A user points out that Loopy's solver relies on elements of the
[sgt/puzzles] / loopy.c
1 /*
2 * loopy.c: An implementation of the Nikoli game 'Loop the loop'.
3 * (c) Mike Pinna, 2005, 2006
4 *
5 * vim: set shiftwidth=4 :set textwidth=80:
6 */
7
8 /*
9 * TODO:
10 *
11 * - Setting very high recursion depth seems to cause memory munching: are we
12 * recursing before checking completion, by any chance?
13 *
14 * - There's an interesting deductive technique which makes use of topology
15 * rather than just graph theory. Each _square_ in the grid is either inside
16 * or outside the loop; you can tell that two squares are on the same side
17 * of the loop if they're separated by an x (or, more generally, by a path
18 * crossing no LINE_UNKNOWNs and an even number of LINE_YESes), and on the
19 * opposite side of the loop if they're separated by a line (or an odd
20 * number of LINE_YESes and no LINE_UNKNOWNs). Oh, and any square separated
21 * from the outside of the grid by a LINE_YES or a LINE_NO is on the inside
22 * or outside respectively. So if you can track this for all squares, you
23 * figure out the state of the line between a pair once their relative
24 * insideness is known.
25 *
26 * - (Just a speed optimisation.) Consider some todo list queue where every
27 * time we modify something we mark it for consideration by other bits of
28 * the solver, to save iteration over things that have already been done.
29 */
30
31 #include <stdio.h>
32 #include <stdlib.h>
33 #include <string.h>
34 #include <assert.h>
35 #include <ctype.h>
36 #include <math.h>
37
38 #include "puzzles.h"
39 #include "tree234.h"
40
41 /* Debugging options */
42 /*#define DEBUG_CACHES*/
43 /*#define SHOW_WORKING*/
44
45 /* ----------------------------------------------------------------------
46 * Struct, enum and function declarations
47 */
48
49 enum {
50 COL_BACKGROUND,
51 COL_FOREGROUND,
52 COL_HIGHLIGHT,
53 COL_MISTAKE,
54 NCOLOURS
55 };
56
57 struct game_state {
58 int w, h;
59
60 /* Put -1 in a square that doesn't get a clue */
61 signed char *clues;
62
63 /* Arrays of line states, stored left-to-right, top-to-bottom */
64 char *hl, *vl;
65
66 int solved;
67 int cheated;
68
69 int recursion_depth;
70 };
71
72 enum solver_status {
73 SOLVER_SOLVED, /* This is the only solution the solver could find */
74 SOLVER_MISTAKE, /* This is definitely not a solution */
75 SOLVER_AMBIGUOUS, /* This _might_ be an ambiguous solution */
76 SOLVER_INCOMPLETE /* This may be a partial solution */
77 };
78
79 typedef struct normal {
80 char *dot_atleastone;
81 char *dot_atmostone;
82 } normal_mode_state;
83
84 typedef struct hard {
85 int *linedsf;
86 } hard_mode_state;
87
88 typedef struct solver_state {
89 game_state *state;
90 int recursion_remaining;
91 enum solver_status solver_status;
92 /* NB looplen is the number of dots that are joined together at a point, ie a
93 * looplen of 1 means there are no lines to a particular dot */
94 int *looplen;
95
96 /* caches */
97 char *dot_yescount;
98 char *dot_nocount;
99 char *square_yescount;
100 char *square_nocount;
101 char *dot_solved, *square_solved;
102 int *dotdsf;
103
104 normal_mode_state *normal;
105 hard_mode_state *hard;
106 } solver_state;
107
108 /*
109 * Difficulty levels. I do some macro ickery here to ensure that my
110 * enum and the various forms of my name list always match up.
111 */
112
113 #define DIFFLIST(A) \
114 A(EASY,Easy,e,easy_mode_deductions) \
115 A(NORMAL,Normal,n,normal_mode_deductions) \
116 A(HARD,Hard,h,hard_mode_deductions)
117 #define ENUM(upper,title,lower,fn) DIFF_ ## upper,
118 #define TITLE(upper,title,lower,fn) #title,
119 #define ENCODE(upper,title,lower,fn) #lower
120 #define CONFIG(upper,title,lower,fn) ":" #title
121 #define SOLVER_FN_DECL(upper,title,lower,fn) static int fn(solver_state *);
122 #define SOLVER_FN(upper,title,lower,fn) &fn,
123 enum { DIFFLIST(ENUM) DIFF_MAX };
124 static char const *const diffnames[] = { DIFFLIST(TITLE) };
125 static char const diffchars[] = DIFFLIST(ENCODE);
126 #define DIFFCONFIG DIFFLIST(CONFIG)
127 DIFFLIST(SOLVER_FN_DECL);
128 static int (*(solver_fns[]))(solver_state *) = { DIFFLIST(SOLVER_FN) };
129
130 struct game_params {
131 int w, h;
132 int diff;
133 int rec;
134 };
135
136 enum line_state { LINE_YES, LINE_UNKNOWN, LINE_NO };
137
138 #define OPP(state) \
139 (2 - state)
140
141 enum direction { UP, LEFT, RIGHT, DOWN };
142
143 #define OPP_DIR(dir) \
144 (3 - dir)
145
146 struct game_drawstate {
147 int started;
148 int tilesize, linewidth;
149 int flashing;
150 char *hl, *vl;
151 char *clue_error;
152 };
153
154 static char *game_text_format(game_state *state);
155 static char *state_to_text(const game_state *state);
156 static char *validate_desc(game_params *params, char *desc);
157 static int get_line_status_from_point(const game_state *state,
158 int x, int y, enum direction d);
159 static int dot_order(const game_state* state, int i, int j, char line_type);
160 static int square_order(const game_state* state, int i, int j, char line_type);
161 static solver_state *solve_game_rec(const solver_state *sstate,
162 int diff);
163
164 #ifdef DEBUG_CACHES
165 static void check_caches(const solver_state* sstate);
166 #else
167 #define check_caches(s)
168 #endif
169
170 /* ----------------------------------------------------------------------
171 * Preprocessor magic
172 */
173
174 /* General constants */
175 #define PREFERRED_TILE_SIZE 32
176 #define TILE_SIZE (ds->tilesize)
177 #define LINEWIDTH (ds->linewidth)
178 #define BORDER (TILE_SIZE / 2)
179 #define FLASH_TIME 0.5F
180
181 /* Counts of various things that we're interested in */
182 #define HL_COUNT(state) ((state)->w * ((state)->h + 1))
183 #define VL_COUNT(state) (((state)->w + 1) * (state)->h)
184 #define LINE_COUNT(state) (HL_COUNT(state) + VL_COUNT(state))
185 #define DOT_COUNT(state) (((state)->w + 1) * ((state)->h + 1))
186 #define SQUARE_COUNT(state) ((state)->w * (state)->h)
187
188 /* For indexing into arrays */
189 #define DOT_INDEX(state, x, y) ((x) + ((state)->w + 1) * (y))
190 #define SQUARE_INDEX(state, x, y) ((x) + ((state)->w) * (y))
191 #define HL_INDEX(state, x, y) SQUARE_INDEX(state, x, y)
192 #define VL_INDEX(state, x, y) DOT_INDEX(state, x, y)
193
194 /* Useful utility functions */
195 #define LEGAL_DOT(state, i, j) ((i) >= 0 && (j) >= 0 && \
196 (i) <= (state)->w && (j) <= (state)->h)
197 #define LEGAL_SQUARE(state, i, j) ((i) >= 0 && (j) >= 0 && \
198 (i) < (state)->w && (j) < (state)->h)
199
200 #define CLUE_AT(state, i, j) (LEGAL_SQUARE(state, i, j) ? \
201 LV_CLUE_AT(state, i, j) : -1)
202
203 #define LV_CLUE_AT(state, i, j) ((state)->clues[SQUARE_INDEX(state, i, j)])
204
205 #define BIT_SET(field, bit) ((field) & (1<<(bit)))
206
207 #define SET_BIT(field, bit) (BIT_SET(field, bit) ? FALSE : \
208 ((field) |= (1<<(bit)), TRUE))
209
210 #define CLEAR_BIT(field, bit) (BIT_SET(field, bit) ? \
211 ((field) &= ~(1<<(bit)), TRUE) : FALSE)
212
213 #define DIR2STR(d) \
214 ((d == UP) ? "up" : \
215 (d == DOWN) ? "down" : \
216 (d == LEFT) ? "left" : \
217 (d == RIGHT) ? "right" : "oops")
218
219 #define CLUE2CHAR(c) \
220 ((c < 0) ? ' ' : c + '0')
221
222 /* Lines that have particular relationships with given dots or squares */
223 #define ABOVE_SQUARE(state, i, j) ((state)->hl[(i) + (state)->w * (j)])
224 #define BELOW_SQUARE(state, i, j) ABOVE_SQUARE(state, i, (j)+1)
225 #define LEFTOF_SQUARE(state, i, j) ((state)->vl[(i) + ((state)->w + 1) * (j)])
226 #define RIGHTOF_SQUARE(state, i, j) LEFTOF_SQUARE(state, (i)+1, j)
227
228 /*
229 * These macros return rvalues only, but can cope with being passed
230 * out-of-range coordinates.
231 */
232 /* XXX replace these with functions so we can create an array of function
233 * pointers for nicer iteration over them. This could probably be done with
234 * loads of other things for eliminating many nasty hacks. */
235 #define ABOVE_DOT(state, i, j) ((!LEGAL_DOT(state, i, j) || j <= 0) ? \
236 LINE_NO : LV_ABOVE_DOT(state, i, j))
237 #define BELOW_DOT(state, i, j) ((!LEGAL_DOT(state, i, j) || j >= (state)->h) ? \
238 LINE_NO : LV_BELOW_DOT(state, i, j))
239
240 #define LEFTOF_DOT(state, i, j) ((!LEGAL_DOT(state, i, j) || i <= 0) ? \
241 LINE_NO : LV_LEFTOF_DOT(state, i, j))
242 #define RIGHTOF_DOT(state, i, j) ((!LEGAL_DOT(state, i, j) || i >= (state)->w)? \
243 LINE_NO : LV_RIGHTOF_DOT(state, i, j))
244
245 /*
246 * These macros expect to be passed valid coordinates, and return
247 * lvalues.
248 */
249 #define LV_BELOW_DOT(state, i, j) ((state)->vl[VL_INDEX(state, i, j)])
250 #define LV_ABOVE_DOT(state, i, j) LV_BELOW_DOT(state, i, (j)-1)
251
252 #define LV_RIGHTOF_DOT(state, i, j) ((state)->hl[HL_INDEX(state, i, j)])
253 #define LV_LEFTOF_DOT(state, i, j) LV_RIGHTOF_DOT(state, (i)-1, j)
254
255 /* Counts of interesting things */
256 #define DOT_YES_COUNT(sstate, i, j) \
257 ((sstate)->dot_yescount[DOT_INDEX((sstate)->state, i, j)])
258
259 #define DOT_NO_COUNT(sstate, i, j) \
260 ((sstate)->dot_nocount[DOT_INDEX((sstate)->state, i, j)])
261
262 #define SQUARE_YES_COUNT(sstate, i, j) \
263 ((sstate)->square_yescount[SQUARE_INDEX((sstate)->state, i, j)])
264
265 #define SQUARE_NO_COUNT(sstate, i, j) \
266 ((sstate)->square_nocount[SQUARE_INDEX((sstate)->state, i, j)])
267
268 /* Iterators. NB these iterate over height more slowly than over width so that
269 * the elements come out in 'reading' order */
270 /* XXX considering adding a 'current' element to each of these which gets the
271 * address of the current dot, say. But expecting we'd need more than that
272 * most of the time. */
273 #define FORALL(i, j, w, h) \
274 for ((j) = 0; (j) < (h); ++(j)) \
275 for ((i) = 0; (i) < (w); ++(i))
276
277 #define FORALL_DOTS(state, i, j) \
278 FORALL(i, j, (state)->w + 1, (state)->h + 1)
279
280 #define FORALL_SQUARES(state, i, j) \
281 FORALL(i, j, (state)->w, (state)->h)
282
283 #define FORALL_HL(state, i, j) \
284 FORALL(i, j, (state)->w, (state)->h+1)
285
286 #define FORALL_VL(state, i, j) \
287 FORALL(i, j, (state)->w+1, (state)->h)
288
289 /* ----------------------------------------------------------------------
290 * General struct manipulation and other straightforward code
291 */
292
293 static game_state *dup_game(game_state *state)
294 {
295 game_state *ret = snew(game_state);
296
297 ret->h = state->h;
298 ret->w = state->w;
299 ret->solved = state->solved;
300 ret->cheated = state->cheated;
301
302 ret->clues = snewn(SQUARE_COUNT(state), signed char);
303 memcpy(ret->clues, state->clues, SQUARE_COUNT(state));
304
305 ret->hl = snewn(HL_COUNT(state), char);
306 memcpy(ret->hl, state->hl, HL_COUNT(state));
307
308 ret->vl = snewn(VL_COUNT(state), char);
309 memcpy(ret->vl, state->vl, VL_COUNT(state));
310
311 ret->recursion_depth = state->recursion_depth;
312
313 return ret;
314 }
315
316 static void free_game(game_state *state)
317 {
318 if (state) {
319 sfree(state->clues);
320 sfree(state->hl);
321 sfree(state->vl);
322 sfree(state);
323 }
324 }
325
326 static solver_state *new_solver_state(const game_state *state, int diff) {
327 int i, j;
328 solver_state *ret = snew(solver_state);
329
330 ret->state = dup_game((game_state *)state);
331
332 ret->recursion_remaining = state->recursion_depth;
333 ret->solver_status = SOLVER_INCOMPLETE;
334
335 ret->dotdsf = snew_dsf(DOT_COUNT(state));
336 ret->looplen = snewn(DOT_COUNT(state), int);
337
338 for (i = 0; i < DOT_COUNT(state); i++) {
339 ret->looplen[i] = 1;
340 }
341
342 ret->dot_solved = snewn(DOT_COUNT(state), char);
343 ret->square_solved = snewn(SQUARE_COUNT(state), char);
344 memset(ret->dot_solved, FALSE, DOT_COUNT(state));
345 memset(ret->square_solved, FALSE, SQUARE_COUNT(state));
346
347 ret->dot_yescount = snewn(DOT_COUNT(state), char);
348 memset(ret->dot_yescount, 0, DOT_COUNT(state));
349 ret->dot_nocount = snewn(DOT_COUNT(state), char);
350 memset(ret->dot_nocount, 0, DOT_COUNT(state));
351 ret->square_yescount = snewn(SQUARE_COUNT(state), char);
352 memset(ret->square_yescount, 0, SQUARE_COUNT(state));
353 ret->square_nocount = snewn(SQUARE_COUNT(state), char);
354 memset(ret->square_nocount, 0, SQUARE_COUNT(state));
355
356 /* dot_nocount needs special initialisation as we define lines coming off
357 * dots on edges as fixed at NO */
358
359 FORALL_DOTS(state, i, j) {
360 if (i == 0 || i == state->w)
361 ++ret->dot_nocount[DOT_INDEX(state, i, j)];
362 if (j == 0 || j == state->h)
363 ++ret->dot_nocount[DOT_INDEX(state, i, j)];
364 }
365
366 if (diff < DIFF_NORMAL) {
367 ret->normal = NULL;
368 } else {
369 ret->normal = snew(normal_mode_state);
370
371 ret->normal->dot_atmostone = snewn(DOT_COUNT(state), char);
372 memset(ret->normal->dot_atmostone, 0, DOT_COUNT(state));
373 ret->normal->dot_atleastone = snewn(DOT_COUNT(state), char);
374 memset(ret->normal->dot_atleastone, 0, DOT_COUNT(state));
375 }
376
377 if (diff < DIFF_HARD) {
378 ret->hard = NULL;
379 } else {
380 ret->hard = snew(hard_mode_state);
381 ret->hard->linedsf = snew_dsf(LINE_COUNT(state));
382 }
383
384 return ret;
385 }
386
387 static void free_solver_state(solver_state *sstate) {
388 if (sstate) {
389 free_game(sstate->state);
390 sfree(sstate->dotdsf);
391 sfree(sstate->looplen);
392 sfree(sstate->dot_solved);
393 sfree(sstate->square_solved);
394 sfree(sstate->dot_yescount);
395 sfree(sstate->dot_nocount);
396 sfree(sstate->square_yescount);
397 sfree(sstate->square_nocount);
398
399 if (sstate->normal) {
400 sfree(sstate->normal->dot_atleastone);
401 sfree(sstate->normal->dot_atmostone);
402 sfree(sstate->normal);
403 }
404
405 if (sstate->hard) {
406 sfree(sstate->hard->linedsf);
407 sfree(sstate->hard);
408 }
409
410 sfree(sstate);
411 }
412 }
413
414 static solver_state *dup_solver_state(const solver_state *sstate) {
415 game_state *state;
416
417 solver_state *ret = snew(solver_state);
418
419 ret->state = state = dup_game(sstate->state);
420
421 ret->recursion_remaining = sstate->recursion_remaining;
422 ret->solver_status = sstate->solver_status;
423
424 ret->dotdsf = snewn(DOT_COUNT(state), int);
425 ret->looplen = snewn(DOT_COUNT(state), int);
426 memcpy(ret->dotdsf, sstate->dotdsf,
427 DOT_COUNT(state) * sizeof(int));
428 memcpy(ret->looplen, sstate->looplen,
429 DOT_COUNT(state) * sizeof(int));
430
431 ret->dot_solved = snewn(DOT_COUNT(state), char);
432 ret->square_solved = snewn(SQUARE_COUNT(state), char);
433 memcpy(ret->dot_solved, sstate->dot_solved,
434 DOT_COUNT(state));
435 memcpy(ret->square_solved, sstate->square_solved,
436 SQUARE_COUNT(state));
437
438 ret->dot_yescount = snewn(DOT_COUNT(state), char);
439 memcpy(ret->dot_yescount, sstate->dot_yescount,
440 DOT_COUNT(state));
441 ret->dot_nocount = snewn(DOT_COUNT(state), char);
442 memcpy(ret->dot_nocount, sstate->dot_nocount,
443 DOT_COUNT(state));
444
445 ret->square_yescount = snewn(SQUARE_COUNT(state), char);
446 memcpy(ret->square_yescount, sstate->square_yescount,
447 SQUARE_COUNT(state));
448 ret->square_nocount = snewn(SQUARE_COUNT(state), char);
449 memcpy(ret->square_nocount, sstate->square_nocount,
450 SQUARE_COUNT(state));
451
452 if (sstate->normal) {
453 ret->normal = snew(normal_mode_state);
454 ret->normal->dot_atmostone = snewn(DOT_COUNT(state), char);
455 memcpy(ret->normal->dot_atmostone, sstate->normal->dot_atmostone,
456 DOT_COUNT(state));
457
458 ret->normal->dot_atleastone = snewn(DOT_COUNT(state), char);
459 memcpy(ret->normal->dot_atleastone, sstate->normal->dot_atleastone,
460 DOT_COUNT(state));
461 } else {
462 ret->normal = NULL;
463 }
464
465 if (sstate->hard) {
466 ret->hard = snew(hard_mode_state);
467 ret->hard->linedsf = snewn(LINE_COUNT(state), int);
468 memcpy(ret->hard->linedsf, sstate->hard->linedsf,
469 LINE_COUNT(state) * sizeof(int));
470 } else {
471 ret->hard = NULL;
472 }
473
