Added dual floret preset
[sgt/puzzles] / loopy.c
1 /*
2 * loopy.c:
3 *
4 * An implementation of the Nikoli game 'Loop the loop'.
5 * (c) Mike Pinna, 2005, 2006
6 * Substantially rewritten to allowing for more general types of grid.
7 * (c) Lambros Lambrou 2008
8 *
9 * vim: set shiftwidth=4 :set textwidth=80:
10 */
11
12 /*
13 * Possible future solver enhancements:
14 *
15 * - There's an interesting deductive technique which makes use
16 * of topology rather than just graph theory. Each _face_ in
17 * the grid is either inside or outside the loop; you can tell
18 * that two faces are on the same side of the loop if they're
19 * separated by a LINE_NO (or, more generally, by a path
20 * crossing no LINE_UNKNOWNs and an even number of LINE_YESes),
21 * and on the opposite side of the loop if they're separated by
22 * a LINE_YES (or an odd number of LINE_YESes and no
23 * LINE_UNKNOWNs). Oh, and any face separated from the outside
24 * of the grid by a LINE_YES or a LINE_NO is on the inside or
25 * outside respectively. So if you can track this for all
26 * faces, you figure out the state of the line between a pair
27 * once their relative insideness is known.
28 * + The way I envisage this working is simply to keep an edsf
29 * of all _faces_, which indicates whether they're on
30 * opposite sides of the loop from one another. We also
31 * include a special entry in the edsf for the infinite
32 * exterior "face".
33 * + So, the simple way to do this is to just go through the
34 * edges: every time we see an edge in a state other than
35 * LINE_UNKNOWN which separates two faces that aren't in the
36 * same edsf class, we can rectify that by merging the
37 * classes. Then, conversely, an edge in LINE_UNKNOWN state
38 * which separates two faces that _are_ in the same edsf
39 * class can immediately have its state determined.
40 * + But you can go one better, if you're prepared to loop
41 * over all _pairs_ of edges. Suppose we have edges A and B,
42 * which respectively separate faces A1,A2 and B1,B2.
43 * Suppose that A,B are in the same edge-edsf class and that
44 * A1,B1 (wlog) are in the same face-edsf class; then we can
45 * immediately place A2,B2 into the same face-edsf class (as
46 * each other, not as A1 and A2) one way round or the other.
47 * And conversely again, if A1,B1 are in the same face-edsf
48 * class and so are A2,B2, then we can put A,B into the same
49 * face-edsf class.
50 * * Of course, this deduction requires a quadratic-time
51 * loop over all pairs of edges in the grid, so it should
52 * be reserved until there's nothing easier left to be
53 * done.
54 *
55 * - The generalised grid support has made me (SGT) notice a
56 * possible extension to the loop-avoidance code. When you have
57 * a path of connected edges such that no other edges at all
58 * are incident on any vertex in the middle of the path - or,
59 * alternatively, such that any such edges are already known to
60 * be LINE_NO - then you know those edges are either all
61 * LINE_YES or all LINE_NO. Hence you can mentally merge the
62 * entire path into a single long curly edge for the purposes
63 * of loop avoidance, and look directly at whether or not the
64 * extreme endpoints of the path are connected by some other
65 * route. I find this coming up fairly often when I play on the
66 * octagonal grid setting, so it might be worth implementing in
67 * the solver.
68 *
69 * - (Just a speed optimisation.) Consider some todo list queue where every
70 * time we modify something we mark it for consideration by other bits of
71 * the solver, to save iteration over things that have already been done.
72 */
73
74 #include <stdio.h>
75 #include <stdlib.h>
76 #include <stddef.h>
77 #include <string.h>
78 #include <assert.h>
79 #include <ctype.h>
80 #include <math.h>
81
82 #include "puzzles.h"
83 #include "tree234.h"
84 #include "grid.h"
85 #include "loopgen.h"
86
87 /* Debugging options */
88
89 /*
90 #define DEBUG_CACHES
91 #define SHOW_WORKING
92 #define DEBUG_DLINES
93 */
94
95 /* ----------------------------------------------------------------------
96 * Struct, enum and function declarations
97 */
98
99 enum {
100 COL_BACKGROUND,
101 COL_FOREGROUND,
102 COL_LINEUNKNOWN,
103 COL_HIGHLIGHT,
104 COL_MISTAKE,
105 COL_SATISFIED,
106 COL_FAINT,
107 NCOLOURS
108 };
109
110 struct game_state {
111 grid *game_grid; /* ref-counted (internally) */
112
113 /* Put -1 in a face that doesn't get a clue */
114 signed char *clues;
115
116 /* Array of line states, to store whether each line is
117 * YES, NO or UNKNOWN */
118 char *lines;
119
120 unsigned char *line_errors;
121
122 int solved;
123 int cheated;
124
125 /* Used in game_text_format(), so that it knows what type of
126 * grid it's trying to render as ASCII text. */
127 int grid_type;
128 };
129
130 enum solver_status {
131 SOLVER_SOLVED, /* This is the only solution the solver could find */
132 SOLVER_MISTAKE, /* This is definitely not a solution */
133 SOLVER_AMBIGUOUS, /* This _might_ be an ambiguous solution */
134 SOLVER_INCOMPLETE /* This may be a partial solution */
135 };
136
137 /* ------ Solver state ------ */
138 typedef struct solver_state {
139 game_state *state;
140 enum solver_status solver_status;
141 /* NB looplen is the number of dots that are joined together at a point, ie a
142 * looplen of 1 means there are no lines to a particular dot */
143 int *looplen;
144
145 /* Difficulty level of solver. Used by solver functions that want to
146 * vary their behaviour depending on the requested difficulty level. */
147 int diff;
148
149 /* caches */
150 char *dot_yes_count;
151 char *dot_no_count;
152 char *face_yes_count;
153 char *face_no_count;
154 char *dot_solved, *face_solved;
155 int *dotdsf;
156
157 /* Information for Normal level deductions:
158 * For each dline, store a bitmask for whether we know:
159 * (bit 0) at least one is YES
160 * (bit 1) at most one is YES */
161 char *dlines;
162
163 /* Hard level information */
164 int *linedsf;
165 } solver_state;
166
167 /*
168 * Difficulty levels. I do some macro ickery here to ensure that my
169 * enum and the various forms of my name list always match up.
170 */
171
172 #define DIFFLIST(A) \
173 A(EASY,Easy,e) \
174 A(NORMAL,Normal,n) \
175 A(TRICKY,Tricky,t) \
176 A(HARD,Hard,h)
177 #define ENUM(upper,title,lower) DIFF_ ## upper,
178 #define TITLE(upper,title,lower) #title,
179 #define ENCODE(upper,title,lower) #lower
180 #define CONFIG(upper,title,lower) ":" #title
181 enum { DIFFLIST(ENUM) DIFF_MAX };
182 static char const *const diffnames[] = { DIFFLIST(TITLE) };
183 static char const diffchars[] = DIFFLIST(ENCODE);
184 #define DIFFCONFIG DIFFLIST(CONFIG)
185
186 /*
187 * Solver routines, sorted roughly in order of computational cost.
188 * The solver will run the faster deductions first, and slower deductions are
189 * only invoked when the faster deductions are unable to make progress.
190 * Each function is associated with a difficulty level, so that the generated
191 * puzzles are solvable by applying only the functions with the chosen
192 * difficulty level or lower.
193 */
194 #define SOLVERLIST(A) \
195 A(trivial_deductions, DIFF_EASY) \
196 A(dline_deductions, DIFF_NORMAL) \
197 A(linedsf_deductions, DIFF_HARD) \
198 A(loop_deductions, DIFF_EASY)
199 #define SOLVER_FN_DECL(fn,diff) static int fn(solver_state *);
200 #define SOLVER_FN(fn,diff) &fn,
201 #define SOLVER_DIFF(fn,diff) diff,
202 SOLVERLIST(SOLVER_FN_DECL)
203 static int (*(solver_fns[]))(solver_state *) = { SOLVERLIST(SOLVER_FN) };
204 static int const solver_diffs[] = { SOLVERLIST(SOLVER_DIFF) };
205 static const int NUM_SOLVERS = sizeof(solver_diffs)/sizeof(*solver_diffs);
206
207 struct game_params {
208 int w, h;
209 int diff;
210 int type;
211 int dual;
212 };
213
214 /* line_drawstate is the same as line_state, but with the extra ERROR
215 * possibility. The drawing code copies line_state to line_drawstate,
216 * except in the case that the line is an error. */
217 enum line_state { LINE_YES, LINE_UNKNOWN, LINE_NO };
218 enum line_drawstate { DS_LINE_YES, DS_LINE_UNKNOWN,
219 DS_LINE_NO, DS_LINE_ERROR };
220
221 #define OPP(line_state) \
222 (2 - line_state)
223
224
225 struct game_drawstate {
226 int started;
227 int tilesize;
228 int flashing;
229 int *textx, *texty;
230 char *lines;
231 char *clue_error;
232 char *clue_satisfied;
233 };
234
235 static char *validate_desc(game_params *params, char *desc);
236 static int dot_order(const game_state* state, int i, char line_type);
237 static int face_order(const game_state* state, int i, char line_type);
238 static solver_state *solve_game_rec(const solver_state *sstate);
239
240 #ifdef DEBUG_CACHES
241 static void check_caches(const solver_state* sstate);
242 #else
243 #define check_caches(s)
244 #endif
245
246 /* ------- List of grid generators ------- */
247 #define GRIDLIST(A) \
248 A(Squares,GRID_SQUARE,3,3) \
249 A(Triangular,GRID_TRIANGULAR,3,3) \
250 A(Honeycomb,GRID_HONEYCOMB,3,3) \
251 A(Snub-Square,GRID_SNUBSQUARE,3,3) \
252 A(Cairo,GRID_CAIRO,3,4) \
253 A(Great-Hexagonal,GRID_GREATHEXAGONAL,3,3) \
254 A(Octagonal,GRID_OCTAGONAL,3,3) \
255 A(Kites,GRID_KITE,3,3) \
256 A(Floret,GRID_FLORET,1,2) \
257 A(Dodecagonal,GRID_DODECAGONAL,2,2) \
258 A(Great-Dodecagonal,GRID_GREATDODECAGONAL,2,2) \
259 A(Penrose (kite/dart),GRID_PENROSE_P2,3,3) \
260 A(Penrose (rhombs),GRID_PENROSE_P3,3,3) \
261
262 #define GRID_NAME(title,type,amin,omin) #title,
263 #define GRID_CONFIG(title,type,amin,omin) ":" #title
264 #define GRID_TYPE(title,type,amin,omin) type,
265 #define GRID_SIZES(title,type,amin,omin) \
266 {amin, omin, \
267 "Width and height for this grid type must both be at least " #amin, \
268 "At least one of width and height for this grid type must be at least " #omin,},
269 static char const *const gridnames[] = { GRIDLIST(GRID_NAME) };
270 static char const *const dualnames[] = { "", "(dual) " };
271 #define GRID_CONFIGS GRIDLIST(GRID_CONFIG)
272 static grid_type grid_types[] = { GRIDLIST(GRID_TYPE) };
273 #define NUM_GRID_TYPES (sizeof(grid_types) / sizeof(grid_types[0]))
274 static const struct {
275 int amin, omin;
276 char *aerr, *oerr;
277 } grid_size_limits[] = { GRIDLIST(GRID_SIZES) };
278
279 /* Generates a (dynamically allocated) new grid, according to the
280 * type and size requested in params. Does nothing if the grid is already
281 * generated. */
282 static grid *loopy_generate_grid(game_params *params, char *grid_desc)
283 {
284 return grid_new(grid_types[params->type], params->w, params->h, params->dual, grid_desc);
285 }
286
287 /* ----------------------------------------------------------------------
288 * Preprocessor magic
289 */
290
291 /* General constants */
292 #define PREFERRED_TILE_SIZE 32
293 #define BORDER(tilesize) ((tilesize) / 2)
294 #define FLASH_TIME 0.5F
295
296 #define BIT_SET(field, bit) ((field) & (1<<(bit)))
297
298 #define SET_BIT(field, bit) (BIT_SET(field, bit) ? FALSE : \
299 ((field) |= (1<<(bit)), TRUE))
300
301 #define CLEAR_BIT(field, bit) (BIT_SET(field, bit) ? \
302 ((field) &= ~(1<<(bit)), TRUE) : FALSE)
303
304 #define CLUE2CHAR(c) \
305 ((c < 0) ? ' ' : c < 10 ? c + '0' : c - 10 + 'A')
306
307 /* ----------------------------------------------------------------------
308 * General struct manipulation and other straightforward code
309 */
310
311 static game_state *dup_game(game_state *state)
312 {
313 game_state *ret = snew(game_state);
314
315 ret->game_grid = state->game_grid;
316 ret->game_grid->refcount++;
317
318 ret->solved = state->solved;
319 ret->cheated = state->cheated;
320
321 ret->clues = snewn(state->game_grid->num_faces, signed char);
322 memcpy(ret->clues, state->clues, state->game_grid->num_faces);
323
324 ret->lines = snewn(state->game_grid->num_edges, char);
325 memcpy(ret->lines, state->lines, state->game_grid->num_edges);
326
327 ret->line_errors = snewn(state->game_grid->num_edges, unsigned char);
328 memcpy(ret->line_errors, state->line_errors, state->game_grid->num_edges);
329
330 ret->grid_type = state->grid_type;
331 return ret;
332 }
333
334 static void free_game(game_state *state)
335 {
336 if (state) {
337 grid_free(state->game_grid);
338 sfree(state->clues);
339 sfree(state->lines);
340 sfree(state->line_errors);
341 sfree(state);
342 }
343 }
344
345 static solver_state *new_solver_state(game_state *state, int diff) {
346 int i;
347 int num_dots = state->game_grid->num_dots;
348 int num_faces = state->game_grid->num_faces;
349 int num_edges = state->game_grid->num_edges;
350 solver_state *ret = snew(solver_state);
351
352 ret->state = dup_game(state);
353
354 ret->solver_status = SOLVER_INCOMPLETE;
355 ret->diff = diff;
356
357 ret->dotdsf = snew_dsf(num_dots);
358 ret->looplen = snewn(num_dots, int);
359
360 for (i = 0; i < num_dots; i++) {
361 ret->looplen[i] = 1;
362 }
363
364 ret->dot_solved = snewn(num_dots, char);
365 ret->face_solved = snewn(num_faces, char);
366 memset(ret->dot_solved, FALSE, num_dots);
367 memset(ret->face_solved, FALSE, num_faces);
368
369 ret->dot_yes_count = snewn(num_dots, char);
370 memset(ret->dot_yes_count, 0, num_dots);
371 ret->dot_no_count = snewn(num_dots, char);
372 memset(ret->dot_no_count, 0, num_dots);
373 ret->face_yes_count = snewn(num_faces, char);
374 memset(ret->face_yes_count, 0, num_faces);
375 ret->face_no_count = snewn(num_faces, char);
376 memset(ret->face_no_count, 0, num_faces);
377
378 if (diff < DIFF_NORMAL) {
379 ret->dlines = NULL;
380 } else {
381 ret->dlines = snewn(2*num_edges, char);
382 memset(ret->dlines, 0, 2*num_edges);
383 }
384
385 if (diff < DIFF_HARD) {
386 ret->linedsf = NULL;
387 } else {
388 ret->linedsf = snew_dsf(state->game_grid->num_edges);
389 }
390
391 return ret;
392 }
393
394 static void free_solver_state(solver_state *sstate) {
