwise, so the two opposite
978 * corners are guaranteed to span the square */
979 cell_size = abs(f->dots[0]->x - f->dots[2]->x);
980
981 w = (g->highest_x - g->lowest_x) / cell_size;
982 h = (g->highest_y - g->lowest_y) / cell_size;
983
984 /* Create a blank "canvas" to "draw" on */
985 W = 2 * w + 2;
986 H = 2 * h + 1;
987 ret = snewn(W * H + 1, char);
988 for (y = 0; y < H; y++) {
989 for (x = 0; x < W-1; x++) {
990 ret[y*W + x] = ' ';
991 }
992 ret[y*W + W-1] = '\n';
993 }
994 ret[H*W] = '\0';
995
996 /* Fill in edge info */
997 for (i = 0; i < g->num_edges; i++) {
998 grid_edge *e = g->edges + i;
999 /* Cell coordinates, from (0,0) to (w-1,h-1) */
1000 int x1 = (e->dot1->x - g->lowest_x) / cell_size;
1001 int x2 = (e->dot2->x - g->lowest_x) / cell_size;
1002 int y1 = (e->dot1->y - g->lowest_y) / cell_size;
1003 int y2 = (e->dot2->y - g->lowest_y) / cell_size;
1004 /* Midpoint, in canvas coordinates (canvas coordinates are just twice
1005 * cell coordinates) */
1006 x = x1 + x2;
1007 y = y1 + y2;
1008 switch (state->lines[i]) {
1009 case LINE_YES:
1010 ret[y*W + x] = (y1 == y2) ? '-' : '|';
1011 break;
1012 case LINE_NO:
1013 ret[y*W + x] = 'x';
1014 break;
1015 case LINE_UNKNOWN:
1016 break; /* already a space */
1017 default:
1018 assert(!"Illegal line state");
1019 }
1020 }
1021
1022 /* Fill in clues */
1023 for (i = 0; i < g->num_faces; i++) {
1024 int x1, x2, y1, y2;
1025
1026 f = g->faces + i;
1027 assert(f->order == 4);
1028 /* Cell coordinates, from (0,0) to (w-1,h-1) */
1029 x1 = (f->dots[0]->x - g->lowest_x) / cell_size;
1030 x2 = (f->dots[2]->x - g->lowest_x) / cell_size;
1031 y1 = (f->dots[0]->y - g->lowest_y) / cell_size;
1032 y2 = (f->dots[2]->y - g->lowest_y) / cell_size;
1033 /* Midpoint, in canvas coordinates */
1034 x = x1 + x2;
1035 y = y1 + y2;
1036 ret[y*W + x] = CLUE2CHAR(state->clues[i]);
1037 }
1038 return ret;
1039 }
1040
1041 /* ----------------------------------------------------------------------
1042 * Debug code
1043 */
1044
1045 #ifdef DEBUG_CACHES
1046 static void check_caches(const solver_state* sstate)
1047 {
1048 int i;
1049 const game_state *state = sstate->state;
1050 const grid *g = state->game_grid;
1051
1052 for (i = 0; i < g->num_dots; i++) {
1053 assert(dot_order(state, i, LINE_YES) == sstate->dot_yes_count[i]);
1054 assert(dot_order(state, i, LINE_NO) == sstate->dot_no_count[i]);
1055 }
1056
1057 for (i = 0; i < g->num_faces; i++) {
1058 assert(face_order(state, i, LINE_YES) == sstate->face_yes_count[i]);
1059 assert(face_order(state, i, LINE_NO) == sstate->face_no_count[i]);
1060 }
1061 }
1062
1063 #if 0
1064 #define check_caches(s) \
1065 do { \
1066 fprintf(stderr, "check_caches at line %d\n", __LINE__); \
1067 check_caches(s); \
1068 } while (0)
1069 #endif
1070 #endif /* DEBUG_CACHES */
1071
1072 /* ----------------------------------------------------------------------
1073 * Solver utility functions
1074 */
1075
1076 /* Sets the line (with index i) to the new state 'line_new', and updates
1077 * the cached counts of any affected faces and dots.
1078 * Returns TRUE if this actually changed the line's state. */
1079 static int solver_set_line(solver_state *sstate, int i,
1080 enum line_state line_new
1081 #ifdef SHOW_WORKING
1082 , const char *reason
1083 #endif
1084 )
1085 {
1086 game_state *state = sstate->state;
1087 grid *g;
1088 grid_edge *e;
1089
1090 assert(line_new != LINE_UNKNOWN);
1091
1092 check_caches(sstate);
1093
1094 if (state->lines[i] == line_new) {
1095 return FALSE; /* nothing changed */
1096 }
1097 state->lines[i] = line_new;
1098
1099 #ifdef SHOW_WORKING
1100 fprintf(stderr, "solver: set line [%d] to %s (%s)\n",
1101 i, line_new == LINE_YES ? "YES" : "NO",
1102 reason);
1103 #endif
1104
1105 g = state->game_grid;
1106 e = g->edges + i;
1107
1108 /* Update the cache for both dots and both faces affected by this. */
1109 if (line_new == LINE_YES) {
1110 sstate->dot_yes_count[e->dot1 - g->dots]++;
1111 sstate->dot_yes_count[e->dot2 - g->dots]++;
1112 if (e->face1) {
1113 sstate->face_yes_count[e->face1 - g->faces]++;
1114 }
1115 if (e->face2) {
1116 sstate->face_yes_count[e->face2 - g->faces]++;
1117 }
1118 } else {
1119 sstate->dot_no_count[e->dot1 - g->dots]++;
1120 sstate->dot_no_count[e->dot2 - g->dots]++;
1121 if (e->face1) {
1122 sstate->face_no_count[e->face1 - g->faces]++;
1123 }
1124 if (e->face2) {
1125 sstate->face_no_count[e->face2 - g->faces]++;
1126 }
1127 }
1128
1129 check_caches(sstate);
1130 return TRUE;
1131 }
1132
1133 #ifdef SHOW_WORKING
1134 #define solver_set_line(a, b, c) \
1135 solver_set_line(a, b, c, __FUNCTION__)
1136 #endif
1137
1138 /*
1139 * Merge two dots due to the existence of an edge between them.
1140 * Updates the dsf tracking equivalence classes, and keeps track of
1141 * the length of path each dot is currently a part of.
1142 * Returns TRUE if the dots were already linked, ie if they are part of a
1143 * closed loop, and false otherwise.
1144 */
1145 static int merge_dots(solver_state *sstate, int edge_index)
1146 {
1147 int i, j, len;
1148 grid *g = sstate->state->game_grid;
1149 grid_edge *e = g->edges + edge_index;
1150
1151 i = e->dot1 - g->dots;
1152 j = e->dot2 - g->dots;
1153
1154 i = dsf_canonify(sstate->dotdsf, i);
1155 j = dsf_canonify(sstate->dotdsf, j);
1156
1157 if (i == j) {
1158 return TRUE;
1159 } else {
1160 len = sstate->looplen[i] + sstate->looplen[j];
1161 dsf_merge(sstate->dotdsf, i, j);
1162 i = dsf_canonify(sstate->dotdsf, i);
1163 sstate->looplen[i] = len;
1164 return FALSE;
1165 }
1166 }
1167
1168 /* Merge two lines because the solver has deduced that they must be either
1169 * identical or opposite. Returns TRUE if this is new information, otherwise
1170 * FALSE. */
1171 static int merge_lines(solver_state *sstate, int i, int j, int inverse
1172 #ifdef SHOW_WORKING
1173 , const char *reason
1174 #endif
1175 )
1176 {
1177 int inv_tmp;
1178
1179 assert(i < sstate->state->game_grid->num_edges);
1180 assert(j < sstate->state->game_grid->num_edges);
1181
1182 i = edsf_canonify(sstate->linedsf, i, &inv_tmp);
1183 inverse ^= inv_tmp;
1184 j = edsf_canonify(sstate->linedsf, j, &inv_tmp);
1185 inverse ^= inv_tmp;
1186
1187 edsf_merge(sstate->linedsf, i, j, inverse);
1188
1189 #ifdef SHOW_WORKING
1190 if (i != j) {
1191 fprintf(stderr, "%s [%d] [%d] %s(%s)\n",
1192 __FUNCTION__, i, j,
1193 inverse ? "inverse " : "", reason);
1194 }
1195 #endif
1196 return (i != j);
1197 }
1198
1199 #ifdef SHOW_WORKING
1200 #define merge_lines(a, b, c, d) \
1201 merge_lines(a, b, c, d, __FUNCTION__)
1202 #endif
1203
1204 /* Count the number of lines of a particular type currently going into the
1205 * given dot. */
1206 static int dot_order(const game_state* state, int dot, char line_type)
1207 {
1208 int n = 0;
1209 grid *g = state->game_grid;
1210 grid_dot *d = g->dots + dot;
1211 int i;
1212
1213 for (i = 0; i < d->order; i++) {
1214 grid_edge *e = d->edges[i];
1215 if (state->lines[e - g->edges] == line_type)
1216 ++n;
1217 }
1218 return n;
1219 }
1220
1221 /* Count the number of lines of a particular type currently surrounding the
1222 * given face */
1223 static int face_order(const game_state* state, int face, char line_type)
1224 {
1225 int n = 0;
1226 grid *g = state->game_grid;
1227 grid_face *f = g->faces + face;
1228 int i;
1229
1230 for (i = 0; i < f->order; i++) {
1231 grid_edge *e = f->edges[i];
1232 if (state->lines[e - g->edges] == line_type)
1233 ++n;
1234 }
1235 return n;
1236 }
1237
1238 /* Set all lines bordering a dot of type old_type to type new_type
1239 * Return value tells caller whether this function actually did anything */
1240 static int dot_setall(solver_state *sstate, int dot,
1241 char old_type, char new_type)
1242 {
1243 int retval = FALSE, r;
1244 game_state *state = sstate->state;
1245 grid *g;
1246 grid_dot *d;
1247 int i;
1248
1249 if (old_type == new_type)
1250 return FALSE;
1251
1252 g = state->game_grid;
1253 d = g->dots + dot;
1254
1255 for (i = 0; i < d->order; i++) {
1256 int line_index = d->edges[i] - g->edges;
1257 if (state->lines[line_index] == old_type) {
1258 r = solver_set_line(sstate, line_index, new_type);
1259 assert(r == TRUE);
1260 retval = TRUE;
1261 }
1262 }
1263 return retval;
1264 }
1265
1266 /* Set all lines bordering a face of type old_type to type new_type */
1267 static int face_setall(solver_state *sstate, int face,
1268 char old_type, char new_type)
1269 {
1270 int retval = FALSE, r;
1271 game_state *state = sstate->state;
1272 grid *g;
1273 grid_face *f;
1274 int i;
1275
1276 if (old_type == new_type)
1277 return FALSE;
1278
1279 g = state->game_grid;
1280 f = g->faces + face;
1281
1282 for (i = 0; i < f->order; i++) {
1283 int line_index = f->edges[i] - g->edges;
1284 if (state->lines[line_index] == old_type) {
1285 r = solver_set_line(sstate, line_index, new_type);
1286 assert(r == TRUE);
1287 retval = TRUE;
1288 }
1289 }
1290 return retval;
1291 }
1292
1293 /* ----------------------------------------------------------------------
1294 * Loop generation and clue removal
1295 */
1296
1297 static void add_full_clues(game_state *state, random_state *rs)
1298 {
1299 signed char *clues = state->clues;
1300 grid *g = state->game_grid;
1301 char *board = snewn(g->num_faces, char);
1302 int i;
1303
1304 generate_loop(g, board, rs, NULL, NULL);
1305
1306 /* Fill out all the clues by initialising to 0, then iterating over
1307 * all edges and incrementing each clue as we find edges that border
1308 * between BLACK/WHITE faces. While we're at it, we verify that the
1309 * algorithm does work, and there aren't any GREY faces still there. */
1310 memset(clues, 0, g->num_faces);
1311 for (i = 0; i < g->num_edges; i++) {
1312 grid_edge *e = g->edges + i;
1313 grid_face *f1 = e->face1;
1314 grid_face *f2 = e->face2;
1315 enum face_colour c1 = FACE_COLOUR(f1);
1316 enum face_colour c2 = FACE_COLOUR(f2);
1317 assert(c1 != FACE_GREY);
1318 assert(c2 != FACE_GREY);
1319 if (c1 != c2) {
1320 if (f1) clues[f1 - g->faces]++;
1321 if (f2) clues[f2 - g->faces]++;
1322 }
1323 }
1324 sfree(board);
1325 }
1326
1327
1328 static int game_has_unique_soln(const game_state *state, int diff)
1329 {
1330 int ret;
1331 solver_state *sstate_new;
1332 solver_state *sstate = new_solver_state((game_state *)state, diff);
1333
1334 sstate_new = solve_game_rec(sstate);
1335
1336 assert(sstate_new->solver_status != SOLVER_MISTAKE);