474 return ret;
475 }
476
477 static game_params *default_params(void)
478 {
479 game_params *ret = snew(game_params);
480
481 #ifdef SLOW_SYSTEM
482 ret->h = 4;
483 ret->w = 4;
484 #else
485 ret->h = 10;
486 ret->w = 10;
487 #endif
488 ret->diff = DIFF_EASY;
489 ret->rec = 0;
490
491 return ret;
492 }
493
494 static game_params *dup_params(game_params *params)
495 {
496 game_params *ret = snew(game_params);
497 *ret = *params; /* structure copy */
498 return ret;
499 }
500
501 static const game_params presets[] = {
502 { 4, 4, DIFF_EASY, 0 },
503 { 4, 4, DIFF_NORMAL, 0 },
504 { 4, 4, DIFF_HARD, 0 },
505 { 7, 7, DIFF_EASY, 0 },
506 { 7, 7, DIFF_NORMAL, 0 },
507 { 7, 7, DIFF_HARD, 0 },
508 { 10, 10, DIFF_EASY, 0 },
509 { 10, 10, DIFF_NORMAL, 0 },
510 { 10, 10, DIFF_HARD, 0 },
511 #ifndef SLOW_SYSTEM
512 { 15, 15, DIFF_EASY, 0 },
513 { 15, 15, DIFF_NORMAL, 0 },
514 { 15, 15, DIFF_HARD, 0 },
515 #ifndef SMALL_SCREEN
516 { 30, 20, DIFF_EASY, 0 },
517 { 30, 20, DIFF_NORMAL, 0 },
518 { 30, 20, DIFF_HARD, 0 }
519 #endif
520 #endif
521 };
522
523 static int game_fetch_preset(int i, char **name, game_params **params)
524 {
525 game_params *tmppar;
526 char buf[80];
527
528 if (i < 0 || i >= lenof(presets))
529 return FALSE;
530
531 tmppar = snew(game_params);
532 *tmppar = presets[i];
533 *params = tmppar;
534 sprintf(buf, "%dx%d %s", tmppar->h, tmppar->w, diffnames[tmppar->diff]);
535 *name = dupstr(buf);
536
537 return TRUE;
538 }
539
540 static void free_params(game_params *params)
541 {
542 sfree(params);
543 }
544
545 static void decode_params(game_params *params, char const *string)
546 {
547 params->h = params->w = atoi(string);
548 params->rec = 0;
549 params->diff = DIFF_EASY;
550 while (*string && isdigit((unsigned char)*string)) string++;
551 if (*string == 'x') {
552 string++;
553 params->h = atoi(string);
554 while (*string && isdigit((unsigned char)*string)) string++;
555 }
556 if (*string == 'r') {
557 string++;
558 params->rec = atoi(string);
559 while (*string && isdigit((unsigned char)*string)) string++;
560 }
561 if (*string == 'd') {
562 int i;
563 string++;
564 for (i = 0; i < DIFF_MAX; i++)
565 if (*string == diffchars[i])
566 params->diff = i;
567 if (*string) string++;
568 }
569 }
570
571 static char *encode_params(game_params *params, int full)
572 {
573 char str[80];
574 sprintf(str, "%dx%d", params->w, params->h);
575 if (full)
576 sprintf(str + strlen(str), "r%dd%c", params->rec, diffchars[params->diff]);
577 return dupstr(str);
578 }
579
580 static config_item *game_configure(game_params *params)
581 {
582 config_item *ret;
583 char buf[80];
584
585 ret = snewn(4, config_item);
586
587 ret[0].name = "Width";
588 ret[0].type = C_STRING;
589 sprintf(buf, "%d", params->w);
590 ret[0].sval = dupstr(buf);
591 ret[0].ival = 0;
592
593 ret[1].name = "Height";
594 ret[1].type = C_STRING;
595 sprintf(buf, "%d", params->h);
596 ret[1].sval = dupstr(buf);
597 ret[1].ival = 0;
598
599 ret[2].name = "Difficulty";
600 ret[2].type = C_CHOICES;
601 ret[2].sval = DIFFCONFIG;
602 ret[2].ival = params->diff;
603
604 ret[3].name = NULL;
605 ret[3].type = C_END;
606 ret[3].sval = NULL;
607 ret[3].ival = 0;
608
609 return ret;
610 }
611
612 static game_params *custom_params(config_item *cfg)
613 {
614 game_params *ret = snew(game_params);
615
616 ret->w = atoi(cfg[0].sval);
617 ret->h = atoi(cfg[1].sval);
618 ret->rec = 0;
619 ret->diff = cfg[2].ival;
620
621 return ret;
622 }
623
624 static char *validate_params(game_params *params, int full)
625 {
626 if (params->w < 4 || params->h < 4)
627 return "Width and height must both be at least 4";
628 if (params->rec < 0)
629 return "Recursion depth can't be negative";
630
631 /*
632 * This shouldn't be able to happen at all, since decode_params
633 * and custom_params will never generate anything that isn't
634 * within range.
635 */
636 assert(params->diff < DIFF_MAX);
637
638 return NULL;
639 }
640
641 /* Returns a newly allocated string describing the current puzzle */
642 static char *state_to_text(const game_state *state)
643 {
644 char *retval;
645 char *description = snewn(SQUARE_COUNT(state) + 1, char);
646 char *dp = description;
647 int empty_count = 0;
648 int i, j;
649
650 FORALL_SQUARES(state, i, j) {
651 if (CLUE_AT(state, i, j) < 0) {
652 if (empty_count > 25) {
653 dp += sprintf(dp, "%c", (int)(empty_count + 'a' - 1));
654 empty_count = 0;
655 }
656 empty_count++;
657 } else {
658 if (empty_count) {
659 dp += sprintf(dp, "%c", (int)(empty_count + 'a' - 1));
660 empty_count = 0;
661 }
662 dp += sprintf(dp, "%c", (int)CLUE2CHAR(CLUE_AT(state, i, j)));
663 }
664 }
665
666 if (empty_count)
667 dp += sprintf(dp, "%c", (int)(empty_count + 'a' - 1));
668
669 retval = dupstr(description);
670 sfree(description);
671
672 return retval;
673 }
674
675 /* We require that the params pass the test in validate_params and that the
676 * description fills the entire game area */
677 static char *validate_desc(game_params *params, char *desc)
678 {
679 int count = 0;
680
681 for (; *desc; ++desc) {
682 if (*desc >= '0' && *desc <= '9') {
683 count++;
684 continue;
685 }
686 if (*desc >= 'a') {
687 count += *desc - 'a' + 1;
688 continue;
689 }
690 return "Unknown character in description";
691 }
692
693 if (count < SQUARE_COUNT(params))
694 return "Description too short for board size";
695 if (count > SQUARE_COUNT(params))
696 return "Description too long for board size";
697
698 return NULL;
699 }
700
701 /* Sums the lengths of the numbers in range [0,n) */
702 /* See equivalent function in solo.c for justification of this. */
703 static int len_0_to_n(int n)
704 {
705 int len = 1; /* Counting 0 as a bit of a special case */
706 int i;
707
708 for (i = 1; i < n; i *= 10) {
709 len += max(n - i, 0);
710 }
711
712 return len;
713 }
714
715 static char *encode_solve_move(const game_state *state)
716 {
717 int len, i, j;
718 char *ret, *p;
719 /* This is going to return a string representing the moves needed to set
720 * every line in a grid to be the same as the ones in 'state'. The exact
721 * length of this string is predictable. */
722
723 len = 1; /* Count the 'S' prefix */
724 /* Numbers in horizontal lines */
725 /* Horizontal lines, x position */
726 len += len_0_to_n(state->w) * (state->h + 1);
727 /* Horizontal lines, y position */
728 len += len_0_to_n(state->h + 1) * (state->w);
729 /* Vertical lines, y position */
730 len += len_0_to_n(state->h) * (state->w + 1);
731 /* Vertical lines, x position */
732 len += len_0_to_n(state->w + 1) * (state->h);
733 /* For each line we also have two letters and a comma */
734 len += 3 * (LINE_COUNT(state));
735
736 ret = snewn(len + 1, char);
737 p = ret;
738
739 p += sprintf(p, "S");
740
741 FORALL_HL(state, i, j) {
742 switch (RIGHTOF_DOT(state, i, j)) {
743 case LINE_YES:
744 p += sprintf(p, "%d,%dhy", i, j);
745 break;
746 case LINE_NO:
747 p += sprintf(p, "%d,%dhn", i, j);
748 break;
749 }
750 }
751
752 FORALL_VL(state, i, j) {
753 switch (BELOW_DOT(state, i, j)) {
754 case LINE_YES:
755 p += sprintf(p, "%d,%dvy", i, j);
756 break;
757 case LINE_NO:
758 p += sprintf(p, "%d,%dvn", i, j);
759 break;
760 }
761 }
762
763 /* No point in doing sums like that if they're going to be wrong */
764 assert(strlen(ret) <= (size_t)len);
765 return ret;
766 }
767
768 static game_ui *new_ui(game_state *state)
769 {
770 return NULL;
771 }
772
773 static void free_ui(game_ui *ui)
774 {
775 }
776
777 static char *encode_ui(game_ui *ui)
778 {
779 return NULL;
780 }
781
782 static void decode_ui(game_ui *ui, char *encoding)
783 {
784 }
785
786 static void game_changed_state(game_ui *ui, game_state *oldstate,
787 game_state *newstate)
788 {
789 }
790
791 #define SIZE(d) ((d) * TILE_SIZE + 2 * BORDER + 1)
792
793 static void game_compute_size(game_params *params, int tilesize,
794 int *x, int *y)
795 {
796 struct { int tilesize; } ads, *ds = &ads;
797 ads.tilesize = tilesize;
798
799 *x = SIZE(params->w);
800 *y = SIZE(params->h);
801 }
802
803 static void game_set_size(drawing *dr, game_drawstate *ds,
804 game_params *params, int tilesize)
805 {
806 ds->tilesize = tilesize;
807 ds->linewidth = max(1,tilesize/16);
808 }
809
810 static float *game_colours(frontend *fe, int *ncolours)
811 {
812 float *ret = snewn(4 * NCOLOURS, float);
813
814 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
815
816 ret[COL_FOREGROUND * 3 + 0] = 0.0F;
817 ret[COL_FOREGROUND * 3 + 1] = 0.0F;
818 ret[COL_FOREGROUND * 3 + 2] = 0.0F;
819
820 ret[COL_HIGHLIGHT * 3 + 0] = 1.0F;
821 ret[COL_HIGHLIGHT * 3 + 1] = 1.0F;
822 ret[COL_HIGHLIGHT * 3 + 2] = 1.0F;
823
824 ret[COL_MISTAKE * 3 + 0] = 1.0F;
825 ret[COL_MISTAKE * 3 + 1] = 0.0F;
826 ret[COL_MISTAKE * 3 + 2] = 0.0F;
827
828 *ncolours = NCOLOURS;
829 return ret;
830 }
831
832 static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
833 {
834 struct game_drawstate *ds = snew(struct game_drawstate);
835
836 ds->tilesize = ds->linewidth = 0;
837 ds->started = 0;
838 ds->hl = snewn(HL_COUNT(state), char);
839 ds->vl = snewn(VL_COUNT(state), char);
840 ds->clue_error = snewn(SQUARE_COUNT(state), char);
841 ds->flashing = 0;
842
843 memset(ds->hl, LINE_UNKNOWN, HL_COUNT(state));
844 memset(ds->vl, LINE_UNKNOWN, VL_COUNT(state));
845 memset(ds->clue_error, 0, SQUARE_COUNT(state));
846
847 return ds;
848 }
849
850 static void game_free_drawstate(drawing *dr, game_drawstate *ds)
851 {
852 sfree(ds->clue_error);
853 sfree(ds->hl);
854 sfree(ds->vl);
855 sfree(ds);
856 }
857
858 static int game_timing_state(game_state *state, game_ui *ui)
859 {
860 return TRUE;
861 }
862
863 static float game_anim_length(game_state *oldstate, game_state *newstate,
864 int dir, game_ui *ui)
865 {
866 return 0.0F;
867 }
868
869 static char *game_text_format(game_state *state)
870 {
871 int i, j;
872 int len;
873 char *ret, *rp;
874
875 len = (2 * state->w + 2) * (2 * state->h + 1);
876 rp = ret = snewn(len + 1, char);
877
878 #define DRAW_HL \
879 switch (ABOVE_SQUARE(state, i, j)) { \
880 case LINE_YES: \
881 rp += sprintf(rp, " -"); \
882 break; \
883 case LINE_NO: \
884 rp += sprintf(rp, " x"); \
885 break; \
886 case LINE_UNKNOWN: \
887 rp += sprintf(rp, " "); \
888 break; \
889 default: \
890 assert(!"Illegal line state for HL"); \
891 }
892
893 #define DRAW_VL \
894 switch (LEFTOF_SQUARE(state, i, j)) { \
895 case LINE_YES: \
896 rp += sprintf(rp, "|"); \
897 break; \
898 case LINE_NO: \
899 rp += sprintf(rp, "x"); \
900 break; \
901 case LINE_UNKNOWN: \
902 rp += sprintf(rp, " "); \
903 break; \
904 default: \
905 assert(!"Illegal line state for VL"); \
906 }
907
908 for (j = 0; j < state->h; ++j) {
909 for (i = 0; i < state->w; ++i) {
910 DRAW_HL;
911 }
912 rp += sprintf(rp, " \n");
913 for (i = 0; i < state->w; ++i) {
914 DRAW_VL;
915 rp += sprintf(rp, "%c", (int)CLUE2CHAR(CLUE_AT(state, i, j)));
916 }
917 DRAW_VL;
918 rp += sprintf(rp, "\n");
919 }
920 for (i = 0; i < state->w; ++i) {
921 DRAW_HL;
922 }
923 rp += sprintf(rp, " \n");
924
925 assert(strlen(ret) == len);
926 return ret;
927 }
928
929 /* ----------------------------------------------------------------------
930 * Debug code
931 */
932
933 #ifdef DEBUG_CACHES
934 static void check_caches(const solver_state* sstate)
935 {
936 int i, j;
937 const game_state *state = sstate->state;
938
939 FORALL_DOTS(state, i, j) {
940 #if 0
941 fprintf(stderr, "dot [%d,%d] y: %d %d n: %d %d\n", i, j,
942 dot_order(state, i, j, LINE_YES),
943 sstate->dot_yescount[i + (state->w + 1) * j],
944 dot_order(state, i, j, LINE_NO),
945 sstate->dot_nocount[i + (state->w + 1) * j]);
946 #endif
947
948 assert(dot_order(state, i, j, LINE_YES) ==
949 DOT_YES_COUNT(sstate, i, j));
950 assert(dot_order(state, i, j, LINE_NO) ==
951 DOT_NO_COUNT(sstate, i, j));
952 }
953
954 FORALL_SQUARES(state, i, j) {
955 #if 0
956 fprintf(stderr, "square [%d,%d] y: %d %d n: %d %d\n", i, j,
957 square_order(state, i, j, LINE_YES),
958 sstate->square_yescount[i + state->w * j],
959 square_order(state, i, j, LINE_NO),
960 sstate->square_nocount[i + state->w * j]);
961 #endif
962
963 assert(square_order(state, i, j, LINE_YES) ==
964 SQUARE_YES_COUNT(sstate, i, j));
965 assert(square_order(state, i, j, LINE_NO) ==
966 SQUARE_NO_COUNT(sstate, i, j));
967 }
968 }
969
970 #if 0
971 #define check_caches(s) \
972 do { \
973 fprintf(stderr, "check_caches at line %d\n", __LINE__); \
974 check_caches(s); \
975 } while (0)
976 #endif
977 #endif /* DEBUG_CACHES */
978
979 /* ----------------------------------------------------------------------
980 * Solver utility functions
981 */
982
983 static int set_line_bydot(solver_state *sstate, int x, int y, enum direction d,
984 enum line_state line_new
985 #ifdef SHOW_WORKING
986 , const char *reason
987 #endif
988 )
989 {
990 game_state *state = sstate->state;
991
992 /* This line borders at most two squares in our board. We figure out the
993 * x and y positions of those squares so we can record that their yes or no
994 * counts have been changed */
995 int sq1_x=-1, sq1_y=-1, sq2_x=-1, sq2_y=-1;
996 int otherdot_x=-1, otherdot_y=-1;
997
998 int progress = FALSE;
999
1000 #if 0
1001 fprintf(stderr, "set_line_bydot [%d,%d], %s, %d\n",
1002 x, y, DIR2STR(d), line_new);
1003 #endif
1004
1005 assert(line_new != LINE_UNKNOWN);
1006
1007 check_caches(sstate);
1008
1009 switch (d) {
1010 case LEFT:
1011 assert(x > 0);
1012
1013 if (LEFTOF_DOT(state, x, y) != line_new) {
1014 LV_LEFTOF_DOT(state, x, y) = line_new;
1015
1016 otherdot_x = x-1;
1017 otherdot_y = y;
1018
1019 sq1_x = x-1;
1020 sq1_y = y-1;
1021 sq2_x = x-1;
1022 sq2_y = y;
1023
1024 progress = TRUE;
1025 }
1026 break;
1027 case RIGHT:
1028 assert(x < state->w);
1029 if (RIGHTOF_DOT(state, x, y) != line_new) {
1030 LV_RIGHTOF_DOT(state, x, y) = line_new;
1031
1032 otherdot_x = x+1;
1033 otherdot_y = y;
1034
1035 sq1_x = x;
1036 sq1_y = y-1;
1037 sq2_x = x;
1038 sq2_y = y;
1039
1040 progress = TRUE;
1041 }
1042 break;
1043 case UP:
1044 assert(y > 0);
1045 if (ABOVE_DOT(state, x, y) != line_new) {
1046 LV_ABOVE_DOT(state, x, y) = line_new;
1047
1048 otherdot_x = x;
1049 otherdot_y = y-1;
1050
1051 sq1_x = x-1;
1052 sq1_y = y-1;
1053 sq2_x = x;
1054 sq2_y = y-1;
1055
1056 progress = TRUE;
1057 }
1058 break;
1059 case DOWN:
1060 assert(y < state->h);
1061 if (BELOW_DOT(state, x, y) != line_new) {
1062 LV_BELOW_DOT(state, x, y) = line_new;
1063
1064 otherdot_x = x;
1065 otherdot_y = y+1;
1066
1067 sq1_x = x-1;
1068 sq1_y = y;
1069 sq2_x = x;
1070 sq2_y = y;
1071
1072 progress = TRUE;
1073 }
1074 break;
1075 }
1076
1077 if (!progress)
1078 return progress;
1079
1080 #ifdef SHOW_WORKING
1081 fprintf(stderr, "set line [%d,%d] -> [%d,%d] to %s (%s)\n",
1082 x, y, otherdot_x, otherdot_y, line_new == LINE_YES ? "YES" : "NO",
1083 reason);
1084 #endif
1085
1086 /* Above we updated the cache for the dot that the line in question reaches
1087 * from the dot we've been told about. Here we update that for the dot
1088 * named in our arguments. */
1089 if (line_new == LINE_YES) {
1090 if (sq1_x >= 0 && sq1_y >= 0)
1091 ++SQUARE_YES_COUNT(sstate, sq1_x, sq1_y);
1092 if (sq2_x < state->w && sq2_y < state->h)
1093 ++SQUARE_YES_COUNT(sstate, sq2_x, sq2_y);
1094 ++DOT_YES_COUNT(sstate, x, y);
1095 ++DOT_YES_COUNT(sstate, otherdot_x, otherdot_y);
1096 } else {
1097 if (sq1_x >= 0 && sq1_y >= 0)
1098 ++SQUARE_NO_COUNT(sstate, sq1_x, sq1_y);
1099 if (sq2_x < state->w && sq2_y < state->h)
1100 ++SQUARE_NO_COUNT(sstate, sq2_x, sq2_y);
1101 ++DOT_NO_COUNT(sstate, x, y);
1102 ++DOT_NO_COUNT(sstate, otherdot_x, otherdot_y);
1103 }
1104
1105 check_caches(sstate);
1106 return progress;
1107 }
1108
1109 #ifdef SHOW_WORKING
1110 #define set_line_bydot(a, b, c, d, e) \
1111 set_line_bydot(a, b, c, d, e, __FUNCTION__)
1112 #endif
1113
1114 /*
1115 * Merge two dots due to the existence of an edge between them.