395 if (sstate) {
396 free_game(sstate->state);
397 sfree(sstate->dotdsf);
398 sfree(sstate->looplen);
399 sfree(sstate->dot_solved);
400 sfree(sstate->face_solved);
401 sfree(sstate->dot_yes_count);
402 sfree(sstate->dot_no_count);
403 sfree(sstate->face_yes_count);
404 sfree(sstate->face_no_count);
405
406 /* OK, because sfree(NULL) is a no-op */
407 sfree(sstate->dlines);
408 sfree(sstate->linedsf);
409
410 sfree(sstate);
411 }
412 }
413
414 static solver_state *dup_solver_state(const solver_state *sstate) {
415 game_state *state = sstate->state;
416 int num_dots = state->game_grid->num_dots;
417 int num_faces = state->game_grid->num_faces;
418 int num_edges = state->game_grid->num_edges;
419 solver_state *ret = snew(solver_state);
420
421 ret->state = state = dup_game(sstate->state);
422
423 ret->solver_status = sstate->solver_status;
424 ret->diff = sstate->diff;
425
426 ret->dotdsf = snewn(num_dots, int);
427 ret->looplen = snewn(num_dots, int);
428 memcpy(ret->dotdsf, sstate->dotdsf,
429 num_dots * sizeof(int));
430 memcpy(ret->looplen, sstate->looplen,
431 num_dots * sizeof(int));
432
433 ret->dot_solved = snewn(num_dots, char);
434 ret->face_solved = snewn(num_faces, char);
435 memcpy(ret->dot_solved, sstate->dot_solved, num_dots);
436 memcpy(ret->face_solved, sstate->face_solved, num_faces);
437
438 ret->dot_yes_count = snewn(num_dots, char);
439 memcpy(ret->dot_yes_count, sstate->dot_yes_count, num_dots);
440 ret->dot_no_count = snewn(num_dots, char);
441 memcpy(ret->dot_no_count, sstate->dot_no_count, num_dots);
442
443 ret->face_yes_count = snewn(num_faces, char);
444 memcpy(ret->face_yes_count, sstate->face_yes_count, num_faces);
445 ret->face_no_count = snewn(num_faces, char);
446 memcpy(ret->face_no_count, sstate->face_no_count, num_faces);
447
448 if (sstate->dlines) {
449 ret->dlines = snewn(2*num_edges, char);
450 memcpy(ret->dlines, sstate->dlines,
451 2*num_edges);
452 } else {
453 ret->dlines = NULL;
454 }
455
456 if (sstate->linedsf) {
457 ret->linedsf = snewn(num_edges, int);
458 memcpy(ret->linedsf, sstate->linedsf,
459 num_edges * sizeof(int));
460 } else {
461 ret->linedsf = NULL;
462 }
463
464 return ret;
465 }
466
467 static game_params *default_params(void)
468 {
469 game_params *ret = snew(game_params);
470
471 #ifdef SLOW_SYSTEM
472 ret->h = 7;
473 ret->w = 7;
474 #else
475 ret->h = 10;
476 ret->w = 10;
477 #endif
478 ret->diff = DIFF_EASY;
479 ret->type = 0;
480 ret->dual = 0;
481
482 return ret;
483 }
484
485 static game_params *dup_params(game_params *params)
486 {
487 game_params *ret = snew(game_params);
488
489 *ret = *params; /* structure copy */
490 return ret;
491 }
492
493 static const game_params presets[] = {
494 #ifdef SMALL_SCREEN
495 { 7, 7, DIFF_EASY, 0, 0 },
496 { 7, 7, DIFF_NORMAL, 0, 0 },
497 { 7, 7, DIFF_HARD, 0, 0 },
498 { 7, 7, DIFF_HARD, 1, 0 },
499 { 7, 7, DIFF_HARD, 2, 0 },
500 { 5, 5, DIFF_HARD, 3, 0 },
501 { 7, 7, DIFF_HARD, 4, 0 },
502 { 5, 4, DIFF_HARD, 5, 0 },
503 { 5, 5, DIFF_HARD, 6, 0 },
504 { 5, 5, DIFF_HARD, 7, 0 },
505 { 3, 3, DIFF_HARD, 8, 0 },
506 { 3, 3, DIFF_HARD, 8, 1 },
507 { 3, 3, DIFF_HARD, 9, 0 },
508 { 3, 3, DIFF_HARD, 10, 0 },
509 { 6, 6, DIFF_HARD, 11, 0 },
510 { 6, 6, DIFF_HARD, 12, 0 },
511 #else
512 { 7, 7, DIFF_EASY, 0, 0 },
513 { 10, 10, DIFF_EASY, 0, 0 },
514 { 7, 7, DIFF_NORMAL, 0, 0 },
515 { 10, 10, DIFF_NORMAL, 0, 0 },
516 { 7, 7, DIFF_HARD, 0, 0 },
517 { 10, 10, DIFF_HARD, 0, 0 },
518 { 10, 10, DIFF_HARD, 1, 0 },
519 { 12, 10, DIFF_HARD, 2, 0 },
520 { 7, 7, DIFF_HARD, 3, 0 },
521 { 9, 9, DIFF_HARD, 4, 0 },
522 { 5, 4, DIFF_HARD, 5, 0 },
523 { 7, 7, DIFF_HARD, 6, 0 },
524 { 5, 5, DIFF_HARD, 7, 0 },
525 { 5, 5, DIFF_HARD, 8, 0 },
526 { 5, 5, DIFF_HARD, 8, 1 },
527 { 5, 4, DIFF_HARD, 9, 0 },
528 { 5, 4, DIFF_HARD, 10, 0 },
529 { 10, 10, DIFF_HARD, 11, 0 },
530 { 10, 10, DIFF_HARD, 12, 0 }
531 #endif
532 };
533
534 static int game_fetch_preset(int i, char **name, game_params **params)
535 {
536 game_params *tmppar;
537 char buf[80];
538
539 if (i < 0 || i >= lenof(presets))
540 return FALSE;
541
542 tmppar = snew(game_params);
543 *tmppar = presets[i];
544 *params = tmppar;
545 sprintf(buf, "%dx%d %s %s- %s", tmppar->h, tmppar->w,
546 gridnames[tmppar->type], dualnames[tmppar->dual],
547 diffnames[tmppar->diff]);
548 *name = dupstr(buf);
549
550 return TRUE;
551 }
552
553 static void free_params(game_params *params)
554 {
555 sfree(params);
556 }
557
558 static void decode_params(game_params *params, char const *string)
559 {
560 params->h = params->w = atoi(string);
561 params->diff = DIFF_EASY;
562 params->dual = 0;
563 while (*string && isdigit((unsigned char)*string)) string++;
564 if (*string == 'x') {
565 string++;
566 params->h = atoi(string);
567 while (*string && isdigit((unsigned char)*string)) string++;
568 }
569 if (*string == 'l') {
570 string++;
571 params->dual = 1;
572 }
573 if (*string == 't') {
574 string++;
575 params->type = atoi(string);
576 while (*string && isdigit((unsigned char)*string)) string++;
577 }
578 if (*string == 'd') {
579 int i;
580 string++;
581 for (i = 0; i < DIFF_MAX; i++)
582 if (*string == diffchars[i])
583 params->diff = i;
584 if (*string) string++;
585 }
586 }
587
588 static char *encode_params(game_params *params, int full)
589 {
590 char str[80];
591 sprintf(str, "%dx%dt%d%s", params->w, params->h, params->type,
592 params->dual ? "l" : "");
593 if (full)
594 sprintf(str + strlen(str), "d%c", diffchars[params->diff]);
595 return dupstr(str);
596 }
597
598 static config_item *game_configure(game_params *params)
599 {
600 config_item *ret;
601 char buf[80];
602
603 ret = snewn(6, config_item);
604
605 ret[0].name = "Width";
606 ret[0].type = C_STRING;
607 sprintf(buf, "%d", params->w);
608 ret[0].sval = dupstr(buf);
609 ret[0].ival = 0;
610
611 ret[1].name = "Height";
612 ret[1].type = C_STRING;
613 sprintf(buf, "%d", params->h);
614 ret[1].sval = dupstr(buf);
615 ret[1].ival = 0;
616
617 ret[2].name = "Grid type";
618 ret[2].type = C_CHOICES;
619 ret[2].sval = GRID_CONFIGS;
620 ret[2].ival = params->type;
621
622 ret[3].name = "Difficulty";
623 ret[3].type = C_CHOICES;
624 ret[3].sval = DIFFCONFIG;
625 ret[3].ival = params->diff;
626
627 ret[4].name = "Dual";
628 ret[4].type = C_BOOLEAN;
629 ret[4].sval = NULL;
630 ret[4].ival = params->dual;
631
632 ret[5].name = NULL;
633 ret[5].type = C_END;
634 ret[5].sval = NULL;
635 ret[5].ival = 0;
636
637 return ret;
638 }
639
640 static game_params *custom_params(config_item *cfg)
641 {
642 game_params *ret = snew(game_params);
643
644 ret->w = atoi(cfg[0].sval);
645 ret->h = atoi(cfg[1].sval);
646 ret->type = cfg[2].ival;
647 ret->diff = cfg[3].ival;
648 ret->dual = cfg[4].ival;
649
650 return ret;
651 }
652
653 static char *validate_params(game_params *params, int full)
654 {
655 if (params->type < 0 || params->type >= NUM_GRID_TYPES)
656 return "Illegal grid type";
657 if (params->w < grid_size_limits[params->type].amin ||
658 params->h < grid_size_limits[params->type].amin)
659 return grid_size_limits[params->type].aerr;
660 if (params->w < grid_size_limits[params->type].omin &&
661 params->h < grid_size_limits[params->type].omin)
662 return grid_size_limits[params->type].oerr;
663
664 /*
665 * This shouldn't be able to happen at all, since decode_params
666 * and custom_params will never generate anything that isn't
667 * within range.
668 */
669 assert(params->diff < DIFF_MAX);
670
671 return NULL;
672 }
673
674 /* Returns a newly allocated string describing the current puzzle */
675 static char *state_to_text(const game_state *state)
676 {
677 grid *g = state->game_grid;
678 char *retval;
679 int num_faces = g->num_faces;
680 char *description = snewn(num_faces + 1, char);
681 char *dp = description;
682 int empty_count = 0;
683 int i;
684
685 for (i = 0; i < num_faces; i++) {
686 if (state->clues[i] < 0) {
687 if (empty_count > 25) {
688 dp += sprintf(dp, "%c", (int)(empty_count + 'a' - 1));
689 empty_count = 0;
690 }
691 empty_count++;
692 } else {
693 if (empty_count) {
694 dp += sprintf(dp, "%c", (int)(empty_count + 'a' - 1));
695 empty_count = 0;
696 }
697 dp += sprintf(dp, "%c", (int)CLUE2CHAR(state->clues[i]));
698 }
699 }
700
701 if (empty_count)
702 dp += sprintf(dp, "%c", (int)(empty_count + 'a' - 1));
703
704 retval = dupstr(description);
705 sfree(description);
706
707 return retval;
708 }
709
710 #define GRID_DESC_SEP '_'
711
712 /* Splits up a (optional) grid_desc from the game desc. Returns the
713 * grid_desc (which needs freeing) and updates the desc pointer to
714 * start of real desc, or returns NULL if no desc. */
715 static char *extract_grid_desc(char **desc)
716 {
717 char *sep = strchr(*desc, GRID_DESC_SEP), *gd;
718 int gd_len;
719
720 if (!sep) return NULL;
721
722 gd_len = sep - (*desc);
723 gd = snewn(gd_len+1, char);
724 memcpy(gd, *desc, gd_len);
725 gd[gd_len] = '\0';
726
727 *desc = sep+1;
728
729 return gd;
730 }
731
732 /* We require that the params pass the test in validate_params and that the
733 * description fills the entire game area */
734 static char *validate_desc(game_params *params, char *desc)
735 {
736 int count = 0;
737 grid *g;
738 char *grid_desc, *ret;
739
740 /* It's pretty inefficient to do this just for validation. All we need to
741 * know is the precise number of faces. */
742 grid_desc = extract_grid_desc(&desc);
743 ret = grid_validate_desc(grid_types[params->type], params->w, params->h, params->dual, grid_desc);
744 if (ret) return ret;
745
746 g = loopy_generate_grid(params, grid_desc);
747 if (grid_desc) sfree(grid_desc);
748
749 for (; *desc; ++desc) {
750 if ((*desc >= '0' && *desc <= '9') || (*desc >= 'A' && *desc <= 'Z')) {
751 count++;
752 continue;
753 }
754 if (*desc >= 'a') {
755 count += *desc - 'a' + 1;
756 continue;
757 }
758 return "Unknown character in description";
759 }
760
761 if (count < g->num_faces)
762 return "Description too short for board size";
763 if (count > g->num_faces)
764 return "Description too long for board size";
765
766 grid_free(g);
767
768 return NULL;
769 }
770
771 /* Sums the lengths of the numbers in range [0,n) */
772 /* See equivalent function in solo.c for justification of this. */
773 static int len_0_to_n(int n)
774 {
775 int len = 1; /* Counting 0 as a bit of a special case */
776 int i;
777
778 for (i = 1; i < n; i *= 10) {
779 len += max(n - i, 0);
780 }
781
782 return len;
783 }
784
785 static char *encode_solve_move(const game_state *state)
786 {
787 int len;
788 char *ret, *p;
789 int i;
790 int num_edges = state->game_grid->num_edges;
791
792 /* This is going to return a string representing the moves needed to set
793 * every line in a grid to be the same as the ones in 'state'. The exact
794 * length of this string is predictable. */
795
796 len = 1; /* Count the 'S' prefix */
797 /* Numbers in all lines */
798 len += len_0_to_n(num_edges);
799 /* For each line we also have a letter */
800 len += num_edges;
801
802 ret = snewn(len + 1, char);
803 p = ret;
804
805 p += sprintf(p, "S");
806
807 for (i = 0; i < num_edges; i++) {
808 switch (state->lines[i]) {
809 case LINE_YES:
810 p += sprintf(p, "%dy", i);
811 break;
812 case LINE_NO:
813 p += sprintf(p, "%dn", i);
814 break;
815 }
816 }
817
818 /* No point in doing sums like that if they're going to be wrong */
819 assert(strlen(ret) <= (size_t)len);
820 return ret;
821 }
822
823 static game_ui *new_ui(game_state *state)
824 {
825 return NULL;
826 }
827
828 static void free_ui(game_ui *ui)
829 {
830 }
831
832 static char *encode_ui(game_ui *ui)
833 {
834 return NULL;
835 }
836
837 static void decode_ui(game_ui *ui, char *encoding)
838 {
839 }
840
841 static void game_changed_state(game_ui *ui, game_state *oldstate,
842 game_state *newstate)
843 {
844 }
845
846 static void game_compute_size(game_params *params, int tilesize,
847 int *x, int *y)
848 {
849 int grid_width, grid_height, rendered_width, rendered_height;
850 int g_tilesize;
851
852 grid_compute_size(grid_types[params->type], params->w, params->h,
853 &g_tilesize, &grid_width, &grid_height);
854
855 /* multiply first to minimise rounding error on integer division */
856 rendered_width = grid_width * tilesize / g_tilesize;
857 rendered_height = grid_height * tilesize / g_tilesize;
858 *x = rendered_width + 2 * BORDER(tilesize) + 1;
859 *y = rendered_height + 2 * BORDER(tilesize) + 1;
860 }
861
862 static void game_set_size(drawing *dr, game_drawstate *ds,
863 game_params *params, int tilesize)
864 {
865 ds->tilesize = tilesize;
866 }
867
868 static float *game_colours(frontend *fe, int *ncolours)
869 {
870 float *ret = snewn(4 * NCOLOURS, float);
871
872 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
873
874 ret[COL_FOREGROUND * 3 + 0] = 0.0F;
875 ret[COL_FOREGROUND * 3 + 1] = 0.0F;
876 ret[COL_FOREGROUND * 3 + 2] = 0.0F;
877
878 /*
879 * We want COL_LINEUNKNOWN to be a yellow which is a bit darker
880 * than the background. (I previously set it to 0.8,0.8,0, but
881 * found that this went badly with the 0.8,0.8,0.8 favoured as a
882 * background by the Java frontend.)
883 */
884 ret[COL_LINEUNKNOWN * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] * 0.9F;
885 ret[COL_LINEUNKNOWN * 3 + 1] = ret[COL_BACKGROUND * 3 + 1] * 0.9F;
886 ret[COL_LINEUNKNOWN * 3 + 2] = 0.0F;
887
888 ret[COL_HIGHLIGHT * 3 + 0] = 1.0F;
889 ret[COL_HIGHLIGHT * 3 + 1] = 1.0F;
890 ret[COL_HIGHLIGHT * 3 + 2] = 1.0F;
891
892 ret[COL_MISTAKE * 3 + 0] = 1.0F;
893 ret[COL_MISTAKE * 3 + 1] = 0.0F;
894 ret[COL_MISTAKE * 3 + 2] = 0.0F;
895
896 ret[COL_SATISFIED * 3 + 0] = 0.0F;
897 ret[COL_SATISFIED * 3 + 1] = 0.0F;
898 ret[COL_SATISFIED * 3 + 2] = 0.0F;
899
900 /* We want the faint lines to be a bit darker than the background.
901 * Except if the background is pretty dark already; then it ought to be a
902 * bit lighter. Oy vey.