1337 ret = (sstate_new->solver_status == SOLVER_SOLVED);
1338
1339 free_solver_state(sstate_new);
1340 free_solver_state(sstate);
1341
1342 return ret;
1343 }
1344
1345
1346 /* Remove clues one at a time at random. */
1347 static game_state *remove_clues(game_state *state, random_state *rs,
1348 int diff)
1349 {
1350 int *face_list;
1351 int num_faces = state->game_grid->num_faces;
1352 game_state *ret = dup_game(state), *saved_ret;
1353 int n;
1354
1355 /* We need to remove some clues. We'll do this by forming a list of all
1356 * available clues, shuffling it, then going along one at a
1357 * time clearing each clue in turn for which doing so doesn't render the
1358 * board unsolvable. */
1359 face_list = snewn(num_faces, int);
1360 for (n = 0; n < num_faces; ++n) {
1361 face_list[n] = n;
1362 }
1363
1364 shuffle(face_list, num_faces, sizeof(int), rs);
1365
1366 for (n = 0; n < num_faces; ++n) {
1367 saved_ret = dup_game(ret);
1368 ret->clues[face_list[n]] = -1;
1369
1370 if (game_has_unique_soln(ret, diff)) {
1371 free_game(saved_ret);
1372 } else {
1373 free_game(ret);
1374 ret = saved_ret;
1375 }
1376 }
1377 sfree(face_list);
1378
1379 return ret;
1380 }
1381
1382
1383 static char *new_game_desc(game_params *params, random_state *rs,
1384 char **aux, int interactive)
1385 {
1386 /* solution and description both use run-length encoding in obvious ways */
1387 char *retval, *game_desc, *grid_desc;
1388 grid *g;
1389 game_state *state = snew(game_state);
1390 game_state *state_new;
1391
1392 grid_desc = grid_new_desc(grid_types[params->type], params->w, params->h, params->dual, rs);
1393 state->game_grid = g = loopy_generate_grid(params, grid_desc);
1394
1395 state->clues = snewn(g->num_faces, signed char);
1396 state->lines = snewn(g->num_edges, char);
1397 state->line_errors = snewn(g->num_edges, unsigned char);
1398
1399 state->grid_type = params->type;
1400
1401 newboard_please:
1402
1403 memset(state->lines, LINE_UNKNOWN, g->num_edges);
1404 memset(state->line_errors, 0, g->num_edges);
1405
1406 state->solved = state->cheated = FALSE;
1407
1408 /* Get a new random solvable board with all its clues filled in. Yes, this
1409 * can loop for ever if the params are suitably unfavourable, but
1410 * preventing games smaller than 4x4 seems to stop this happening */
1411 do {
1412 add_full_clues(state, rs);
1413 } while (!game_has_unique_soln(state, params->diff));
1414
1415 state_new = remove_clues(state, rs, params->diff);
1416 free_game(state);
1417 state = state_new;
1418
1419
1420 if (params->diff > 0 && game_has_unique_soln(state, params->diff-1)) {
1421 #ifdef SHOW_WORKING
1422 fprintf(stderr, "Rejecting board, it is too easy\n");
1423 #endif
1424 goto newboard_please;
1425 }
1426
1427 game_desc = state_to_text(state);
1428
1429 free_game(state);
1430
1431 if (grid_desc) {
1432 retval = snewn(strlen(grid_desc) + 1 + strlen(game_desc) + 1, char);
1433 sprintf(retval, "%s%c%s", grid_desc, (int)GRID_DESC_SEP, game_desc);
1434 sfree(grid_desc);
1435 sfree(game_desc);
1436 } else {
1437 retval = game_desc;
1438 }
1439
1440 assert(!validate_desc(params, retval));
1441
1442 return retval;
1443 }
1444
1445 static game_state *new_game(midend *me, game_params *params, char *desc)
1446 {
1447 int i;
1448 game_state *state = snew(game_state);
1449 int empties_to_make = 0;
1450 int n,n2;
1451 const char *dp;
1452 char *grid_desc;
1453 grid *g;
1454 int num_faces, num_edges;
1455
1456 grid_desc = extract_grid_desc(&desc);
1457 state->game_grid = g = loopy_generate_grid(params, grid_desc);
1458 if (grid_desc) sfree(grid_desc);
1459
1460 dp = desc;
1461
1462 num_faces = g->num_faces;
1463 num_edges = g->num_edges;
1464
1465 state->clues = snewn(num_faces, signed char);
1466 state->lines = snewn(num_edges, char);
1467 state->line_errors = snewn(num_edges, unsigned char);
1468
1469 state->solved = state->cheated = FALSE;
1470
1471 state->grid_type = params->type;
1472
1473 for (i = 0; i < num_faces; i++) {
1474 if (empties_to_make) {
1475 empties_to_make--;
1476 state->clues[i] = -1;
1477 continue;
1478 }
1479
1480 assert(*dp);
1481 n = *dp - '0';
1482 n2 = *dp - 'A' + 10;
1483 if (n >= 0 && n < 10) {
1484 state->clues[i] = n;
1485 } else if (n2 >= 10 && n2 < 36) {
1486 state->clues[i] = n2;
1487 } else {
1488 n = *dp - 'a' + 1;
1489 assert(n > 0);
1490 state->clues[i] = -1;
1491 empties_to_make = n - 1;
1492 }
1493 ++dp;
1494 }
1495
1496 memset(state->lines, LINE_UNKNOWN, num_edges);
1497 memset(state->line_errors, 0, num_edges);
1498 return state;
1499 }
1500
1501 /* Calculates the line_errors data, and checks if the current state is a
1502 * solution */
1503 static int check_completion(game_state *state)
1504 {
1505 grid *g = state->game_grid;
1506 int *dsf;
1507 int num_faces = g->num_faces;
1508 int i;
1509 int infinite_area, finite_area;
1510 int loops_found = 0;
1511 int found_edge_not_in_loop = FALSE;
1512
1513 memset(state->line_errors, 0, g->num_edges);
1514
1515 /* LL implementation of SGT's idea:
1516 * A loop will partition the grid into an inside and an outside.
1517 * If there is more than one loop, the grid will be partitioned into
1518 * even more distinct regions. We can therefore track equivalence of
1519 * faces, by saying that two faces are equivalent when there is a non-YES
1520 * edge between them.
1521 * We could keep track of the number of connected components, by counting
1522 * the number of dsf-merges that aren't no-ops.
1523 * But we're only interested in 3 separate cases:
1524 * no loops, one loop, more than one loop.
1525 *
1526 * No loops: all faces are equivalent to the infinite face.
1527 * One loop: only two equivalence classes - finite and infinite.
1528 * >= 2 loops: there are 2 distinct finite regions.
1529 *
1530 * So we simply make two passes through all the edges.
1531 * In the first pass, we dsf-merge the two faces bordering each non-YES
1532 * edge.
1533 * In the second pass, we look for YES-edges bordering:
1534 * a) two non-equivalent faces.
1535 * b) two non-equivalent faces, and one of them is part of a different
1536 * finite area from the first finite area we've seen.
1537 *
1538 * An occurrence of a) means there is at least one loop.
1539 * An occurrence of b) means there is more than one loop.
1540 * Edges satisfying a) are marked as errors.
1541 *
1542 * While we're at it, we set a flag if we find a YES edge that is not
1543 * part of a loop.
1544 * This information will help decide, if there's a single loop, whether it
1545 * is a candidate for being a solution (that is, all YES edges are part of
1546 * this loop).
1547 *
1548 * If there is a candidate loop, we then go through all clues and check
1549 * they are all satisfied. If so, we have found a solution and we can
1550 * unmark all line_errors.
1551 */
1552
1553 /* Infinite face is at the end - its index is num_faces.
1554 * This macro is just to make this obvious! */
1555 #define INF_FACE num_faces
1556 dsf = snewn(num_faces + 1, int);
1557 dsf_init(dsf, num_faces + 1);
1558
1559 /* First pass */
1560 for (i = 0; i < g->num_edges; i++) {
1561 grid_edge *e = g->edges + i;
1562 int f1 = e->face1 ? e->face1 - g->faces : INF_FACE;
1563 int f2 = e->face2 ? e->face2 - g->faces : INF_FACE;
1564 if (state->lines[i] != LINE_YES)
1565 dsf_merge(dsf, f1, f2);
1566 }
1567
1568 /* Second pass */
1569 infinite_area = dsf_canonify(dsf, INF_FACE);
1570 finite_area = -1;
1571 for (i = 0; i < g->num_edges; i++) {
1572 grid_edge *e = g->edges + i;
1573 int f1 = e->face1 ? e->face1 - g->faces : INF_FACE;
1574 int can1 = dsf_canonify(dsf, f1);
1575 int f2 = e->face2 ? e->face2 - g->faces : INF_FACE;
1576 int can2 = dsf_canonify(dsf, f2);
1577 if (state->lines[i] != LINE_YES) continue;
1578
1579 if (can1 == can2) {
1580 /* Faces are equivalent, so this edge not part of a loop */
1581 found_edge_not_in_loop = TRUE;
1582 continue;
1583 }
1584 state->line_errors[i] = TRUE;
1585 if (loops_found == 0) loops_found = 1;
1586
1587 /* Don't bother with further checks if we've already found 2 loops */
1588 if (loops_found == 2) continue;
1589
1590 if (finite_area == -1) {
1591 /* Found our first finite area */
1592 if (can1 != infinite_area)
1593 finite_area = can1;
1594 else
1595 finite_area = can2;
1596 }
1597
1598 /* Have we found a second area? */
1599 if (finite_area != -1) {
1600 if (can1 != infinite_area && can1 != finite_area) {
1601 loops_found = 2;
1602 continue;
1603 }
1604 if (can2 != infinite_area && can2 != finite_area) {
1605 loops_found = 2;
1606 }
1607 }
1608 }
1609
1610 /*
1611 printf("loops_found = %d\n", loops_found);
1612 printf("found_edge_not_in_loop = %s\n",
1613 found_edge_not_in_loop ? "TRUE" : "FALSE");
1614 */
1615
1616 sfree(dsf); /* No longer need the dsf */
1617
1618 /* Have we found a candidate loop? */
1619 if (loops_found == 1 && !found_edge_not_in_loop) {
1620 /* Yes, so check all clues are satisfied */
1621 int found_clue_violation = FALSE;
1622 for (i = 0; i < num_faces; i++) {
1623 int c = state->clues[i];
1624 if (c >= 0) {
1625 if (face_order(state, i, LINE_YES) != c) {
1626 found_clue_violation = TRUE;
1627 break;
1628 }
1629 }
1630 }
1631
1632 if (!found_clue_violation) {
1633 /* The loop is good */
1634 memset(state->line_errors, 0, g->num_edges);
1635 return TRUE; /* No need to bother checking for dot violations */
1636 }
1637 }
1638
1639 /* Check for dot violations */
1640 for (i = 0; i < g->num_dots; i++) {
1641 int yes = dot_order(state, i, LINE_YES);
1642 int unknown = dot_order(state, i, LINE_UNKNOWN);
1643 if ((yes == 1 && unknown == 0) || (yes >= 3)) {
1644 /* violation, so mark all YES edges as errors */
1645 grid_dot *d = g->dots + i;
1646 int j;
1647 for (j = 0; j < d->order; j++) {
1648 int e = d->edges[j] - g->edges;
1649 if (state->lines[e] == LINE_YES)
1650 state->line_errors[e] = TRUE;
1651 }
1652 }
1653 }
1654 return FALSE;
1655 }
1656
1657 /* ----------------------------------------------------------------------
1658 * Solver logic
1659 *
1660 * Our solver modes operate as follows. Each mode also uses the modes above it.
1661 *
1662 * Easy Mode
1663 * Just implement the rules of the game.
1664 *
1665 * Normal and Tricky Modes
1666 * For each (adjacent) pair of lines through each dot we store a bit for
1667 * whether at least one of them is on and whether at most one is on. (If we
1668 * know both or neither is on that's already stored more directly.)