1116 * Updates the dsf tracking equivalence classes, and keeps track of
1117 * the length of path each dot is currently a part of.
1118 * Returns TRUE if the dots were already linked, ie if they are part of a
1119 * closed loop, and false otherwise.
1120 */
1121 static int merge_dots(solver_state *sstate, int x1, int y1, int x2, int y2)
1122 {
1123 int i, j, len;
1124
1125 i = y1 * (sstate->state->w + 1) + x1;
1126 j = y2 * (sstate->state->w + 1) + x2;
1127
1128 i = dsf_canonify(sstate->dotdsf, i);
1129 j = dsf_canonify(sstate->dotdsf, j);
1130
1131 if (i == j) {
1132 return TRUE;
1133 } else {
1134 len = sstate->looplen[i] + sstate->looplen[j];
1135 dsf_merge(sstate->dotdsf, i, j);
1136 i = dsf_canonify(sstate->dotdsf, i);
1137 sstate->looplen[i] = len;
1138 return FALSE;
1139 }
1140 }
1141
1142 /* Seriously, these should be functions */
1143
1144 #define LINEDSF_INDEX(state, x, y, d) \
1145 ((d == UP) ? ((y-1) * (state->w + 1) + x) : \
1146 (d == DOWN) ? ((y) * (state->w + 1) + x) : \
1147 (d == LEFT) ? ((y) * (state->w) + x-1 + VL_COUNT(state)) : \
1148 (d == RIGHT) ? ((y) * (state->w) + x + VL_COUNT(state)) : \
1149 (assert(!"bad direction value"), 0))
1150
1151 static void linedsf_deindex(const game_state *state, int i,
1152 int *px, int *py, enum direction *pd)
1153 {
1154 int i_mod;
1155 if (i < VL_COUNT(state)) {
1156 *(pd) = DOWN;
1157 *(px) = (i) % (state->w+1);
1158 *(py) = (i) / (state->w+1);
1159 } else {
1160 i_mod = i - VL_COUNT(state);
1161 *(pd) = RIGHT;
1162 *(px) = (i_mod) % (state->w);
1163 *(py) = (i_mod) / (state->w);
1164 }
1165 }
1166
1167 /* Merge two lines because the solver has deduced that they must be either
1168 * identical or opposite. Returns TRUE if this is new information, otherwise
1169 * FALSE. */
1170 static int merge_lines(solver_state *sstate,
1171 int x1, int y1, enum direction d1,
1172 int x2, int y2, enum direction d2,
1173 int inverse
1174 #ifdef SHOW_WORKING
1175 , const char *reason
1176 #endif
1177 )
1178 {
1179 int i, j, inv_tmp;
1180
1181 i = LINEDSF_INDEX(sstate->state, x1, y1, d1);
1182 j = LINEDSF_INDEX(sstate->state, x2, y2, d2);
1183
1184 assert(i < LINE_COUNT(sstate->state));
1185 assert(j < LINE_COUNT(sstate->state));
1186
1187 i = edsf_canonify(sstate->hard->linedsf, i, &inv_tmp);
1188 inverse ^= inv_tmp;
1189 j = edsf_canonify(sstate->hard->linedsf, j, &inv_tmp);
1190 inverse ^= inv_tmp;
1191
1192 edsf_merge(sstate->hard->linedsf, i, j, inverse);
1193
1194 #ifdef SHOW_WORKING
1195 if (i != j) {
1196 fprintf(stderr, "%s [%d,%d,%s] [%d,%d,%s] %s(%s)\n",
1197 __FUNCTION__,
1198 x1, y1, DIR2STR(d1),
1199 x2, y2, DIR2STR(d2),
1200 inverse ? "inverse " : "", reason);
1201 }
1202 #endif
1203 return (i != j);
1204 }
1205
1206 #ifdef SHOW_WORKING
1207 #define merge_lines(a, b, c, d, e, f, g, h) \
1208 merge_lines(a, b, c, d, e, f, g, h, __FUNCTION__)
1209 #endif
1210
1211 /* Return 0 if the given lines are not in the same equivalence class, 1 if they
1212 * are known identical, or 2 if they are known opposite */
1213 #if 0
1214 static int lines_related(solver_state *sstate,
1215 int x1, int y1, enum direction d1,
1216 int x2, int y2, enum direction d2)
1217 {
1218 int i, j, inv1, inv2;
1219
1220 i = LINEDSF_INDEX(sstate->state, x1, y1, d1);
1221 j = LINEDSF_INDEX(sstate->state, x2, y2, d2);
1222
1223 i = edsf_canonify(sstate->hard->linedsf, i, &inv1);
1224 j = edsf_canonify(sstate->hard->linedsf, j, &inv2);
1225
1226 if (i == j)
1227 return (inv1 == inv2) ? 1 : 2;
1228 else
1229 return 0;
1230 }
1231 #endif
1232
1233 /* Count the number of lines of a particular type currently going into the
1234 * given dot. Lines going off the edge of the board are assumed fixed no. */
1235 static int dot_order(const game_state* state, int i, int j, char line_type)
1236 {
1237 int n = 0;
1238
1239 if (i > 0) {
1240 if (line_type == LV_LEFTOF_DOT(state, i, j))
1241 ++n;
1242 } else {
1243 if (line_type == LINE_NO)
1244 ++n;
1245 }
1246 if (i < state->w) {
1247 if (line_type == LV_RIGHTOF_DOT(state, i, j))
1248 ++n;
1249 } else {
1250 if (line_type == LINE_NO)
1251 ++n;
1252 }
1253 if (j > 0) {
1254 if (line_type == LV_ABOVE_DOT(state, i, j))
1255 ++n;
1256 } else {
1257 if (line_type == LINE_NO)
1258 ++n;
1259 }
1260 if (j < state->h) {
1261 if (line_type == LV_BELOW_DOT(state, i, j))
1262 ++n;
1263 } else {
1264 if (line_type == LINE_NO)
1265 ++n;
1266 }
1267
1268 return n;
1269 }
1270
1271 /* Count the number of lines of a particular type currently surrounding the
1272 * given square */
1273 static int square_order(const game_state* state, int i, int j, char line_type)
1274 {
1275 int n = 0;
1276
1277 if (ABOVE_SQUARE(state, i, j) == line_type)
1278 ++n;
1279 if (BELOW_SQUARE(state, i, j) == line_type)
1280 ++n;
1281 if (LEFTOF_SQUARE(state, i, j) == line_type)
1282 ++n;
1283 if (RIGHTOF_SQUARE(state, i, j) == line_type)
1284 ++n;
1285
1286 return n;
1287 }
1288
1289 /* Set all lines bordering a dot of type old_type to type new_type
1290 * Return value tells caller whether this function actually did anything */
1291 static int dot_setall(solver_state *sstate, int i, int j,
1292 char old_type, char new_type)
1293 {
1294 int retval = FALSE, r;
1295 game_state *state = sstate->state;
1296
1297 if (old_type == new_type)
1298 return FALSE;
1299
1300 if (i > 0 && LEFTOF_DOT(state, i, j) == old_type) {
1301 r = set_line_bydot(sstate, i, j, LEFT, new_type);
1302 assert(r == TRUE);
1303 retval = TRUE;
1304 }
1305
1306 if (i < state->w && RIGHTOF_DOT(state, i, j) == old_type) {
1307 r = set_line_bydot(sstate, i, j, RIGHT, new_type);
1308 assert(r == TRUE);
1309 retval = TRUE;
1310 }
1311
1312 if (j > 0 && ABOVE_DOT(state, i, j) == old_type) {
1313 r = set_line_bydot(sstate, i, j, UP, new_type);
1314 assert(r == TRUE);
1315 retval = TRUE;
1316 }
1317
1318 if (j < state->h && BELOW_DOT(state, i, j) == old_type) {
1319 r = set_line_bydot(sstate, i, j, DOWN, new_type);
1320 assert(r == TRUE);
1321 retval = TRUE;
1322 }
1323
1324 return retval;
1325 }
1326
1327 /* Set all lines bordering a square of type old_type to type new_type */
1328 static int square_setall(solver_state *sstate, int i, int j,
1329 char old_type, char new_type)
1330 {
1331 int r = FALSE;
1332 game_state *state = sstate->state;
1333
1334 #if 0
1335 fprintf(stderr, "square_setall [%d,%d] from %d to %d\n", i, j,
1336 old_type, new_type);
1337 #endif
1338 if (ABOVE_SQUARE(state, i, j) == old_type) {
1339 r = set_line_bydot(sstate, i, j, RIGHT, new_type);
1340 assert(r == TRUE);
1341 }
1342 if (BELOW_SQUARE(state, i, j) == old_type) {
1343 r = set_line_bydot(sstate, i, j+1, RIGHT, new_type);
1344 assert(r == TRUE);
1345 }
1346 if (LEFTOF_SQUARE(state, i, j) == old_type) {
1347 r = set_line_bydot(sstate, i, j, DOWN, new_type);
1348 assert(r == TRUE);
1349 }
1350 if (RIGHTOF_SQUARE(state, i, j) == old_type) {
1351 r = set_line_bydot(sstate, i+1, j, DOWN, new_type);
1352 assert(r == TRUE);
1353 }
1354
1355 return r;
1356 }
1357
1358 /* ----------------------------------------------------------------------
1359 * Loop generation and clue removal
1360 */
1361
1362 /* We're going to store a list of current candidate squares for lighting.
1363 * Each square gets a 'score', which tells us how adding that square right
1364 * now would affect the length of the solution loop. We're trying to
1365 * maximise that quantity so will bias our random selection of squares to
1366 * light towards those with high scores */
1367 struct square {
1368 int score;
1369 unsigned long random;
1370 int x, y;
1371 };
1372
1373 static int get_square_cmpfn(void *v1, void *v2)
1374 {
1375 struct square *s1 = v1;
1376 struct square *s2 = v2;
1377 int r;
1378
1379 r = s1->x - s2->x;
1380 if (r)
1381 return r;
1382
1383 r = s1->y - s2->y;
1384 if (r)
1385 return r;
1386
1387 return 0;
1388 }
1389
1390 static int square_sort_cmpfn(void *v1, void *v2)
1391 {
1392 struct square *s1 = v1;
1393 struct square *s2 = v2;
1394 int r;
1395
1396 r = s2->score - s1->score;
1397 if (r) {
1398 return r;
1399 }
1400
1401 if (s1->random < s2->random)
1402 return -1;
1403 else if (s1->random > s2->random)
1404 return 1;
1405
1406 /*
1407 * It's _just_ possible that two squares might have been given
1408 * the same random value. In that situation, fall back to
1409 * comparing based on the coordinates. This introduces a tiny
1410 * directional bias, but not a significant one.
1411 */
1412 return get_square_cmpfn(v1, v2);
1413 }
1414
1415 enum { SQUARE_LIT, SQUARE_UNLIT };
1416
1417 #define SQUARE_STATE(i, j) \
1418 ( LEGAL_SQUARE(state, i, j) ? \
1419 LV_SQUARE_STATE(i,j) : \
1420 SQUARE_UNLIT )
1421
1422 #define LV_SQUARE_STATE(i, j) board[SQUARE_INDEX(state, i, j)]
1423
1424 /* Generate a new complete set of clues for the given game_state (respecting
1425 * the dimensions provided by said game_state) */
1426 static void add_full_clues(game_state *state, random_state *rs)
1427 {
1428 signed char *clues;
1429 char *board;
1430 int i, j, a, b, c;
1431 int board_area = SQUARE_COUNT(state);
1432 int t;
1433
1434 struct square *square, *tmpsquare, *sq;
1435 struct square square_pos;
1436
1437 /* These will contain exactly the same information, sorted into different
1438 * orders */
1439 tree234 *lightable_squares_sorted, *lightable_squares_gettable;
1440
1441 #define SQUARE_REACHABLE(i,j) \
1442 (t = (SQUARE_STATE(i-1, j) == SQUARE_LIT || \
1443 SQUARE_STATE(i+1, j) == SQUARE_LIT || \
1444 SQUARE_STATE(i, j-1) == SQUARE_LIT || \
1445 SQUARE_STATE(i, j+1) == SQUARE_LIT), \
1446 t)
1447
1448 /* One situation in which we may not light a square is if that'll leave one
1449 * square above/below and one left/right of us unlit, separated by a lit
1450 * square diagnonal from us */
1451 #define SQUARE_DIAGONAL_VIOLATION(i, j, h, v) \
1452 (t = (SQUARE_STATE((i)+(h), (j)) == SQUARE_UNLIT && \
1453 SQUARE_STATE((i), (j)+(v)) == SQUARE_UNLIT && \
1454 SQUARE_STATE((i)+(h), (j)+(v)) == SQUARE_LIT), \
1455 t)
1456
1457 /* We also may not light a square if it will form a loop of lit squares
1458 * around some unlit squares, as then the game soln won't have a single
1459 * loop */
1460 #define SQUARE_LOOP_VIOLATION(i, j, lit1, lit2) \
1461 (SQUARE_STATE((i)+1, (j)) == lit1 && \
1462 SQUARE_STATE((i)-1, (j)) == lit1 && \
1463 SQUARE_STATE((i), (j)+1) == lit2 && \
1464 SQUARE_STATE((i), (j)-1) == lit2)
1465
1466 #define CAN_LIGHT_SQUARE(i, j) \
1467 (SQUARE_REACHABLE(i, j) && \
1468 !SQUARE_DIAGONAL_VIOLATION(i, j, -1, -1) && \
1469 !SQUARE_DIAGONAL_VIOLATION(i, j, +1, -1) && \
1470 !SQUARE_DIAGONAL_VIOLATION(i, j, -1, +1) && \
1471 !SQUARE_DIAGONAL_VIOLATION(i, j, +1, +1) && \
1472 !SQUARE_LOOP_VIOLATION(i, j, SQUARE_LIT, SQUARE_UNLIT) && \
1473 !SQUARE_LOOP_VIOLATION(i, j, SQUARE_UNLIT, SQUARE_LIT))
1474
1475 #define IS_LIGHTING_CANDIDATE(i, j) \
1476 (SQUARE_STATE(i, j) == SQUARE_UNLIT && \
1477 CAN_LIGHT_SQUARE(i,j))
1478
1479 /* The 'score' of a square reflects its current desirability for selection
1480 * as the next square to light. We want to encourage moving into uncharted
1481 * areas so we give scores according to how many of the square's neighbours
1482 * are currently unlit. */
1483
1484 /* UNLIT SCORE
1485 * 3 2
1486 * 2 0
1487 * 1 -2
1488 */
1489 #define SQUARE_SCORE(i,j) \
1490 (2*((SQUARE_STATE(i-1, j) == SQUARE_UNLIT) + \
1491 (SQUARE_STATE(i+1, j) == SQUARE_UNLIT) + \
1492 (SQUARE_STATE(i, j-1) == SQUARE_UNLIT) + \
1493 (SQUARE_STATE(i, j+1) == SQUARE_UNLIT)) - 4)
1494
1495 /* When a square gets lit, this defines how far away from that square we
1496 * need to go recomputing scores */
1497 #define SCORE_DISTANCE 1
1498
1499 board = snewn(board_area, char);
1500 clues = state->clues;
1501
1502 /* Make a board */
1503 memset(board, SQUARE_UNLIT, board_area);
1504
1505 /* Seed the board with a single lit square near the middle */
1506 i = state->w / 2;
1507 j = state->h / 2;
1508 if (state->w & 1 && random_bits(rs, 1))
1509 ++i;
1510 if (state->h & 1 && random_bits(rs, 1))
1511 ++j;
1512
1513 LV_SQUARE_STATE(i, j) = SQUARE_LIT;
1514
1515 /* We need a way of favouring squares that will increase our loopiness.