903 */
904 ret[COL_FAINT * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] * 0.9F;
905 ret[COL_FAINT * 3 + 1] = ret[COL_BACKGROUND * 3 + 1] * 0.9F;
906 ret[COL_FAINT * 3 + 2] = ret[COL_BACKGROUND * 3 + 2] * 0.9F;
907
908 *ncolours = NCOLOURS;
909 return ret;
910 }
911
912 static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
913 {
914 struct game_drawstate *ds = snew(struct game_drawstate);
915 int num_faces = state->game_grid->num_faces;
916 int num_edges = state->game_grid->num_edges;
917 int i;
918
919 ds->tilesize = 0;
920 ds->started = 0;
921 ds->lines = snewn(num_edges, char);
922 ds->clue_error = snewn(num_faces, char);
923 ds->clue_satisfied = snewn(num_faces, char);
924 ds->textx = snewn(num_faces, int);
925 ds->texty = snewn(num_faces, int);
926 ds->flashing = 0;
927
928 memset(ds->lines, LINE_UNKNOWN, num_edges);
929 memset(ds->clue_error, 0, num_faces);
930 memset(ds->clue_satisfied, 0, num_faces);
931 for (i = 0; i < num_faces; i++)
932 ds->textx[i] = ds->texty[i] = -1;
933
934 return ds;
935 }
936
937 static void game_free_drawstate(drawing *dr, game_drawstate *ds)
938 {
939 sfree(ds->textx);
940 sfree(ds->texty);
941 sfree(ds->clue_error);
942 sfree(ds->clue_satisfied);
943 sfree(ds->lines);
944 sfree(ds);
945 }
946
947 static int game_timing_state(game_state *state, game_ui *ui)
948 {
949 return TRUE;
950 }
951
952 static float game_anim_length(game_state *oldstate, game_state *newstate,
953 int dir, game_ui *ui)
954 {
955 return 0.0F;
956 }
957
958 static int game_can_format_as_text_now(game_params *params)
959 {
960 if (params->type != 0)
961 return FALSE;
962 return TRUE;
963 }
964
965 static char *game_text_format(game_state *state)
966 {
967 int w, h, W, H;
968 int x, y, i;
969 int cell_size;
970 char *ret;
971 grid *g = state->game_grid;
972 grid_face *f;
973
974 assert(state->grid_type == 0);
975
976 /* Work out the basic size unit */
977 f = g->faces; /* first face */
978 assert(f->order == 4);
979 /* The dots are ordered clockwise, so the two opposite
980 * corners are guaranteed to span the square */
981 cell_size = abs(f->dots[0]->x - f->dots[2]->x);
982
983 w = (g->highest_x - g->lowest_x) / cell_size;
984 h = (g->highest_y - g->lowest_y) / cell_size;
985
986 /* Create a blank "canvas" to "draw" on */
987 W = 2 * w + 2;
988 H = 2 * h + 1;
989 ret = snewn(W * H + 1, char);
990 for (y = 0; y < H; y++) {
991 for (x = 0; x < W-1; x++) {
992 ret[y*W + x] = ' ';
993 }
994 ret[y*W + W-1] = '\n';
995 }
996 ret[H*W] = '\0';
997
998 /* Fill in edge info */
999 for (i = 0; i < g->num_edges; i++) {
1000 grid_edge *e = g->edges + i;
1001 /* Cell coordinates, from (0,0) to (w-1,h-1) */
1002 int x1 = (e->dot1->x - g->lowest_x) / cell_size;
1003 int x2 = (e->dot2->x - g->lowest_x) / cell_size;
1004 int y1 = (e->dot1->y - g->lowest_y) / cell_size;
1005 int y2 = (e->dot2->y - g->lowest_y) / cell_size;
1006 /* Midpoint, in canvas coordinates (canvas coordinates are just twice
1007 * cell coordinates) */
1008 x = x1 + x2;
1009 y = y1 + y2;
1010 switch (state->lines[i]) {
1011 case LINE_YES:
1012 ret[y*W + x] = (y1 == y2) ? '-' : '|';
1013 break;
1014 case LINE_NO:
1015 ret[y*W + x] = 'x';
1016 break;
1017 case LINE_UNKNOWN:
1018 break; /* already a space */
1019 default:
1020 assert(!"Illegal line state");
1021 }
1022 }
1023
1024 /* Fill in clues */
1025 for (i = 0; i < g->num_faces; i++) {
1026 int x1, x2, y1, y2;
1027
1028 f = g->faces + i;
1029 assert(f->order == 4);
1030 /* Cell coordinates, from (0,0) to (w-1,h-1) */
1031 x1 = (f->dots[0]->x - g->lowest_x) / cell_size;
1032 x2 = (f->dots[2]->x - g->lowest_x) / cell_size;
1033 y1 = (f->dots[0]->y - g->lowest_y) / cell_size;
1034 y2 = (f->dots[2]->y - g->lowest_y) / cell_size;
1035 /* Midpoint, in canvas coordinates */
1036 x = x1 + x2;
1037 y = y1 + y2;
1038 ret[y*W + x] = CLUE2CHAR(state->clues[i]);
1039 }
1040 return ret;
1041 }
1042
1043 /* ----------------------------------------------------------------------
1044 * Debug code
1045 */
1046
1047 #ifdef DEBUG_CACHES
1048 static void check_caches(const solver_state* sstate)
1049 {
1050 int i;
1051 const game_state *state = sstate->state;
1052 const grid *g = state->game_grid;
1053
1054 for (i = 0; i < g->num_dots; i++) {
1055 assert(dot_order(state, i, LINE_YES) == sstate->dot_yes_count[i]);
1056 assert(dot_order(state, i, LINE_NO) == sstate->dot_no_count[i]);
1057 }
1058
1059 for (i = 0; i < g->num_faces; i++) {
1060 assert(face_order(state, i, LINE_YES) == sstate->face_yes_count[i]);
1061 assert(face_order(state, i, LINE_NO) == sstate->face_no_count[i]);
1062 }
1063 }
1064
1065 #if 0
1066 #define check_caches(s) \
1067 do { \
1068 fprintf(stderr, "check_caches at line %d\n", __LINE__); \
1069 check_caches(s); \
1070 } while (0)
1071 #endif
1072 #endif /* DEBUG_CACHES */
1073
1074 /* ----------------------------------------------------------------------
1075 * Solver utility functions
1076 */
1077
1078 /* Sets the line (with index i) to the new state 'line_new', and updates
1079 * the cached counts of any affected faces and dots.
1080 * Returns TRUE if this actually changed the line's state. */
1081 static int solver_set_line(solver_state *sstate, int i,
1082 enum line_state line_new
1083 #ifdef SHOW_WORKING
1084 , const char *reason
1085 #endif
1086 )
1087 {
1088 game_state *state = sstate->state;
1089 grid *g;
1090 grid_edge *e;
1091
1092 assert(line_new != LINE_UNKNOWN);
1093
1094 check_caches(sstate);
1095
1096 if (state->lines[i] == line_new) {
1097 return FALSE; /* nothing changed */
1098 }
1099 state->lines[i] = line_new;
1100
1101 #ifdef SHOW_WORKING
1102 fprintf(stderr, "solver: set line [%d] to %s (%s)\n",
1103 i, line_new == LINE_YES ? "YES" : "NO",
1104 reason);
1105 #endif
1106
1107 g = state->game_grid;
1108 e = g->edges + i;
1109
1110 /* Update the cache for both dots and both faces affected by this. */
1111 if (line_new == LINE_YES) {
1112 sstate->dot_yes_count[e->dot1 - g->dots]++;
1113 sstate->dot_yes_count[e->dot2 - g->dots]++;
1114 if (e->face1) {
1115 sstate->face_yes_count[e->face1 - g->faces]++;
1116 }
1117 if (e->face2) {
1118 sstate->face_yes_count[e->face2 - g->faces]++;
1119 }
1120 } else {
1121 sstate->dot_no_count[e->dot1 - g->dots]++;
1122 sstate->dot_no_count[e->dot2 - g->dots]++;
1123 if (e->face1) {
1124 sstate->face_no_count[e->face1 - g->faces]++;
1125 }
1126 if (e->face2) {
1127 sstate->face_no_count[e->face2 - g->faces]++;
1128 }
1129 }
1130
1131 check_caches(sstate);
1132 return TRUE;
1133 }
1134
1135 #ifdef SHOW_WORKING
1136 #define solver_set_line(a, b, c) \
1137 solver_set_line(a, b, c, __FUNCTION__)
1138 #endif
1139
1140 /*
1141 * Merge two dots due to the existence of an edge between them.
1142 * Updates the dsf tracking equivalence classes, and keeps track of
1143 * the length of path each dot is currently a part of.
1144 * Returns TRUE if the dots were already linked, ie if they are part of a
1145 * closed loop, and false otherwise.
1146 */
1147 static int merge_dots(solver_state *sstate, int edge_index)
1148 {
1149 int i, j, len;
1150 grid *g = sstate->state->game_grid;
1151 grid_edge *e = g->edges + edge_index;
1152
1153 i = e->dot1 - g->dots;
1154 j = e->dot2 - g->dots;
1155
1156 i = dsf_canonify(sstate->dotdsf, i);
1157 j = dsf_canonify(sstate->dotdsf, j);
1158
1159 if (i == j) {
1160 return TRUE;
1161 } else {
1162 len = sstate->looplen[i] + sstate->looplen[j];
1163 dsf_merge(sstate->dotdsf, i, j);
1164 i = dsf_canonify(sstate->dotdsf, i);
1165 sstate->looplen[i] = len;
1166 return FALSE;
1167 }
1168 }
1169
1170 /* Merge two lines because the solver has deduced that they must be either
1171 * identical or opposite. Returns TRUE if this is new information, otherwise
1172 * FALSE. */
1173 static int merge_lines(solver_state *sstate, int i, int j, int inverse
1174 #ifdef SHOW_WORKING
1175 , const char *reason
1176 #endif
1177 )
1178 {
1179 int inv_tmp;
1180
1181 assert(i < sstate->state->game_grid->num_edges);
1182 assert(j < sstate->state->game_grid->num_edges);
1183
1184 i = edsf_canonify(sstate->linedsf, i, &inv_tmp);
1185 inverse ^= inv_tmp;
1186 j = edsf_canonify(sstate->linedsf, j, &inv_tmp);
1187 inverse ^= inv_tmp;
1188
1189 edsf_merge(sstate->linedsf, i, j, inverse);
1190
1191 #ifdef SHOW_WORKING
1192 if (i != j) {
1193 fprintf(stderr, "%s [%d] [%d] %s(%s)\n",
1194 __FUNCTION__, i, j,
1195 inverse ? "inverse " : "", reason);
1196 }
1197 #endif
1198 return (i != j);
1199 }
1200
1201 #ifdef SHOW_WORKING
1202 #define merge_lines(a, b, c, d) \
1203 merge_lines(a, b, c, d, __FUNCTION__)
1204 #endif
1205
1206 /* Count the number of lines of a particular type currently going into the
1207 * given dot. */
1208 static int dot_order(const game_state* state, int dot, char line_type)
1209 {
1210 int n = 0;
1211 grid *g = state->game_grid;
1212 grid_dot *d = g->dots + dot;
1213 int i;
1214
1215 for (i = 0; i < d->order; i++) {
1216 grid_edge *e = d->edges[i];
1217 if (state->lines[e - g->edges] == line_type)
1218 ++n;
1219 }
1220 return n;
1221 }
1222
1223 /* Count the number of lines of a particular type currently surrounding the
1224 * given face */
1225 static int face_order(const game_state* state, int face, char line_type)
1226 {
1227 int n = 0;
1228 grid *g = state->game_grid;
1229 grid_face *f = g->faces + face;
1230 int i;
1231
1232 for (i = 0; i < f->order; i++) {
1233 grid_edge *e = f->edges[i];
1234 if (state->lines[e - g->edges] == line_type)
1235 ++n;
1236 }
1237 return n;
1238 }
1239
1240 /* Set all lines bordering a dot of type old_type to type new_type
1241 * Return value tells caller whether this function actually did anything */
1242 static int dot_setall(solver_state *sstate, int dot,
1243 char old_type, char new_type)
1244 {
1245 int retval = FALSE, r;
1246 game_state *state = sstate->state;
1247 grid *g;
1248 grid_dot *d;
1249 int i;
1250
1251 if (old_type == new_type)
1252 return FALSE;
1253
1254 g = state->game_grid;
1255 d = g->dots + dot;
1256
1257 for (i = 0; i < d->order; i++) {
1258 int line_index = d->edges[i] - g->edges;
1259 if (state->lines[line_index] == old_type) {
1260 r = solver_set_line(sstate, line_index, new_type);
1261 assert(r == TRUE);
1262 retval = TRUE;
1263 }
1264 }
1265 return retval;
1266 }
1267
1268 /* Set all lines bordering a face of type old_type to type new_type */
1269 static int face_setall(solver_state *sstate, int face,
1270 char old_type, char new_type)
1271 {
1272 int retval = FALSE, r;
1273 game_state *state = sstate->state;
1274 grid *g;
1275 grid_face *f;
1276 int i;
1277
1278 if (old_type == new_type)
1279 return FALSE;
1280
1281 g = state->game_grid;
1282 f = g->faces + face;
1283
1284 for (i = 0; i < f->order; i++) {
1285 int line_index = f->edges[i] - g->edges;
1286 if (state->lines[line_index] == old_type) {
1287 r = solver_set_line(sstate, line_index, new_type);
1288 assert(r == TRUE);
1289 retval = TRUE;
1290 }
1291 }
1292 return retval;
1293 }
1294
1295 /* ----------------------------------------------------------------------
1296 * Loop generation and clue removal
1297 */
1298
1299 static void add_full_clues(game_state *state, random_state *rs)
1300 {
1301 signed char *clues = state->clues;
1302 grid *g = state->game_grid;
1303 char *board = snewn(g->num_faces, char);
1304 int i;
1305
1306 generate_loop(g, board, rs, NULL, NULL);
1307
1308 /* Fill out all the clues by initialising to 0, then iterating over
1309 * all edges and incrementing each clue as we find edges that border
1310 * between BLACK/WHITE faces. While we're at it, we verify that the
1311 * algorithm does work, and there aren't any GREY faces still there. */
1312 memset(clues, 0, g->num_faces);
1313 for (i = 0; i < g->num_edges; i++) {
1314 grid_edge *e = g->edges + i;
1315 grid_face *f1 = e->face1;
1316 grid_face *f2 = e->face2;
1317 enum face_colour c1 = FACE_COLOUR(f1);
1318 enum face_colour c2 = FACE_COLOUR(f2);
1319 assert(c1 != FACE_GREY);
1320 assert(c2 != FACE_GREY);
1321 if (c1 != c2) {
1322 if (f1) clues[f1 - g->faces]++;
1323 if (f2) clues[f2 - g->faces]++;
1324 }
1325 }
1326 sfree(board);
1327 }
1328
1329
1330 static int game_has_unique_soln(const game_state *state, int diff)
1331 {
1332 int ret;
1333 solver_state *sstate_new;
1334 solver_state *sstate = new_solver_state((game_state *)state, diff);
1335
1336 sstate_new = solve_game_rec(sstate);
1337
1338 assert(sstate_new->solver_status != SOLVER_MISTAKE);
1339 ret = (sstate_new->solver_status == SOLVER_SOLVED);
1340
1341 free_solver_state(sstate_new);
1342 free_solver_state(sstate);
1343
1344 return ret;
1345 }
1346
1347
1348 /* Remove clues one at a time at random. */
1349 static game_state *remove_clues(game_state *state, random_state *rs,
1350 int diff)
1351 {
1352 int *face_list;
1353 int num_faces = state->game_grid->num_faces;
1354 game_state *ret = dup_game(state), *saved_ret;
1355 int n;
1356
1357 /* We need to remove some clues. We'll do this by forming a list of all
1358 * available clues, shuffling it, then going along one at a
1359 * time clearing each clue in turn for which doing so doesn't render the
1360 * board unsolvable. */
1361 face_list = snewn(num_faces, int);
1362 for (n = 0; n < num_faces; ++n) {
1363 face_list[n] = n;
1364 }
1365
1366 shuffle(face_list, num_faces, sizeof(int), rs);
1367
1368 for (n = 0; n < num_faces; ++n) {
1369 saved_ret = dup_game(ret);
1370 ret->clues[face_list[n]] = -1;
1371
1372 if (game_has_unique_soln(ret, diff)) {
1373 free_game(saved_ret);
1374 } else {
1375 free_game(ret);
1376 ret = saved_ret;
1377 }
1378 }
1379 sfree(face_list);
1380
1381 return ret;
1382 }
1383
1384
1385 static char *new_game_desc(game_params *params, random_state *rs,
1386 char **aux, int interactive)
1387 {
1388 /* solution and description both use run-length encoding in obvious ways */
1389 char *retval, *game_desc, *grid_desc;
1390 grid *g;
1391 game_state *state = snew(game_state);
1392 game_state *state_new;
1393
1394 grid_desc = grid_new_desc(grid_types[params->type], params->w, params->h, params->dual, rs);
1395 state->game_grid = g = loopy_generate_grid(params, grid_desc);
1396
1397 state->clues = snewn(g->num_faces, signed char);
1398 state->lines = snewn(g->num_edges, char);
1399 state->line_errors = snewn(g->num_edges, unsigned char);
1400
1401 state->grid_type = params->type;
1402
1403 newboard_please:
1404
1405 memset(state->lines, LINE_UNKNOWN, g->num_edges);
1406 memset(state->line_errors, 0, g->num_edges);
1407
1408 state->solved = state->cheated = FALSE;
1409
1410 /* Get a new random solvable board with all its clues filled in. Yes, this
1411 * can loop for ever if the params are suitably unfavourable, but
1412 * preventing games smaller than 4x4 seems to stop this happening */
1413 do {
1414 add_full_clues(state, rs);
1415 } while (!game_has_unique_soln(state, params->diff));
1416
1417 state_new = remove_clues(state, rs, params->diff);
1418 free_game(state);
1419 state = state_new;
1420
1421
1422 if (params->diff > 0 && game_has_unique_soln(state, params->diff-1)) {
1423 #ifdef SHOW_WORKING
1424 fprintf(stderr, "Rejecting board, it is too easy\n");
1425 #endif
1426 goto newboard_please;
1427 }
1428
1429 game_desc = state_to_text(state);
1430
1431 free_game(state);
1432
1433 if (grid_desc) {
1434 retval = snewn(strlen(grid_desc) + 1 + strlen(game_desc) + 1, char);
1435 sprintf(retval, "%s%c%s", grid_desc, (int)GRID_DESC_SEP, game_desc);
1436 sfree(grid_desc);
1437 sfree(game_desc);
1438 } else {
1439 retval = game_desc;
1440 }
1441
1442 assert(!validate_desc(params, retval));
1443
1444 return retval;
1445 }
1446
1447 static game_state *new_game(midend *me, game_params *params, char *desc)
1448 {
1449 int i;
1450 game_state *state = snew(game_state);
1451 int empties_to_make = 0;
1452 int n,n2;
1453 const char *dp;
1454 char *grid_desc;
1455 grid *g;
1456 int num_faces, num_edges;
1457
1458 grid_desc = extract_grid_desc(&desc);
1459 state->game_grid = g = loopy_generate_grid(params, grid_desc);
1460 if (grid_desc) sfree(grid_desc);
1461
1462 dp = desc;
1463
1464 num_faces = g->num_faces;
1465 num_edges = g->num_edges;
1466
1467 state->clues = snewn(num_faces, signed char);
1468 state->lines = snewn(num_edges, char);
1469 state->line_errors = snewn(num_edges, unsigned char);
1470
1471 state->solved = state->cheated = FALSE;
1472
1473 state->grid_type = params->type;
1474
1475 for (i = 0; i < num_faces; i++) {
1476 if (empties_to_make) {
1477 empties_to_make--;
1478 state->clues[i] = -1;
1479 continue;
1480 }
1481
1482 assert(*dp);
1483 n = *dp - '0';
1484 n2 = *dp - 'A' + 10;
1485 if (n >= 0 && n < 10) {
1486 state->clues[i] = n;
1487 } else if (n2 >= 10 && n2 < 36) {
1488 state->clues[i] = n2;
1489 } else {
1490 n = *dp - 'a' + 1;
1491 assert(n > 0);
1492 state->clues[i] = -1;
1493 empties_to_make = n - 1;
1494 }
1495 ++dp;
1496 }
1497
1498 memset(state->lines, LINE_UNKNOWN, num_edges);
1499 memset(state->line_errors, 0, num_edges);
1500 return state;
1501 }
1502
1503 /* Calculates the line_errors data, and checks if the current state is a
1504 * solution */
1505 static int check_completion(game_state *state)
1506 {
1507 grid *g = state->game_grid;
1508 int *dsf;
1509 int num_faces = g->num_faces;
1510 int i;
1511 int infinite_area, finite_area;
1512 int loops_found = 0;
1513 int found_edge_not_in_loop = FALSE;
1514
1515 memset(state->line_errors, 0, g->num_edges);
1516
1517 /* LL implementation of SGT's idea:
1518 * A loop will partition the grid into an inside and an outside.