1669 *
1670 * Advanced Mode
1671 * Use edsf data structure to make equivalence classes of lines that are
1672 * known identical to or opposite to one another.
1673 */
1674
1675
1676 /* DLines:
1677 * For general grids, we consider "dlines" to be pairs of lines joined
1678 * at a dot. The lines must be adjacent around the dot, so we can think of
1679 * a dline as being a dot+face combination. Or, a dot+edge combination where
1680 * the second edge is taken to be the next clockwise edge from the dot.
1681 * Original loopy code didn't have this extra restriction of the lines being
1682 * adjacent. From my tests with square grids, this extra restriction seems to
1683 * take little, if anything, away from the quality of the puzzles.
1684 * A dline can be uniquely identified by an edge/dot combination, given that
1685 * a dline-pair always goes clockwise around its common dot. The edge/dot
1686 * combination can be represented by an edge/bool combination - if bool is
1687 * TRUE, use edge->dot1 else use edge->dot2. So the total number of dlines is
1688 * exactly twice the number of edges in the grid - although the dlines
1689 * spanning the infinite face are not all that useful to the solver.
1690 * Note that, by convention, a dline goes clockwise around its common dot,
1691 * which means the dline goes anti-clockwise around its common face.
1692 */
1693
1694 /* Helper functions for obtaining an index into an array of dlines, given
1695 * various information. We assume the grid layout conventions about how
1696 * the various lists are interleaved - see grid_make_consistent() for
1697 * details. */
1698
1699 /* i points to the first edge of the dline pair, reading clockwise around
1700 * the dot. */
1701 static int dline_index_from_dot(grid *g, grid_dot *d, int i)
1702 {
1703 grid_edge *e = d->edges[i];
1704 int ret;
1705 #ifdef DEBUG_DLINES
1706 grid_edge *e2;
1707 int i2 = i+1;
1708 if (i2 == d->order) i2 = 0;
1709 e2 = d->edges[i2];
1710 #endif
1711 ret = 2 * (e - g->edges) + ((e->dot1 == d) ? 1 : 0);
1712 #ifdef DEBUG_DLINES
1713 printf("dline_index_from_dot: d=%d,i=%d, edges [%d,%d] - %d\n",
1714 (int)(d - g->dots), i, (int)(e - g->edges),
1715 (int)(e2 - g->edges), ret);
1716 #endif
1717 return ret;
1718 }
1719 /* i points to the second edge of the dline pair, reading clockwise around
1720 * the face. That is, the edges of the dline, starting at edge{i}, read
1721 * anti-clockwise around the face. By layout conventions, the common dot
1722 * of the dline will be f->dots[i] */
1723 static int dline_index_from_face(grid *g, grid_face *f, int i)
1724 {
1725 grid_edge *e = f->edges[i];
1726 grid_dot *d = f->dots[i];
1727 int ret;
1728 #ifdef DEBUG_DLINES
1729 grid_edge *e2;
1730 int i2 = i - 1;
1731 if (i2 < 0) i2 += f->order;
1732 e2 = f->edges[i2];
1733 #endif
1734 ret = 2 * (e - g->edges) + ((e->dot1 == d) ? 1 : 0);
1735 #ifdef DEBUG_DLINES
1736 printf("dline_index_from_face: f=%d,i=%d, edges [%d,%d] - %d\n",
1737 (int)(f - g->faces), i, (int)(e - g->edges),
1738 (int)(e2 - g->edges), ret);
1739 #endif
1740 return ret;
1741 }
1742 static int is_atleastone(const char *dline_array, int index)
1743 {
1744 return BIT_SET(dline_array[index], 0);
1745 }
1746 static int set_atleastone(char *dline_array, int index)
1747 {
1748 return SET_BIT(dline_array[index], 0);
1749 }
1750 static int is_atmostone(const char *dline_array, int index)
1751 {
1752 return BIT_SET(dline_array[index], 1);
1753 }
1754 static int set_atmostone(char *dline_array, int index)
1755 {
1756 return SET_BIT(dline_array[index], 1);
1757 }
1758
1759 static void array_setall(char *array, char from, char to, int len)
1760 {
1761 char *p = array, *p_old = p;
1762 int len_remaining = len;
1763
1764 while ((p = memchr(p, from, len_remaining))) {
1765 *p = to;
1766 len_remaining -= p - p_old;
1767 p_old = p;
1768 }
1769 }
1770
1771 /* Helper, called when doing dline dot deductions, in the case where we
1772 * have 4 UNKNOWNs, and two of them (adjacent) have *exactly* one YES between
1773 * them (because of dline atmostone/atleastone).
1774 * On entry, edge points to the first of these two UNKNOWNs. This function
1775 * will find the opposite UNKNOWNS (if they are adjacent to one another)
1776 * and set their corresponding dline to atleastone. (Setting atmostone
1777 * already happens in earlier dline deductions) */
1778 static int dline_set_opp_atleastone(solver_state *sstate,
1779 grid_dot *d, int edge)
1780 {
1781 game_state *state = sstate->state;
1782 grid *g = state->game_grid;
1783 int N = d->order;
1784 int opp, opp2;
1785 for (opp = 0; opp < N; opp++) {
1786 int opp_dline_index;
1787 if (opp == edge || opp == edge+1 || opp == edge-1)
1788 continue;
1789 if (opp == 0 && edge == N-1)
1790 continue;
1791 if (opp == N-1 && edge == 0)
1792 continue;
1793 opp2 = opp + 1;
1794 if (opp2 == N) opp2 = 0;
1795 /* Check if opp, opp2 point to LINE_UNKNOWNs */
1796 if (state->lines[d->edges[opp] - g->edges] != LINE_UNKNOWN)
1797 continue;
1798 if (state->lines[d->edges[opp2] - g->edges] != LINE_UNKNOWN)
1799 continue;
1800 /* Found opposite UNKNOWNS and they're next to each other */
1801 opp_dline_index = dline_index_from_dot(g, d, opp);
1802 return set_atleastone(sstate->dlines, opp_dline_index);
1803 }
1804 return FALSE;
1805 }
1806
1807
1808 /* Set pairs of lines around this face which are known to be identical, to
1809 * the given line_state */
1810 static int face_setall_identical(solver_state *sstate, int face_index,
1811 enum line_state line_new)
1812 {
1813 /* can[dir] contains the canonical line associated with the line in
1814 * direction dir from the square in question. Similarly inv[dir] is
1815 * whether or not the line in question is inverse to its canonical
1816 * element. */
1817 int retval = FALSE;
1818 game_state *state = sstate->state;
1819 grid *g = state->game_grid;
1820 grid_face *f = g->faces + face_index;
1821 int N = f->order;
1822 int i, j;
1823 int can1, can2, inv1, inv2;
1824
1825 for (i = 0; i < N; i++) {
1826 int line1_index = f->edges[i] - g->edges;
1827 if (state->lines[line1_index] != LINE_UNKNOWN)
1828 continue;
1829 for (j = i + 1; j < N; j++) {
1830 int line2_index = f->edges[j] - g->edges;
1831 if (state->lines[line2_index] != LINE_UNKNOWN)
1832 continue;
1833
1834 /* Found two UNKNOWNS */
1835 can1 = edsf_canonify(sstate->linedsf, line1_index, &inv1);
1836 can2 = edsf_canonify(sstate->linedsf, line2_index, &inv2);
1837 if (can1 == can2 && inv1 == inv2) {
1838 solver_set_line(sstate, line1_index, line_new);
1839 solver_set_line(sstate, line2_index, line_new);
1840 }
1841 }
1842 }
1843 return retval;
1844 }
1845
1846 /* Given a dot or face, and a count of LINE_UNKNOWNs, find them and
1847 * return the edge indices into e. */
1848 static void find_unknowns(game_state *state,
1849 grid_edge **edge_list, /* Edge list to search (from a face or a dot) */
1850 int expected_count, /* Number of UNKNOWNs (comes from solver's cache) */
1851 int *e /* Returned edge indices */)
1852 {
1853 int c = 0;
1854 grid *g = state->game_grid;
1855 while (c < expected_count) {
1856 int line_index = *edge_list - g->edges;
1857 if (state->lines[line_index] == LINE_UNKNOWN) {
1858 e[c] = line_index;
1859 c++;
1860 }
1861 ++edge_list;
1862 }
1863 }
1864
1865 /* If we have a list of edges, and we know whether the number of YESs should
1866 * be odd or even, and there are only a few UNKNOWNs, we can do some simple
1867 * linedsf deductions. This can be used for both face and dot deductions.
1868 * Returns the difficulty level of the next solver that should be used,
1869 * or DIFF_MAX if no progress was made. */
1870 static int parity_deductions(solver_state *sstate,
1871 grid_edge **edge_list, /* Edge list (from a face or a dot) */
1872 int total_parity, /* Expected number of YESs modulo 2 (either 0 or 1) */
1873 int unknown_count)
1874 {
1875 game_state *state = sstate->state;
1876 int diff = DIFF_MAX;
1877 int *linedsf = sstate->linedsf;
1878
1879 if (unknown_count == 2) {
1880 /* Lines are known alike/opposite, depending on inv. */
1881 int e[2];
1882 find_unknowns(state, edge_list, 2, e);
1883 if (merge_lines(sstate, e[0], e[1], total_parity))
1884 diff = min(diff, DIFF_HARD);
1885 } else if (unknown_count == 3) {
1886 int e[3];
1887 int can[3]; /* canonical edges */
1888 int inv[3]; /* whether can[x] is inverse to e[x] */
1889 find_unknowns(state, edge_list, 3, e);
1890 can[0] = edsf_canonify(linedsf, e[0], inv);
1891 can[1] = edsf_canonify(linedsf, e[1], inv+1);
1892 can[2] = edsf_canonify(linedsf, e[2], inv+2);
1893 if (can[0] == can[1]) {
1894 if (solver_set_line(sstate, e[2], (total_parity^inv[0]^inv[1]) ?
1895 LINE_YES : LINE_NO))
1896 diff = min(diff, DIFF_EASY);
1897 }
1898 if (can[0] == can[2]) {
1899 if (solver_set_line(sstate, e[1], (total_parity^inv[0]^inv[2]) ?
1900 LINE_YES : LINE_NO))
1901 diff = min(diff, DIFF_EASY);
1902 }
1903 if (can[1] == can[2]) {
1904 if (solver_set_line(sstate, e[0], (total_parity^inv[1]^inv[2]) ?
1905 LINE_YES : LINE_NO))
1906 diff = min(diff, DIFF_EASY);
1907 }
1908 } else if (unknown_count == 4) {
1909 int e[4];
1910 int can[4]; /* canonical edges */
1911 int inv[4]; /* whether can[x] is inverse to e[x] */
1912 find_unknowns(state, edge_list, 4, e);
1913 can[0] = edsf_canonify(linedsf, e[0], inv);
1914 can[1] = edsf_canonify(linedsf, e[1], inv+1);
1915 can[2] = edsf_canonify(linedsf, e[2], inv+2);
1916 can[3] = edsf_canonify(linedsf, e[3], inv+3);
1917 if (can[0] == can[1]) {
1918 if (merge_lines(sstate, e[2], e[3], total_parity^inv[0]^inv[1]))
1919 diff = min(diff, DIFF_HARD);
1920 } else if (can[0] == can[2]) {
1921 if (merge_lines(sstate, e[1], e[3], total_parity^inv[0]^inv[2]))
1922 diff = min(diff, DIFF_HARD);
1923 } else if (can[0] == can[3]) {
1924 if (merge_lines(sstate, e[1], e[2], total_parity^inv[0]^inv[3]))
1925 diff = min(diff, DIFF_HARD);
1926 } else if (can[1] == can[2]) {
1927 if (merge_lines(sstate, e[0], e[3], total_parity^inv[1]^inv[2]))
1928 diff = min(diff, DIFF_HARD);
1929 } else if (can[1] == can[3]) {
1930 if (merge_lines(sstate, e[0], e[2], total_parity^inv[1]^inv[3]))
1931 diff = min(diff, DIFF_HARD);
1932 } else if (can[2] == can[3]) {
1933 if (merge_lines(sstate, e[0], e[1], total_parity^inv[2]^inv[3]))
1934 diff = min(diff, DIFF_HARD);
1935 }
1936 }
1937 return diff;
1938 }
1939
1940
1941 /*
1942 * These are the main solver functions.
1943 *
1944 * Their return values are diff values corresponding to the lowest mode solver
1945 * that would notice the work that they have done. For example if the normal
1946 * mode solver adds actual lines or crosses, it will return DIFF_EASY as the
1947 * easy mode solver might be able to make progress using that. It doesn't make
1948 * sense for one of them to return a diff value higher than that of the
1949 * function itself.