1516 * We do this by maintaining a list of all candidate squares sorted by
1517 * their score and choose randomly from that with appropriate skew.
1518 * In order to avoid consistently biasing towards particular squares, we
1519 * need the sort order _within_ each group of scores to be completely
1520 * random. But it would be abusing the hospitality of the tree234 data
1521 * structure if our comparison function were nondeterministic :-). So with
1522 * each square we associate a random number that does not change during a
1523 * particular run of the generator, and use that as a secondary sort key.
1524 * Yes, this means we will be biased towards particular random squares in
1525 * any one run but that doesn't actually matter. */
1526
1527 lightable_squares_sorted = newtree234(square_sort_cmpfn);
1528 lightable_squares_gettable = newtree234(get_square_cmpfn);
1529 #define ADD_SQUARE(s) \
1530 do { \
1531 sq = add234(lightable_squares_sorted, s); \
1532 assert(sq == s); \
1533 sq = add234(lightable_squares_gettable, s); \
1534 assert(sq == s); \
1535 } while (0)
1536
1537 #define REMOVE_SQUARE(s) \
1538 do { \
1539 sq = del234(lightable_squares_sorted, s); \
1540 assert(sq); \
1541 sq = del234(lightable_squares_gettable, s); \
1542 assert(sq); \
1543 } while (0)
1544
1545 #define HANDLE_DIR(a, b) \
1546 square = snew(struct square); \
1547 square->x = (i)+(a); \
1548 square->y = (j)+(b); \
1549 square->score = 2; \
1550 square->random = random_bits(rs, 31); \
1551 ADD_SQUARE(square);
1552 HANDLE_DIR(-1, 0);
1553 HANDLE_DIR( 1, 0);
1554 HANDLE_DIR( 0,-1);
1555 HANDLE_DIR( 0, 1);
1556 #undef HANDLE_DIR
1557
1558 /* Light squares one at a time until the board is interesting enough */
1559 while (TRUE)
1560 {
1561 /* We have count234(lightable_squares) possibilities, and in
1562 * lightable_squares_sorted they are sorted with the most desirable
1563 * first. */
1564 c = count234(lightable_squares_sorted);
1565 if (c == 0)
1566 break;
1567 assert(c == count234(lightable_squares_gettable));
1568
1569 /* Check that the best square available is any good */
1570 square = (struct square *)index234(lightable_squares_sorted, 0);
1571 assert(square);
1572
1573 /*
1574 * We never want to _decrease_ the loop's perimeter. Making
1575 * moves that leave the perimeter the same is occasionally
1576 * useful: if it were _never_ done then the user would be
1577 * able to deduce illicitly that any degree-zero vertex was
1578 * on the outside of the loop. So we do it sometimes but
1579 * not always.
1580 */
1581 if (square->score < 0 || (square->score == 0 &&
1582 random_upto(rs, 2) == 0)) {
1583 break;
1584 }
1585
1586 assert(square->score == SQUARE_SCORE(square->x, square->y));
1587 assert(SQUARE_STATE(square->x, square->y) == SQUARE_UNLIT);
1588 assert(square->x >= 0 && square->x < state->w);
1589 assert(square->y >= 0 && square->y < state->h);
1590
1591 /* Update data structures */
1592 LV_SQUARE_STATE(square->x, square->y) = SQUARE_LIT;
1593 REMOVE_SQUARE(square);
1594
1595 /* We might have changed the score of any squares up to 2 units away in
1596 * any direction */
1597 for (b = -SCORE_DISTANCE; b <= SCORE_DISTANCE; b++) {
1598 for (a = -SCORE_DISTANCE; a <= SCORE_DISTANCE; a++) {
1599 if (!a && !b)
1600 continue;
1601 square_pos.x = square->x + a;
1602 square_pos.y = square->y + b;
1603 if (square_pos.x < 0 || square_pos.x >= state->w ||
1604 square_pos.y < 0 || square_pos.y >= state->h) {
1605 continue;
1606 }
1607 tmpsquare = find234(lightable_squares_gettable, &square_pos,
1608 NULL);
1609 if (tmpsquare) {
1610 assert(tmpsquare->x == square_pos.x);
1611 assert(tmpsquare->y == square_pos.y);
1612 assert(SQUARE_STATE(tmpsquare->x, tmpsquare->y) ==
1613 SQUARE_UNLIT);
1614 REMOVE_SQUARE(tmpsquare);
1615 } else {
1616 tmpsquare = snew(struct square);
1617 tmpsquare->x = square_pos.x;
1618 tmpsquare->y = square_pos.y;
1619 tmpsquare->random = random_bits(rs, 31);
1620 }
1621 tmpsquare->score = SQUARE_SCORE(tmpsquare->x, tmpsquare->y);
1622
1623 if (IS_LIGHTING_CANDIDATE(tmpsquare->x, tmpsquare->y)) {
1624 ADD_SQUARE(tmpsquare);
1625 } else {
1626 sfree(tmpsquare);
1627 }
1628 }
1629 }
1630 sfree(square);
1631 }
1632
1633 /* Clean up */
1634 while ((square = delpos234(lightable_squares_gettable, 0)) != NULL)
1635 sfree(square);
1636 freetree234(lightable_squares_gettable);
1637 freetree234(lightable_squares_sorted);
1638
1639 /* Copy out all the clues */
1640 FORALL_SQUARES(state, i, j) {
1641 c = SQUARE_STATE(i, j);
1642 LV_CLUE_AT(state, i, j) = 0;
1643 if (SQUARE_STATE(i-1, j) != c) ++LV_CLUE_AT(state, i, j);
1644 if (SQUARE_STATE(i+1, j) != c) ++LV_CLUE_AT(state, i, j);
1645 if (SQUARE_STATE(i, j-1) != c) ++LV_CLUE_AT(state, i, j);
1646 if (SQUARE_STATE(i, j+1) != c) ++LV_CLUE_AT(state, i, j);
1647 }
1648
1649 sfree(board);
1650 }
1651
1652 static int game_has_unique_soln(const game_state *state, int diff)
1653 {
1654 int ret;
1655 solver_state *sstate_new;
1656 solver_state *sstate = new_solver_state((game_state *)state, diff);
1657
1658 sstate_new = solve_game_rec(sstate, diff);
1659
1660 assert(sstate_new->solver_status != SOLVER_MISTAKE);
1661 ret = (sstate_new->solver_status == SOLVER_SOLVED);
1662
1663 free_solver_state(sstate_new);
1664 free_solver_state(sstate);
1665
1666 return ret;
1667 }
1668
1669 /* Remove clues one at a time at random. */
1670 static game_state *remove_clues(game_state *state, random_state *rs,
1671 int diff)
1672 {
1673 int *square_list, squares;
1674 game_state *ret = dup_game(state), *saved_ret;
1675 int n;
1676 #ifdef SHOW_WORKING
1677 char *desc;
1678 #endif
1679
1680 /* We need to remove some clues. We'll do this by forming a list of all
1681 * available clues, shuffling it, then going along one at a
1682 * time clearing each clue in turn for which doing so doesn't render the
1683 * board unsolvable. */
1684 squares = state->w * state->h;
1685 square_list = snewn(squares, int);
1686 for (n = 0; n < squares; ++n) {
1687 square_list[n] = n;
1688 }
1689
1690 shuffle(square_list, squares, sizeof(int), rs);
1691
1692 for (n = 0; n < squares; ++n) {
1693 saved_ret = dup_game(ret);
1694 LV_CLUE_AT(ret, square_list[n] % state->w,
1695 square_list[n] / state->w) = -1;
1696
1697 #ifdef SHOW_WORKING
1698 desc = state_to_text(ret);
1699 fprintf(stderr, "%dx%d:%s\n", state->w, state->h, desc);
1700 sfree(desc);
1701 #endif
1702
1703 if (game_has_unique_soln(ret, diff)) {
1704 free_game(saved_ret);
1705 } else {
1706 free_game(ret);
1707 ret = saved_ret;
1708 }
1709 }
1710 sfree(square_list);
1711
1712 return ret;
1713 }
1714
1715 static char *new_game_desc(game_params *params, random_state *rs,
1716 char **aux, int interactive)
1717 {
1718 /* solution and description both use run-length encoding in obvious ways */
1719 char *retval;
1720 game_state *state = snew(game_state), *state_new;
1721
1722 state->h = params->h;
1723 state->w = params->w;
1724
1725 state->clues = snewn(SQUARE_COUNT(params), signed char);
1726 state->hl = snewn(HL_COUNT(params), char);
1727 state->vl = snewn(VL_COUNT(params), char);
1728
1729 newboard_please:
1730 memset(state->hl, LINE_UNKNOWN, HL_COUNT(params));
1731 memset(state->vl, LINE_UNKNOWN, VL_COUNT(params));
1732
1733 state->solved = state->cheated = FALSE;
1734 state->recursion_depth = params->rec;
1735
1736 /* Get a new random solvable board with all its clues filled in. Yes, this
1737 * can loop for ever if the params are suitably unfavourable, but
1738 * preventing games smaller than 4x4 seems to stop this happening */
1739
1740 do {
1741 add_full_clues(state, rs);
1742 } while (!game_has_unique_soln(state, params->diff));
1743
1744 state_new = remove_clues(state, rs, params->diff);
1745 free_game(state);
1746 state = state_new;
1747
1748 if (params->diff > 0 && game_has_unique_soln(state, params->diff-1)) {
1749 #ifdef SHOW_WORKING
1750 fprintf(stderr, "Rejecting board, it is too easy\n");
1751 #endif
1752 goto newboard_please;
1753 }
1754
1755 retval = state_to_text(state);
1756
1757 free_game(state);
1758
1759 assert(!validate_desc(params, retval));
1760
1761 return retval;
1762 }
1763
1764 static game_state *new_game(midend *me, game_params *params, char *desc)
1765 {
1766 int i,j;
1767 game_state *state = snew(game_state);
1768 int empties_to_make = 0;
1769 int n;
1770 const char *dp = desc;
1771
1772 state->recursion_depth = 0; /* XXX pending removal, probably */
1773
1774 state->h = params->h;
1775 state->w = params->w;
1776
1777 state->clues = snewn(SQUARE_COUNT(params), signed char);
1778 state->hl = snewn(HL_COUNT(params), char);
1779 state->vl = snewn(VL_COUNT(params), char);
1780
1781 state->solved = state->cheated = FALSE;
1782
1783 FORALL_SQUARES(params, i, j) {
1784 if (empties_to_make) {
1785 empties_to_make--;
1786 LV_CLUE_AT(state, i, j) = -1;
1787 continue;
1788 }
1789
1790 assert(*dp);
1791 n = *dp - '0';
1792 if (n >= 0 && n < 10) {
1793 LV_CLUE_AT(state, i, j) = n;
1794 } else {
1795 n = *dp - 'a' + 1;
1796 assert(n > 0);
1797 LV_CLUE_AT(state, i, j) = -1;
1798 empties_to_make = n - 1;
1799 }
1800 ++dp;
1801 }
1802
1803 memset(state->hl, LINE_UNKNOWN, HL_COUNT(params));
1804 memset(state->vl, LINE_UNKNOWN, VL_COUNT(params));
1805
1806 return state;
1807 }
1808
1809 enum { LOOP_NONE=0, LOOP_SOLN, LOOP_NOT_SOLN };
1810
1811 /* ----------------------------------------------------------------------
1812 * Solver logic
1813 *
1814 * Our solver modes operate as follows. Each mode also uses the modes above it.
1815 *
1816 * Easy Mode
1817 * Just implement the rules of the game.
1818 *
1819 * Normal Mode
1820 * For each pair of lines through each dot we store a bit for whether
1821 * at least one of them is on and whether at most one is on. (If we know
1822 * both or neither is on that's already stored more directly.) That's six
1823 * bits per dot. Bit number n represents the lines shown in dline_desc.
1824 *
1825 * Advanced Mode
1826 * Use edsf data structure to make equivalence classes of lines that are
1827 * known identical to or opposite to one another.
1828 */
1829
1830 /* The order the following are defined in is very important, see below.
1831 * The last two fields may seem non-obvious: they specify that when talking
1832 * about a square the dx and dy offsets should be added to the square coords to
1833 * get to the right dot. Where dx and dy are -1 this means that the dline
1834 * doesn't make sense for a square. */
1835 /* XXX can this be done with a struct instead? */
1836 #define DLINES \
1837 DLINE(DLINE_UD, UP, DOWN, -1, -1) \
1838 DLINE(DLINE_LR, LEFT, RIGHT, -1, -1) \
1839 DLINE(DLINE_UR, UP, RIGHT, 0, 1) \
1840 DLINE(DLINE_DL, DOWN, LEFT, 1, 0) \
1841 DLINE(DLINE_UL, UP, LEFT, 1, 1) \
1842 DLINE(DLINE_DR, DOWN, RIGHT, 0, 0)
1843
1844 #define OPP_DLINE(dline_desc) ((dline_desc) ^ 1)
1845
1846 enum dline_desc {
1847 #define DLINE(desc, dir1, dir2, dx, dy) \
1848 desc,
1849 DLINES
1850 #undef DLINE
1851 };
1852
1853 struct dline {
1854 enum dline_desc desc;
1855 enum direction dir1, dir2;
1856 int dx, dy;
1857 };
1858
1859 const static struct dline dlines[] = {
1860 #define DLINE(desc, dir1, dir2, dx, dy) \
1861 { desc, dir1, dir2, dx, dy },
1862 DLINES
1863 #undef DLINE
1864 };
1865
1866 #define FORALL_DOT_DLINES(dl_iter) \
1867 for (dl_iter = 0; dl_iter < lenof(dlines); ++dl_iter)
1868
1869 #define FORALL_SQUARE_DLINES(dl_iter) \
1870 for (dl_iter = 2; dl_iter < lenof(dlines); ++dl_iter)
1871
1872 #define DL2STR(d) \
1873 ((d==DLINE_UD) ? "DLINE_UD": \
1874 (d==DLINE_LR) ? "DLINE_LR": \
1875 (d==DLINE_UR) ? "DLINE_UR": \
1876 (d==DLINE_DL) ? "DLINE_DL": \
1877 (d==DLINE_UL) ? "DLINE_UL": \
1878 (d==DLINE_DR) ? "DLINE_DR": \
1879 "oops")
1880
1881 #define CHECK_DLINE_SENSIBLE(d) assert(dlines[(d)].dx != -1 && dlines[(d)].dy != -1)
1882
1883 /* This will fail an assertion if the directions handed to it are the same, as
1884 * no dline corresponds to that */
1885 static enum dline_desc dline_desc_from_dirs(enum direction dir1,
1886 enum direction dir2)
1887 {
1888 int i;
1889
1890 assert (dir1 != dir2);
1891
1892 for (i = 0; i < lenof(dlines); ++i) {
1893 if ((dir1 == dlines[i].dir1 && dir2 == dlines[i].dir2) ||
1894 (dir1 == dlines[i].dir2 && dir2 == dlines[i].dir1)) {
1895 return dlines[i].desc;
1896 }
1897 }
1898
1899 assert(!"dline not found");
1900 return DLINE_UD; /* placate compiler */
1901 }
1902
1903 /* The following functions allow you to get or set info about the selected
1904 * dline corresponding to the dot or square at [i,j]. You'll get an assertion
1905 * failure if you talk about a dline that doesn't exist, ie if you ask about
1906 * non-touching lines around a square. */
1907 static int get_dot_dline(const game_state *state, const char *dline_array,
1908 int i, int j, enum dline_desc desc)
1909 {
1910 /* fprintf(stderr, "get_dot_dline %p [%d,%d] %s\n", dline_array, i, j, DL2STR(desc)); */
1911 return BIT_SET(dline_array[i + (state->w + 1) * j], desc);
1912 }
1913
1914 static int set_dot_dline(game_state *state, char *dline_array,
1915 int i, int j, enum dline_desc desc
1916 #ifdef SHOW_WORKING
1917 , const char *reason
1918 #endif
1919 )
1920 {
1921 int ret;
1922 ret = SET_BIT(dline_array[i + (state->w + 1) * j], desc);
1923
1924 #ifdef SHOW_WORKING
1925 if (ret)
1926 fprintf(stderr, "set_dot_dline %p [%d,%d] %s (%s)\n", dline_array, i, j, DL2STR(desc), reason);
1927 #endif
1928 return ret;
1929 }
1930
1931 static int get_square_dline(game_state *state, char *dline_array,
1932 int i, int j, enum dline_desc desc)
1933 {
1934 CHECK_DLINE_SENSIBLE(desc);
1935 /* fprintf(stderr, "get_square_dline %p [%d,%d] %s\n", dline_array, i, j, DL2STR(desc)); */
1936 return BIT_SET(dline_array[(i+dlines[desc].dx) + (state->w + 1) * (j+dlines[desc].dy)],
1937 desc);
1938 }
1939
1940 static int set_square_dline(game_state *state, char *dline_array,
1941 int i, int j, enum dline_desc desc
1942 #ifdef SHOW_WORKING
1943 , const char *reason
1944 #endif
1945 )
1946 {
1947 int ret;
1948 CHECK_DLINE_SENSIBLE(desc);
1949 ret = SET_BIT(dline_array[(i+dlines[desc].dx) + (state->w + 1) * (j+dlines[desc].dy)], desc);
1950 #ifdef SHOW_WORKING
1951 if (ret)
1952 fprintf(stderr, "set_square_dline %p [%d,%d] %s (%s)\n", dline_array, i, j, DL2STR(desc), reason);
1953 #endif
1954 return ret;
1955 }
1956
1957 #ifdef SHOW_WORKING
1958 #define set_dot_dline(a, b, c, d, e) \
1959 set_dot_dline(a, b, c, d, e, __FUNCTION__)
1960 #define set_square_dline(a, b, c, d, e) \
1961 set_square_dline(a, b, c, d, e, __FUNCTION__)
1962 #endif
1963
1964 static int set_dot_opp_dline(game_state *state, char *dline_array,
1965 int i, int j, enum dline_desc desc)
1966 {
1967 return set_dot_dline(state, dline_array, i, j, OPP_DLINE(desc));
1968 }
1969
1970 static int set_square_opp_dline(game_state *state, char *dline_array,
1971 int i, int j, enum dline_desc desc)
1972 {
1973 return set_square_dline(state, dline_array, i, j, OPP_DLINE(desc));
1974 }
1975
1976 /* Find out if both the lines in the given dline are UNKNOWN */
1977 static int dline_both_unknown(const game_state *state, int i, int j,
1978 enum dline_desc desc)
1979 {
1980 return
1981 (get_line_status_from_point(state, i, j, dlines[desc].dir1) == LINE_UNKNOWN) &&
1982 (get_line_status_from_point(state, i, j, dlines[desc].dir2) == LINE_UNKNOWN);
1983 }
1984
1985 #define SQUARE_DLINES \
1986 HANDLE_DLINE(DLINE_UL, RIGHTOF_SQUARE, BELOW_SQUARE, 1, 1); \
1987 HANDLE_DLINE(DLINE_UR, LEFTOF_SQUARE, BELOW_SQUARE, 0, 1); \
1988 HANDLE_DLINE(DLINE_DL, RIGHTOF_SQUARE, ABOVE_SQUARE, 1, 0); \
1989 HANDLE_DLINE(DLINE_DR, LEFTOF_SQUARE, ABOVE_SQUARE, 0, 0);
1990
1991 #define DOT_DLINES \
1992 HANDLE_DLINE(DLINE_UD, ABOVE_DOT, BELOW_DOT); \
1993 HANDLE_DLINE(DLINE_LR, LEFTOF_DOT, RIGHTOF_DOT); \
1994 HANDLE_DLINE(DLINE_UL, ABOVE_DOT, LEFTOF_DOT); \
1995 HANDLE_DLINE(DLINE_UR, ABOVE_DOT, RIGHTOF_DOT); \
1996 HANDLE_DLINE(DLINE_DL, BELOW_DOT, LEFTOF_DOT); \
1997 HANDLE_DLINE(DLINE_DR, BELOW_DOT, RIGHTOF_DOT);
1998
1999 static void array_setall(char *array, char from, char to, int len)
2000 {
2001 char *p = array, *p_old = p;
2002 int len_remaining = len;
2003
2004 while ((p = memchr(p, from, len_remaining))) {
2005 *p = to;
2006 len_remaining -= p - p_old;
2007 p_old = p;
2008 }
2009 }
2010
2011
2012
2013 static int get_line_status_from_point(const game_state *state,
2014 int x, int y, enum direction d)
2015 {
2016 switch (d) {
2017 case LEFT:
2018 return LEFTOF_DOT(state, x, y);
2019 case RIGHT:
2020 return RIGHTOF_DOT(state, x, y);
2021 case UP:
2022 return ABOVE_DOT(state, x, y);
2023 case DOWN:
2024 return BELOW_DOT(state, x, y);
2025 }
2026
2027 return 0;
2028 }
2029
2030 /* First and second args are coord offset from top left of square to one end
2031 * of line in question, third and fourth args are the direction from the first
2032 * end of the line to the second. Fifth arg is the direction of the line from
2033 * the coord offset position.