1519 * If there is more than one loop, the grid will be partitioned into
1520 * even more distinct regions. We can therefore track equivalence of
1521 * faces, by saying that two faces are equivalent when there is a non-YES
1522 * edge between them.
1523 * We could keep track of the number of connected components, by counting
1524 * the number of dsf-merges that aren't no-ops.
1525 * But we're only interested in 3 separate cases:
1526 * no loops, one loop, more than one loop.
1527 *
1528 * No loops: all faces are equivalent to the infinite face.
1529 * One loop: only two equivalence classes - finite and infinite.
1530 * >= 2 loops: there are 2 distinct finite regions.
1531 *
1532 * So we simply make two passes through all the edges.
1533 * In the first pass, we dsf-merge the two faces bordering each non-YES
1534 * edge.
1535 * In the second pass, we look for YES-edges bordering:
1536 * a) two non-equivalent faces.
1537 * b) two non-equivalent faces, and one of them is part of a different
1538 * finite area from the first finite area we've seen.
1539 *
1540 * An occurrence of a) means there is at least one loop.
1541 * An occurrence of b) means there is more than one loop.
1542 * Edges satisfying a) are marked as errors.
1543 *
1544 * While we're at it, we set a flag if we find a YES edge that is not
1545 * part of a loop.
1546 * This information will help decide, if there's a single loop, whether it
1547 * is a candidate for being a solution (that is, all YES edges are part of
1548 * this loop).
1549 *
1550 * If there is a candidate loop, we then go through all clues and check
1551 * they are all satisfied. If so, we have found a solution and we can
1552 * unmark all line_errors.
1553 */
1554
1555 /* Infinite face is at the end - its index is num_faces.
1556 * This macro is just to make this obvious! */
1557 #define INF_FACE num_faces
1558 dsf = snewn(num_faces + 1, int);
1559 dsf_init(dsf, num_faces + 1);
1560
1561 /* First pass */
1562 for (i = 0; i < g->num_edges; i++) {
1563 grid_edge *e = g->edges + i;
1564 int f1 = e->face1 ? e->face1 - g->faces : INF_FACE;
1565 int f2 = e->face2 ? e->face2 - g->faces : INF_FACE;
1566 if (state->lines[i] != LINE_YES)
1567 dsf_merge(dsf, f1, f2);
1568 }
1569
1570 /* Second pass */
1571 infinite_area = dsf_canonify(dsf, INF_FACE);
1572 finite_area = -1;
1573 for (i = 0; i < g->num_edges; i++) {
1574 grid_edge *e = g->edges + i;
1575 int f1 = e->face1 ? e->face1 - g->faces : INF_FACE;
1576 int can1 = dsf_canonify(dsf, f1);
1577 int f2 = e->face2 ? e->face2 - g->faces : INF_FACE;
1578 int can2 = dsf_canonify(dsf, f2);
1579 if (state->lines[i] != LINE_YES) continue;
1580
1581 if (can1 == can2) {
1582 /* Faces are equivalent, so this edge not part of a loop */
1583 found_edge_not_in_loop = TRUE;
1584 continue;
1585 }
1586 state->line_errors[i] = TRUE;
1587 if (loops_found == 0) loops_found = 1;
1588
1589 /* Don't bother with further checks if we've already found 2 loops */
1590 if (loops_found == 2) continue;
1591
1592 if (finite_area == -1) {
1593 /* Found our first finite area */
1594 if (can1 != infinite_area)
1595 finite_area = can1;
1596 else
1597 finite_area = can2;
1598 }
1599
1600 /* Have we found a second area? */
1601 if (finite_area != -1) {
1602 if (can1 != infinite_area && can1 != finite_area) {
1603 loops_found = 2;
1604 continue;
1605 }
1606 if (can2 != infinite_area && can2 != finite_area) {
1607 loops_found = 2;
1608 }
1609 }
1610 }
1611
1612 /*
1613 printf("loops_found = %d\n", loops_found);
1614 printf("found_edge_not_in_loop = %s\n",
1615 found_edge_not_in_loop ? "TRUE" : "FALSE");
1616 */
1617
1618 sfree(dsf); /* No longer need the dsf */
1619
1620 /* Have we found a candidate loop? */
1621 if (loops_found == 1 && !found_edge_not_in_loop) {
1622 /* Yes, so check all clues are satisfied */
1623 int found_clue_violation = FALSE;
1624 for (i = 0; i < num_faces; i++) {
1625 int c = state->clues[i];
1626 if (c >= 0) {
1627 if (face_order(state, i, LINE_YES) != c) {
1628 found_clue_violation = TRUE;
1629 break;
1630 }
1631 }
1632 }
1633
1634 if (!found_clue_violation) {
1635 /* The loop is good */
1636 memset(state->line_errors, 0, g->num_edges);
1637 return TRUE; /* No need to bother checking for dot violations */
1638 }
1639 }
1640
1641 /* Check for dot violations */
1642 for (i = 0; i < g->num_dots; i++) {
1643 int yes = dot_order(state, i, LINE_YES);
1644 int unknown = dot_order(state, i, LINE_UNKNOWN);
1645 if ((yes == 1 && unknown == 0) || (yes >= 3)) {
1646 /* violation, so mark all YES edges as errors */
1647 grid_dot *d = g->dots + i;
1648 int j;
1649 for (j = 0; j < d->order; j++) {
1650 int e = d->edges[j] - g->edges;
1651 if (state->lines[e] == LINE_YES)
1652 state->line_errors[e] = TRUE;
1653 }
1654 }
1655 }
1656 return FALSE;
1657 }
1658
1659 /* ----------------------------------------------------------------------
1660 * Solver logic
1661 *
1662 * Our solver modes operate as follows. Each mode also uses the modes above it.
1663 *
1664 * Easy Mode
1665 * Just implement the rules of the game.
1666 *
1667 * Normal and Tricky Modes
1668 * For each (adjacent) pair of lines through each dot we store a bit for
1669 * whether at least one of them is on and whether at most one is on. (If we
1670 * know both or neither is on that's already stored more directly.)
1671 *
1672 * Advanced Mode
1673 * Use edsf data structure to make equivalence classes of lines that are
1674 * known identical to or opposite to one another.
1675 */
1676
1677
1678 /* DLines:
1679 * For general grids, we consider "dlines" to be pairs of lines joined
1680 * at a dot. The lines must be adjacent around the dot, so we can think of
1681 * a dline as being a dot+face combination. Or, a dot+edge combination where
1682 * the second edge is taken to be the next clockwise edge from the dot.
1683 * Original loopy code didn't have this extra restriction of the lines being
1684 * adjacent. From my tests with square grids, this extra restriction seems to
1685 * take little, if anything, away from the quality of the puzzles.
1686 * A dline can be uniquely identified by an edge/dot combination, given that
1687 * a dline-pair always goes clockwise around its common dot. The edge/dot
1688 * combination can be represented by an edge/bool combination - if bool is
1689 * TRUE, use edge->dot1 else use edge->dot2. So the total number of dlines is
1690 * exactly twice the number of edges in the grid - although the dlines
1691 * spanning the infinite face are not all that useful to the solver.
1692 * Note that, by convention, a dline goes clockwise around its common dot,
1693 * which means the dline goes anti-clockwise around its common face.
1694 */
1695
1696 /* Helper functions for obtaining an index into an array of dlines, given
1697 * various information. We assume the grid layout conventions about how
1698 * the various lists are interleaved - see grid_make_consistent() for
1699 * details. */
1700
1701 /* i points to the first edge of the dline pair, reading clockwise around
1702 * the dot. */
1703 static int dline_index_from_dot(grid *g, grid_dot *d, int i)
1704 {
1705 grid_edge *e = d->edges[i];
1706 int ret;
1707 #ifdef DEBUG_DLINES
1708 grid_edge *e2;
1709 int i2 = i+1;
1710 if (i2 == d->order) i2 = 0;
1711 e2 = d->edges[i2];
1712 #endif
1713 ret = 2 * (e - g->edges) + ((e->dot1 == d) ? 1 : 0);
1714 #ifdef DEBUG_DLINES
1715 printf("dline_index_from_dot: d=%d,i=%d, edges [%d,%d] - %d\n",
1716 (int)(d - g->dots), i, (int)(e - g->edges),
1717 (int)(e2 - g->edges), ret);
1718 #endif
1719 return ret;
1720 }
1721 /* i points to the second edge of the dline pair, reading clockwise around
1722 * the face. That is, the edges of the dline, starting at edge{i}, read
1723 * anti-clockwise around the face. By layout conventions, the common dot
1724 * of the dline will be f->dots[i] */
1725 static int dline_index_from_face(grid *g, grid_face *f, int i)
1726 {
1727 grid_edge *e = f->edges[i];
1728 grid_dot *d = f->dots[i];
1729 int ret;
1730 #ifdef DEBUG_DLINES
1731 grid_edge *e2;
1732 int i2 = i - 1;
1733 if (i2 < 0) i2 += f->order;
1734 e2 = f->edges[i2];
1735 #endif
1736 ret = 2 * (e - g->edges) + ((e->dot1 == d) ? 1 : 0);
1737 #ifdef DEBUG_DLINES
1738 printf("dline_index_from_face: f=%d,i=%d, edges [%d,%d] - %d\n",
1739 (int)(f - g->faces), i, (int)(e - g->edges),
1740 (int)(e2 - g->edges), ret);
1741 #endif
1742 return ret;
1743 }
1744 static int is_atleastone(const char *dline_array, int index)
1745 {
1746 return BIT_SET(dline_array[index], 0);
1747 }
1748 static int set_atleastone(char *dline_array, int index)
1749 {
1750 return SET_BIT(dline_array[index], 0);
1751 }
1752 static int is_atmostone(const char *dline_array, int index)
1753 {
1754 return BIT_SET(dline_array[index], 1);
1755 }
1756 static int set_atmostone(char *dline_array, int index)
1757 {
1758 return SET_BIT(dline_array[index], 1);
1759 }
1760
1761 static void array_setall(char *array, char from, char to, int len)
1762 {
1763 char *p = array, *p_old = p;
1764 int len_remaining = len;
1765
1766 while ((p = memchr(p, from, len_remaining))) {
1767 *p = to;
1768 len_remaining -= p - p_old;
1769 p_old = p;
1770 }
1771 }
1772
1773 /* Helper, called when doing dline dot deductions, in the case where we
1774 * have 4 UNKNOWNs, and two of them (adjacent) have *exactly* one YES between
1775 * them (because of dline atmostone/atleastone).
1776 * On entry, edge points to the first of these two UNKNOWNs. This function
1777 * will find the opposite UNKNOWNS (if they are adjacent to one another)
1778 * and set their corresponding dline to atleastone. (Setting atmostone
1779 * already happens in earlier dline deductions) */
1780 static int dline_set_opp_atleastone(solver_state *sstate,
1781 grid_dot *d, int edge)
1782 {
1783 game_state *state = sstate->state;
1784 grid *g = state->game_grid;
1785 int N = d->order;
1786 int opp, opp2;
1787 for (opp = 0; opp < N; opp++) {
1788 int opp_dline_index;
1789 if (opp == edge || opp == edge+1 || opp == edge-1)
1790 continue;
1791 if (opp == 0 && edge == N-1)
1792 continue;
1793 if (opp == N-1 && edge == 0)
1794 continue;
1795 opp2 = opp + 1;
1796 if (opp2 == N) opp2 = 0;
1797 /* Check if opp, opp2 point to LINE_UNKNOWNs */
1798 if (state->lines[d->edges[opp] - g->edges] != LINE_UNKNOWN)
1799 continue;
1800 if (state->lines[d->edges[opp2] - g->edges] != LINE_UNKNOWN)
1801 continue;
1802 /* Found opposite UNKNOWNS and they're next to each other */
1803 opp_dline_index = dline_index_from_dot(g, d, opp);
1804 return set_atleastone(sstate->dlines, opp_dline_index);
1805 }
1806 return FALSE;
1807 }
1808
1809
1810 /* Set pairs of lines around this face which are known to be identical, to
1811 * the given line_state */
1812 static int face_setall_identical(solver_state *sstate, int face_index,
1813 enum line_state line_new)
1814 {
1815 /* can[dir] contains the canonical line associated with the line in
1816 * direction dir from the square in question. Similarly inv[dir] is
1817 * whether or not the line in question is inverse to its canonical
1818 * element. */
1819 int retval = FALSE;
1820 game_state *state = sstate->state;
1821 grid *g = state->game_grid;
1822 grid_face *f = g->faces + face_index;
1823 int N = f->order;
1824 int i, j;
1825 int can1, can2, inv1, inv2;
1826
1827 for (i = 0; i < N; i++) {
1828 int line1_index = f->edges[i] - g->edges;
1829 if (state->lines[line1_index] != LINE_UNKNOWN)
1830 continue;
1831 for (j = i + 1; j < N; j++) {
1832 int line2_index = f->edges[j] - g->edges;
1833 if (state->lines[line2_index] != LINE_UNKNOWN)
1834 continue;
1835
1836 /* Found two UNKNOWNS */
1837 can1 = edsf_canonify(sstate->linedsf, line1_index, &inv1);
1838 can2 = edsf_canonify(sstate->linedsf, line2_index, &inv2);
1839 if (can1 == can2 && inv1 == inv2) {
1840 solver_set_line(sstate, line1_index, line_new);
1841 solver_set_line(sstate, line2_index, line_new);
1842 }
1843 }
1844 }
1845 return retval;
1846 }
1847
1848 /* Given a dot or face, and a count of LINE_UNKNOWNs, find them and
1849 * return the edge indices into e. */
1850 static void find_unknowns(game_state *state,
1851 grid_edge **edge_list, /* Edge list to search (from a face or a dot) */
1852 int expected_count, /* Number of UNKNOWNs (comes from solver's cache) */
1853 int *e /* Returned edge indices */)
1854 {
1855 int c = 0;
1856 grid *g = state->game_grid;
1857 while (c < expected_count) {
1858 int line_index = *edge_list - g->edges;
1859 if (state->lines[line_index] == LINE_UNKNOWN) {
1860 e[c] = line_index;
1861 c++;
1862 }
1863 ++edge_list;
1864 }
1865 }
1866
1867 /* If we have a list of edges, and we know whether the number of YESs should
1868 * be odd or even, and there are only a few UNKNOWNs, we can do some simple
1869 * linedsf deductions. This can be used for both face and dot deductions.