1950 *
1951 * Each function returns the lowest value it can, as early as possible, in
1952 * order to try and pass as much work as possible back to the lower level
1953 * solvers which progress more quickly.
1954 */
1955
1956 /* PROPOSED NEW DESIGN:
1957 * We have a work queue consisting of 'events' notifying us that something has
1958 * happened that a particular solver mode might be interested in. For example
1959 * the hard mode solver might do something that helps the normal mode solver at
1960 * dot [x,y] in which case it will enqueue an event recording this fact. Then
1961 * we pull events off the work queue, and hand each in turn to the solver that
1962 * is interested in them. If a solver reports that it failed we pass the same
1963 * event on to progressively more advanced solvers and the loop detector. Once
1964 * we've exhausted an event, or it has helped us progress, we drop it and
1965 * continue to the next one. The events are sorted first in order of solver
1966 * complexity (easy first) then order of insertion (oldest first).
1967 * Once we run out of events we loop over each permitted solver in turn
1968 * (easiest first) until either a deduction is made (and an event therefore
1969 * emerges) or no further deductions can be made (in which case we've failed).
1970 *
1971 * QUESTIONS:
1972 * * How do we 'loop over' a solver when both dots and squares are concerned.
1973 * Answer: first all squares then all dots.
1974 */
1975
1976 static int trivial_deductions(solver_state *sstate)
1977 {
1978 int i, current_yes, current_no;
1979 game_state *state = sstate->state;
1980 grid *g = state->game_grid;
1981 int diff = DIFF_MAX;
1982
1983 /* Per-face deductions */
1984 for (i = 0; i < g->num_faces; i++) {
1985 grid_face *f = g->faces + i;
1986
1987 if (sstate->face_solved[i])
1988 continue;
1989
1990 current_yes = sstate->face_yes_count[i];
1991 current_no = sstate->face_no_count[i];
1992
1993 if (current_yes + current_no == f->order) {
1994 sstate->face_solved[i] = TRUE;
1995 continue;
1996 }
1997
1998 if (state->clues[i] < 0)
1999 continue;
2000
2001 /*
2002 * This code checks whether the numeric clue on a face is so
2003 * large as to permit all its remaining LINE_UNKNOWNs to be
2004 * filled in as LINE_YES, or alternatively so small as to
2005 * permit them all to be filled in as LINE_NO.
2006 */
2007
2008 if (state->clues[i] < current_yes) {
2009 sstate->solver_status = SOLVER_MISTAKE;
2010 return DIFF_EASY;
2011 }
2012 if (state->clues[i] == current_yes) {
2013 if (face_setall(sstate, i, LINE_UNKNOWN, LINE_NO))
2014 diff = min(diff, DIFF_EASY);
2015 sstate->face_solved[i] = TRUE;
2016 continue;
2017 }
2018
2019 if (f->order - state->clues[i] < current_no) {
2020 sstate->solver_status = SOLVER_MISTAKE;
2021 return DIFF_EASY;
2022 }
2023 if (f->order - state->clues[i] == current_no) {
2024 if (face_setall(sstate, i, LINE_UNKNOWN, LINE_YES))
2025 diff = min(diff, DIFF_EASY);
2026 sstate->face_solved[i] = TRUE;
2027 continue;
2028 }
2029
2030 if (f->order - state->clues[i] == current_no + 1 &&
2031 f->order - current_yes - current_no > 2) {
2032 /*
2033 * One small refinement to the above: we also look for any
2034 * adjacent pair of LINE_UNKNOWNs around the face with
2035 * some LINE_YES incident on it from elsewhere. If we find
2036 * one, then we know that pair of LINE_UNKNOWNs can't
2037 * _both_ be LINE_YES, and hence that pushes us one line
2038 * closer to being able to determine all the rest.
2039 */
2040 int j, k, e1, e2, e, d;
2041
2042 for (j = 0; j < f->order; j++) {
2043 e1 = f->edges[j] - g->edges;
2044 e2 = f->edges[j+1 < f->order ? j+1 : 0] - g->edges;
2045
2046 if (g->edges[e1].dot1 == g->edges[e2].dot1 ||
2047 g->edges[e1].dot1 == g->edges[e2].dot2) {
2048 d = g->edges[e1].dot1 - g->dots;
2049 } else {
2050 assert(g->edges[e1].dot2 == g->edges[e2].dot1 ||
2051 g->edges[e1].dot2 == g->edges[e2].dot2);
2052 d = g->edges[e1].dot2 - g->dots;
2053 }
2054
2055 if (state->lines[e1] == LINE_UNKNOWN &&
2056 state->lines[e2] == LINE_UNKNOWN) {
2057 for (k = 0; k < g->dots[d].order; k++) {
2058 int e = g->dots[d].edges[k] - g->edges;
2059 if (state->lines[e] == LINE_YES)
2060 goto found; /* multi-level break */
2061 }
2062 }
2063 }
2064 continue;
2065
2066 found:
2067 /*
2068 * If we get here, we've found such a pair of edges, and
2069 * they're e1 and e2.
2070 */
2071 for (j = 0; j < f->order; j++) {
2072 e = f->edges[j] - g->edges;
2073 if (state->lines[e] == LINE_UNKNOWN && e != e1 && e != e2) {
2074 int r = solver_set_line(sstate, e, LINE_YES);
2075 assert(r);
2076 diff = min(diff, DIFF_EASY);
2077 }
2078 }
2079 }
2080 }
2081
2082 check_caches(sstate);
2083
2084 /* Per-dot deductions */
2085 for (i = 0; i < g->num_dots; i++) {
2086 grid_dot *d = g->dots + i;
2087 int yes, no, unknown;
2088
2089 if (sstate->dot_solved[i])
2090 continue;
2091
2092 yes = sstate->dot_yes_count[i];
2093 no = sstate->dot_no_count[i];
2094 unknown = d->order - yes - no;
2095
2096 if (yes == 0) {
2097 if (unknown == 0) {
2098 sstate->dot_solved[i] = TRUE;
2099 } else if (unknown == 1) {
2100 dot_setall(sstate, i, LINE_UNKNOWN, LINE_NO);
2101 diff = min(diff, DIFF_EASY);
2102 sstate->dot_solved[i] = TRUE;
2103 }
2104 } else if (yes == 1) {
2105 if (unknown == 0) {
2106 sstate->solver_status = SOLVER_MISTAKE;
2107 return DIFF_EASY;
2108 } else if (unknown == 1) {
2109 dot_setall(sstate, i, LINE_UNKNOWN, LINE_YES);
2110 diff = min(diff, DIFF_EASY);
2111 }
2112 } else if (yes == 2) {
2113 if (unknown > 0) {
2114 dot_setall(sstate, i, LINE_UNKNOWN, LINE_NO);
2115 diff = min(diff, DIFF_EASY);
2116 }
2117 sstate->dot_solved[i] = TRUE;
2118 } else {
2119 sstate->solver_status = SOLVER_MISTAKE;
2120 return DIFF_EASY;
2121 }
2122 }
2123
2124 check_caches(sstate);
2125
2126 return diff;
2127 }
2128
2129 static int dline_deductions(solver_state *sstate)
2130 {
2131 game_state *state = sstate->state;
2132 grid *g = state->game_grid;
2133 char *dlines = sstate->dlines;
2134 int i;
2135 int diff = DIFF_MAX;
2136
2137 /* ------ Face deductions ------ */
2138
2139 /* Given a set of dline atmostone/atleastone constraints, need to figure
2140 * out if we can deduce any further info. For more general faces than
2141 * squares, this turns out to be a tricky problem.
2142 * The approach taken here is to define (per face) NxN matrices:
2143 * "maxs" and "mins".
2144 * The entries maxs(j,k) and mins(j,k) define the upper and lower limits
2145 * for the possible number of edges that are YES between positions j and k
2146 * going clockwise around the face. Can think of j and k as marking dots
2147 * around the face (recall the labelling scheme: edge0 joins dot0 to dot1,
2148 * edge1 joins dot1 to dot2 etc).
2149 * Trivially, mins(j,j) = maxs(j,j) = 0, and we don't even bother storing
2150 * these. mins(j,j+1) and maxs(j,j+1) are determined by whether edge{j}
2151 * is YES, NO or UNKNOWN. mins(j,j+2) and maxs(j,j+2) are related to
2152 * the dline atmostone/atleastone status for edges j and j+1.
2153 *
2154 * Then we calculate the remaining entries recursively. We definitely
2155 * know that
2156 * mins(j,k) >= { mins(j,u) + mins(u,k) } for any u between j and k.
2157 * This is because any valid placement of YESs between j and k must give
2158 * a valid placement between j and u, and also between u and k.
2159 * I believe it's sufficient to use just the two values of u:
2160 * j+1 and j+2. Seems to work well in practice - the bounds we compute
2161 * are rigorous, even if they might not be best-possible.
2162 *
2163 * Once we have maxs and mins calculated, we can make inferences about
2164 * each dline{j,j+1} by looking at the possible complementary edge-counts
2165 * mins(j+2,j) and maxs(j+2,j) and comparing these with the face clue.
2166 * As well as dlines, we can make similar inferences about single edges.
2167 * For example, consider a pentagon with clue 3, and we know at most one
2168 * of (edge0, edge1) is YES, and at most one of (edge2, edge3) is YES.
2169 * We could then deduce edge4 is YES, because maxs(0,4) would be 2, so
2170 * that final edge would have to be YES to make the count up to 3.
2171 */
2172
2173 /* Much quicker to allocate arrays on the stack than the heap, so
2174 * define the largest possible face size, and base our array allocations
2175 * on that. We check this with an assertion, in case someone decides to
2176 * make a grid which has larger faces than this. Note, this algorithm
2177 * could get quite expensive if there are many large faces. */
2178 #define MAX_FACE_SIZE 12
2179
2180 for (i = 0; i < g->num_faces; i++) {
2181 int maxs[MAX_FACE_SIZE][MAX_FACE_SIZE];
2182 int mins[MAX_FACE_SIZE][MAX_FACE_SIZE];
2183 grid_face *f = g->faces + i;
2184 int N = f->order;
2185 int j,m;
2186 int clue = state->clues[i];
2187 assert(N <= MAX_FACE_SIZE);
2188 if (sstate->face_solved[i])
2189 continue;
2190 if (clue < 0) continue;
2191
2192 /* Calculate the (j,j+1) entries */
2193 for (j = 0; j < N; j++) {
2194 int edge_index = f->edges[j] - g->edges;
2195 int dline_index;
2196 enum line_state line1 = state->lines[edge_index];
2197 enum line_state line2;
2198 int tmp;
2199 int k = j + 1;
2200 if (k >= N) k = 0;
2201 maxs[j][k] = (line1 == LINE_NO) ? 0 : 1;
2202 mins[j][k] = (line1 == LINE_YES) ? 1 : 0;
2203 /* Calculate the (j,j+2) entries */
2204 dline_index = dline_index_from_face(g, f, k);
2205 edge_index = f->edges[k] - g->edges;
2206 line2 = state->lines[edge_index];
2207 k++;
2208 if (k >= N) k = 0;
2209
2210 /* max */
2211 tmp = 2;
2212 if (line1 == LINE_NO) tmp--;
2213 if (line2 == LINE_NO) tmp--;
2214 if (tmp == 2 && is_atmostone(dlines, dline_index))
2215 tmp = 1;
2216 maxs[j][k] = tmp;
2217
2218 /* min */
2219 tmp = 0;
2220 if (line1 == LINE_YES) tmp++;
2221 if (line2 == LINE_YES) tmp++;
2222 if (tmp == 0 && is_atleastone(dlines, dline_index))
2223 tmp = 1;
2224 mins[j][k] = tmp;
2225 }
2226
2227 /* Calculate the (j,j+m) entries for m between 3 and N-1 */
2228 for (m = 3; m < N; m++) {
2229 for (j = 0; j < N; j++) {
2230 int k = j + m;
2231 int u = j + 1;
2232 int v = j + 2;
2233 int tmp;
2234 if (k >= N) k -= N;
2235 if (u >= N) u -= N;
2236 if (v >= N) v -= N;
2237 maxs[j][k] = maxs[j][u] + maxs[u][k];
2238 mins[j][k] = mins[j][u] + mins[u][k];
2239 tmp = maxs[j][v] + maxs[v][k];
2240 maxs[j][k] = min(maxs[j][k], tmp);
2241 tmp = mins[j][v] + mins[v][k];
2242 mins[j][k] = max(mins[j][k], tmp);
2243 }
2244 }
2245
2246 /* See if we can make any deductions */
2247 for (j = 0; j < N; j++) {
2248 int k;
2249 grid_edge *e = f->edges[j];
2250 int line_index = e - g->edges;
2251 int dline_index;
2252
2253 if (state->lines[line_index] != LINE_UNKNOWN)
2254 continue;
2255 k = j + 1;
2256 if (k >= N) k = 0;
2257
2258 /* minimum YESs in the complement of this edge */
2259 if (mins[k][j] > clue) {
2260 sstate->solver_status = SOLVER_MISTAKE;
2261 return DIFF_EASY;
2262 }
2263 if (mins[k][j] == clue) {
2264 /* setting this edge to YES would make at least
2265 * (clue+1) edges - contradiction */
2266 solver_set_line(sstate, line_index, LINE_NO);
2267 diff = min(diff, DIFF_EASY);
2268 }
2269 if (maxs[k][j] < clue - 1) {
2270 sstate->solver_status = SOLVER_MISTAKE;
2271 return DIFF_EASY;
2272 }
2273 if (maxs[k][j] == clue - 1) {
2274 /* Only way to satisfy the clue is to set edge{j} as YES */
2275 solver_set_line(sstate, line_index, LINE_YES);
2276 diff = min(diff, DIFF_EASY);
2277 }
2278
2279 /* More advanced deduction that allows propagation along diagonal
2280 * chains of faces connected by dots, for example, 3-2-...-2-3
2281 * in square grids. */
2282 if (sstate->diff >= DIFF_TRICKY) {
2283 /* Now see if we can make dline deduction for edges{j,j+1} */
2284 e = f->edges[k];
2285 if (state->lines[e - g->edges] != LINE_UNKNOWN)
2286 /* Only worth doing this for an UNKNOWN,UNKNOWN pair.