2034 * How confusing.
2035 */
2036 #define SQUARE_LINES \
2037 SQUARE_LINE( 0, 0, RIGHT, RIGHTOF_DOT, UP); \
2038 SQUARE_LINE( 0, +1, RIGHT, RIGHTOF_DOT, DOWN); \
2039 SQUARE_LINE( 0, 0, DOWN, BELOW_DOT, LEFT); \
2040 SQUARE_LINE(+1, 0, DOWN, BELOW_DOT, RIGHT);
2041
2042 /* Set pairs of lines around this square which are known to be identical to
2043 * the given line_state */
2044 static int square_setall_identical(solver_state *sstate, int x, int y,
2045 enum line_state line_new)
2046 {
2047 /* can[dir] contains the canonical line associated with the line in
2048 * direction dir from the square in question. Similarly inv[dir] is
2049 * whether or not the line in question is inverse to its canonical
2050 * element. */
2051 int can[4], inv[4], i, j;
2052 int retval = FALSE;
2053
2054 i = 0;
2055
2056 #if 0
2057 fprintf(stderr, "Setting all identical unknown lines around square "
2058 "[%d,%d] to %d:\n", x, y, line_new);
2059 #endif
2060
2061 #define SQUARE_LINE(dx, dy, linedir, dir_dot, sqdir) \
2062 can[sqdir] = \
2063 edsf_canonify(sstate->hard->linedsf, \
2064 LINEDSF_INDEX(sstate->state, x+(dx), y+(dy), linedir), \
2065 &inv[sqdir]);
2066
2067 SQUARE_LINES;
2068
2069 #undef SQUARE_LINE
2070
2071 for (j = 0; j < 4; ++j) {
2072 for (i = 0; i < 4; ++i) {
2073 if (i == j)
2074 continue;
2075
2076 if (can[i] == can[j] && inv[i] == inv[j]) {
2077
2078 /* Lines in directions i and j are identical.
2079 * Only do j now, we'll do i when the loop causes us to
2080 * consider {i,j} in the opposite order. */
2081 #define SQUARE_LINE(dx, dy, dir, c, sqdir) \
2082 if (j == sqdir) { \
2083 retval = set_line_bydot(sstate, x+(dx), y+(dy), dir, line_new); \
2084 if (retval) { \
2085 break; \
2086 } \
2087 }
2088
2089 SQUARE_LINES;
2090
2091 #undef SQUARE_LINE
2092 }
2093 }
2094 }
2095
2096 return retval;
2097 }
2098
2099 #if 0
2100 /* Set all identical lines passing through the current dot to the chosen line
2101 * state. (implicitly this only looks at UNKNOWN lines) */
2102 static int dot_setall_identical(solver_state *sstate, int x, int y,
2103 enum line_state line_new)
2104 {
2105 /* The implementation of this is a little naughty but I can't see how to do
2106 * it elegantly any other way */
2107 int can[4], inv[4], i, j;
2108 enum direction d;
2109 int retval = FALSE;
2110
2111 for (d = 0; d < 4; ++d) {
2112 can[d] = edsf_canonify(sstate->hard->linedsf,
2113 LINEDSF_INDEX(sstate->state, x, y, d),
2114 inv+d);
2115 }
2116
2117 for (j = 0; j < 4; ++j) {
2118 next_j:
2119 for (i = 0; i < j; ++i) {
2120 if (can[i] == can[j] && inv[i] == inv[j]) {
2121 /* Lines in directions i and j are identical */
2122 if (get_line_status_from_point(sstate->state, x, y, j) ==
2123 LINE_UNKNOWN) {
2124 set_line_bydot(sstate->state, x, y, j,
2125 line_new);
2126 retval = TRUE;
2127 goto next_j;
2128 }
2129 }
2130
2131 }
2132 }
2133
2134 return retval;
2135 }
2136 #endif
2137
2138 static int square_setboth_in_dline(solver_state *sstate, enum dline_desc dd,
2139 int i, int j, enum line_state line_new)
2140 {
2141 int retval = FALSE;
2142 const struct dline dll = dlines[dd], *dl = &dll;
2143
2144 #if 0
2145 fprintf(stderr, "square_setboth_in_dline %s [%d,%d] to %d\n",
2146 DL2STR(dd), i, j, line_new);
2147 #endif
2148
2149 CHECK_DLINE_SENSIBLE(dd);
2150
2151 retval |=
2152 set_line_bydot(sstate, i+dl->dx, j+dl->dy, dl->dir1, line_new);
2153 retval |=
2154 set_line_bydot(sstate, i+dl->dx, j+dl->dy, dl->dir2, line_new);
2155
2156 return retval;
2157 }
2158
2159 /* Call this function to register that the two unknown lines going into the dot
2160 * [x,y] are identical or opposite (depending on the value of 'inverse'). This
2161 * function will cause an assertion failure if anything other than exactly two
2162 * lines into the dot are unknown.
2163 * As usual returns TRUE if any progress was made, otherwise FALSE. */
2164 static int dot_relate_2_unknowns(solver_state *sstate, int x, int y, int inverse)
2165 {
2166 enum direction d1=DOWN, d2=DOWN; /* Just to keep compiler quiet */
2167 int dirs_set = 0;
2168
2169 #define TRY_DIR(d) \
2170 if (get_line_status_from_point(sstate->state, x, y, d) == \
2171 LINE_UNKNOWN) { \
2172 if (dirs_set == 0) \
2173 d1 = d; \
2174 else { \
2175 assert(dirs_set == 1); \
2176 d2 = d; \
2177 } \
2178 dirs_set++; \
2179 } while (0)
2180
2181 TRY_DIR(UP);
2182 TRY_DIR(DOWN);
2183 TRY_DIR(LEFT);
2184 TRY_DIR(RIGHT);
2185 #undef TRY_DIR
2186
2187 assert(dirs_set == 2);
2188 assert(d1 != d2);
2189
2190 #if 0
2191 fprintf(stderr, "Lines in direction %s and %s from dot [%d,%d] are %s\n",
2192 DIR2STR(d1), DIR2STR(d2), x, y, inverse?"opposite":"the same");
2193 #endif
2194
2195 return merge_lines(sstate, x, y, d1, x, y, d2, inverse);
2196 }
2197
2198 /* Very similar to dot_relate_2_unknowns. */
2199 static int square_relate_2_unknowns(solver_state *sstate, int x, int y, int inverse)
2200 {
2201 enum direction d1=DOWN, d2=DOWN;
2202 int x1=-1, y1=-1, x2=-1, y2=-1;
2203 int dirs_set = 0;
2204
2205 #if 0
2206 fprintf(stderr, "2 unknowns around square [%d,%d] are %s\n",
2207 x, y, inverse?"opposite":"the same");
2208 #endif
2209
2210 #define TRY_DIR(i, j, d, dir_sq) \
2211 do { \
2212 if (dir_sq(sstate->state, x, y) == LINE_UNKNOWN) { \
2213 if (dirs_set == 0) { \
2214 d1 = d; x1 = i; y1 = j; \
2215 } else { \
2216 assert(dirs_set == 1); \
2217 d2 = d; x2 = i; y2 = j; \
2218 } \
2219 dirs_set++; \
2220 } \
2221 } while (0)
2222
2223 TRY_DIR(x, y, RIGHT, ABOVE_SQUARE);
2224 TRY_DIR(x, y, DOWN, LEFTOF_SQUARE);
2225 TRY_DIR(x+1, y, DOWN, RIGHTOF_SQUARE);
2226 TRY_DIR(x, y+1, RIGHT, BELOW_SQUARE);
2227 #undef TRY_DIR
2228
2229 assert(dirs_set == 2);
2230
2231 #if 0
2232 fprintf(stderr, "Line in direction %s from dot [%d,%d] and line in direction %s from dot [%2d,%2d] are %s\n",
2233 DIR2STR(d1), x1, y1, DIR2STR(d2), x2, y2, inverse?"opposite":"the same");
2234 #endif
2235
2236 return merge_lines(sstate, x1, y1, d1, x2, y2, d2, inverse);
2237 }
2238
2239 /* Figure out if any dlines can be 'collapsed' (and do so if they can). This
2240 * can happen if one of the lines is known and due to the dline status this
2241 * tells us state of the other, or if there's an interaction with the linedsf
2242 * (ie if atmostone is set for a dline and the lines are known identical they
2243 * must both be LINE_NO, etc). XXX at the moment only the former is
2244 * implemented, and indeed the latter should be implemented in the hard mode
2245 * solver only.
2246 */
2247 static int dot_collapse_dlines(solver_state *sstate, int i, int j)
2248 {
2249 int progress = FALSE;
2250 enum direction dir1, dir2;
2251 int dir1st;
2252 int dlset;
2253 game_state *state = sstate->state;
2254 enum dline_desc dd;
2255
2256 for (dir1 = 0; dir1 < 4; dir1++) {
2257 dir1st = get_line_status_from_point(state, i, j, dir1);
2258 if (dir1st == LINE_UNKNOWN)
2259 continue;
2260 /* dir2 iterates over the whole range rather than starting at dir1+1
2261 * because test below is asymmetric */
2262 for (dir2 = 0; dir2 < 4; dir2++) {
2263 if (dir1 == dir2)
2264 continue;
2265
2266 if ((i == 0 && (dir1 == LEFT || dir2 == LEFT)) ||
2267 (j == 0 && (dir1 == UP || dir2 == UP)) ||
2268 (i == state->w && (dir1 == RIGHT || dir2 == RIGHT)) ||
2269 (j == state->h && (dir1 == DOWN || dir2 == DOWN))) {
2270 continue;
2271 }
2272
2273 #if 0
2274 fprintf(stderr, "dot_collapse_dlines [%d,%d], %s %s\n", i, j,
2275 DIR2STR(dir1), DIR2STR(dir2));
2276 #endif
2277
2278 if (get_line_status_from_point(state, i, j, dir2) ==
2279 LINE_UNKNOWN) {
2280 dd = dline_desc_from_dirs(dir1, dir2);
2281
2282 dlset = get_dot_dline(state, sstate->normal->dot_atmostone, i, j, dd);
2283 if (dlset && dir1st == LINE_YES) {
2284 /* fprintf(stderr, "setting %s to NO\n", DIR2STR(dir2)); */
2285 progress |=
2286 set_line_bydot(sstate, i, j, dir2, LINE_NO);
2287 }
2288
2289 dlset = get_dot_dline(state, sstate->normal->dot_atleastone, i, j, dd);
2290 if (dlset && dir1st == LINE_NO) {
2291 /* fprintf(stderr, "setting %s to YES\n", DIR2STR(dir2)); */
2292 progress |=
2293 set_line_bydot(sstate, i, j, dir2, LINE_YES);
2294 }
2295 }
2296 }
2297 }
2298
2299 return progress;
2300 }
2301
2302 /*
2303 * These are the main solver functions.
2304 *
2305 * Their return values are diff values corresponding to the lowest mode solver
2306 * that would notice the work that they have done. For example if the normal
2307 * mode solver adds actual lines or crosses, it will return DIFF_EASY as the
2308 * easy mode solver might be able to make progress using that. It doesn't make
2309 * sense for one of them to return a diff value higher than that of the
2310 * function itself.
2311 *
2312 * Each function returns the lowest value it can, as early as possible, in
2313 * order to try and pass as much work as possible back to the lower level
2314 * solvers which progress more quickly.
2315 */
2316
2317 /* PROPOSED NEW DESIGN:
2318 * We have a work queue consisting of 'events' notifying us that something has
2319 * happened that a particular solver mode might be interested in. For example
2320 * the hard mode solver might do something that helps the normal mode solver at
2321 * dot [x,y] in which case it will enqueue an event recording this fact. Then
2322 * we pull events off the work queue, and hand each in turn to the solver that
2323 * is interested in them. If a solver reports that it failed we pass the same
2324 * event on to progressively more advanced solvers and the loop detector. Once
2325 * we've exhausted an event, or it has helped us progress, we drop it and
2326 * continue to the next one. The events are sorted first in order of solver
2327 * complexity (easy first) then order of insertion (oldest first).
2328 * Once we run out of events we loop over each permitted solver in turn
2329 * (easiest first) until either a deduction is made (and an event therefore
2330 * emerges) or no further deductions can be made (in which case we've failed).
2331 *
2332 * QUESTIONS:
2333 * * How do we 'loop over' a solver when both dots and squares are concerned.
2334 * Answer: first all squares then all dots.