1870 * Returns the difficulty level of the next solver that should be used,
1871 * or DIFF_MAX if no progress was made. */
1872 static int parity_deductions(solver_state *sstate,
1873 grid_edge **edge_list, /* Edge list (from a face or a dot) */
1874 int total_parity, /* Expected number of YESs modulo 2 (either 0 or 1) */
1875 int unknown_count)
1876 {
1877 game_state *state = sstate->state;
1878 int diff = DIFF_MAX;
1879 int *linedsf = sstate->linedsf;
1880
1881 if (unknown_count == 2) {
1882 /* Lines are known alike/opposite, depending on inv. */
1883 int e[2];
1884 find_unknowns(state, edge_list, 2, e);
1885 if (merge_lines(sstate, e[0], e[1], total_parity))
1886 diff = min(diff, DIFF_HARD);
1887 } else if (unknown_count == 3) {
1888 int e[3];
1889 int can[3]; /* canonical edges */
1890 int inv[3]; /* whether can[x] is inverse to e[x] */
1891 find_unknowns(state, edge_list, 3, e);
1892 can[0] = edsf_canonify(linedsf, e[0], inv);
1893 can[1] = edsf_canonify(linedsf, e[1], inv+1);
1894 can[2] = edsf_canonify(linedsf, e[2], inv+2);
1895 if (can[0] == can[1]) {
1896 if (solver_set_line(sstate, e[2], (total_parity^inv[0]^inv[1]) ?
1897 LINE_YES : LINE_NO))
1898 diff = min(diff, DIFF_EASY);
1899 }
1900 if (can[0] == can[2]) {
1901 if (solver_set_line(sstate, e[1], (total_parity^inv[0]^inv[2]) ?
1902 LINE_YES : LINE_NO))
1903 diff = min(diff, DIFF_EASY);
1904 }
1905 if (can[1] == can[2]) {
1906 if (solver_set_line(sstate, e[0], (total_parity^inv[1]^inv[2]) ?
1907 LINE_YES : LINE_NO))
1908 diff = min(diff, DIFF_EASY);
1909 }
1910 } else if (unknown_count == 4) {
1911 int e[4];
1912 int can[4]; /* canonical edges */
1913 int inv[4]; /* whether can[x] is inverse to e[x] */
1914 find_unknowns(state, edge_list, 4, e);
1915 can[0] = edsf_canonify(linedsf, e[0], inv);
1916 can[1] = edsf_canonify(linedsf, e[1], inv+1);
1917 can[2] = edsf_canonify(linedsf, e[2], inv+2);
1918 can[3] = edsf_canonify(linedsf, e[3], inv+3);
1919 if (can[0] == can[1]) {
1920 if (merge_lines(sstate, e[2], e[3], total_parity^inv[0]^inv[1]))
1921 diff = min(diff, DIFF_HARD);
1922 } else if (can[0] == can[2]) {
1923 if (merge_lines(sstate, e[1], e[3], total_parity^inv[0]^inv[2]))
1924 diff = min(diff, DIFF_HARD);
1925 } else if (can[0] == can[3]) {
1926 if (merge_lines(sstate, e[1], e[2], total_parity^inv[0]^inv[3]))
1927 diff = min(diff, DIFF_HARD);
1928 } else if (can[1] == can[2]) {
1929 if (merge_lines(sstate, e[0], e[3], total_parity^inv[1]^inv[2]))
1930 diff = min(diff, DIFF_HARD);
1931 } else if (can[1] == can[3]) {
1932 if (merge_lines(sstate, e[0], e[2], total_parity^inv[1]^inv[3]))
1933 diff = min(diff, DIFF_HARD);
1934 } else if (can[2] == can[3]) {
1935 if (merge_lines(sstate, e[0], e[1], total_parity^inv[2]^inv[3]))
1936 diff = min(diff, DIFF_HARD);
1937 }
1938 }
1939 return diff;
1940 }
1941
1942
1943 /*
1944 * These are the main solver functions.
1945 *
1946 * Their return values are diff values corresponding to the lowest mode solver
1947 * that would notice the work that they have done. For example if the normal
1948 * mode solver adds actual lines or crosses, it will return DIFF_EASY as the
1949 * easy mode solver might be able to make progress using that. It doesn't make
1950 * sense for one of them to return a diff value higher than that of the
1951 * function itself.
1952 *
1953 * Each function returns the lowest value it can, as early as possible, in
1954 * order to try and pass as much work as possible back to the lower level
1955 * solvers which progress more quickly.
1956 */
1957
1958 /* PROPOSED NEW DESIGN:
1959 * We have a work queue consisting of 'events' notifying us that something has
1960 * happened that a particular solver mode might be interested in. For example
1961 * the hard mode solver might do something that helps the normal mode solver at
1962 * dot [x,y] in which case it will enqueue an event recording this fact. Then
1963 * we pull events off the work queue, and hand each in turn to the solver that
1964 * is interested in them. If a solver reports that it failed we pass the same
1965 * event on to progressively more advanced solvers and the loop detector. Once
1966 * we've exhausted an event, or it has helped us progress, we drop it and
1967 * continue to the next one. The events are sorted first in order of solver
1968 * complexity (easy first) then order of insertion (oldest first).
1969 * Once we run out of events we loop over each permitted solver in turn
1970 * (easiest first) until either a deduction is made (and an event therefore
1971 * emerges) or no further deductions can be made (in which case we've failed).
1972 *
1973 * QUESTIONS:
1974 * * How do we 'loop over' a solver when both dots and squares are concerned.
1975 * Answer: first all squares then all dots.
1976 */
1977
1978 static int trivial_deductions(solver_state *sstate)
1979 {
1980 int i, current_yes, current_no;
1981 game_state *state = sstate->state;
1982 grid *g = state->game_grid;
1983 int diff = DIFF_MAX;
1984
1985 /* Per-face deductions */
1986 for (i = 0; i < g->num_faces; i++) {
1987 grid_face *f = g->faces + i;
1988
1989 if (sstate->face_solved[i])
1990 continue;
1991
1992 current_yes = sstate->face_yes_count[i];
1993 current_no = sstate->face_no_count[i];
1994
1995 if (current_yes + current_no == f->order) {
1996 sstate->face_solved[i] = TRUE;
1997 continue;
1998 }
1999
2000 if (state->clues[i] < 0)
2001 continue;
2002
2003 /*
2004 * This code checks whether the numeric clue on a face is so
2005 * large as to permit all its remaining LINE_UNKNOWNs to be
2006 * filled in as LINE_YES, or alternatively so small as to
2007 * permit them all to be filled in as LINE_NO.
2008 */
2009
2010 if (state->clues[i] < current_yes) {
2011 sstate->solver_status = SOLVER_MISTAKE;
2012 return DIFF_EASY;
2013 }
2014 if (state->clues[i] == current_yes) {
2015 if (face_setall(sstate, i, LINE_UNKNOWN, LINE_NO))
2016 diff = min(diff, DIFF_EASY);
2017 sstate->face_solved[i] = TRUE;
2018 continue;
2019 }
2020
2021 if (f->order - state->clues[i] < current_no) {
2022 sstate->solver_status = SOLVER_MISTAKE;
2023 return DIFF_EASY;
2024 }
2025 if (f->order - state->clues[i] == current_no) {
2026 if (face_setall(sstate, i, LINE_UNKNOWN, LINE_YES))
2027 diff = min(diff, DIFF_EASY);
2028 sstate->face_solved[i] = TRUE;
2029 continue;
2030 }
2031
2032 if (f->order - state->clues[i] == current_no + 1 &&
2033 f->order - current_yes - current_no > 2) {
2034 /*
2035 * One small refinement to the above: we also look for any
2036 * adjacent pair of LINE_UNKNOWNs around the face with
2037 * some LINE_YES incident on it from elsewhere. If we find
2038 * one, then we know that pair of LINE_UNKNOWNs can't
2039 * _both_ be LINE_YES, and hence that pushes us one line
2040 * closer to being able to determine all the rest.
2041 */
2042 int j, k, e1, e2, e, d;
2043
2044 for (j = 0; j < f->order; j++) {
2045 e1 = f->edges[j] - g->edges;
2046 e2 = f->edges[j+1 < f->order ? j+1 : 0] - g->edges;
2047
2048 if (g->edges[e1].dot1 == g->edges[e2].dot1 ||
2049 g->edges[e1].dot1 == g->edges[e2].dot2) {
2050 d = g->edges[e1].dot1 - g->dots;
2051 } else {
2052 assert(g->edges[e1].dot2 == g->edges[e2].dot1 ||
2053 g->edges[e1].dot2 == g->edges[e2].dot2);
2054 d = g->edges[e1].dot2 - g->dots;
2055 }
2056
2057 if (state->lines[e1] == LINE_UNKNOWN &&
2058 state->lines[e2] == LINE_UNKNOWN) {
2059 for (k = 0; k < g->dots[d].order; k++) {
2060 int e = g->dots[d].edges[k] - g->edges;
2061 if (state->lines[e] == LINE_YES)
2062 goto found; /* multi-level break */
2063 }
2064 }
2065 }
2066 continue;
2067
2068 found:
2069 /*
2070 * If we get here, we've found such a pair of edges, and
2071 * they're e1 and e2.
2072 */
2073 for (j = 0; j < f->order; j++) {
2074 e = f->edges[j] - g->edges;
2075 if (state->lines[e] == LINE_UNKNOWN && e != e1 && e != e2) {
2076 int r = solver_set_line(sstate, e, LINE_YES);
2077 assert(r);
2078 diff = min(diff, DIFF_EASY);
2079 }
2080 }
2081 }
2082 }
2083
2084 check_caches(sstate);
2085
2086 /* Per-dot deductions */
2087 for (i = 0; i < g->num_dots; i++) {
2088 grid_dot *d = g->dots + i;
2089 int yes, no, unknown;
2090
2091 if (sstate->dot_solved[i])
2092 continue;
2093
2094 yes = sstate->dot_yes_count[i];
2095 no = sstate->dot_no_count[i];
2096 unknown = d->order - yes - no;
2097
2098 if (yes == 0) {
2099 if (unknown == 0) {
2100 sstate->dot_solved[i] = TRUE;
2101 } else if (unknown == 1) {
2102 dot_setall(sstate, i, LINE_UNKNOWN, LINE_NO);
2103 diff = min(diff, DIFF_EASY);
2104 sstate->dot_solved[i] = TRUE;
2105 }
2106 } else if (yes == 1) {
2107 if (unknown == 0) {
2108 sstate->solver_status = SOLVER_MISTAKE;
2109 return DIFF_EASY;
2110 } else if (unknown == 1) {
2111 dot_setall(sstate, i, LINE_UNKNOWN, LINE_YES);
2112 diff = min(diff, DIFF_EASY);
2113 }
2114 } else if (yes == 2) {
2115 if (unknown > 0) {
2116 dot_setall(sstate, i, LINE_UNKNOWN, LINE_NO);
2117 diff = min(diff, DIFF_EASY);
2118 }
2119 sstate->dot_solved[i] = TRUE;
2120 } else {
2121 sstate->solver_status = SOLVER_MISTAKE;
2122 return DIFF_EASY;
2123 }
2124 }
2125
2126 check_caches(sstate);
2127
2128 return diff;
2129 }
2130
2131 static int dline_deductions(solver_state *sstate)
2132 {
2133 game_state *state = sstate->state;
2134 grid *g = state->game_grid;
2135 char *dlines = sstate->dlines;
2136 int i;
2137 int diff = DIFF_MAX;
2138
2139 /* ------ Face deductions ------ */
2140
2141 /* Given a set of dline atmostone/atleastone constraints, need to figure
2142 * out if we can deduce any further info. For more general faces than
2143 * squares, this turns out to be a tricky problem.
2144 * The approach taken here is to define (per face) NxN matrices:
2145 * "maxs" and "mins".
2146 * The entries maxs(j,k) and mins(j,k) define the upper and lower limits
2147 * for the possible number of edges that are YES between positions j and k
2148 * going clockwise around the face. Can think of j and k as marking dots
2149 * around the face (recall the labelling scheme: edge0 joins dot0 to dot1,
2150 * edge1 joins dot1 to dot2 etc).
2151 * Trivially, mins(j,j) = maxs(j,j) = 0, and we don't even bother storing
2152 * these. mins(j,j+1) and maxs(j,j+1) are determined by whether edge{j}
2153 * is YES, NO or UNKNOWN. mins(j,j+2) and maxs(j,j+2) are related to
2154 * the dline atmostone/atleastone status for edges j and j+1.
2155 *
2156 * Then we calculate the remaining entries recursively. We definitely
2157 * know that
2158 * mins(j,k) >= { mins(j,u) + mins(u,k) } for any u between j and k.
2159 * This is because any valid placement of YESs between j and k must give
2160 * a valid placement between j and u, and also between u and k.
2161 * I believe it's sufficient to use just the two values of u:
2162 * j+1 and j+2. Seems to work well in practice - the bounds we compute
2163 * are rigorous, even if they might not be best-possible.
2164 *
2165 * Once we have maxs and mins calculated, we can make inferences about
2166 * each dline{j,j+1} by looking at the possible complementary edge-counts
2167 * mins(j+2,j) and maxs(j+2,j) and comparing these with the face clue.
2168 * As well as dlines, we can make similar inferences about single edges.
2169 * For example, consider a pentagon with clue 3, and we know at most one
2170 * of (edge0, edge1) is YES, and at most one of (edge2, edge3) is YES.
2171 * We could then deduce edge4 is YES, because maxs(0,4) would be 2, so
2172 * that final edge would have to be YES to make the count up to 3.