2287 * Dlines where one of the edges is known, are handled in the
2288 * dot-deductions */
2289 continue;
2290
2291 dline_index = dline_index_from_face(g, f, k);
2292 k++;
2293 if (k >= N) k = 0;
2294
2295 /* minimum YESs in the complement of this dline */
2296 if (mins[k][j] > clue - 2) {
2297 /* Adding 2 YESs would break the clue */
2298 if (set_atmostone(dlines, dline_index))
2299 diff = min(diff, DIFF_NORMAL);
2300 }
2301 /* maximum YESs in the complement of this dline */
2302 if (maxs[k][j] < clue) {
2303 /* Adding 2 NOs would mean not enough YESs */
2304 if (set_atleastone(dlines, dline_index))
2305 diff = min(diff, DIFF_NORMAL);
2306 }
2307 }
2308 }
2309 }
2310
2311 if (diff < DIFF_NORMAL)
2312 return diff;
2313
2314 /* ------ Dot deductions ------ */
2315
2316 for (i = 0; i < g->num_dots; i++) {
2317 grid_dot *d = g->dots + i;
2318 int N = d->order;
2319 int yes, no, unknown;
2320 int j;
2321 if (sstate->dot_solved[i])
2322 continue;
2323 yes = sstate->dot_yes_count[i];
2324 no = sstate->dot_no_count[i];
2325 unknown = N - yes - no;
2326
2327 for (j = 0; j < N; j++) {
2328 int k;
2329 int dline_index;
2330 int line1_index, line2_index;
2331 enum line_state line1, line2;
2332 k = j + 1;
2333 if (k >= N) k = 0;
2334 dline_index = dline_index_from_dot(g, d, j);
2335 line1_index = d->edges[j] - g->edges;
2336 line2_index = d->edges[k] - g->edges;
2337 line1 = state->lines[line1_index];
2338 line2 = state->lines[line2_index];
2339
2340 /* Infer dline state from line state */
2341 if (line1 == LINE_NO || line2 == LINE_NO) {
2342 if (set_atmostone(dlines, dline_index))
2343 diff = min(diff, DIFF_NORMAL);
2344 }
2345 if (line1 == LINE_YES || line2 == LINE_YES) {
2346 if (set_atleastone(dlines, dline_index))
2347 diff = min(diff, DIFF_NORMAL);
2348 }
2349 /* Infer line state from dline state */
2350 if (is_atmostone(dlines, dline_index)) {
2351 if (line1 == LINE_YES && line2 == LINE_UNKNOWN) {
2352 solver_set_line(sstate, line2_index, LINE_NO);
2353 diff = min(diff, DIFF_EASY);
2354 }
2355 if (line2 == LINE_YES && line1 == LINE_UNKNOWN) {
2356 solver_set_line(sstate, line1_index, LINE_NO);
2357 diff = min(diff, DIFF_EASY);
2358 }
2359 }
2360 if (is_atleastone(dlines, dline_index)) {
2361 if (line1 == LINE_NO && line2 == LINE_UNKNOWN) {
2362 solver_set_line(sstate, line2_index, LINE_YES);
2363 diff = min(diff, DIFF_EASY);
2364 }
2365 if (line2 == LINE_NO && line1 == LINE_UNKNOWN) {
2366 solver_set_line(sstate, line1_index, LINE_YES);
2367 diff = min(diff, DIFF_EASY);
2368 }
2369 }
2370 /* Deductions that depend on the numbers of lines.
2371 * Only bother if both lines are UNKNOWN, otherwise the
2372 * easy-mode solver (or deductions above) would have taken
2373 * care of it. */
2374 if (line1 != LINE_UNKNOWN || line2 != LINE_UNKNOWN)
2375 continue;
2376
2377 if (yes == 0 && unknown == 2) {
2378 /* Both these unknowns must be identical. If we know
2379 * atmostone or atleastone, we can make progress. */
2380 if (is_atmostone(dlines, dline_index)) {
2381 solver_set_line(sstate, line1_index, LINE_NO);
2382 solver_set_line(sstate, line2_index, LINE_NO);
2383 diff = min(diff, DIFF_EASY);
2384 }
2385 if (is_atleastone(dlines, dline_index)) {
2386 solver_set_line(sstate, line1_index, LINE_YES);
2387 solver_set_line(sstate, line2_index, LINE_YES);
2388 diff = min(diff, DIFF_EASY);
2389 }
2390 }
2391 if (yes == 1) {
2392 if (set_atmostone(dlines, dline_index))
2393 diff = min(diff, DIFF_NORMAL);
2394 if (unknown == 2) {
2395 if (set_atleastone(dlines, dline_index))
2396 diff = min(diff, DIFF_NORMAL);
2397 }
2398 }
2399
2400 /* More advanced deduction that allows propagation along diagonal
2401 * chains of faces connected by dots, for example: 3-2-...-2-3
2402 * in square grids. */
2403 if (sstate->diff >= DIFF_TRICKY) {
2404 /* If we have atleastone set for this dline, infer
2405 * atmostone for each "opposite" dline (that is, each
2406 * dline without edges in common with this one).
2407 * Again, this test is only worth doing if both these
2408 * lines are UNKNOWN. For if one of these lines were YES,
2409 * the (yes == 1) test above would kick in instead. */
2410 if (is_atleastone(dlines, dline_index)) {
2411 int opp;
2412 for (opp = 0; opp < N; opp++) {
2413 int opp_dline_index;
2414 if (opp == j || opp == j+1 || opp == j-1)
2415 continue;
2416 if (j == 0 && opp == N-1)
2417 continue;
2418 if (j == N-1 && opp == 0)
2419 continue;
2420 opp_dline_index = dline_index_from_dot(g, d, opp);
2421 if (set_atmostone(dlines, opp_dline_index))
2422 diff = min(diff, DIFF_NORMAL);
2423 }
2424 if (yes == 0 && is_atmostone(dlines, dline_index)) {
2425 /* This dline has *exactly* one YES and there are no
2426 * other YESs. This allows more deductions. */
2427 if (unknown == 3) {
2428 /* Third unknown must be YES */
2429 for (opp = 0; opp < N; opp++) {
2430 int opp_index;
2431 if (opp == j || opp == k)
2432 continue;
2433 opp_index = d->edges[opp] - g->edges;
2434 if (state->lines[opp_index] == LINE_UNKNOWN) {
2435 solver_set_line(sstate, opp_index,
2436 LINE_YES);
2437 diff = min(diff, DIFF_EASY);
2438 }
2439 }
2440 } else if (unknown == 4) {
2441 /* Exactly one of opposite UNKNOWNS is YES. We've
2442 * already set atmostone, so set atleastone as
2443 * well.
2444 */
2445 if (dline_set_opp_atleastone(sstate, d, j))
2446 diff = min(diff, DIFF_NORMAL);
2447 }
2448 }
2449 }
2450 }
2451 }
2452 }
2453 return diff;
2454 }
2455
2456 static int linedsf_deductions(solver_state *sstate)
2457 {
2458 game_state *state = sstate->state;
2459 grid *g = state->game_grid;
2460 char *dlines = sstate->dlines;
2461 int i;
2462 int diff = DIFF_MAX;
2463 int diff_tmp;
2464
2465 /* ------ Face deductions ------ */
2466
2467 /* A fully-general linedsf deduction seems overly complicated
2468 * (I suspect the problem is NP-complete, though in practice it might just
2469 * be doable because faces are limited in size).
2470 * For simplicity, we only consider *pairs* of LINE_UNKNOWNS that are
2471 * known to be identical. If setting them both to YES (or NO) would break
2472 * the clue, set them to NO (or YES). */
2473
2474 for (i = 0; i < g->num_faces; i++) {
2475 int N, yes, no, unknown;
2476 int clue;
2477
2478 if (sstate->face_solved[i])
2479 continue;
2480 clue = state->clues[i];
2481 if (clue < 0)
2482 continue;
2483
2484 N = g->faces[i].order;
2485 yes = sstate->face_yes_count[i];
2486 if (yes + 1 == clue) {
2487 if (face_setall_identical(sstate, i, LINE_NO))
2488 diff = min(diff, DIFF_EASY);
2489 }
2490 no = sstate->face_no_count[i];
2491 if (no + 1 == N - clue) {
2492 if (face_setall_identical(sstate, i, LINE_YES))
2493 diff = min(diff, DIFF_EASY);
2494 }
2495
2496 /* Reload YES count, it might have changed */
2497 yes = sstate->face_yes_count[i];
2498 unknown = N - no - yes;
2499
2500 /* Deductions with small number of LINE_UNKNOWNs, based on overall
2501 * parity of lines. */
2502 diff_tmp = parity_deductions(sstate, g->faces[i].edges,
2503 (clue - yes) % 2, unknown);
2504 diff = min(diff, diff_tmp);
2505 }
2506
2507 /* ------ Dot deductions ------ */
2508 for (i = 0; i < g->num_dots; i++) {
2509 grid_dot *d = g->dots + i;
2510 int N = d->order;
2511 int j;
2512 int yes, no, unknown;
2513 /* Go through dlines, and do any dline<->linedsf deductions wherever
2514 * we find two UNKNOWNS. */
2515 for (j = 0; j < N; j++) {
2516 int dline_index = dline_index_from_dot(g, d, j);
2517 int line1_index;
2518 int line2_index;
2519 int can1, can2, inv1, inv2;
2520 int j2;
2521 line1_index = d->edges[j] - g->edges;
2522 if (state->lines[line1_index] != LINE_UNKNOWN)
2523 continue;
2524 j2 = j + 1;
2525 if (j2 == N) j2 = 0;
2526 line2_index = d->edges[j2] - g->edges;
2527 if (state->lines[line2_index] != LINE_UNKNOWN)
2528 continue;
2529 /* Infer dline flags from linedsf */
2530 can1 = edsf_canonify(sstate->linedsf, line1_index, &inv1);
2531 can2 = edsf_canonify(sstate->linedsf, line2_index, &inv2);
2532 if (can1 == can2 && inv1 != inv2) {
2533 /* These are opposites, so set dline atmostone/atleastone */
2534 if (set_atmostone(dlines, dline_index))
2535 diff = min(diff, DIFF_NORMAL);
2536 if (set_atleastone(dlines, dline_index))
2537 diff = min(diff, DIFF_NORMAL);
2538 continue;
2539 }
2540 /* Infer linedsf from dline flags */
2541 if (is_atmostone(dlines, dline_index)
2542 && is_atleastone(dlines, dline_index)) {
2543 if (merge_lines(sstate, line1_index, line2_index, 1))
2544 diff = min(diff, DIFF_HARD);
2545 }
2546 }
2547
2548 /* Deductions with small number of LINE_UNKNOWNs, based on overall
2549 * parity of lines. */
2550 yes = sstate->dot_yes_count[i];
2551 no = sstate->dot_no_count[i];
2552 unknown = N - yes - no;
2553 diff_tmp = parity_deductions(sstate, d->edges,
2554 yes % 2, unknown);
2555 diff = min(diff, diff_tmp);
2556 }
2557
2558 /* ------ Edge dsf deductions ------ */
2559
2560 /* If the state of a line is known, deduce the state of its canonical line
2561 * too, and vice versa. */
2562 for (i = 0; i < g->num_edges; i++) {
2563 int can, inv;
2564 enum line_state s;
2565 can = edsf_canonify(sstate->linedsf, i, &inv);
2566 if (can == i)
2567 continue;
2568 s = sstate->state->lines[can];
2569 if (s != LINE_UNKNOWN) {
2570 if (solver_set_line(sstate, i, inv ? OPP(s) : s))
2571 diff = min(diff, DIFF_EASY);
2572 } else {
2573 s = sstate->state->lines[i];
2574 if (s != LINE_UNKNOWN) {
2575 if (solver_set_line(sstate, can, inv ? OPP(s) : s))
2576 diff = min(diff, DIFF_EASY);
2577 }
2578 }
2579 }
2580
2581 return diff;
2582 }
2583
2584 static int loop_deductions(solver_state *sstate)
2585 {
2586 int edgecount = 0, clues = 0, satclues = 0, sm1clues = 0;
2587 game_state *state = sstate->state;
2588 grid *g = state->game_grid;
2589 int shortest_chainlen = g->num_dots;
2590 int loop_found = FALSE;
2591 int dots_connected;
2592 int progress = FALSE;
2593 int i;
2594
2595 /*
2596 * Go through the grid and update for all the new edges.