2335 */
2336
2337 static int easy_mode_deductions(solver_state *sstate)
2338 {
2339 int i, j, h, w, current_yes, current_no;
2340 game_state *state;
2341 int diff = DIFF_MAX;
2342
2343 state = sstate->state;
2344 h = state->h;
2345 w = state->w;
2346
2347 /* Per-square deductions */
2348 FORALL_SQUARES(state, i, j) {
2349 if (sstate->square_solved[SQUARE_INDEX(state, i, j)])
2350 continue;
2351
2352 current_yes = SQUARE_YES_COUNT(sstate, i, j);
2353 current_no = SQUARE_NO_COUNT(sstate, i, j);
2354
2355 if (current_yes + current_no == 4) {
2356 sstate->square_solved[SQUARE_INDEX(state, i, j)] = TRUE;
2357 /* diff = min(diff, DIFF_EASY); */
2358 continue;
2359 }
2360
2361 if (CLUE_AT(state, i, j) < 0)
2362 continue;
2363
2364 if (CLUE_AT(state, i, j) < current_yes) {
2365 #if 0
2366 fprintf(stderr, "detected error [%d,%d] in %s at line %d\n", i, j, __FUNCTION__, __LINE__);
2367 #endif
2368 sstate->solver_status = SOLVER_MISTAKE;
2369 return DIFF_EASY;
2370 }
2371 if (CLUE_AT(state, i, j) == current_yes) {
2372 if (square_setall(sstate, i, j, LINE_UNKNOWN, LINE_NO))
2373 diff = min(diff, DIFF_EASY);
2374 sstate->square_solved[SQUARE_INDEX(state, i, j)] = TRUE;
2375 continue;
2376 }
2377
2378 if (4 - CLUE_AT(state, i, j) < current_no) {
2379 #if 0
2380 fprintf(stderr, "detected error [%d,%d] in %s at line %d\n", i, j, __FUNCTION__, __LINE__);
2381 #endif
2382 sstate->solver_status = SOLVER_MISTAKE;
2383 return DIFF_EASY;
2384 }
2385 if (4 - CLUE_AT(state, i, j) == current_no) {
2386 if (square_setall(sstate, i, j, LINE_UNKNOWN, LINE_YES))
2387 diff = min(diff, DIFF_EASY);
2388 sstate->square_solved[SQUARE_INDEX(state, i, j)] = TRUE;
2389 continue;
2390 }
2391 }
2392
2393 check_caches(sstate);
2394
2395 /* Per-dot deductions */
2396 FORALL_DOTS(state, i, j) {
2397 if (sstate->dot_solved[DOT_INDEX(state, i, j)])
2398 continue;
2399
2400 switch (DOT_YES_COUNT(sstate, i, j)) {
2401 case 0:
2402 switch (DOT_NO_COUNT(sstate, i, j)) {
2403 case 3:
2404 #if 0
2405 fprintf(stderr, "dot [%d,%d]: 0 yes, 3 no\n", i, j);
2406 #endif
2407 dot_setall(sstate, i, j, LINE_UNKNOWN, LINE_NO);
2408 diff = min(diff, DIFF_EASY);
2409 /* fall through */
2410 case 4:
2411 sstate->dot_solved[DOT_INDEX(state, i, j)] = TRUE;
2412 break;
2413 }
2414 break;
2415 case 1:
2416 switch (DOT_NO_COUNT(sstate, i, j)) {
2417 case 2: /* 1 yes, 2 no */
2418 #if 0
2419 fprintf(stderr, "dot [%d,%d]: 1 yes, 2 no\n", i, j);
2420 #endif
2421 dot_setall(sstate, i, j, LINE_UNKNOWN, LINE_YES);
2422 diff = min(diff, DIFF_EASY);
2423 sstate->dot_solved[DOT_INDEX(state, i, j)] = TRUE;
2424 break;
2425 case 3: /* 1 yes, 3 no */
2426 #if 0
2427 fprintf(stderr, "detected error [%d,%d] in %s at line %d\n", i, j, __FUNCTION__, __LINE__);
2428 #endif
2429 sstate->solver_status = SOLVER_MISTAKE;
2430 return DIFF_EASY;
2431 }
2432 break;
2433 case 2:
2434 #if 0
2435 fprintf(stderr, "dot [%d,%d]: 2 yes\n", i, j);
2436 #endif
2437 dot_setall(sstate, i, j, LINE_UNKNOWN, LINE_NO);
2438 diff = min(diff, DIFF_EASY);
2439 sstate->dot_solved[DOT_INDEX(state, i, j)] = TRUE;
2440 break;
2441 case 3:
2442 case 4:
2443 #if 0
2444 fprintf(stderr, "detected error [%d,%d] in %s at line %d\n", i, j, __FUNCTION__, __LINE__);
2445 #endif
2446 sstate->solver_status = SOLVER_MISTAKE;
2447 return DIFF_EASY;
2448 }
2449 }
2450
2451 check_caches(sstate);
2452
2453 return diff;
2454 }
2455
2456 static int normal_mode_deductions(solver_state *sstate)
2457 {
2458 int i, j;
2459 game_state *state = sstate->state;
2460 enum dline_desc dd;
2461 int diff = DIFF_MAX;
2462
2463 FORALL_SQUARES(state, i, j) {
2464 if (sstate->square_solved[SQUARE_INDEX(state, i, j)])
2465 continue;
2466
2467 if (CLUE_AT(state, i, j) < 0)
2468 continue;
2469
2470 switch (CLUE_AT(state, i, j)) {
2471 case 1:
2472 #if 0
2473 fprintf(stderr, "clue [%d,%d] is 1, doing dline ops\n",
2474 i, j);
2475 #endif
2476 FORALL_SQUARE_DLINES(dd) {
2477 /* At most one of any DLINE can be set */
2478 if (set_square_dline(state,
2479 sstate->normal->dot_atmostone,
2480 i, j, dd)) {
2481 diff = min(diff, DIFF_NORMAL);
2482 }
2483
2484 if (get_square_dline(state,
2485 sstate->normal->dot_atleastone,
2486 i, j, dd)) {
2487 /* This DLINE provides enough YESes to solve the clue */
2488 if (square_setboth_in_dline(sstate, OPP_DLINE(dd),
2489 i, j, LINE_NO)) {
2490 diff = min(diff, DIFF_EASY);
2491 }
2492 }
2493 }
2494
2495 break;
2496 case 2:
2497 /* If at least one of one DLINE is set, at most one
2498 * of the opposing one is and vice versa */
2499 #if 0
2500 fprintf(stderr, "clue [%d,%d] is 2, doing dline ops\n",
2501 i, j);
2502 #endif
2503 FORALL_SQUARE_DLINES(dd) {
2504 if (get_square_dline(state,
2505 sstate->normal->dot_atmostone,
2506 i, j, dd)) {
2507 if (set_square_opp_dline(state,
2508 sstate->normal->dot_atleastone,
2509 i, j, dd)) {
2510 diff = min(diff, DIFF_NORMAL);
2511 }
2512 }
2513 if (get_square_dline(state,
2514 sstate->normal->dot_atleastone,
2515 i, j, dd)) {
2516 if (set_square_opp_dline(state,
2517 sstate->normal->dot_atmostone,
2518 i, j, dd)) {
2519 diff = min(diff, DIFF_NORMAL);
2520 }
2521 }
2522 }
2523 break;
2524 case 3:
2525 #if 0
2526 fprintf(stderr, "clue [%d,%d] is 3, doing dline ops\n",
2527 i, j);
2528 #endif
2529 FORALL_SQUARE_DLINES(dd) {
2530 /* At least one of any DLINE must be set */
2531 if (set_square_dline(state,
2532 sstate->normal->dot_atleastone,
2533 i, j, dd)) {
2534 diff = min(diff, DIFF_NORMAL);
2535 }
2536
2537 if (get_square_dline(state,
2538 sstate->normal->dot_atmostone,
2539 i, j, dd)) {
2540 /* This DLINE provides enough NOs to solve the clue */
2541 if (square_setboth_in_dline(sstate, OPP_DLINE(dd),
2542 i, j, LINE_YES)) {
2543 diff = min(diff, DIFF_EASY);
2544 }
2545 }
2546 }
2547 break;
2548 }
2549 }
2550
2551 check_caches(sstate);
2552
2553 if (diff < DIFF_NORMAL)
2554 return diff;
2555
2556 FORALL_DOTS(state, i, j) {
2557 if (sstate->dot_solved[DOT_INDEX(state, i, j)])
2558 continue;
2559
2560 #if 0
2561 text = game_text_format(state);
2562 fprintf(stderr, "-----------------\n%s", text);
2563 sfree(text);
2564 #endif
2565
2566 switch (DOT_YES_COUNT(sstate, i, j)) {
2567 case 0:
2568 switch (DOT_NO_COUNT(sstate, i, j)) {
2569 case 1:
2570 /* Make note that at most one of each unknown DLINE
2571 * is YES */
2572 break;
2573 }
2574 break;
2575
2576 case 1:
2577 switch (DOT_NO_COUNT(sstate, i, j)) {
2578 case 1:
2579 /* 1 yes, 1 no, so exactly one of unknowns is
2580 * yes */
2581 #if 0
2582 fprintf(stderr, "dot [%d,%d]: 1 yes, 1 no\n", i, j);
2583 #endif
2584 FORALL_DOT_DLINES(dd) {
2585 if (dline_both_unknown(state,
2586 i, j, dd)) {
2587 if (set_dot_dline(state,
2588 sstate->normal->dot_atleastone,
2589 i, j, dd)) {
2590 diff = min(diff, DIFF_NORMAL);
2591 }
2592 }
2593 }
2594
2595 /* fall through */
2596 case 0:
2597 #if 0
2598 fprintf(stderr, "dot [%d,%d]: 1 yes, 0 or 1 no\n", i, j);
2599 #endif
2600 /* 1 yes, fewer than 2 no, so at most one of
2601 * unknowns is yes */
2602 FORALL_DOT_DLINES(dd) {
2603 if (dline_both_unknown(state,
2604 i, j, dd)) {
2605 if (set_dot_dline(state,
2606 sstate->normal->dot_atmostone,
2607 i, j, dd)) {
2608 diff = min(diff, DIFF_NORMAL);
2609 }
2610 }
2611 }
2612 break;
2613 }
2614 break;
2615 }
2616
2617 /* DLINE deductions that don't depend on the exact number of
2618 * LINE_YESs or LINE_NOs */
2619
2620 /* If at least one of a dline in a dot is YES, at most one
2621 * of the opposite dline to that dot must be YES. */
2622 FORALL_DOT_DLINES(dd) {
2623 if (get_dot_dline(state,
2624 sstate->normal->dot_atleastone,
2625 i, j, dd)) {
2626 if (set_dot_opp_dline(state,
2627 sstate->normal->dot_atmostone,
2628 i, j, dd)) {
2629 diff = min(diff, DIFF_NORMAL);
2630 }
2631 }
2632 }
2633
2634 if (dot_collapse_dlines(sstate, i, j))
2635 diff = min(diff, DIFF_EASY);
2636 }
2637 check_caches(sstate);
2638
2639 return diff;
2640 }
2641
2642 static int hard_mode_deductions(solver_state *sstate)
2643 {
2644 int i, j, a, b, s;
2645 game_state *state = sstate->state;
2646 const int h=state->h, w=state->w;
2647 enum direction dir1, dir2;
2648 int can1, can2, inv1, inv2;
2649 int diff = DIFF_MAX;
2650 enum dline_desc dd;
2651
2652 FORALL_SQUARES(state, i, j) {
2653 if (sstate->square_solved[SQUARE_INDEX(state, i, j)])
2654 continue;
2655
2656 switch (CLUE_AT(state, i, j)) {
2657 case -1:
2658 continue;
2659
2660 case 1:
2661 if (square_setall_identical(sstate, i, j, LINE_NO))
2662 diff = min(diff, DIFF_EASY);
2663 break;
2664 case 3:
2665 if (square_setall_identical(sstate, i, j, LINE_YES))
2666 diff = min(diff, DIFF_EASY);
2667 break;
2668 }
2669
2670 if (SQUARE_YES_COUNT(sstate, i, j) +
2671 SQUARE_NO_COUNT(sstate, i, j) == 2) {
2672 /* There are exactly two unknown lines bordering this
2673 * square. */
2674 if (SQUARE_YES_COUNT(sstate, i, j) + 1 ==
2675 CLUE_AT(state, i, j)) {
2676 /* They must be different */
2677 if (square_relate_2_unknowns(sstate, i, j, TRUE))
2678 diff = min(diff, DIFF_HARD);
2679 }
2680 }
2681 }
2682
2683 check_caches(sstate);
2684
2685 FORALL_DOTS(state, i, j) {
2686 if (DOT_YES_COUNT(sstate, i, j) == 1 &&
2687 DOT_NO_COUNT(sstate, i, j) == 1) {
2688 if (dot_relate_2_unknowns(sstate, i, j, TRUE))
2689 diff = min(diff, DIFF_HARD);
2690 continue;
2691 }
2692
2693 if (DOT_YES_COUNT(sstate, i, j) == 0 &&
2694 DOT_NO_COUNT(sstate, i, j) == 2) {
2695 if (dot_relate_2_unknowns(sstate, i, j, FALSE))
2696 diff = min(diff, DIFF_HARD);
2697 continue;
2698 }
2699 }
2700
2701 /* If two lines into a dot are related, the other two lines into that dot
2702 * are related in the same way. */
2703
2704 /* iter over points that aren't on edges */
2705 for (i = 1; i < w; ++i) {
2706 for (j = 1; j < h; ++j) {
2707 if (sstate->dot_solved[DOT_INDEX(state, i, j)])
2708 continue;
2709
2710 /* iter over directions */
2711 for (dir1 = 0; dir1 < 4; ++dir1) {
2712 for (dir2 = dir1+1; dir2 < 4; ++dir2) {
2713 /* canonify both lines */
2714 can1 = edsf_canonify
2715 (sstate->hard->linedsf,
2716 LINEDSF_INDEX(state, i, j, dir1),
2717 &inv1);
2718 can2 = edsf_canonify
2719 (sstate->hard->linedsf,
2720 LINEDSF_INDEX(state, i, j, dir2),
2721 &inv2);
2722 /* merge opposite lines */
2723 if (can1 == can2) {
2724 if (merge_lines(sstate,
2725 i, j, OPP_DIR(dir1),
2726 i, j, OPP_DIR(dir2),
2727 inv1 ^ inv2)) {
2728 diff = min(diff, DIFF_HARD);
2729 }
2730 }
2731 }
2732 }
2733 }
2734 }
2735
2736 /* If the state of a line is known, deduce the state of its canonical line
2737 * too. */
2738 FORALL_DOTS(state, i, j) {
2739 /* Do this even if the dot we're on is solved */
2740 if (i < w) {
2741 can1 = edsf_canonify(sstate->hard->linedsf,
2742 LINEDSF_INDEX(state, i, j, RIGHT),
2743 &inv1);
2744 linedsf_deindex(state, can1, &a, &b, &dir1);
2745 s = RIGHTOF_DOT(state, i, j);
2746 if (s != LINE_UNKNOWN)
2747 {
2748 if (set_line_bydot(sstate, a, b, dir1, inv1 ? OPP(s) : s))
2749 diff = min(diff, DIFF_EASY);
2750 }
2751 }
2752 if (j < h) {
2753 can1 = edsf_canonify(sstate->hard->linedsf,
2754 LINEDSF_INDEX(state, i, j, DOWN),
2755 &inv1);
2756 linedsf_deindex(state, can1, &a, &b, &dir1);
2757 s = BELOW_DOT(state, i, j);
2758 if (s != LINE_UNKNOWN)
2759 {
2760 if (set_line_bydot(sstate, a, b, dir1, inv1 ? OPP(s) : s))
2761 diff = min(diff, DIFF_EASY);
2762 }
2763 }
2764 }
2765
2766 /* Interactions between dline and linedsf */
2767 FORALL_DOTS(state, i, j) {
2768 if (sstate->dot_solved[DOT_INDEX(state, i, j)])
2769 continue;
2770
2771 FORALL_DOT_DLINES(dd) {
2772 const struct dline dll = dlines[dd], *dl = &dll;
2773 if (i == 0 && (dl->dir1 == LEFT || dl->dir2 == LEFT))
2774 continue;
2775 if (i == w && (dl->dir1 == RIGHT || dl->dir2 == RIGHT))
2776 continue;
2777 if (j == 0 && (dl->dir1 == UP || dl->dir2 == UP))
2778 continue;
2779 if (j == h && (dl->dir1 == DOWN || dl->dir2 == DOWN))
2780 continue;
2781
2782 if (get_dot_dline(state, sstate->normal->dot_atleastone,
2783 i, j, dd) &&
2784 get_dot_dline(state, sstate->normal->dot_atmostone,
2785 i, j, dd)) {
2786 /* atleastone && atmostone => inverse */
2787 if (merge_lines(sstate, i, j, dl->dir1, i, j, dl->dir2, 1)) {
2788 diff = min(diff, DIFF_HARD);
2789 }
2790 } else {
2791 /* don't have atleastone and atmostone for this dline */
2792 can1 = edsf_canonify(sstate->hard->linedsf,
2793 LINEDSF_INDEX(state, i, j, dl->dir1),
2794 &inv1);
2795 can2 = edsf_canonify(sstate->hard->linedsf,
2796 LINEDSF_INDEX(state, i, j, dl->dir2),
2797 &inv2);
2798 if (can1 == can2) {
2799 if (inv1 == inv2) {
2800 /* identical => collapse dline */
2801 if (get_dot_dline(state,
2802 sstate->normal->dot_atleastone,
2803 i, j, dd)) {
2804 if (set_line_bydot(sstate, i, j,
2805 dl->dir1, LINE_YES)) {
2806 diff = min(diff, DIFF_EASY);
2807 }
2808 if (set_line_bydot(sstate, i, j,
2809 dl->dir2, LINE_YES)) {
2810 diff = min(diff, DIFF_EASY);
2811 }
2812 } else if (get_dot_dline(state,
2813 sstate->normal->dot_atmostone,
2814 i, j, dd)) {
2815 if (set_line_bydot(sstate, i, j,
2816 dl->dir1, LINE_NO)) {
2817 diff = min(diff, DIFF_EASY);
2818 }
2819 if (set_line_bydot(sstate, i, j,
2820 dl->dir2, LINE_NO)) {
2821 diff = min(diff, DIFF_EASY);
2822 }
2823 }
2824 } else {
2825 /* inverse => atleastone && atmostone */
2826 if (set_dot_dline(state,
2827 sstate->normal->dot_atleastone,
2828 i, j, dd)) {
2829 diff = min(diff, DIFF_NORMAL);
2830 }
2831 if (set_dot_dline(state,
2832 sstate->normal->dot_atmostone,
2833 i, j, dd)) {
2834 diff = min(diff, DIFF_NORMAL);
2835 }
2836 }
2837 }
2838 }
2839 }
2840 }
2841
2842 /* If the state of the canonical line for line 'l' is known, deduce the
2843 * state of 'l' */
2844 FORALL_DOTS(state, i, j) {
2845 if (sstate->dot_solved[DOT_INDEX(state, i, j)])
2846 continue;
2847
2848 if (i < w) {
2849 can1 = edsf_canonify(sstate->hard->linedsf,
2850 LINEDSF_INDEX(state, i, j, RIGHT),
2851 &inv1);
2852 linedsf_deindex(state, can1, &a, &b, &dir1);
2853 s = get_line_status_from_point(state, a, b, dir1);
2854 if (s != LINE_UNKNOWN)
2855 {
2856 if (set_line_bydot(sstate, i, j, RIGHT, inv1 ? OPP(s) : s))
2857 diff = min(diff, DIFF_EASY);
2858 }
2859 }
2860 if (j < h) {
2861 can1 = edsf_canonify(sstate->hard->linedsf,
2862 LINEDSF_INDEX(state, i, j, DOWN),
2863 &inv1);
2864 linedsf_deindex(state, can1, &a, &b, &dir1);
2865 s = get_line_status_from_point(state, a, b, dir1);
2866 if (s != LINE_UNKNOWN)
2867 {
2868 if (set_line_bydot(sstate, i, j, DOWN, inv1 ? OPP(s) : s))
2869 diff = min(diff, DIFF_EASY);
2870 }
2871 }
2872 }
2873
2874 return diff;
2875 }
2876
2877 static int loop_deductions(solver_state *sstate)
2878 {
2879 int edgecount = 0, clues = 0, satclues = 0, sm1clues = 0;
2880 game_state *state = sstate->state;
2881 int shortest_chainlen = DOT_COUNT(state);
2882 int loop_found = FALSE;
2883 int d;
2884 int dots_connected;
2885 int progress = FALSE;
2886 int i, j;
2887
2888 /*
2889 * Go through the grid and update for all the new edges.