2173 */
2174
2175 /* Much quicker to allocate arrays on the stack than the heap, so
2176 * define the largest possible face size, and base our array allocations
2177 * on that. We check this with an assertion, in case someone decides to
2178 * make a grid which has larger faces than this. Note, this algorithm
2179 * could get quite expensive if there are many large faces. */
2180 #define MAX_FACE_SIZE 12
2181
2182 for (i = 0; i < g->num_faces; i++) {
2183 int maxs[MAX_FACE_SIZE][MAX_FACE_SIZE];
2184 int mins[MAX_FACE_SIZE][MAX_FACE_SIZE];
2185 grid_face *f = g->faces + i;
2186 int N = f->order;
2187 int j,m;
2188 int clue = state->clues[i];
2189 assert(N <= MAX_FACE_SIZE);
2190 if (sstate->face_solved[i])
2191 continue;
2192 if (clue < 0) continue;
2193
2194 /* Calculate the (j,j+1) entries */
2195 for (j = 0; j < N; j++) {
2196 int edge_index = f->edges[j] - g->edges;
2197 int dline_index;
2198 enum line_state line1 = state->lines[edge_index];
2199 enum line_state line2;
2200 int tmp;
2201 int k = j + 1;
2202 if (k >= N) k = 0;
2203 maxs[j][k] = (line1 == LINE_NO) ? 0 : 1;
2204 mins[j][k] = (line1 == LINE_YES) ? 1 : 0;
2205 /* Calculate the (j,j+2) entries */
2206 dline_index = dline_index_from_face(g, f, k);
2207 edge_index = f->edges[k] - g->edges;
2208 line2 = state->lines[edge_index];
2209 k++;
2210 if (k >= N) k = 0;
2211
2212 /* max */
2213 tmp = 2;
2214 if (line1 == LINE_NO) tmp--;
2215 if (line2 == LINE_NO) tmp--;
2216 if (tmp == 2 && is_atmostone(dlines, dline_index))
2217 tmp = 1;
2218 maxs[j][k] = tmp;
2219
2220 /* min */
2221 tmp = 0;
2222 if (line1 == LINE_YES) tmp++;
2223 if (line2 == LINE_YES) tmp++;
2224 if (tmp == 0 && is_atleastone(dlines, dline_index))
2225 tmp = 1;
2226 mins[j][k] = tmp;
2227 }
2228
2229 /* Calculate the (j,j+m) entries for m between 3 and N-1 */
2230 for (m = 3; m < N; m++) {
2231 for (j = 0; j < N; j++) {
2232 int k = j + m;
2233 int u = j + 1;
2234 int v = j + 2;
2235 int tmp;
2236 if (k >= N) k -= N;
2237 if (u >= N) u -= N;
2238 if (v >= N) v -= N;
2239 maxs[j][k] = maxs[j][u] + maxs[u][k];
2240 mins[j][k] = mins[j][u] + mins[u][k];
2241 tmp = maxs[j][v] + maxs[v][k];
2242 maxs[j][k] = min(maxs[j][k], tmp);
2243 tmp = mins[j][v] + mins[v][k];
2244 mins[j][k] = max(mins[j][k], tmp);
2245 }
2246 }
2247
2248 /* See if we can make any deductions */
2249 for (j = 0; j < N; j++) {
2250 int k;
2251 grid_edge *e = f->edges[j];
2252 int line_index = e - g->edges;
2253 int dline_index;
2254
2255 if (state->lines[line_index] != LINE_UNKNOWN)
2256 continue;
2257 k = j + 1;
2258 if (k >= N) k = 0;
2259
2260 /* minimum YESs in the complement of this edge */
2261 if (mins[k][j] > clue) {
2262 sstate->solver_status = SOLVER_MISTAKE;
2263 return DIFF_EASY;
2264 }
2265 if (mins[k][j] == clue) {
2266 /* setting this edge to YES would make at least
2267 * (clue+1) edges - contradiction */
2268 solver_set_line(sstate, line_index, LINE_NO);
2269 diff = min(diff, DIFF_EASY);
2270 }
2271 if (maxs[k][j] < clue - 1) {
2272 sstate->solver_status = SOLVER_MISTAKE;
2273 return DIFF_EASY;
2274 }
2275 if (maxs[k][j] == clue - 1) {
2276 /* Only way to satisfy the clue is to set edge{j} as YES */
2277 solver_set_line(sstate, line_index, LINE_YES);
2278 diff = min(diff, DIFF_EASY);
2279 }
2280
2281 /* More advanced deduction that allows propagation along diagonal
2282 * chains of faces connected by dots, for example, 3-2-...-2-3
2283 * in square grids. */
2284 if (sstate->diff >= DIFF_TRICKY) {
2285 /* Now see if we can make dline deduction for edges{j,j+1} */
2286 e = f->edges[k];
2287 if (state->lines[e - g->edges] != LINE_UNKNOWN)
2288 /* Only worth doing this for an UNKNOWN,UNKNOWN pair.
2289 * Dlines where one of the edges is known, are handled in the
2290 * dot-deductions */
2291 continue;
2292
2293 dline_index = dline_index_from_face(g, f, k);
2294 k++;
2295 if (k >= N) k = 0;
2296
2297 /* minimum YESs in the complement of this dline */
2298 if (mins[k][j] > clue - 2) {
2299 /* Adding 2 YESs would break the clue */
2300 if (set_atmostone(dlines, dline_index))
2301 diff = min(diff, DIFF_NORMAL);
2302 }
2303 /* maximum YESs in the complement of this dline */
2304 if (maxs[k][j] < clue) {
2305 /* Adding 2 NOs would mean not enough YESs */
2306 if (set_atleastone(dlines, dline_index))
2307 diff = min(diff, DIFF_NORMAL);
2308 }
2309 }
2310 }
2311 }
2312
2313 if (diff < DIFF_NORMAL)
2314 return diff;
2315
2316 /* ------ Dot deductions ------ */
2317
2318 for (i = 0; i < g->num_dots; i++) {
2319 grid_dot *d = g->dots + i;
2320 int N = d->order;
2321 int yes, no, unknown;
2322 int j;
2323 if (sstate->dot_solved[i])
2324 continue;
2325 yes = sstate->dot_yes_count[i];
2326 no = sstate->dot_no_count[i];
2327 unknown = N - yes - no;
2328
2329 for (j = 0; j < N; j++) {
2330 int k;
2331 int dline_index;
2332 int line1_index, line2_index;
2333 enum line_state line1, line2;
2334 k = j + 1;
2335 if (k >= N) k = 0;
2336 dline_index = dline_index_from_dot(g, d, j);
2337 line1_index = d->edges[j] - g->edges;
2338 line2_index = d->edges[k] - g->edges;
2339 line1 = state->lines[line1_index];
2340 line2 = state->lines[line2_index];
2341
2342 /* Infer dline state from line state */
2343 if (line1 == LINE_NO || line2 == LINE_NO) {
2344 if (set_atmostone(dlines, dline_index))
2345 diff = min(diff, DIFF_NORMAL);
2346 }
2347 if (line1 == LINE_YES || line2 == LINE_YES) {
2348 if (set_atleastone(dlines, dline_index))
2349 diff = min(diff, DIFF_NORMAL);
2350 }
2351 /* Infer line state from dline state */
2352 if (is_atmostone(dlines, dline_index)) {
2353 if (line1 == LINE_YES && line2 == LINE_UNKNOWN) {
2354 solver_set_line(sstate, line2_index, LINE_NO);
2355 diff = min(diff, DIFF_EASY);
2356 }
2357 if (line2 == LINE_YES && line1 == LINE_UNKNOWN) {
2358 solver_set_line(sstate, line1_index, LINE_NO);
2359 diff = min(diff, DIFF_EASY);
2360 }
2361 }
2362 if (is_atleastone(dlines, dline_index)) {
2363 if (line1 == LINE_NO && line2 == LINE_UNKNOWN) {
2364 solver_set_line(sstate, line2_index, LINE_YES);
2365 diff = min(diff, DIFF_EASY);
2366 }
2367 if (line2 == LINE_NO && line1 == LINE_UNKNOWN) {
2368 solver_set_line(sstate, line1_index, LINE_YES);
2369 diff = min(diff, DIFF_EASY);
2370 }
2371 }
2372 /* Deductions that depend on the numbers of lines.
2373 * Only bother if both lines are UNKNOWN, otherwise the
2374 * easy-mode solver (or deductions above) would have taken
2375 * care of it. */
2376 if (line1 != LINE_UNKNOWN || line2 != LINE_UNKNOWN)
2377 continue;
2378
2379 if (yes == 0 && unknown == 2) {
2380 /* Both these unknowns must be identical. If we know
2381 * atmostone or atleastone, we can make progress. */
2382 if (is_atmostone(dlines, dline_index)) {
2383 solver_set_line(sstate, line1_index, LINE_NO);
2384 solver_set_line(sstate, line2_index, LINE_NO);
2385 diff = min(diff, DIFF_EASY);
2386 }
2387 if (is_atleastone(dlines, dline_index)) {
2388 solver_set_line(sstate, line1_index, LINE_YES);
2389 solver_set_line(sstate, line2_index, LINE_YES);
2390 diff = min(diff, DIFF_EASY);
2391 }
2392 }
2393 if (yes == 1) {
2394 if (set_atmostone(dlines, dline_index))
2395 diff = min(diff, DIFF_NORMAL);
2396 if (unknown == 2) {
2397 if (set_atleastone(dlines, dline_index))
2398 diff = min(diff, DIFF_NORMAL);
2399 }
2400 }
2401
2402 /* More advanced deduction that allows propagation along diagonal
2403 * chains of faces connected by dots, for example: 3-2-...-2-3
2404 * in square grids. */
2405 if (sstate->diff >= DIFF_TRICKY) {
2406 /* If we have atleastone set for this dline, infer
2407 * atmostone for each "opposite" dline (that is, each
2408 * dline without edges in common with this one).
2409 * Again, this test is only worth doing if both these
2410 * lines are UNKNOWN. For if one of these lines were YES,
2411 * the (yes == 1) test above would kick in instead. */
2412 if (is_atleastone(dlines, dline_index)) {
2413 int opp;
2414 for (opp = 0; opp < N; opp++) {
2415 int opp_dline_index;
2416 if (opp == j || opp == j+1 || opp == j-1)
2417 continue;
2418 if (j == 0 && opp == N-1)
2419 continue;
2420 if (j == N-1 && opp == 0)
2421 continue;
2422 opp_dline_index = dline_index_from_dot(g, d, opp);
2423 if (set_atmostone(dlines, opp_dline_index))
2424 diff = min(diff, DIFF_NORMAL);
2425 }
2426 if (yes == 0 && is_atmostone(dlines, dline_index)) {
2427 /* This dline has *exactly* one YES and there are no
2428 * other YESs. This allows more deductions. */
2429 if (unknown == 3) {
2430 /* Third unknown must be YES */
2431 for (opp = 0; opp < N; opp++) {
2432 int opp_index;
2433 if (opp == j || opp == k)
2434 continue;
2435 opp_index = d->edges[opp] - g->edges;
2436 if (state->lines[opp_index] == LINE_UNKNOWN) {
2437 solver_set_line(sstate, opp_index,
2438 LINE_YES);
2439 diff = min(diff, DIFF_EASY);
2440 }
2441 }
2442 } else if (unknown == 4) {
2443 /* Exactly one of opposite UNKNOWNS is YES. We've
2444 * already set atmostone, so set atleastone as
2445 * well.
2446 */
2447 if (dline_set_opp_atleastone(sstate, d, j))
2448 diff = min(diff, DIFF_NORMAL);
2449 }
2450 }
2451 }
2452 }
2453 }
2454 }
2455 return diff;
2456 }
2457
2458 static int linedsf_deductions(solver_state *sstate)
2459 {
2460 game_state *state = sstate->state;
2461 grid *g = state->game_grid;
2462 char *dlines = sstate->dlines;
2463 int i;
2464 int diff = DIFF_MAX;
2465 int diff_tmp;
2466
2467 /* ------ Face deductions ------ */
2468
2469 /* A fully-general linedsf deduction seems overly complicated
2470 * (I suspect the problem is NP-complete, though in practice it might just
2471 * be doable because faces are limited in size).
2472 * For simplicity, we only consider *pairs* of LINE_UNKNOWNS that are
2473 * known to be identical. If setting them both to YES (or NO) would break
2474 * the clue, set them to NO (or YES). */
2475
2476 for (i = 0; i < g->num_faces; i++) {
2477 int N, yes, no, unknown;
2478 int clue;
2479
2480 if (sstate->face_solved[i])
2481 continue;
2482 clue = state->clues[i];
2483 if (clue < 0)
2484 continue;
2485
2486 N = g->faces[i].order;
2487 yes = sstate->face_yes_count[i];
2488 if (yes + 1 == clue) {
2489 if (face_setall_identical(sstate, i, LINE_NO))
2490 diff = min(diff, DIFF_EASY);
2491 }
2492 no = sstate->face_no_count[i];
2493 if (no + 1 == N - clue) {
2494 if (face_setall_identical(sstate, i, LINE_YES))
2495 diff = min(diff, DIFF_EASY);
2496 }
2497
2498 /* Reload YES count, it might have changed */
2499 yes = sstate->face_yes_count[i];
2500 unknown = N - no - yes;
2501
2502 /* Deductions with small number of LINE_UNKNOWNs, based on overall
2503 * parity of lines. */
2504 diff_tmp = parity_deductions(sstate, g->faces[i].edges,
2505 (clue - yes) % 2, unknown);
2506 diff = min(diff, diff_tmp);
2507 }
2508
2509 /* ------ Dot deductions ------ */
2510 for (i = 0; i < g->num_dots; i++) {
2511 grid_dot *d = g->dots + i;
2512 int N = d->order;
2513 int j;
2514 int yes, no, unknown;
2515 /* Go through dlines, and do any dline<->linedsf deductions wherever
2516 * we find two UNKNOWNS. */
2517 for (j = 0; j < N; j++) {
2518 int dline_index = dline_index_from_dot(g, d, j);
2519 int line1_index;
2520 int line2_index;
2521 int can1, can2, inv1, inv2;
2522 int j2;
2523 line1_index = d->edges[j] - g->edges;
2524 if (state->lines[line1_index] != LINE_UNKNOWN)
2525 continue;
2526 j2 = j + 1;
2527 if (j2 == N) j2 = 0;
2528 line2_index = d->edges[j2] - g->edges;
2529 if (state->lines[line2_index] != LINE_UNKNOWN)
2530 continue;
2531 /* Infer dline flags from linedsf */
2532 can1 = edsf_canonify(sstate->linedsf, line1_index, &inv1);
2533 can2 = edsf_canonify(sstate->linedsf, line2_index, &inv2);
2534 if (can1 == can2 && inv1 != inv2) {
2535 /* These are opposites, so set dline atmostone/atleastone */
2536 if (set_atmostone(dlines, dline_index))
2537 diff = min(diff, DIFF_NORMAL);
2538 if (set_atleastone(dlines, dline_index))
2539 diff = min(diff, DIFF_NORMAL);
2540 continue;
2541 }
2542 /* Infer linedsf from dline flags */
2543 if (is_atmostone(dlines, dline_index)
2544 && is_atleastone(dlines, dline_index)) {
2545 if (merge_lines(sstate, line1_index, line2_index, 1))
2546 diff = min(diff, DIFF_HARD);
2547 }
2548 }
2549
2550 /* Deductions with small number of LINE_UNKNOWNs, based on overall
2551 * parity of lines. */
2552 yes = sstate->dot_yes_count[i];
2553 no = sstate->dot_no_count[i];
2554 unknown = N - yes - no;
2555 diff_tmp = parity_deductions(sstate, d->edges,
2556 yes % 2, unknown);
2557 diff = min(diff, diff_tmp);
2558 }
2559
2560 /* ------ Edge dsf deductions ------ */
2561
2562 /* If the state of a line is known, deduce the state of its canonical line
2563 * too, and vice versa. */
2564 for (i = 0; i < g->num_edges; i++) {
2565 int can, inv;
2566 enum line_state s;
2567 can = edsf_canonify(sstate->linedsf, i, &inv);
2568 if (can == i)
2569 continue;
2570 s = sstate->state->lines[can];
2571 if (s != LINE_UNKNOWN) {
2572 if (solver_set_line(sstate, i, inv ? OPP(s) : s))
2573 diff = min(diff, DIFF_EASY);
2574 } else {
2575 s = sstate->state->lines[i];
2576 if (s != LINE_UNKNOWN) {
2577 if (solver_set_line(sstate, can, inv ? OPP(s) : s))
2578 diff = min(diff, DIFF_EASY);
2579 }
2580 }
2581 }
2582
2583 return diff;
2584 }
2585
2586 static int loop_deductions(solver_state *sstate)
2587 {
2588 int edgecount = 0, clues = 0, satclues = 0, sm1clues = 0;
2589 game_state *state = sstate->state;
2590 grid *g = state->game_grid;
2591 int shortest_chainlen = g->num_dots;
2592 int loop_found = FALSE;
2593 int dots_connected;
2594 int progress = FALSE;
2595 int i;
2596
2597 /*
2598 * Go through the grid and update for all the new edges.
2599 * Since merge_dots() is idempotent, the simplest way to
2600 * do this is just to update for _all_ the edges.
2601 * Also, while we're here, we count the edges.
2602 */
2603 for (i = 0; i < g->num_edges; i++) {
2604 if (state->lines[i] == LINE_YES) {
2605 loop_found |= merge_dots(sstate, i);
2606 edgecount++;
2607 }
2608 }
2609
2610 /*
2611 * Count the clues, count the satisfied clues, and count the
2612 * satisfied-minus-one clues.
2613 */
2614 for (i = 0; i < g->num_faces; i++) {
2615 int c = state->clues[i];
2616 if (c >= 0) {
2617 int o = sstate->face_yes_count[i];
2618 if (o == c)
2619 satclues++;
2620 else if (o == c-1)
2621 sm1clues++;
2622 clues++;
2623 }
2624 }
2625
2626 for (i = 0; i < g->num_dots; ++i) {
2627 dots_connected =
2628 sstate->looplen[dsf_canonify(sstate->dotdsf, i)];
2629 if (dots_connected > 1)
2630 shortest_chainlen = min(shortest_chainlen, dots_connected);
2631 }
2632
2633 assert(sstate->solver_status == SOLVER_INCOMPLETE);
2634
2635 if (satclues == clues && shortest_chainlen == edgecount) {
2636 sstate->solver_status = SOLVER_SOLVED;
2637 /* This discovery clearly counts as progress, even if we haven't
2638 * just added any lines or anything */
2639 progress = TRUE;
2640 goto finished_loop_deductionsing;
2641 }
2642
2643 /*
2644 * Now go through looking for LINE_UNKNOWN edges which
2645 * connect two dots that are already in the same
2646 * equivalence class. If we find one, test to see if the
2647 * loop it would create is a solution.