2597 * Since merge_dots() is idempotent, the simplest way to
2598 * do this is just to update for _all_ the edges.
2599 * Also, while we're here, we count the edges.
2600 */
2601 for (i = 0; i < g->num_edges; i++) {
2602 if (state->lines[i] == LINE_YES) {
2603 loop_found |= merge_dots(sstate, i);
2604 edgecount++;
2605 }
2606 }
2607
2608 /*
2609 * Count the clues, count the satisfied clues, and count the
2610 * satisfied-minus-one clues.
2611 */
2612 for (i = 0; i < g->num_faces; i++) {
2613 int c = state->clues[i];
2614 if (c >= 0) {
2615 int o = sstate->face_yes_count[i];
2616 if (o == c)
2617 satclues++;
2618 else if (o == c-1)
2619 sm1clues++;
2620 clues++;
2621 }
2622 }
2623
2624 for (i = 0; i < g->num_dots; ++i) {
2625 dots_connected =
2626 sstate->looplen[dsf_canonify(sstate->dotdsf, i)];
2627 if (dots_connected > 1)
2628 shortest_chainlen = min(shortest_chainlen, dots_connected);
2629 }
2630
2631 assert(sstate->solver_status == SOLVER_INCOMPLETE);
2632
2633 if (satclues == clues && shortest_chainlen == edgecount) {
2634 sstate->solver_status = SOLVER_SOLVED;
2635 /* This discovery clearly counts as progress, even if we haven't
2636 * just added any lines or anything */
2637 progress = TRUE;
2638 goto finished_loop_deductionsing;
2639 }
2640
2641 /*
2642 * Now go through looking for LINE_UNKNOWN edges which
2643 * connect two dots that are already in the same
2644 * equivalence class. If we find one, test to see if the
2645 * loop it would create is a solution.
2646 */
2647 for (i = 0; i < g->num_edges; i++) {
2648 grid_edge *e = g->edges + i;
2649 int d1 = e->dot1 - g->dots;
2650 int d2 = e->dot2 - g->dots;
2651 int eqclass, val;
2652 if (state->lines[i] != LINE_UNKNOWN)
2653 continue;
2654
2655 eqclass = dsf_canonify(sstate->dotdsf, d1);
2656 if (eqclass != dsf_canonify(sstate->dotdsf, d2))
2657 continue;
2658
2659 val = LINE_NO; /* loop is bad until proven otherwise */
2660
2661 /*
2662 * This edge would form a loop. Next
2663 * question: how long would the loop be?
2664 * Would it equal the total number of edges
2665 * (plus the one we'd be adding if we added
2666 * it)?
2667 */
2668 if (sstate->looplen[eqclass] == edgecount + 1) {
2669 int sm1_nearby;
2670
2671 /*
2672 * This edge would form a loop which
2673 * took in all the edges in the entire
2674 * grid. So now we need to work out
2675 * whether it would be a valid solution
2676 * to the puzzle, which means we have to
2677 * check if it satisfies all the clues.
2678 * This means that every clue must be
2679 * either satisfied or satisfied-minus-
2680 * 1, and also that the number of
2681 * satisfied-minus-1 clues must be at
2682 * most two and they must lie on either
2683 * side of this edge.
2684 */
2685 sm1_nearby = 0;
2686 if (e->face1) {
2687 int f = e->face1 - g->faces;
2688 int c = state->clues[f];
2689 if (c >= 0 && sstate->face_yes_count[f] == c - 1)
2690 sm1_nearby++;
2691 }
2692 if (e->face2) {
2693 int f = e->face2 - g->faces;
2694 int c = state->clues[f];
2695 if (c >= 0 && sstate->face_yes_count[f] == c - 1)
2696 sm1_nearby++;
2697 }
2698 if (sm1clues == sm1_nearby &&
2699 sm1clues + satclues == clues) {
2700 val = LINE_YES; /* loop is good! */
2701 }
2702 }
2703
2704 /*
2705 * Right. Now we know that adding this edge
2706 * would form a loop, and we know whether
2707 * that loop would be a viable solution or
2708 * not.
2709 *
2710 * If adding this edge produces a solution,
2711 * then we know we've found _a_ solution but
2712 * we don't know that it's _the_ solution -
2713 * if it were provably the solution then
2714 * we'd have deduced this edge some time ago
2715 * without the need to do loop detection. So
2716 * in this state we return SOLVER_AMBIGUOUS,
2717 * which has the effect that hitting Solve
2718 * on a user-provided puzzle will fill in a
2719 * solution but using the solver to
2720 * construct new puzzles won't consider this
2721 * a reasonable deduction for the user to
2722 * make.
2723 */
2724 progress = solver_set_line(sstate, i, val);
2725 assert(progress == TRUE);
2726 if (val == LINE_YES) {
2727 sstate->solver_status = SOLVER_AMBIGUOUS;
2728 goto finished_loop_deductionsing;
2729 }
2730 }
2731
2732 finished_loop_deductionsing:
2733 return progress ? DIFF_EASY : DIFF_MAX;
2734 }
2735
2736 /* This will return a dynamically allocated solver_state containing the (more)
2737 * solved grid */
2738 static solver_state *solve_game_rec(const solver_state *sstate_start)
2739 {
2740 solver_state *sstate;
2741
2742 /* Index of the solver we should call next. */
2743 int i = 0;
2744
2745 /* As a speed-optimisation, we avoid re-running solvers that we know
2746 * won't make any progress. This happens when a high-difficulty
2747 * solver makes a deduction that can only help other high-difficulty
2748 * solvers.
2749 * For example: if a new 'dline' flag is set by dline_deductions, the
2750 * trivial_deductions solver cannot do anything with this information.
2751 * If we've already run the trivial_deductions solver (because it's
2752 * earlier in the list), there's no point running it again.
2753 *
2754 * Therefore: if a solver is earlier in the list than "threshold_index",
2755 * we don't bother running it if it's difficulty level is less than
2756 * "threshold_diff".
2757 */
2758 int threshold_diff = 0;
2759 int threshold_index = 0;
2760
2761 sstate = dup_solver_state(sstate_start);
2762
2763 check_caches(sstate);
2764
2765 while (i < NUM_SOLVERS) {
2766 if (sstate->solver_status == SOLVER_MISTAKE)
2767 return sstate;
2768 if (sstate->solver_status == SOLVER_SOLVED ||
2769 sstate->solver_status == SOLVER_AMBIGUOUS) {
2770 /* solver finished */
2771 break;
2772 }
2773
2774 if ((solver_diffs[i] >= threshold_diff || i >= threshold_index)
2775 && solver_diffs[i] <= sstate->diff) {
2776 /* current_solver is eligible, so use it */
2777 int next_diff = solver_fns[i](sstate);
2778 if (next_diff != DIFF_MAX) {
2779 /* solver made progress, so use new thresholds and
2780 * start again at top of list. */
2781 threshold_diff = next_diff;
2782 threshold_index = i;
2783 i = 0;
2784 continue;
2785 }
2786 }
2787 /* current_solver is ineligible, or failed to make progress, so
2788 * go to the next solver in the list */
2789 i++;
2790 }
2791
2792 if (sstate->solver_status == SOLVER_SOLVED ||
2793 sstate->solver_status == SOLVER_AMBIGUOUS) {
2794 /* s/LINE_UNKNOWN/LINE_NO/g */
2795 array_setall(sstate->state->lines, LINE_UNKNOWN, LINE_NO,
2796 sstate->state->game_grid->num_edges);
2797 return sstate;
2798 }
2799
2800 return sstate;
2801 }
2802
2803 static char *solve_game(game_state *state, game_state *currstate,
2804 char *aux, char **error)
2805 {
2806 char *soln = NULL;
2807 solver_state *sstate, *new_sstate;
2808
2809 sstate = new_solver_state(state, DIFF_MAX);
2810 new_sstate = solve_game_rec(sstate);
2811
2812 if (new_sstate->solver_status == SOLVER_SOLVED) {
2813 soln = encode_solve_move(new_sstate->state);
2814 } else if (new_sstate->solver_status == SOLVER_AMBIGUOUS) {
2815 soln = encode_solve_move(new_sstate->state);
2816 /**error = "Solver found ambiguous solutions"; */
2817 } else {
2818 soln = encode_solve_move(new_sstate->state);
2819 /**error = "Solver failed"; */
2820 }
2821
2822 free_solver_state(new_sstate);
2823 free_solver_state(sstate);
2824
2825 return soln;
2826 }
2827
2828 /* ----------------------------------------------------------------------
2829 * Drawing and mouse-handling
2830 */
2831
2832 static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
2833 int x, int y, int button)
2834 {
2835 grid *g = state->game_grid;
2836 grid_edge *e;
2837 int i;
2838 char *ret, buf[80];
2839 char button_char = ' ';
2840 enum line_state old_state;
2841
2842 button &= ~MOD_MASK;
2843
2844 /* Convert mouse-click (x,y) to grid coordinates */
2845 x -= BORDER(ds->tilesize);
2846 y -= BORDER(ds->tilesize);
2847 x = x * g->tilesize / ds->tilesize;
2848 y = y * g->tilesize / ds->tilesize;
2849 x += g->lowest_x;
2850 y += g->lowest_y;
2851
2852 e = grid_nearest_edge(g, x, y);
2853 if (e == NULL)
2854 return NULL;
2855
2856 i = e - g->edges;
2857
2858 /* I think it's only possible to play this game with mouse clicks, sorry */
2859 /* Maybe will add mouse drag support some time */
2860 old_state = state->lines[i];
2861
2862 switch (button) {
2863 case LEFT_BUTTON:
2864 switch (old_state) {
2865 case LINE_UNKNOWN:
2866 button_char = 'y';
2867 break;
2868 case LINE_YES:
2869 #ifdef STYLUS_BASED
2870 button_char = 'n';
2871 break;
2872 #endif
2873 case LINE_NO:
2874 button_char = 'u';
2875 break;
2876 }
2877 break;
2878 case MIDDLE_BUTTON:
2879 button_char = 'u';
2880 break;
2881 case RIGHT_BUTTON:
2882 switch (old_state) {
2883 case LINE_UNKNOWN:
2884 button_char = 'n';
2885 break;
2886 case LINE_NO:
2887 #ifdef STYLUS_BASED
2888 button_char = 'y';
2889 break;
2890 #endif
2891 case LINE_YES:
2892 button_char = 'u';
2893 break;
2894 }
2895 break;
2896 default:
2897 return NULL;
2898 }
2899
2900
2901 sprintf(buf, "%d%c", i, (int)button_char);
2902 ret = dupstr(buf);
2903
2904 return ret;
2905 }
2906
2907 static game_state *execute_move(game_state *state, char *move)
2908 {
2909 int i;
2910 game_state *newstate = dup_game(state);
2911
2912 if (move[0] == 'S') {
2913 move++;
2914 newstate->cheated = TRUE;
2915 }
2916
2917 while (*move) {
2918 i = atoi(move);
2919 if (i < 0 || i >= newstate->game_grid->num_edges)
2920 goto fail;
2921 move += strspn(move, "1234567890");
2922 switch (*(move++)) {
2923 case 'y':
2924 newstate->lines[i] = LINE_YES;
2925 break;
2926 case 'n':
2927 newstate->lines[i] = LINE_NO;
2928 break;
2929 case 'u':
2930 newstate->lines[i] = LINE_UNKNOWN;
2931 break;
2932 default:
2933 goto fail;
2934 }
2935 }
2936
2937 /*
2938 * Check for completion.