2890 * Since merge_dots() is idempotent, the simplest way to
2891 * do this is just to update for _all_ the edges.
2892 *
2893 * Also, while we're here, we count the edges, count the
2894 * clues, count the satisfied clues, and count the
2895 * satisfied-minus-one clues.
2896 */
2897 FORALL_DOTS(state, i, j) {
2898 if (RIGHTOF_DOT(state, i, j) == LINE_YES) {
2899 loop_found |= merge_dots(sstate, i, j, i+1, j);
2900 edgecount++;
2901 }
2902 if (BELOW_DOT(state, i, j) == LINE_YES) {
2903 loop_found |= merge_dots(sstate, i, j, i, j+1);
2904 edgecount++;
2905 }
2906
2907 if (CLUE_AT(state, i, j) >= 0) {
2908 int c = CLUE_AT(state, i, j);
2909 int o = SQUARE_YES_COUNT(sstate, i, j);
2910 if (o == c)
2911 satclues++;
2912 else if (o == c-1)
2913 sm1clues++;
2914 clues++;
2915 }
2916 }
2917
2918 for (i = 0; i < DOT_COUNT(state); ++i) {
2919 dots_connected =
2920 sstate->looplen[dsf_canonify(sstate->dotdsf, i)];
2921 if (dots_connected > 1)
2922 shortest_chainlen = min(shortest_chainlen, dots_connected);
2923 }
2924
2925 assert(sstate->solver_status == SOLVER_INCOMPLETE);
2926
2927 if (satclues == clues && shortest_chainlen == edgecount) {
2928 sstate->solver_status = SOLVER_SOLVED;
2929 /* This discovery clearly counts as progress, even if we haven't
2930 * just added any lines or anything */
2931 progress = TRUE;
2932 goto finished_loop_deductionsing;
2933 }
2934
2935 /*
2936 * Now go through looking for LINE_UNKNOWN edges which
2937 * connect two dots that are already in the same
2938 * equivalence class. If we find one, test to see if the
2939 * loop it would create is a solution.
2940 */
2941 FORALL_DOTS(state, i, j) {
2942 for (d = 0; d < 2; d++) {
2943 int i2, j2, eqclass, val;
2944
2945 if (d == 0) {
2946 if (RIGHTOF_DOT(state, i, j) !=
2947 LINE_UNKNOWN)
2948 continue;
2949 i2 = i+1;
2950 j2 = j;
2951 } else {
2952 if (BELOW_DOT(state, i, j) !=
2953 LINE_UNKNOWN) {
2954 continue;
2955 }
2956 i2 = i;
2957 j2 = j+1;
2958 }
2959
2960 eqclass = dsf_canonify(sstate->dotdsf, j * (state->w+1) + i);
2961 if (eqclass != dsf_canonify(sstate->dotdsf,
2962 j2 * (state->w+1) + i2)) {
2963 continue;
2964 }
2965
2966 val = LINE_NO; /* loop is bad until proven otherwise */
2967
2968 /*
2969 * This edge would form a loop. Next
2970 * question: how long would the loop be?
2971 * Would it equal the total number of edges
2972 * (plus the one we'd be adding if we added
2973 * it)?
2974 */
2975 if (sstate->looplen[eqclass] == edgecount + 1) {
2976 int sm1_nearby;
2977 int cx, cy;
2978
2979 /*
2980 * This edge would form a loop which
2981 * took in all the edges in the entire
2982 * grid. So now we need to work out
2983 * whether it would be a valid solution
2984 * to the puzzle, which means we have to
2985 * check if it satisfies all the clues.
2986 * This means that every clue must be
2987 * either satisfied or satisfied-minus-
2988 * 1, and also that the number of
2989 * satisfied-minus-1 clues must be at
2990 * most two and they must lie on either
2991 * side of this edge.
2992 */
2993 sm1_nearby = 0;
2994 cx = i - (j2-j);
2995 cy = j - (i2-i);
2996 if (CLUE_AT(state, cx,cy) >= 0 &&
2997 square_order(state, cx,cy, LINE_YES) ==
2998 CLUE_AT(state, cx,cy) - 1) {
2999 sm1_nearby++;
3000 }
3001 if (CLUE_AT(state, i, j) >= 0 &&
3002 SQUARE_YES_COUNT(sstate, i, j) ==
3003 CLUE_AT(state, i, j) - 1) {
3004 sm1_nearby++;
3005 }
3006 if (sm1clues == sm1_nearby &&
3007 sm1clues + satclues == clues) {
3008 val = LINE_YES; /* loop is good! */
3009 }
3010 }
3011
3012 /*
3013 * Right. Now we know that adding this edge
3014 * would form a loop, and we know whether
3015 * that loop would be a viable solution or
3016 * not.
3017 *
3018 * If adding this edge produces a solution,
3019 * then we know we've found _a_ solution but
3020 * we don't know that it's _the_ solution -
3021 * if it were provably the solution then
3022 * we'd have deduced this edge some time ago
3023 * without the need to do loop detection. So
3024 * in this state we return SOLVER_AMBIGUOUS,
3025 * which has the effect that hitting Solve
3026 * on a user-provided puzzle will fill in a
3027 * solution but using the solver to
3028 * construct new puzzles won't consider this
3029 * a reasonable deduction for the user to
3030 * make.
3031 */
3032 if (d == 0) {
3033 progress = set_line_bydot(sstate, i, j, RIGHT, val);
3034 assert(progress == TRUE);
3035 } else {
3036 progress = set_line_bydot(sstate, i, j, DOWN, val);
3037 assert(progress == TRUE);
3038 }
3039 if (val == LINE_YES) {
3040 sstate->solver_status = SOLVER_AMBIGUOUS;
3041 goto finished_loop_deductionsing;
3042 }
3043 }
3044 }
3045
3046 finished_loop_deductionsing:
3047 return progress ? DIFF_EASY : DIFF_MAX;
3048 }
3049
3050 /* This will return a dynamically allocated solver_state containing the (more)
3051 * solved grid */
3052 static solver_state *solve_game_rec(const solver_state *sstate_start,
3053 int diff)
3054 {
3055 int i, j;
3056 int w, h;
3057 solver_state *sstate, *sstate_saved, *sstate_tmp;
3058 solver_state *sstate_rec_solved;
3059 int recursive_soln_count;
3060 int solver_progress;
3061 game_state *state;
3062
3063 /* Indicates which solver we should call next. This is a sensible starting
3064 * point */
3065 int current_solver = DIFF_EASY, next_solver;
3066 #ifdef SHOW_WORKING
3067 char *text;
3068 #endif
3069
3070 #if 0
3071 printf("solve_game_rec: recursion_remaining = %d\n",
3072 sstate_start->recursion_remaining);
3073 #endif
3074
3075 sstate = dup_solver_state(sstate_start);
3076
3077 /* Cache the values of some variables for readability */
3078 state = sstate->state;
3079 h = state->h;
3080 w = state->w;
3081
3082 sstate_saved = NULL;
3083
3084 nonrecursive_solver:
3085 solver_progress = FALSE;
3086
3087 check_caches(sstate);
3088
3089 do {
3090 #ifdef SHOW_WORKING
3091 text = game_text_format(state);
3092 fprintf(stderr, "-----------------\n%s", text);
3093 sfree(text);
3094 #endif
3095
3096 if (sstate->solver_status == SOLVER_MISTAKE)
3097 return sstate;
3098
3099 /* fprintf(stderr, "Invoking solver %d\n", current_solver); */
3100 next_solver = solver_fns[current_solver](sstate);
3101
3102 if (next_solver == DIFF_MAX) {
3103 /* fprintf(stderr, "Current solver failed\n"); */
3104 if (current_solver < diff && current_solver + 1 < DIFF_MAX) {
3105 /* Try next beefier solver */
3106 next_solver = current_solver + 1;
3107 } else {
3108 /* fprintf(stderr, "Doing loop deductions\n"); */
3109 next_solver = loop_deductions(sstate);
3110 }
3111 }
3112
3113 if (sstate->solver_status == SOLVER_SOLVED ||
3114 sstate->solver_status == SOLVER_AMBIGUOUS) {
3115 /* fprintf(stderr, "Solver completed\n"); */
3116 break;
3117 }
3118
3119 /* Once we've looped over all permitted solvers then the loop
3120 * deductions without making any progress, we'll exit this while loop */
3121 current_solver = next_solver;
3122 } while (current_solver < DIFF_MAX);
3123
3124 if (sstate->solver_status == SOLVER_SOLVED ||
3125 sstate->solver_status == SOLVER_AMBIGUOUS) {
3126 /* s/LINE_UNKNOWN/LINE_NO/g */
3127 array_setall(sstate->state->hl, LINE_UNKNOWN, LINE_NO,
3128 HL_COUNT(sstate->state));
3129 array_setall(sstate->state->vl, LINE_UNKNOWN, LINE_NO,
3130 VL_COUNT(sstate->state));
3131 return sstate;
3132 }
3133
3134 /* Perform recursive calls */
3135 if (sstate->recursion_remaining) {
3136 sstate_saved = dup_solver_state(sstate);
3137
3138 sstate->recursion_remaining--;
3139
3140 recursive_soln_count = 0;
3141 sstate_rec_solved = NULL;
3142
3143 /* Memory management:
3144 * sstate_saved won't be modified but needs to be freed when we have
3145 * finished with it.
3146 * sstate is expected to contain our 'best' solution by the time we
3147 * finish this section of code. It's the thing we'll try adding lines
3148 * to, seeing if they make it more solvable.
3149 * If sstate_rec_solved is non-NULL, it will supersede sstate
3150 * eventually. sstate_tmp should not hold a value persistently.
3151 */
3152
3153 /* NB SOLVER_AMBIGUOUS is like SOLVER_SOLVED except the solver is aware
3154 * of the possibility of additional solutions. So as soon as we have a
3155 * SOLVER_AMBIGUOUS we can safely propagate it back to our caller, but
3156 * if we get a SOLVER_SOLVED we want to keep trying in case we find
3157 * further solutions and have to mark it ambiguous.
3158 */
3159
3160 #define DO_RECURSIVE_CALL(dir_dot) \
3161 if (dir_dot(sstate->state, i, j) == LINE_UNKNOWN) { \
3162 debug(("Trying " #dir_dot " at [%d,%d]\n", i, j)); \
3163 LV_##dir_dot(sstate->state, i, j) = LINE_YES; \
3164 sstate_tmp = solve_game_rec(sstate, diff); \
3165 switch (sstate_tmp->solver_status) { \
3166 case SOLVER_AMBIGUOUS: \
3167 debug(("Solver ambiguous, returning\n")); \
3168 sstate_rec_solved = sstate_tmp; \
3169 goto finished_recursion; \
3170 case SOLVER_SOLVED: \
3171 switch (++recursive_soln_count) { \
3172 case 1: \
3173 debug(("One solution found\n")); \
3174 sstate_rec_solved = sstate_tmp; \
3175 break; \
3176 case 2: \
3177 debug(("Ambiguous solutions found\n")); \
3178 free_solver_state(sstate_tmp); \
3179 sstate_rec_solved->solver_status = SOLVER_AMBIGUOUS; \
3180 goto finished_recursion; \
3181 default: \
3182 assert(!"recursive_soln_count out of range"); \
3183 break; \
3184 } \
3185 break; \
3186 case SOLVER_MISTAKE: \
3187 debug(("Non-solution found\n")); \
3188 free_solver_state(sstate_tmp); \
3189 free_solver_state(sstate_saved); \
3190 LV_##dir_dot(sstate->state, i, j) = LINE_NO; \
3191 goto nonrecursive_solver; \
3192 case SOLVER_INCOMPLETE: \
3193 debug(("Recursive step inconclusive\n")); \
3194 free_solver_state(sstate_tmp); \
3195 break; \
3196 } \
3197 free_solver_state(sstate); \
3198 sstate = dup_solver_state(sstate_saved); \
3199 }
3200
3201 FORALL_DOTS(state, i, j) {
3202 /* Only perform recursive calls on 'loose ends' */
3203 if (DOT_YES_COUNT(sstate, i, j) == 1) {
3204 DO_RECURSIVE_CALL(LEFTOF_DOT);
3205 DO_RECURSIVE_CALL(RIGHTOF_DOT);
3206 DO_RECURSIVE_CALL(ABOVE_DOT);
3207 DO_RECURSIVE_CALL(BELOW_DOT);
3208 }
3209 }
3210
3211 finished_recursion:
3212
3213 if (sstate_rec_solved) {
3214 free_solver_state(sstate);
3215 sstate = sstate_rec_solved;
3216 }
3217 }
3218
3219 return sstate;
3220 }
3221
3222 #if 0
3223 #define HANDLE_DLINE(dline, dir1_sq, dir2_sq, a, b) \
3224 if (sstate->normal->dot_atmostone[i+a + (sstate->state->w + 1) * (j+b)] & \
3225 1<<dline) { \
3226 if (square_order(sstate->state, i, j, LINE_UNKNOWN) - 1 == \
3227 CLUE_AT(sstate->state, i, j) - '0') { \
3228 square_setall(sstate->state, i, j, LINE_UNKNOWN, LINE_YES); \
3229 /* XXX the following may overwrite known data! */ \
3230 dir1_sq(sstate->state, i, j) = LINE_UNKNOWN; \
3231 dir2_sq(sstate->state, i, j) = LINE_UNKNOWN; \
3232 } \
3233 }
3234 SQUARE_DLINES;
3235 #undef HANDLE_DLINE
3236 #endif
3237
3238 static char *solve_game(game_state *state, game_state *currstate,
3239 char *aux, char **error)
3240 {
3241 char *soln = NULL;
3242 solver_state *sstate, *new_sstate;
3243
3244 sstate = new_solver_state(state, DIFF_MAX);
3245 new_sstate = solve_game_rec(sstate, DIFF_MAX);
3246
3247 if (new_sstate->solver_status == SOLVER_SOLVED) {
3248 soln = encode_solve_move(new_sstate->state);
3249 } else if (new_sstate->solver_status == SOLVER_AMBIGUOUS) {
3250 soln = encode_solve_move(new_sstate->state);
3251 /**error = "Solver found ambiguous solutions"; */
3252 } else {
3253 soln = encode_solve_move(new_sstate->state);
3254 /**error = "Solver failed"; */
3255 }
3256
3257 free_solver_state(new_sstate);
3258 free_solver_state(sstate);
3259
3260 return soln;
3261 }
3262
3263 /* ----------------------------------------------------------------------
3264 * Drawing and mouse-handling
3265 */
3266
3267 static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
3268 int x, int y, int button)
3269 {
3270 int hl_selected;
3271 int i, j, p, q;
3272 char *ret, buf[80];
3273 char button_char = ' ';
3274 enum line_state old_state;
3275
3276 button &= ~MOD_MASK;
3277
3278 /* Around each line is a diamond-shaped region where points within that
3279 * region are closer to this line than any other. We assume any click
3280 * within a line's diamond was meant for that line. It would all be a lot
3281 * simpler if the / and % operators respected modulo arithmetic properly
3282 * for negative numbers. */
3283
3284 x -= BORDER;
3285 y -= BORDER;
3286
3287 /* Get the coordinates of the square the click was in */
3288 i = (x + TILE_SIZE) / TILE_SIZE - 1;
3289 j = (y + TILE_SIZE) / TILE_SIZE - 1;
3290
3291 /* Get the precise position inside square [i,j] */
3292 p = (x + TILE_SIZE) % TILE_SIZE;
3293 q = (y + TILE_SIZE) % TILE_SIZE;
3294
3295 /* After this bit of magic [i,j] will correspond to the point either above
3296 * or to the left of the line selected */
3297 if (p > q) {
3298 if (TILE_SIZE - p > q) {
3299 hl_selected = TRUE;
3300 } else {
3301 hl_selected = FALSE;
3302 ++i;
3303 }
3304 } else {
3305 if (TILE_SIZE - q > p) {
3306 hl_selected = FALSE;
3307 } else {
3308 hl_selected = TRUE;
3309 ++j;
3310 }
3311 }
3312
3313 if (i < 0 || j < 0)
3314 return NULL;
3315
3316 if (hl_selected) {
3317 if (i >= state->w || j >= state->h + 1)
3318 return NULL;
3319 } else {
3320 if (i >= state->w + 1 || j >= state->h)
3321 return NULL;
3322 }
3323
3324 /* I think it's only possible to play this game with mouse clicks, sorry */
3325 /* Maybe will add mouse drag support some time */
3326 if (hl_selected)
3327 old_state = RIGHTOF_DOT(state, i, j);
3328 else
3329 old_state = BELOW_DOT(state, i, j);
3330
3331 switch (button) {
3332 case LEFT_BUTTON:
3333 switch (old_state) {
3334 case LINE_UNKNOWN:
3335 button_char = 'y';
3336 break;
3337 case LINE_YES:
3338 case LINE_NO:
3339 button_char = 'u';
3340 break;
3341 }
3342 break;
3343 case MIDDLE_BUTTON:
3344 button_char = 'u';
3345 break;
3346 case RIGHT_BUTTON:
3347 switch (old_state) {
3348 case LINE_UNKNOWN:
3349 button_char = 'n';
3350 break;
3351 case LINE_NO:
3352 case LINE_YES:
3353 button_char = 'u';
3354 break;
3355 }
3356 break;
3357 default:
3358 return NULL;
3359 }
3360
3361
3362 sprintf(buf, "%d,%d%c%c", i, j, (int)(hl_selected ? 'h' : 'v'), (int)button_char);
3363 ret = dupstr(buf);
3364
3365 return ret;
3366 }
3367
3368 static game_state *execute_move(game_state *state, char *move)
3369 {
3370 int i, j;
3371 game_state *newstate = dup_game(state);
3372
3373 if (move[0] == 'S') {
3374 move++;
3375 newstate->cheated = TRUE;
3376 }
3377
3378 while (*move) {
3379 i = atoi(move);
3380 move = strchr(move, ',');
3381 if (!move)
3382 goto fail;
3383 j = atoi(++move);
3384 move += strspn(move, "1234567890");
3385 switch (*(move++)) {
3386 case 'h':
3387 if (i >= newstate->w || j > newstate->h)
3388 goto fail;
3389 switch (*(move++)) {
3390 case 'y':
3391 LV_RIGHTOF_DOT(newstate, i, j) = LINE_YES;
3392 break;
3393 case 'n':
3394 LV_RIGHTOF_DOT(newstate, i, j) = LINE_NO;
3395 break;
3396 case 'u':
3397 LV_RIGHTOF_DOT(newstate, i, j) = LINE_UNKNOWN;
3398 break;
3399 default:
3400 goto fail;
3401 }
3402 break;
3403 case 'v':
3404 if (i > newstate->w || j >= newstate->h)
3405 goto fail;
3406 switch (*(move++)) {
3407 case 'y':
3408 LV_BELOW_DOT(newstate, i, j) = LINE_YES;
3409 break;
3410 case 'n':
3411 LV_BELOW_DOT(newstate, i, j) = LINE_NO;
3412 break;
3413 case 'u':
3414 LV_BELOW_DOT(newstate, i, j) = LINE_UNKNOWN;
3415 break;
3416 default:
3417 goto fail;
3418 }
3419 break;
3420 default:
3421 goto fail;
3422 }
3423 }
3424
3425 /*
3426 * Check for completion.