2648 */
2649 for (i = 0; i < g->num_edges; i++) {
2650 grid_edge *e = g->edges + i;
2651 int d1 = e->dot1 - g->dots;
2652 int d2 = e->dot2 - g->dots;
2653 int eqclass, val;
2654 if (state->lines[i] != LINE_UNKNOWN)
2655 continue;
2656
2657 eqclass = dsf_canonify(sstate->dotdsf, d1);
2658 if (eqclass != dsf_canonify(sstate->dotdsf, d2))
2659 continue;
2660
2661 val = LINE_NO; /* loop is bad until proven otherwise */
2662
2663 /*
2664 * This edge would form a loop. Next
2665 * question: how long would the loop be?
2666 * Would it equal the total number of edges
2667 * (plus the one we'd be adding if we added
2668 * it)?
2669 */
2670 if (sstate->looplen[eqclass] == edgecount + 1) {
2671 int sm1_nearby;
2672
2673 /*
2674 * This edge would form a loop which
2675 * took in all the edges in the entire
2676 * grid. So now we need to work out
2677 * whether it would be a valid solution
2678 * to the puzzle, which means we have to
2679 * check if it satisfies all the clues.
2680 * This means that every clue must be
2681 * either satisfied or satisfied-minus-
2682 * 1, and also that the number of
2683 * satisfied-minus-1 clues must be at
2684 * most two and they must lie on either
2685 * side of this edge.
2686 */
2687 sm1_nearby = 0;
2688 if (e->face1) {
2689 int f = e->face1 - g->faces;
2690 int c = state->clues[f];
2691 if (c >= 0 && sstate->face_yes_count[f] == c - 1)
2692 sm1_nearby++;
2693 }
2694 if (e->face2) {
2695 int f = e->face2 - g->faces;
2696 int c = state->clues[f];
2697 if (c >= 0 && sstate->face_yes_count[f] == c - 1)
2698 sm1_nearby++;
2699 }
2700 if (sm1clues == sm1_nearby &&
2701 sm1clues + satclues == clues) {
2702 val = LINE_YES; /* loop is good! */
2703 }
2704 }
2705
2706 /*
2707 * Right. Now we know that adding this edge
2708 * would form a loop, and we know whether
2709 * that loop would be a viable solution or
2710 * not.
2711 *
2712 * If adding this edge produces a solution,
2713 * then we know we've found _a_ solution but
2714 * we don't know that it's _the_ solution -
2715 * if it were provably the solution then
2716 * we'd have deduced this edge some time ago
2717 * without the need to do loop detection. So
2718 * in this state we return SOLVER_AMBIGUOUS,
2719 * which has the effect that hitting Solve
2720 * on a user-provided puzzle will fill in a
2721 * solution but using the solver to
2722 * construct new puzzles won't consider this
2723 * a reasonable deduction for the user to
2724 * make.
2725 */
2726 progress = solver_set_line(sstate, i, val);
2727 assert(progress == TRUE);
2728 if (val == LINE_YES) {
2729 sstate->solver_status = SOLVER_AMBIGUOUS;
2730 goto finished_loop_deductionsing;
2731 }
2732 }
2733
2734 finished_loop_deductionsing:
2735 return progress ? DIFF_EASY : DIFF_MAX;
2736 }
2737
2738 /* This will return a dynamically allocated solver_state containing the (more)
2739 * solved grid */
2740 static solver_state *solve_game_rec(const solver_state *sstate_start)
2741 {
2742 solver_state *sstate;
2743
2744 /* Index of the solver we should call next. */
2745 int i = 0;
2746
2747 /* As a speed-optimisation, we avoid re-running solvers that we know
2748 * won't make any progress. This happens when a high-difficulty
2749 * solver makes a deduction that can only help other high-difficulty
2750 * solvers.
2751 * For example: if a new 'dline' flag is set by dline_deductions, the
2752 * trivial_deductions solver cannot do anything with this information.
2753 * If we've already run the trivial_deductions solver (because it's
2754 * earlier in the list), there's no point running it again.
2755 *
2756 * Therefore: if a solver is earlier in the list than "threshold_index",
2757 * we don't bother running it if it's difficulty level is less than
2758 * "threshold_diff".
2759 */
2760 int threshold_diff = 0;
2761 int threshold_index = 0;
2762
2763 sstate = dup_solver_state(sstate_start);
2764
2765 check_caches(sstate);
2766
2767 while (i < NUM_SOLVERS) {
2768 if (sstate->solver_status == SOLVER_MISTAKE)
2769 return sstate;
2770 if (sstate->solver_status == SOLVER_SOLVED ||
2771 sstate->solver_status == SOLVER_AMBIGUOUS) {
2772 /* solver finished */
2773 break;
2774 }
2775
2776 if ((solver_diffs[i] >= threshold_diff || i >= threshold_index)
2777 && solver_diffs[i] <= sstate->diff) {
2778 /* current_solver is eligible, so use it */
2779 int next_diff = solver_fns[i](sstate);
2780 if (next_diff != DIFF_MAX) {
2781 /* solver made progress, so use new thresholds and
2782 * start again at top of list. */
2783 threshold_diff = next_diff;
2784 threshold_index = i;
2785 i = 0;
2786 continue;
2787 }
2788 }
2789 /* current_solver is ineligible, or failed to make progress, so
2790 * go to the next solver in the list */
2791 i++;
2792 }
2793
2794 if (sstate->solver_status == SOLVER_SOLVED ||
2795 sstate->solver_status == SOLVER_AMBIGUOUS) {
2796 /* s/LINE_UNKNOWN/LINE_NO/g */
2797 array_setall(sstate->state->lines, LINE_UNKNOWN, LINE_NO,
2798 sstate->state->game_grid->num_edges);
2799 return sstate;
2800 }
2801
2802 return sstate;
2803 }
2804
2805 static char *solve_game(game_state *state, game_state *currstate,
2806 char *aux, char **error)
2807 {
2808 char *soln = NULL;
2809 solver_state *sstate, *new_sstate;
2810
2811 sstate = new_solver_state(state, DIFF_MAX);
2812 new_sstate = solve_game_rec(sstate);
2813
2814 if (new_sstate->solver_status == SOLVER_SOLVED) {
2815 soln = encode_solve_move(new_sstate->state);
2816 } else if (new_sstate->solver_status == SOLVER_AMBIGUOUS) {
2817 soln = encode_solve_move(new_sstate->state);
2818 /**error = "Solver found ambiguous solutions"; */
2819 } else {
2820 soln = encode_solve_move(new_sstate->state);
2821 /**error = "Solver failed"; */
2822 }
2823
2824 free_solver_state(new_sstate);
2825 free_solver_state(sstate);
2826
2827 return soln;
2828 }
2829
2830 /* ----------------------------------------------------------------------
2831 * Drawing and mouse-handling
2832 */
2833
2834 static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
2835 int x, int y, int button)
2836 {
2837 grid *g = state->game_grid;
2838 grid_edge *e;
2839 int i;
2840 char *ret, buf[80];
2841 char button_char = ' ';
2842 enum line_state old_state;
2843
2844 button &= ~MOD_MASK;
2845
2846 /* Convert mouse-click (x,y) to grid coordinates */
2847 x -= BORDER(ds->tilesize);
2848 y -= BORDER(ds->tilesize);
2849 x = x * g->tilesize / ds->tilesize;
2850 y = y * g->tilesize / ds->tilesize;
2851 x += g->lowest_x;
2852 y += g->lowest_y;
2853
2854 e = grid_nearest_edge(g, x, y);
2855 if (e == NULL)
2856 return NULL;
2857
2858 i = e - g->edges;
2859
2860 /* I think it's only possible to play this game with mouse clicks, sorry */
2861 /* Maybe will add mouse drag support some time */
2862 old_state = state->lines[i];
2863
2864 switch (button) {
2865 case LEFT_BUTTON:
2866 switch (old_state) {
2867 case LINE_UNKNOWN:
2868 button_char = 'y';
2869 break;
2870 case LINE_YES:
2871 #ifdef STYLUS_BASED
2872 button_char = 'n';
2873 break;
2874 #endif
2875 case LINE_NO:
2876 button_char = 'u';
2877 break;
2878 }
2879 break;
2880 case MIDDLE_BUTTON:
2881 button_char = 'u';
2882 break;
2883 case RIGHT_BUTTON:
2884 switch (old_state) {
2885 case LINE_UNKNOWN:
2886 button_char = 'n';
2887 break;
2888 case LINE_NO:
2889 #ifdef STYLUS_BASED
2890 button_char = 'y';
2891 break;
2892 #endif
2893 case LINE_YES:
2894 button_char = 'u';
2895 break;
2896 }
2897 break;
2898 default:
2899 return NULL;
2900 }
2901
2902
2903 sprintf(buf, "%d%c", i, (int)button_char);
2904 ret = dupstr(buf);
2905
2906 return ret;
2907 }
2908
2909 static game_state *execute_move(game_state *state, char *move)
2910 {
2911 int i;
2912 game_state *newstate = dup_game(state);
2913
2914 if (move[0] == 'S') {
2915 move++;
2916 newstate->cheated = TRUE;
2917 }
2918
2919 while (*move) {
2920 i = atoi(move);
2921 if (i < 0 || i >= newstate->game_grid->num_edges)
2922 goto fail;
2923 move += strspn(move, "1234567890");
2924 switch (*(move++)) {
2925 case 'y':
2926 newstate->lines[i] = LINE_YES;
2927 break;
2928 case 'n':
2929 newstate->lines[i] = LINE_NO;
2930 break;
2931 case 'u':
2932 newstate->lines[i] = LINE_UNKNOWN;
2933 break;
2934 default:
2935 goto fail;
2936 }
2937 }
2938
2939 /*
2940 * Check for completion.
2941 */
2942 if (check_completion(newstate))
2943 newstate->solved = TRUE;
2944
2945 return newstate;
2946
2947 fail:
2948 free_game(newstate);
2949 return NULL;
2950 }
2951
2952 /* ----------------------------------------------------------------------
2953 * Drawing routines.
2954 */
2955
2956 /* Convert from grid coordinates to screen coordinates */
2957 static void grid_to_screen(const game_drawstate *ds, const grid *g,
2958 int grid_x, int grid_y, int *x, int *y)
2959 {
2960 *x = grid_x - g->lowest_x;
2961 *y = grid_y - g->lowest_y;
2962 *x = *x * ds->tilesize / g->tilesize;
2963 *y = *y * ds->tilesize / g->tilesize;
2964 *x += BORDER(ds->tilesize);
2965 *y += BORDER(ds->tilesize);
2966 }
2967
2968 /* Returns (into x,y) position of centre of face for rendering the text clue.
2969 */
2970 static void face_text_pos(const game_drawstate *ds, const grid *g,
2971 grid_face *f, int *xret, int *yret)
2972 {
2973 int faceindex = f - g->faces;
2974
2975 /*
2976 * Return the cached position for this face, if we've already
2977 * worked it out.
2978 */
2979 if (ds->textx[faceindex] >= 0) {
2980 *xret = ds->textx[faceindex];
2981 *yret = ds->texty[faceindex];
2982 return;
2983 }
2984
2985 /*
2986 * Otherwise, use the incentre computed by grid.c and convert it
2987 * to screen coordinates.
2988 */
2989 grid_find_incentre(f);
2990 grid_to_screen(ds, g, f->ix, f->iy,
2991 &ds->textx[faceindex], &ds->texty[faceindex]);
2992
2993 *xret = ds->textx[faceindex];
2994 *yret = ds->texty[faceindex];
2995 }
2996
2997 static void face_text_bbox(game_drawstate *ds, grid *g, grid_face *f,
2998 int *x, int *y, int *w, int *h)
2999 {
3000 int xx, yy;
3001 face_text_pos(ds, g, f, &xx, &yy);
3002
3003 /* There seems to be a certain amount of trial-and-error involved
3004 * in working out the correct bounding-box for the text. */
3005
3006 *x = xx - ds->tilesize/4 - 1;
3007 *y = yy - ds->tilesize/4 - 3;
3008 *w = ds->tilesize/2 + 2;
3009 *h = ds->tilesize/2 + 5;
3010 }
3011
3012 static void game_redraw_clue(drawing *dr, game_drawstate *ds,
3013 game_state *state, int i)
3014 {
3015 grid *g = state->game_grid;
3016 grid_face *f = g->faces + i;
3017 int x, y;
3018 char c[3];
3019
3020 if (state->clues[i] < 10) {
3021 c[0] = CLUE2CHAR(state->clues[i]);
3022 c[1] = '\0';
3023 } else {
3024 sprintf(c, "%d", state->clues[i]);
3025 }
3026
3027 face_text_pos(ds, g, f, &x, &y);
3028 draw_text(dr, x, y,
3029 FONT_VARIABLE, ds->tilesize/2,
3030 ALIGN_VCENTRE | ALIGN_HCENTRE,
3031 ds->clue_error[i] ? COL_MISTAKE :
3032 ds->clue_satisfied[i] ? COL_SATISFIED : COL_FOREGROUND, c);
3033 }
3034
3035 static void edge_bbox(game_drawstate *ds, grid *g, grid_edge *e,
3036 int *x, int *y, int *w, int *h)
3037 {
3038 int x1 = e->dot1->x;
3039 int y1 = e->dot1->y;
3040 int x2 = e->dot2->x;
3041 int y2 = e->dot2->y;
3042 int xmin, xmax, ymin, ymax;
3043
3044 grid_to_screen(ds, g, x1, y1, &x1, &y1);
3045 grid_to_screen(ds, g, x2, y2, &x2, &y2);
3046 /* Allow extra margin for dots, and thickness of lines */
3047 xmin = min(x1, x2) - 2;
3048 xmax = max(x1, x2) + 2;
3049 ymin = min(y1, y2) - 2;
3050 ymax = max(y1, y2) + 2;
3051
3052 *x = xmin;
3053 *y = ymin;
3054 *w = xmax - xmin + 1;
3055 *h = ymax - ymin + 1;
3056 }
3057
3058 static void dot_bbox(game_drawstate *ds, grid *g, grid_dot *d,
3059 int *x, int *y, int *w, int *h)
3060 {
3061 int x1, y1;
3062
3063 grid_to_screen(ds, g, d->x, d->y, &x1, &y1);
3064
3065 *x = x1 - 2;
3066 *y = y1 - 2;
3067 *w = 5;
3068 *h = 5;
3069 }
3070
3071 static const int loopy_line_redraw_phases[] = {
3072 COL_FAINT, COL_LINEUNKNOWN, COL_FOREGROUND, COL_HIGHLIGHT, COL_MISTAKE
3073 };
3074 #define NPHASES lenof(loopy_line_redraw_phases)
3075
3076 static void game_redraw_line(drawing *dr, game_drawstate *ds,
3077 game_state *state, int i, int phase)
3078 {
3079 grid *g = state->game_grid;
3080 grid_edge *e = g->edges + i;
3081 int x1, x2, y1, y2;
3082 int line_colour;
3083
3084 if (state->line_errors[i])
3085 line_colour = COL_MISTAKE;
3086 else if (state->lines[i] == LINE_UNKNOWN)
3087 line_colour = COL_LINEUNKNOWN;
3088 else if (state->lines[i] == LINE_NO)
3089 line_colour = COL_FAINT;
3090 else if (ds->flashing)
3091 line_colour = COL_HIGHLIGHT;
3092 else
3093 line_colour = COL_FOREGROUND;
3094 if (line_colour != loopy_line_redraw_phases[phase])
3095 return;
3096
3097 /* Convert from grid to screen coordinates */
3098 grid_to_screen(ds, g, e->dot1->x, e->dot1->y, &x1, &y1);
3099 grid_to_screen(ds, g, e->dot2->x, e->dot2->y, &x2, &y2);
3100
3101 if (line_colour == COL_FAINT) {
3102 static int draw_faint_lines = -1;
3103 if (draw_faint_lines < 0) {
3104 char *env = getenv("LOOPY_FAINT_LINES");
3105 draw_faint_lines = (!env || (env[0] == 'y' ||
3106 env[0] == 'Y'));
3107 }
3108 if (draw_faint_lines)
3109 draw_line(dr, x1, y1, x2, y2, line_colour);
3110 } else {
3111 draw_thick_line(dr, 3.0,
3112 x1 + 0.5, y1 + 0.5,
3113 x2 + 0.5, y2 + 0.5,
3114 line_colour);
3115 }
3116 }
3117
3118 static void game_redraw_dot(drawing *dr, game_drawstate *ds,
3119 game_state *state, int i)
3120 {
3121 grid *g = state->game_grid;
3122 grid_dot *d = g->dots + i;
3123 int x, y;
3124
3125 grid_to_screen(ds, g, d->x, d->y, &x, &y);
3126 draw_circle(dr, x, y, 2, COL_FOREGROUND, COL_FOREGROUND);
3127 }
3128
3129 static int boxes_intersect(int x0, int y0, int w0, int h0,
3130 int x1, int y1, int w1, int h1)
3131 {
3132 /*
3133 * Two intervals intersect iff neither is wholly on one side of
3134 * the other. Two boxes intersect iff their horizontal and
3135 * vertical intervals both intersect.