2939 */
2940 if (check_completion(newstate))
2941 newstate->solved = TRUE;
2942
2943 return newstate;
2944
2945 fail:
2946 free_game(newstate);
2947 return NULL;
2948 }
2949
2950 /* ----------------------------------------------------------------------
2951 * Drawing routines.
2952 */
2953
2954 /* Convert from grid coordinates to screen coordinates */
2955 static void grid_to_screen(const game_drawstate *ds, const grid *g,
2956 int grid_x, int grid_y, int *x, int *y)
2957 {
2958 *x = grid_x - g->lowest_x;
2959 *y = grid_y - g->lowest_y;
2960 *x = *x * ds->tilesize / g->tilesize;
2961 *y = *y * ds->tilesize / g->tilesize;
2962 *x += BORDER(ds->tilesize);
2963 *y += BORDER(ds->tilesize);
2964 }
2965
2966 /* Returns (into x,y) position of centre of face for rendering the text clue.
2967 */
2968 static void face_text_pos(const game_drawstate *ds, const grid *g,
2969 grid_face *f, int *xret, int *yret)
2970 {
2971 int faceindex = f - g->faces;
2972
2973 /*
2974 * Return the cached position for this face, if we've already
2975 * worked it out.
2976 */
2977 if (ds->textx[faceindex] >= 0) {
2978 *xret = ds->textx[faceindex];
2979 *yret = ds->texty[faceindex];
2980 return;
2981 }
2982
2983 /*
2984 * Otherwise, use the incentre computed by grid.c and convert it
2985 * to screen coordinates.
2986 */
2987 grid_find_incentre(f);
2988 grid_to_screen(ds, g, f->ix, f->iy,
2989 &ds->textx[faceindex], &ds->texty[faceindex]);
2990
2991 *xret = ds->textx[faceindex];
2992 *yret = ds->texty[faceindex];
2993 }
2994
2995 static void face_text_bbox(game_drawstate *ds, grid *g, grid_face *f,
2996 int *x, int *y, int *w, int *h)
2997 {
2998 int xx, yy;
2999 face_text_pos(ds, g, f, &xx, &yy);
3000
3001 /* There seems to be a certain amount of trial-and-error involved
3002 * in working out the correct bounding-box for the text. */
3003
3004 *x = xx - ds->tilesize/4 - 1;
3005 *y = yy - ds->tilesize/4 - 3;
3006 *w = ds->tilesize/2 + 2;
3007 *h = ds->tilesize/2 + 5;
3008 }
3009
3010 static void game_redraw_clue(drawing *dr, game_drawstate *ds,
3011 game_state *state, int i)
3012 {
3013 grid *g = state->game_grid;
3014 grid_face *f = g->faces + i;
3015 int x, y;
3016 char c[3];
3017
3018 if (state->clues[i] < 10) {
3019 c[0] = CLUE2CHAR(state->clues[i]);
3020 c[1] = '\0';
3021 } else {
3022 sprintf(c, "%d", state->clues[i]);
3023 }
3024
3025 face_text_pos(ds, g, f, &x, &y);
3026 draw_text(dr, x, y,
3027 FONT_VARIABLE, ds->tilesize/2,
3028 ALIGN_VCENTRE | ALIGN_HCENTRE,
3029 ds->clue_error[i] ? COL_MISTAKE :
3030 ds->clue_satisfied[i] ? COL_SATISFIED : COL_FOREGROUND, c);
3031 }
3032
3033 static void edge_bbox(game_drawstate *ds, grid *g, grid_edge *e,
3034 int *x, int *y, int *w, int *h)
3035 {
3036 int x1 = e->dot1->x;
3037 int y1 = e->dot1->y;
3038 int x2 = e->dot2->x;
3039 int y2 = e->dot2->y;
3040 int xmin, xmax, ymin, ymax;
3041
3042 grid_to_screen(ds, g, x1, y1, &x1, &y1);
3043 grid_to_screen(ds, g, x2, y2, &x2, &y2);
3044 /* Allow extra margin for dots, and thickness of lines */
3045 xmin = min(x1, x2) - 2;
3046 xmax = max(x1, x2) + 2;
3047 ymin = min(y1, y2) - 2;
3048 ymax = max(y1, y2) + 2;
3049
3050 *x = xmin;
3051 *y = ymin;
3052 *w = xmax - xmin + 1;
3053 *h = ymax - ymin + 1;
3054 }
3055
3056 static void dot_bbox(game_drawstate *ds, grid *g, grid_dot *d,
3057 int *x, int *y, int *w, int *h)
3058 {
3059 int x1, y1;
3060
3061 grid_to_screen(ds, g, d->x, d->y, &x1, &y1);
3062
3063 *x = x1 - 2;
3064 *y = y1 - 2;
3065 *w = 5;
3066 *h = 5;
3067 }
3068
3069 static const int loopy_line_redraw_phases[] = {
3070 COL_FAINT, COL_LINEUNKNOWN, COL_FOREGROUND, COL_HIGHLIGHT, COL_MISTAKE
3071 };
3072 #define NPHASES lenof(loopy_line_redraw_phases)
3073
3074 static void game_redraw_line(drawing *dr, game_drawstate *ds,
3075 game_state *state, int i, int phase)
3076 {
3077 grid *g = state->game_grid;
3078 grid_edge *e = g->edges + i;
3079 int x1, x2, y1, y2;
3080 int line_colour;
3081
3082 if (state->line_errors[i])
3083 line_colour = COL_MISTAKE;
3084 else if (state->lines[i] == LINE_UNKNOWN)
3085 line_colour = COL_LINEUNKNOWN;
3086 else if (state->lines[i] == LINE_NO)
3087 line_colour = COL_FAINT;
3088 else if (ds->flashing)
3089 line_colour = COL_HIGHLIGHT;
3090 else
3091 line_colour = COL_FOREGROUND;
3092 if (line_colour != loopy_line_redraw_phases[phase])
3093 return;
3094
3095 /* Convert from grid to screen coordinates */
3096 grid_to_screen(ds, g, e->dot1->x, e->dot1->y, &x1, &y1);
3097 grid_to_screen(ds, g, e->dot2->x, e->dot2->y, &x2, &y2);
3098
3099 if (line_colour == COL_FAINT) {
3100 static int draw_faint_lines = -1;
3101 if (draw_faint_lines < 0) {
3102 char *env = getenv("LOOPY_FAINT_LINES");
3103 draw_faint_lines = (!env || (env[0] == 'y' ||
3104 env[0] == 'Y'));
3105 }
3106 if (draw_faint_lines)
3107 draw_line(dr, x1, y1, x2, y2, line_colour);
3108 } else {
3109 draw_thick_line(dr, 3.0,
3110 x1 + 0.5, y1 + 0.5,
3111 x2 + 0.5, y2 + 0.5,
3112 line_colour);
3113 }
3114 }
3115
3116 static void game_redraw_dot(drawing *dr, game_drawstate *ds,
3117 game_state *state, int i)
3118 {
3119 grid *g = state->game_grid;
3120 grid_dot *d = g->dots + i;
3121 int x, y;
3122
3123 grid_to_screen(ds, g, d->x, d->y, &x, &y);
3124 draw_circle(dr, x, y, 2, COL_FOREGROUND, COL_FOREGROUND);
3125 }
3126
3127 static int boxes_intersect(int x0, int y0, int w0, int h0,
3128 int x1, int y1, int w1, int h1)
3129 {
3130 /*
3131 * Two intervals intersect iff neither is wholly on one side of
3132 * the other. Two boxes intersect iff their horizontal and
3133 * vertical intervals both intersect.
3134 */
3135 return (x0 < x1+w1 && x1 < x0+w0 && y0 < y1+h1 && y1 < y0+h0);
3136 }
3137
3138 static void game_redraw_in_rect(drawing *dr, game_drawstate *ds,
3139 game_state *state, int x, int y, int w, int h)
3140 {
3141 grid *g = state->game_grid;
3142 int i, phase;
3143 int bx, by, bw, bh;
3144
3145 clip(dr, x, y, w, h);
3146 draw_rect(dr, x, y, w, h, COL_BACKGROUND);
3147
3148 for (i = 0; i < g->num_faces; i++) {
3149 if (state->clues[i] >= 0) {
3150 face_text_bbox(ds, g, &g->faces[i], &bx, &by, &bw, &bh);
3151 if (boxes_intersect(x, y, w, h, bx, by, bw, bh))
3152 game_redraw_clue(dr, ds, state, i);
3153 }
3154 }
3155 for (phase = 0; phase < NPHASES; phase++) {
3156 for (i = 0; i < g->num_edges; i++) {
3157 edge_bbox(ds, g, &g->edges[i], &bx, &by, &bw, &bh);
3158 if (boxes_intersect(x, y, w, h, bx, by, bw, bh))
3159 game_redraw_line(dr, ds, state, i, phase);
3160 }
3161 }
3162 for (i = 0; i < g->num_dots; i++) {
3163 dot_bbox(ds, g, &g->dots[i], &bx, &by, &bw, &bh);
3164 if (boxes_intersect(x, y, w, h, bx, by, bw, bh))
3165 game_redraw_dot(dr, ds, state, i);
3166 }
3167
3168 unclip(dr);
3169 draw_update(dr, x, y, w, h);
3170 }
3171
3172 static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
3173 game_state *state, int dir, game_ui *ui,
3174 float animtime, float flashtime)
3175 {
3176 #define REDRAW_OBJECTS_LIMIT 16 /* Somewhat arbitrary tradeoff */
3177
3178 grid *g = state->game_grid;
3179 int border = BORDER(ds->tilesize);
3180 int i;
3181 int flash_changed;
3182 int redraw_everything = FALSE;
3183
3184 int edges[REDRAW_OBJECTS_LIMIT], nedges = 0;
3185 int faces[REDRAW_OBJECTS_LIMIT], nfaces = 0;
3186
3187 /* Redrawing is somewhat involved.
3188 *
3189 * An update can theoretically affect an arbitrary number of edges
3190 * (consider, for example, completing or breaking a cycle which doesn't
3191 * satisfy all the clues -- we'll switch many edges between error and
3192 * normal states). On the other hand, redrawing the whole grid takes a
3193 * while, making the game feel sluggish, and many updates are actually
3194 * quite well localized.
3195 *
3196 * This redraw algorithm attempts to cope with both situations gracefully
3197 * and correctly. For localized changes, we set a clip rectangle, fill
3198 * it with background, and then redraw (a plausible but conservative
3199 * guess at) the objects which intersect the rectangle; if several
3200 * objects need redrawing, we'll do them individually. However, if lots
3201 * of objects are affected, we'll just redraw everything.
3202 *
3203 * The reason for all of this is that it's just not safe to do the redraw
3204 * piecemeal. If you try to draw an antialiased diagonal line over
3205 * itself, you get a slightly thicker antialiased diagonal line, which
3206 * looks rather ugly after a while.
3207 *
3208 * So, we take two passes over the grid. The first attempts to work out
3209 * what needs doing, and the second actually does it.