3427 */
3428 i = 0; /* placate optimiser */
3429 for (j = 0; j <= newstate->h; j++) {
3430 for (i = 0; i < newstate->w; i++)
3431 if (LV_RIGHTOF_DOT(newstate, i, j) == LINE_YES)
3432 break;
3433 if (i < newstate->w)
3434 break;
3435 }
3436 if (j <= newstate->h) {
3437 int prevdir = 'R';
3438 int x = i, y = j;
3439 int looplen, count;
3440
3441 /*
3442 * We've found a horizontal edge at (i,j). Follow it round
3443 * to see if it's part of a loop.
3444 */
3445 looplen = 0;
3446 while (1) {
3447 int order = dot_order(newstate, x, y, LINE_YES);
3448 if (order != 2)
3449 goto completion_check_done;
3450
3451 if (LEFTOF_DOT(newstate, x, y) == LINE_YES && prevdir != 'L') {
3452 x--;
3453 prevdir = 'R';
3454 } else if (RIGHTOF_DOT(newstate, x, y) == LINE_YES &&
3455 prevdir != 'R') {
3456 x++;
3457 prevdir = 'L';
3458 } else if (ABOVE_DOT(newstate, x, y) == LINE_YES &&
3459 prevdir != 'U') {
3460 y--;
3461 prevdir = 'D';
3462 } else if (BELOW_DOT(newstate, x, y) == LINE_YES &&
3463 prevdir != 'D') {
3464 y++;
3465 prevdir = 'U';
3466 } else {
3467 assert(!"Can't happen"); /* dot_order guarantees success */
3468 }
3469
3470 looplen++;
3471
3472 if (x == i && y == j)
3473 break;
3474 }
3475
3476 if (x != i || y != j || looplen == 0)
3477 goto completion_check_done;
3478
3479 /*
3480 * We've traced our way round a loop, and we know how many
3481 * line segments were involved. Count _all_ the line
3482 * segments in the grid, to see if the loop includes them
3483 * all.
3484 */
3485 count = 0;
3486 FORALL_DOTS(newstate, i, j) {
3487 count += ((RIGHTOF_DOT(newstate, i, j) == LINE_YES) +
3488 (BELOW_DOT(newstate, i, j) == LINE_YES));
3489 }
3490 assert(count >= looplen);
3491 if (count != looplen)
3492 goto completion_check_done;
3493
3494 /*
3495 * The grid contains one closed loop and nothing else.
3496 * Check that all the clues are satisfied.
3497 */
3498 FORALL_SQUARES(newstate, i, j) {
3499 if (CLUE_AT(newstate, i, j) >= 0) {
3500 if (square_order(newstate, i, j, LINE_YES) !=
3501 CLUE_AT(newstate, i, j)) {
3502 goto completion_check_done;
3503 }
3504 }
3505 }
3506
3507 /*
3508 * Completed!
3509 */
3510 newstate->solved = TRUE;
3511 }
3512
3513 completion_check_done:
3514 return newstate;
3515
3516 fail:
3517 free_game(newstate);
3518 return NULL;
3519 }
3520
3521 /* ----------------------------------------------------------------------
3522 * Drawing routines.
3523 */
3524 static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
3525 game_state *state, int dir, game_ui *ui,
3526 float animtime, float flashtime)
3527 {
3528 int i, j, n;
3529 char c[2];
3530 int line_colour, flash_changed;
3531 int clue_mistake;
3532
3533 if (!ds->started) {
3534 /*
3535 * The initial contents of the window are not guaranteed and
3536 * can vary with front ends. To be on the safe side, all games
3537 * should start by drawing a big background-colour rectangle
3538 * covering the whole window.
3539 */
3540 draw_rect(dr, 0, 0, SIZE(state->w), SIZE(state->h), COL_BACKGROUND);
3541
3542 /* Draw dots */
3543 FORALL_DOTS(state, i, j) {
3544 draw_rect(dr,
3545 BORDER + i * TILE_SIZE - LINEWIDTH/2,
3546 BORDER + j * TILE_SIZE - LINEWIDTH/2,
3547 LINEWIDTH, LINEWIDTH, COL_FOREGROUND);
3548 }
3549
3550 /* Draw clues */
3551 FORALL_SQUARES(state, i, j) {
3552 c[0] = CLUE2CHAR(CLUE_AT(state, i, j));
3553 c[1] = '\0';
3554 draw_text(dr,
3555 BORDER + i * TILE_SIZE + TILE_SIZE/2,
3556 BORDER + j * TILE_SIZE + TILE_SIZE/2,
3557 FONT_VARIABLE, TILE_SIZE/2,
3558 ALIGN_VCENTRE | ALIGN_HCENTRE, COL_FOREGROUND, c);
3559 }
3560 draw_update(dr, 0, 0,
3561 state->w * TILE_SIZE + 2*BORDER + 1,
3562 state->h * TILE_SIZE + 2*BORDER + 1);
3563 ds->started = TRUE;
3564 }
3565
3566 if (flashtime > 0 &&
3567 (flashtime <= FLASH_TIME/3 ||
3568 flashtime >= FLASH_TIME*2/3)) {
3569 flash_changed = !ds->flashing;
3570 ds->flashing = TRUE;
3571 line_colour = COL_HIGHLIGHT;
3572 } else {
3573 flash_changed = ds->flashing;
3574 ds->flashing = FALSE;
3575 line_colour = COL_FOREGROUND;
3576 }
3577
3578 #define CROSS_SIZE (3 * LINEWIDTH / 2)
3579
3580 /* Redraw clue colours if necessary */
3581 FORALL_SQUARES(state, i, j) {
3582 n = CLUE_AT(state, i, j);
3583 if (n < 0)
3584 continue;
3585
3586 assert(n >= 0 && n <= 4);
3587
3588 c[0] = CLUE2CHAR(CLUE_AT(state, i, j));
3589 c[1] = '\0';
3590
3591 clue_mistake = (square_order(state, i, j, LINE_YES) > n ||
3592 square_order(state, i, j, LINE_NO ) > (4-n));
3593
3594 if (clue_mistake != ds->clue_error[SQUARE_INDEX(state, i, j)]) {
3595 draw_rect(dr,
3596 BORDER + i * TILE_SIZE + CROSS_SIZE,
3597 BORDER + j * TILE_SIZE + CROSS_SIZE,
3598 TILE_SIZE - CROSS_SIZE * 2, TILE_SIZE - CROSS_SIZE * 2,
3599 COL_BACKGROUND);
3600 draw_text(dr,
3601 BORDER + i * TILE_SIZE + TILE_SIZE/2,
3602 BORDER + j * TILE_SIZE + TILE_SIZE/2,
3603 FONT_VARIABLE, TILE_SIZE/2,
3604 ALIGN_VCENTRE | ALIGN_HCENTRE,
3605 clue_mistake ? COL_MISTAKE : COL_FOREGROUND, c);
3606 draw_update(dr, i * TILE_SIZE + BORDER, j * TILE_SIZE + BORDER,
3607 TILE_SIZE, TILE_SIZE);
3608
3609 ds->clue_error[SQUARE_INDEX(state, i, j)] = clue_mistake;
3610 }
3611 }
3612
3613 /* I've also had a request to colour lines red if they make a non-solution
3614 * loop, or if more than two lines go into any point. I think that would
3615 * be good some time. */
3616
3617 #define CLEAR_VL(i, j) \
3618 do { \
3619 draw_rect(dr, \
3620 BORDER + i * TILE_SIZE - CROSS_SIZE, \
3621 BORDER + j * TILE_SIZE + LINEWIDTH - LINEWIDTH/2, \
3622 CROSS_SIZE * 2, \
3623 TILE_SIZE - LINEWIDTH, \
3624 COL_BACKGROUND); \
3625 draw_update(dr, \
3626 BORDER + i * TILE_SIZE - CROSS_SIZE, \
3627 BORDER + j * TILE_SIZE - CROSS_SIZE, \
3628 CROSS_SIZE*2, \
3629 TILE_SIZE + CROSS_SIZE*2); \
3630 } while (0)
3631
3632 #define CLEAR_HL(i, j) \
3633 do { \
3634 draw_rect(dr, \
3635 BORDER + i * TILE_SIZE + LINEWIDTH - LINEWIDTH/2, \
3636 BORDER + j * TILE_SIZE - CROSS_SIZE, \
3637 TILE_SIZE - LINEWIDTH, \
3638 CROSS_SIZE * 2, \
3639 COL_BACKGROUND); \
3640 draw_update(dr, \
3641 BORDER + i * TILE_SIZE - CROSS_SIZE, \
3642 BORDER + j * TILE_SIZE - CROSS_SIZE, \
3643 TILE_SIZE + CROSS_SIZE*2, \
3644 CROSS_SIZE*2); \
3645 } while (0)
3646
3647 /* Vertical lines */
3648 FORALL_VL(state, i, j) {
3649 switch (BELOW_DOT(state, i, j)) {
3650 case LINE_UNKNOWN:
3651 if (ds->vl[VL_INDEX(state, i, j)] != BELOW_DOT(state, i, j)) {
3652 CLEAR_VL(i, j);
3653 }
3654 break;
3655 case LINE_YES:
3656 if (ds->vl[VL_INDEX(state, i, j)] != BELOW_DOT(state, i, j) ||
3657 flash_changed) {
3658 CLEAR_VL(i, j);
3659 draw_rect(dr,
3660 BORDER + i * TILE_SIZE - LINEWIDTH/2,
3661 BORDER + j * TILE_SIZE + LINEWIDTH - LINEWIDTH/2,
3662 LINEWIDTH, TILE_SIZE - LINEWIDTH,
3663 line_colour);
3664 }
3665 break;
3666 case LINE_NO:
3667 if (ds->vl[VL_INDEX(state, i, j)] != BELOW_DOT(state, i, j)) {
3668 CLEAR_VL(i, j);
3669 draw_line(dr,
3670 BORDER + i * TILE_SIZE - CROSS_SIZE,
3671 BORDER + j * TILE_SIZE + TILE_SIZE/2 - CROSS_SIZE,
3672 BORDER + i * TILE_SIZE + CROSS_SIZE - 1,
3673 BORDER + j * TILE_SIZE + TILE_SIZE/2 + CROSS_SIZE - 1,
3674 COL_FOREGROUND);
3675 draw_line(dr,
3676 BORDER + i * TILE_SIZE + CROSS_SIZE - 1,
3677 BORDER + j * TILE_SIZE + TILE_SIZE/2 - CROSS_SIZE,
3678 BORDER + i * TILE_SIZE - CROSS_SIZE,
3679 BORDER + j * TILE_SIZE + TILE_SIZE/2 + CROSS_SIZE - 1,
3680 COL_FOREGROUND);
3681 }
3682 break;
3683 }
3684 ds->vl[VL_INDEX(state, i, j)] = BELOW_DOT(state, i, j);
3685 }
3686
3687 /* Horizontal lines */
3688 FORALL_HL(state, i, j) {
3689 switch (RIGHTOF_DOT(state, i, j)) {
3690 case LINE_UNKNOWN:
3691 if (ds->hl[HL_INDEX(state, i, j)] != RIGHTOF_DOT(state, i, j)) {
3692 CLEAR_HL(i, j);
3693 }
3694 break;
3695 case LINE_YES:
3696 if (ds->hl[HL_INDEX(state, i, j)] != RIGHTOF_DOT(state, i, j) ||
3697 flash_changed) {
3698 CLEAR_HL(i, j);
3699 draw_rect(dr,
3700 BORDER + i * TILE_SIZE + LINEWIDTH - LINEWIDTH/2,
3701 BORDER + j * TILE_SIZE - LINEWIDTH/2,
3702 TILE_SIZE - LINEWIDTH, LINEWIDTH,
3703 line_colour);
3704 }
3705 break;
3706 case LINE_NO:
3707 if (ds->hl[HL_INDEX(state, i, j)] != RIGHTOF_DOT(state, i, j)) {
3708 CLEAR_HL(i, j);
3709 draw_line(dr,
3710 BORDER + i * TILE_SIZE + TILE_SIZE/2 - CROSS_SIZE,
3711 BORDER + j * TILE_SIZE + CROSS_SIZE - 1,
3712 BORDER + i * TILE_SIZE + TILE_SIZE/2 + CROSS_SIZE - 1,
3713 BORDER + j * TILE_SIZE - CROSS_SIZE,
3714 COL_FOREGROUND);
3715 draw_line(dr,
3716 BORDER + i * TILE_SIZE + TILE_SIZE/2 - CROSS_SIZE,
3717 BORDER + j * TILE_SIZE - CROSS_SIZE,
3718 BORDER + i * TILE_SIZE + TILE_SIZE/2 + CROSS_SIZE - 1,
3719 BORDER + j * TILE_SIZE + CROSS_SIZE - 1,
3720 COL_FOREGROUND);
3721 break;
3722 }
3723 }
3724 ds->hl[HL_INDEX(state, i, j)] = RIGHTOF_DOT(state, i, j);
3725 }
3726 }
3727
3728 static float game_flash_length(game_state *oldstate, game_state *newstate,
3729 int dir, game_ui *ui)
3730 {
3731 if (!oldstate->solved && newstate->solved &&
3732 !oldstate->cheated && !newstate->cheated) {
3733 return FLASH_TIME;
3734 }
3735
3736 return 0.0F;
3737 }
3738
3739 static void game_print_size(game_params *params, float *x, float *y)
3740 {
3741 int pw, ph;
3742
3743 /*
3744 * I'll use 7mm squares by default.
3745 */
3746 game_compute_size(params, 700, &pw, &ph);
3747 *x = pw / 100.0F;
3748 *y = ph / 100.0F;
3749 }
3750
3751 static void game_print(drawing *dr, game_state *state, int tilesize)
3752 {
3753 int ink = print_mono_colour(dr, 0);
3754 int x, y;
3755 game_drawstate ads, *ds = &ads;
3756
3757 game_set_size(dr, ds, NULL, tilesize);
3758
3759 /*
3760 * Dots. I'll deliberately make the dots a bit wider than the
3761 * lines, so you can still see them. (And also because it's
3762 * annoyingly tricky to make them _exactly_ the same size...)
3763 */
3764 FORALL_DOTS(state, x, y) {
3765 draw_circle(dr, BORDER + x * TILE_SIZE, BORDER + y * TILE_SIZE,
3766 LINEWIDTH, ink, ink);
3767 }
3768
3769 /*
3770 * Clues.
3771 */
3772 FORALL_SQUARES(state, x, y) {
3773 if (CLUE_AT(state, x, y) >= 0) {
3774 char c[2];
3775
3776 c[0] = CLUE2CHAR(CLUE_AT(state, x, y));
3777 c[1] = '\0';
3778 draw_text(dr,
3779 BORDER + x * TILE_SIZE + TILE_SIZE/2,
3780 BORDER + y * TILE_SIZE + TILE_SIZE/2,
3781 FONT_VARIABLE, TILE_SIZE/2,
3782 ALIGN_VCENTRE | ALIGN_HCENTRE, ink, c);
3783 }
3784 }
3785
3786 /*
3787 * Lines. (At the moment, I'm not bothering with crosses.)
3788 */
3789 FORALL_HL(state, x, y) {
3790 if (RIGHTOF_DOT(state, x, y) == LINE_YES)
3791 draw_rect(dr, BORDER + x * TILE_SIZE,
3792 BORDER + y * TILE_SIZE - LINEWIDTH/2,
3793 TILE_SIZE, (LINEWIDTH/2) * 2 + 1, ink);
3794 }
3795
3796 FORALL_VL(state, x, y) {
3797 if (BELOW_DOT(state, x, y) == LINE_YES)
3798 draw_rect(dr, BORDER + x * TILE_SIZE - LINEWIDTH/2,
3799 BORDER + y * TILE_SIZE,
3800 (LINEWIDTH/2) * 2 + 1, TILE_SIZE, ink);
3801 }
3802 }
3803
3804 #ifdef COMBINED
3805 #define thegame loopy
3806 #endif
3807
3808 const struct game thegame = {
3809 "Loopy", "games.loopy", "loopy",
3810 default_params,
3811 game_fetch_preset,
3812 decode_params,
3813 encode_params,
3814 free_params,
3815 dup_params,
3816 TRUE, game_configure, custom_params,
3817 validate_params,
3818 new_game_desc,
3819 validate_desc,
3820 new_game,
3821 dup_game,
3822 free_game,
3823 1, solve_game,
3824 TRUE, game_text_format,
3825 new_ui,
3826 free_ui,
3827 encode_ui,
3828 decode_ui,
3829 game_changed_state,
3830 interpret_move,
3831 execute_move,
3832 PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
3833 game_colours,
3834 game_new_drawstate,
3835 game_free_drawstate,
3836 game_redraw,
3837 game_anim_length,
3838 game_flash_length,
3839 TRUE, FALSE, game_print_size, game_print,
3840 FALSE /* wants_statusbar */,
3841 FALSE, game_timing_state,
3842 0, /* mouse_priorities */
3843 };