3210 */
3211
3212 if (!ds->started)
3213 redraw_everything = TRUE;
3214 else {
3215
3216 /* First, trundle through the faces. */
3217 for (i = 0; i < g->num_faces; i++) {
3218 grid_face *f = g->faces + i;
3219 int sides = f->order;
3220 int clue_mistake;
3221 int clue_satisfied;
3222 int n = state->clues[i];
3223 if (n < 0)
3224 continue;
3225
3226 clue_mistake = (face_order(state, i, LINE_YES) > n ||
3227 face_order(state, i, LINE_NO ) > (sides-n));
3228 clue_satisfied = (face_order(state, i, LINE_YES) == n &&
3229 face_order(state, i, LINE_NO ) == (sides-n));
3230
3231 if (clue_mistake != ds->clue_error[i] ||
3232 clue_satisfied != ds->clue_satisfied[i]) {
3233 ds->clue_error[i] = clue_mistake;
3234 ds->clue_satisfied[i] = clue_satisfied;
3235 if (nfaces == REDRAW_OBJECTS_LIMIT)
3236 redraw_everything = TRUE;
3237 else
3238 faces[nfaces++] = i;
3239 }
3240 }
3241
3242 /* Work out what the flash state needs to be. */
3243 if (flashtime > 0 &&
3244 (flashtime <= FLASH_TIME/3 ||
3245 flashtime >= FLASH_TIME*2/3)) {
3246 flash_changed = !ds->flashing;
3247 ds->flashing = TRUE;
3248 } else {
3249 flash_changed = ds->flashing;
3250 ds->flashing = FALSE;
3251 }
3252
3253 /* Now, trundle through the edges. */
3254 for (i = 0; i < g->num_edges; i++) {
3255 char new_ds =
3256 state->line_errors[i] ? DS_LINE_ERROR : state->lines[i];
3257 if (new_ds != ds->lines[i] ||
3258 (flash_changed && state->lines[i] == LINE_YES)) {
3259 ds->lines[i] = new_ds;
3260 if (nedges == REDRAW_OBJECTS_LIMIT)
3261 redraw_everything = TRUE;
3262 else
3263 edges[nedges++] = i;
3264 }
3265 }
3266 }
3267
3268 /* Pass one is now done. Now we do the actual drawing. */
3269 if (redraw_everything) {
3270 int grid_width = g->highest_x - g->lowest_x;
3271 int grid_height = g->highest_y - g->lowest_y;
3272 int w = grid_width * ds->tilesize / g->tilesize;
3273 int h = grid_height * ds->tilesize / g->tilesize;
3274
3275 game_redraw_in_rect(dr, ds, state,
3276 0, 0, w + 2*border + 1, h + 2*border + 1);
3277 } else {
3278
3279 /* Right. Now we roll up our sleeves. */
3280
3281 for (i = 0; i < nfaces; i++) {
3282 grid_face *f = g->faces + faces[i];
3283 int x, y, w, h;
3284
3285 face_text_bbox(ds, g, f, &x, &y, &w, &h);
3286 game_redraw_in_rect(dr, ds, state, x, y, w, h);
3287 }
3288
3289 for (i = 0; i < nedges; i++) {
3290 grid_edge *e = g->edges + edges[i];
3291 int x, y, w, h;
3292
3293 edge_bbox(ds, g, e, &x, &y, &w, &h);
3294 game_redraw_in_rect(dr, ds, state, x, y, w, h);
3295 }
3296 }
3297
3298 ds->started = TRUE;
3299 }
3300
3301 static float game_flash_length(game_state *oldstate, game_state *newstate,
3302 int dir, game_ui *ui)
3303 {
3304 if (!oldstate->solved && newstate->solved &&
3305 !oldstate->cheated && !newstate->cheated) {
3306 return FLASH_TIME;
3307 }
3308
3309 return 0.0F;
3310 }
3311
3312 static int game_status(game_state *state)
3313 {
3314 return state->solved ? +1 : 0;
3315 }
3316
3317 static void game_print_size(game_params *params, float *x, float *y)
3318 {
3319 int pw, ph;
3320
3321 /*
3322 * I'll use 7mm "squares" by default.
3323 */
3324 game_compute_size(params, 700, &pw, &ph);
3325 *x = pw / 100.0F;
3326 *y = ph / 100.0F;
3327 }
3328
3329 static void game_print(drawing *dr, game_state *state, int tilesize)
3330 {
3331 int ink = print_mono_colour(dr, 0);
3332 int i;
3333 game_drawstate ads, *ds = &ads;
3334 grid *g = state->game_grid;
3335
3336 ds->tilesize = tilesize;
3337 ds->textx = snewn(g->num_faces, int);
3338 ds->texty = snewn(g->num_faces, int);
3339 for (i = 0; i < g->num_faces; i++)
3340 ds->textx[i] = ds->texty[i] = -1;
3341
3342 for (i = 0; i < g->num_dots; i++) {
3343 int x, y;
3344 grid_to_screen(ds, g, g->dots[i].x, g->dots[i].y, &x, &y);
3345 draw_circle(dr, x, y, ds->tilesize / 15, ink, ink);
3346 }
3347
3348 /*
3349 * Clues.
3350 */
3351 for (i = 0; i < g->num_faces; i++) {
3352 grid_face *f = g->faces + i;
3353 int clue = state->clues[i];
3354 if (clue >= 0) {
3355 char c[2];
3356 int x, y;
3357 c[0] = CLUE2CHAR(clue);
3358 c[1] = '\0';
3359 face_text_pos(ds, g, f, &x, &y);
3360 draw_text(dr, x, y,
3361 FONT_VARIABLE, ds->tilesize / 2,
3362 ALIGN_VCENTRE | ALIGN_HCENTRE, ink, c);
3363 }
3364 }
3365
3366 /*
3367 * Lines.
3368 */
3369 for (i = 0; i < g->num_edges; i++) {
3370 int thickness = (state->lines[i] == LINE_YES) ? 30 : 150;
3371 grid_edge *e = g->edges + i;
3372 int x1, y1, x2, y2;
3373 grid_to_screen(ds, g, e->dot1->x, e->dot1->y, &x1, &y1);
3374 grid_to_screen(ds, g, e->dot2->x, e->dot2->y, &x2, &y2);
3375 if (state->lines[i] == LINE_YES)
3376 {
3377 /* (dx, dy) points from (x1, y1) to (x2, y2).
3378 * The line is then "fattened" in a perpendicular
3379 * direction to create a thin rectangle. */
3380 double d = sqrt(SQ((double)x1 - x2) + SQ((double)y1 - y2));
3381 double dx = (x2 - x1) / d;
3382 double dy = (y2 - y1) / d;
3383 int points[8];
3384
3385 dx = (dx * ds->tilesize) / thickness;
3386 dy = (dy * ds->tilesize) / thickness;
3387 points[0] = x1 + (int)dy;
3388 points[1] = y1 - (int)dx;
3389 points[2] = x1 - (int)dy;
3390 points[3] = y1 + (int)dx;
3391 points[4] = x2 - (int)dy;
3392 points[5] = y2 + (int)dx;
3393 points[6] = x2 + (int)dy;
3394 points[7] = y2 - (int)dx;
3395 draw_polygon(dr, points, 4, ink, ink);
3396 }
3397 else
3398 {
3399 /* Draw a dotted line */
3400 int divisions = 6;
3401 int j;
3402 for (j = 1; j < divisions; j++) {
3403 /* Weighted average */
3404 int x = (x1 * (divisions -j) + x2 * j) / divisions;
3405 int y = (y1 * (divisions -j) + y2 * j) / divisions;
3406 draw_circle(dr, x, y, ds->tilesize / thickness, ink, ink);
3407 }
3408 }
3409 }
3410
3411 sfree(ds->textx);
3412 sfree(ds->texty);
3413 }
3414
3415 #ifdef COMBINED
3416 #define thegame loopy
3417 #endif
3418
3419 const struct game thegame = {
3420 "Loopy", "games.loopy", "loopy",
3421 default_params,
3422 game_fetch_preset,
3423 decode_params,
3424 encode_params,
3425 free_params,
3426 dup_params,
3427 TRUE, game_configure, custom_params,
3428 validate_params,
3429 new_game_desc,
3430 validate_desc,
3431 new_game,
3432 dup_game,
3433 free_game,
3434 1, solve_game,
3435 TRUE, game_can_format_as_text_now, game_text_format,
3436 new_ui,
3437 free_ui,
3438 encode_ui,
3439 decode_ui,
3440 game_changed_state,
3441 interpret_move,
3442 execute_move,
3443 PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
3444 game_colours,
3445 game_new_drawstate,
3446 game_free_drawstate,
3447 game_redraw,
3448 game_anim_length,
3449 game_flash_length,
3450 game_status,
3451 TRUE, FALSE, game_print_size, game_print,
3452 FALSE /* wants_statusbar */,
3453 FALSE, game_timing_state,
3454 0, /* mouse_priorities */
3455 };
3456
3457 #ifdef STANDALONE_SOLVER
3458
3459 /*
3460 * Half-hearted standalone solver. It can't output the solution to
3461 * anything but a square puzzle, and it can't log the deductions
3462 * it makes either. But it can solve square puzzles, and more
3463 * importantly it can use its solver to grade the difficulty of
3464 * any puzzle you give it.
3465 */
3466
3467 #include <stdarg.h>
3468
3469 int main(int argc, char **argv)
3470 {
3471 game_params *p;
3472 game_state *s;
3473 char *id = NULL, *desc, *err;
3474 int grade = FALSE;
3475 int ret, diff;
3476 #if 0 /* verbose solver not supported here (yet) */
3477 int really_verbose = FALSE;
3478 #endif
3479
3480 while (--argc > 0) {
3481 char *p = *++argv;
3482 #if 0 /* verbose solver not supported here (yet) */
3483 if (!strcmp(p, "-v")) {
3484 really_verbose = TRUE;
3485 } else
3486 #endif
3487 if (!strcmp(p, "-g")) {
3488 grade = TRUE;
3489 } else if (*p == '-') {
3490 fprintf(stderr, "%s: unrecognised option `%s'\n", argv[0], p);
3491 return 1;
3492 } else {
3493 id = p;
3494 }
3495 }
3496
3497 if (!id) {
3498 fprintf(stderr, "usage: %s [-g | -v] <game_id>\n", argv[0]);
3499 return 1;
3500 }
3501
3502 desc = strchr(id, ':');
3503 if (!desc) {
3504 fprintf(stderr, "%s: game id expects a colon in it\n", argv[0]);
3505 return 1;
3506 }
3507 *desc++ = '\0';
3508
3509 p = default_params();
3510 decode_params(p, id);
3511 err = validate_desc(p, desc);
3512 if (err) {
3513 fprintf(stderr, "%s: %s\n", argv[0], err);
3514 return 1;
3515 }
3516 s = new_game(NULL, p, desc);
3517
3518 /*
3519 * When solving an Easy puzzle, we don't want to bother the
3520 * user with Hard-level deductions. For this reason, we grade
3521 * the puzzle internally before doing anything else.
3522 */
3523 ret = -1; /* placate optimiser */
3524 for (diff = 0; diff < DIFF_MAX; diff++) {
3525 solver_state *sstate_new;
3526 solver_state *sstate = new_solver_state((game_state *)s, diff);
3527
3528 sstate_new = solve_game_rec(sstate);
3529
3530 if (sstate_new->solver_status == SOLVER_MISTAKE)
3531 ret = 0;
3532 else if (sstate_new->solver_status == SOLVER_SOLVED)
3533 ret = 1;
3534 else
3535 ret = 2;
3536
3537 free_solver_state(sstate_new);
3538 free_solver_state(sstate);
3539
3540 if (ret < 2)
3541 break;
3542 }
3543
3544 if (diff == DIFF_MAX) {
3545 if (grade)
3546 printf("Difficulty rating: harder than Hard, or ambiguous\n");
3547 else
3548 printf("Unable to find a unique solution\n");
3549 } else {
3550 if (grade) {
3551 if (ret == 0)
3552 printf("Difficulty rating: impossible (no solution exists)\n");
3553 else if (ret == 1)
3554 printf("Difficulty rating: %s\n", diffnames[diff]);
3555 } else {
3556 solver_state *sstate_new;
3557 solver_state *sstate = new_solver_state((game_state *)s, diff);
3558
3559 /* If we supported a verbose solver, we'd set verbosity here */
3560
3561 sstate_new = solve_game_rec(sstate);
3562
3563 if (sstate_new->solver_status == SOLVER_MISTAKE)
3564 printf("Puzzle is inconsistent\n");
3565 else {
3566 assert(sstate_new->solver_status == SOLVER_SOLVED);
3567 if (s->grid_type == 0) {
3568 fputs(game_text_format(sstate_new->state), stdout);
3569 } else {
3570 printf("Unable to output non-square grids\n");
3571 }
3572 }
3573
3574 free_solver_state(sstate_new);
3575 free_solver_state(sstate);
3576 }
3577 }
3578
3579 return 0;
3580 }
3581
3582 #endif
3583
3584 /* vim: set shiftwidth=4 tabstop=8: */