3136 */
3137 return (x0 < x1+w1 && x1 < x0+w0 && y0 < y1+h1 && y1 < y0+h0);
3138 }
3139
3140 static void game_redraw_in_rect(drawing *dr, game_drawstate *ds,
3141 game_state *state, int x, int y, int w, int h)
3142 {
3143 grid *g = state->game_grid;
3144 int i, phase;
3145 int bx, by, bw, bh;
3146
3147 clip(dr, x, y, w, h);
3148 draw_rect(dr, x, y, w, h, COL_BACKGROUND);
3149
3150 for (i = 0; i < g->num_faces; i++) {
3151 if (state->clues[i] >= 0) {
3152 face_text_bbox(ds, g, &g->faces[i], &bx, &by, &bw, &bh);
3153 if (boxes_intersect(x, y, w, h, bx, by, bw, bh))
3154 game_redraw_clue(dr, ds, state, i);
3155 }
3156 }
3157 for (phase = 0; phase < NPHASES; phase++) {
3158 for (i = 0; i < g->num_edges; i++) {
3159 edge_bbox(ds, g, &g->edges[i], &bx, &by, &bw, &bh);
3160 if (boxes_intersect(x, y, w, h, bx, by, bw, bh))
3161 game_redraw_line(dr, ds, state, i, phase);
3162 }
3163 }
3164 for (i = 0; i < g->num_dots; i++) {
3165 dot_bbox(ds, g, &g->dots[i], &bx, &by, &bw, &bh);
3166 if (boxes_intersect(x, y, w, h, bx, by, bw, bh))
3167 game_redraw_dot(dr, ds, state, i);
3168 }
3169
3170 unclip(dr);
3171 draw_update(dr, x, y, w, h);
3172 }
3173
3174 static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
3175 game_state *state, int dir, game_ui *ui,
3176 float animtime, float flashtime)
3177 {
3178 #define REDRAW_OBJECTS_LIMIT 16 /* Somewhat arbitrary tradeoff */
3179
3180 grid *g = state->game_grid;
3181 int border = BORDER(ds->tilesize);
3182 int i;
3183 int flash_changed;
3184 int redraw_everything = FALSE;
3185
3186 int edges[REDRAW_OBJECTS_LIMIT], nedges = 0;
3187 int faces[REDRAW_OBJECTS_LIMIT], nfaces = 0;
3188
3189 /* Redrawing is somewhat involved.
3190 *
3191 * An update can theoretically affect an arbitrary number of edges
3192 * (consider, for example, completing or breaking a cycle which doesn't
3193 * satisfy all the clues -- we'll switch many edges between error and
3194 * normal states). On the other hand, redrawing the whole grid takes a
3195 * while, making the game feel sluggish, and many updates are actually
3196 * quite well localized.
3197 *
3198 * This redraw algorithm attempts to cope with both situations gracefully
3199 * and correctly. For localized changes, we set a clip rectangle, fill
3200 * it with background, and then redraw (a plausible but conservative
3201 * guess at) the objects which intersect the rectangle; if several
3202 * objects need redrawing, we'll do them individually. However, if lots
3203 * of objects are affected, we'll just redraw everything.
3204 *
3205 * The reason for all of this is that it's just not safe to do the redraw
3206 * piecemeal. If you try to draw an antialiased diagonal line over
3207 * itself, you get a slightly thicker antialiased diagonal line, which
3208 * looks rather ugly after a while.
3209 *
3210 * So, we take two passes over the grid. The first attempts to work out
3211 * what needs doing, and the second actually does it.
3212 */
3213
3214 if (!ds->started)
3215 redraw_everything = TRUE;
3216 else {
3217
3218 /* First, trundle through the faces. */
3219 for (i = 0; i < g->num_faces; i++) {
3220 grid_face *f = g->faces + i;
3221 int sides = f->order;
3222 int clue_mistake;
3223 int clue_satisfied;
3224 int n = state->clues[i];
3225 if (n < 0)
3226 continue;
3227
3228 clue_mistake = (face_order(state, i, LINE_YES) > n ||
3229 face_order(state, i, LINE_NO ) > (sides-n));
3230 clue_satisfied = (face_order(state, i, LINE_YES) == n &&
3231 face_order(state, i, LINE_NO ) == (sides-n));
3232
3233 if (clue_mistake != ds->clue_error[i] ||
3234 clue_satisfied != ds->clue_satisfied[i]) {
3235 ds->clue_error[i] = clue_mistake;
3236 ds->clue_satisfied[i] = clue_satisfied;
3237 if (nfaces == REDRAW_OBJECTS_LIMIT)
3238 redraw_everything = TRUE;
3239 else
3240 faces[nfaces++] = i;
3241 }
3242 }
3243
3244 /* Work out what the flash state needs to be. */
3245 if (flashtime > 0 &&
3246 (flashtime <= FLASH_TIME/3 ||
3247 flashtime >= FLASH_TIME*2/3)) {
3248 flash_changed = !ds->flashing;
3249 ds->flashing = TRUE;
3250 } else {
3251 flash_changed = ds->flashing;
3252 ds->flashing = FALSE;
3253 }
3254
3255 /* Now, trundle through the edges. */
3256 for (i = 0; i < g->num_edges; i++) {
3257 char new_ds =
3258 state->line_errors[i] ? DS_LINE_ERROR : state->lines[i];
3259 if (new_ds != ds->lines[i] ||
3260 (flash_changed && state->lines[i] == LINE_YES)) {
3261 ds->lines[i] = new_ds;
3262 if (nedges == REDRAW_OBJECTS_LIMIT)
3263 redraw_everything = TRUE;
3264 else
3265 edges[nedges++] = i;
3266 }
3267 }
3268 }
3269
3270 /* Pass one is now done. Now we do the actual drawing. */
3271 if (redraw_everything) {
3272 int grid_width = g->highest_x - g->lowest_x;
3273 int grid_height = g->highest_y - g->lowest_y;
3274 int w = grid_width * ds->tilesize / g->tilesize;
3275 int h = grid_height * ds->tilesize / g->tilesize;
3276
3277 game_redraw_in_rect(dr, ds, state,
3278 0, 0, w + 2*border + 1, h + 2*border + 1);
3279 } else {
3280
3281 /* Right. Now we roll up our sleeves. */
3282
3283 for (i = 0; i < nfaces; i++) {
3284 grid_face *f = g->faces + faces[i];
3285 int x, y, w, h;
3286
3287 face_text_bbox(ds, g, f, &x, &y, &w, &h);
3288 game_redraw_in_rect(dr, ds, state, x, y, w, h);
3289 }
3290
3291 for (i = 0; i < nedges; i++) {
3292 grid_edge *e = g->edges + edges[i];
3293 int x, y, w, h;
3294
3295 edge_bbox(ds, g, e, &x, &y, &w, &h);
3296 game_redraw_in_rect(dr, ds, state, x, y, w, h);
3297 }
3298 }
3299
3300 ds->started = TRUE;
3301 }
3302
3303 static float game_flash_length(game_state *oldstate, game_state *newstate,
3304 int dir, game_ui *ui)
3305 {
3306 if (!oldstate->solved && newstate->solved &&
3307 !oldstate->cheated && !newstate->cheated) {
3308 return FLASH_TIME;
3309 }
3310
3311 return 0.0F;
3312 }
3313
3314 static int game_status(game_state *state)
3315 {
3316 return state->solved ? +1 : 0;
3317 }
3318
3319 static void game_print_size(game_params *params, float *x, float *y)
3320 {
3321 int pw, ph;
3322
3323 /*
3324 * I'll use 7mm "squares" by default.
3325 */
3326 game_compute_size(params, 700, &pw, &ph);
3327 *x = pw / 100.0F;
3328 *y = ph / 100.0F;
3329 }
3330
3331 static void game_print(drawing *dr, game_state *state, int tilesize)
3332 {
3333 int ink = print_mono_colour(dr, 0);
3334 int i;
3335 game_drawstate ads, *ds = &ads;
3336 grid *g = state->game_grid;
3337
3338 ds->tilesize = tilesize;
3339 ds->textx = snewn(g->num_faces, int);
3340 ds->texty = snewn(g->num_faces, int);
3341 for (i = 0; i < g->num_faces; i++)
3342 ds->textx[i] = ds->texty[i] = -1;
3343
3344 for (i = 0; i < g->num_dots; i++) {
3345 int x, y;
3346 grid_to_screen(ds, g, g->dots[i].x, g->dots[i].y, &x, &y);
3347 draw_circle(dr, x, y, ds->tilesize / 15, ink, ink);
3348 }
3349
3350 /*
3351 * Clues.
3352 */
3353 for (i = 0; i < g->num_faces; i++) {
3354 grid_face *f = g->faces + i;
3355 int clue = state->clues[i];
3356 if (clue >= 0) {
3357 char c[2];
3358 int x, y;
3359 c[0] = CLUE2CHAR(clue);
3360 c[1] = '\0';
3361 face_text_pos(ds, g, f, &x, &y);
3362 draw_text(dr, x, y,
3363 FONT_VARIABLE, ds->tilesize / 2,
3364 ALIGN_VCENTRE | ALIGN_HCENTRE, ink, c);
3365 }
3366 }
3367
3368 /*
3369 * Lines.
3370 */
3371 for (i = 0; i < g->num_edges; i++) {
3372 int thickness = (state->lines[i] == LINE_YES) ? 30 : 150;
3373 grid_edge *e = g->edges + i;
3374 int x1, y1, x2, y2;
3375 grid_to_screen(ds, g, e->dot1->x, e->dot1->y, &x1, &y1);
3376 grid_to_screen(ds, g, e->dot2->x, e->dot2->y, &x2, &y2);
3377 if (state->lines[i] == LINE_YES)
3378 {
3379 /* (dx, dy) points from (x1, y1) to (x2, y2).
3380 * The line is then "fattened" in a perpendicular
3381 * direction to create a thin rectangle. */
3382 double d = sqrt(SQ((double)x1 - x2) + SQ((double)y1 - y2));
3383 double dx = (x2 - x1) / d;
3384 double dy = (y2 - y1) / d;
3385 int points[8];
3386
3387 dx = (dx * ds->tilesize) / thickness;
3388 dy = (dy * ds->tilesize) / thickness;
3389 points[0] = x1 + (int)dy;
3390 points[1] = y1 - (int)dx;
3391 points[2] = x1 - (int)dy;
3392 points[3] = y1 + (int)dx;
3393 points[4] = x2 - (int)dy;
3394 points[5] = y2 + (int)dx;
3395 points[6] = x2 + (int)dy;
3396 points[7] = y2 - (int)dx;
3397 draw_polygon(dr, points, 4, ink, ink);
3398 }
3399 else
3400 {
3401 /* Draw a dotted line */
3402 int divisions = 6;
3403 int j;
3404 for (j = 1; j < divisions; j++) {
3405 /* Weighted average */
3406 int x = (x1 * (divisions -j) + x2 * j) / divisions;
3407 int y = (y1 * (divisions -j) + y2 * j) / divisions;
3408 draw_circle(dr, x, y, ds->tilesize / thickness, ink, ink);
3409 }
3410 }
3411 }
3412
3413 sfree(ds->textx);
3414 sfree(ds->texty);
3415 }
3416
3417 #ifdef COMBINED
3418 #define thegame loopy
3419 #endif
3420
3421 const struct game thegame = {
3422 "Loopy", "games.loopy", "loopy",
3423 default_params,
3424 game_fetch_preset,
3425 decode_params,
3426 encode_params,
3427 free_params,
3428 dup_params,
3429 TRUE, game_configure, custom_params,
3430 validate_params,
3431 new_game_desc,
3432 validate_desc,
3433 new_game,
3434 dup_game,
3435 free_game,
3436 1, solve_game,
3437 TRUE, game_can_format_as_text_now, game_text_format,
3438 new_ui,
3439 free_ui,
3440 encode_ui,
3441 decode_ui,
3442 game_changed_state,
3443 interpret_move,
3444 execute_move,
3445 PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
3446 game_colours,
3447 game_new_drawstate,
3448 game_free_drawstate,
3449 game_redraw,
3450 game_anim_length,
3451 game_flash_length,
3452 game_status,
3453 TRUE, FALSE, game_print_size, game_print,
3454 FALSE /* wants_statusbar */,
3455 FALSE, game_timing_state,
3456 0, /* mouse_priorities */
3457 };
3458
3459 #ifdef STANDALONE_SOLVER
3460
3461 /*
3462 * Half-hearted standalone solver. It can't output the solution to
3463 * anything but a square puzzle, and it can't log the deductions
3464 * it makes either. But it can solve square puzzles, and more
3465 * importantly it can use its solver to grade the difficulty of
3466 * any puzzle you give it.
3467 */
3468
3469 #include <stdarg.h>
3470
3471 int main(int argc, char **argv)
3472 {
3473 game_params *p;
3474 game_state *s;
3475 char *id = NULL, *desc, *err;
3476 int grade = FALSE;
3477 int ret, diff;
3478 #if 0 /* verbose solver not supported here (yet) */
3479 int really_verbose = FALSE;
3480 #endif
3481
3482 while (--argc > 0) {
3483 char *p = *++argv;
3484 #if 0 /* verbose solver not supported here (yet) */
3485 if (!strcmp(p, "-v")) {
3486 really_verbose = TRUE;
3487 } else
3488 #endif
3489 if (!strcmp(p, "-g")) {
3490 grade = TRUE;
3491 } else if (*p == '-') {
3492 fprintf(stderr, "%s: unrecognised option `%s'\n", argv[0], p);
3493 return 1;
3494 } else {
3495 id = p;
3496 }
3497 }
3498
3499 if (!id) {
3500 fprintf(stderr, "usage: %s [-g | -v] <game_id>\n", argv[0]);
3501 return 1;
3502 }
3503
3504 desc = strchr(id, ':');
3505 if (!desc) {
3506 fprintf(stderr, "%s: game id expects a colon in it\n", argv[0]);
3507 return 1;
3508 }
3509 *desc++ = '\0';
3510
3511 p = default_params();
3512 decode_params(p, id);
3513 err = validate_desc(p, desc);
3514 if (err) {
3515 fprintf(stderr, "%s: %s\n", argv[0], err);
3516 return 1;
3517 }
3518 s = new_game(NULL, p, desc);
3519
3520 /*
3521 * When solving an Easy puzzle, we don't want to bother the
3522 * user with Hard-level deductions. For this reason, we grade
3523 * the puzzle internally before doing anything else.
3524 */
3525 ret = -1; /* placate optimiser */
3526 for (diff = 0; diff < DIFF_MAX; diff++) {
3527 solver_state *sstate_new;
3528 solver_state *sstate = new_solver_state((game_state *)s, diff);
3529
3530 sstate_new = solve_game_rec(sstate);
3531
3532 if (sstate_new->solver_status == SOLVER_MISTAKE)
3533 ret = 0;
3534 else if (sstate_new->solver_status == SOLVER_SOLVED)
3535 ret = 1;
3536 else
3537 ret = 2;
3538
3539 free_solver_state(sstate_new);
3540 free_solver_state(sstate);
3541
3542 if (ret < 2)
3543 break;
3544 }
3545
3546 if (diff == DIFF_MAX) {
3547 if (grade)
3548 printf("Difficulty rating: harder than Hard, or ambiguous\n");
3549 else
3550 printf("Unable to find a unique solution\n");
3551 } else {
3552 if (grade) {
3553 if (ret == 0)
3554 printf("Difficulty rating: impossible (no solution exists)\n");
3555 else if (ret == 1)
3556 printf("Difficulty rating: %s\n", diffnames[diff]);
3557 } else {
3558 solver_state *sstate_new;
3559 solver_state *sstate = new_solver_state((game_state *)s, diff);
3560
3561 /* If we supported a verbose solver, we'd set verbosity here */
3562
3563 sstate_new = solve_game_rec(sstate);
3564
3565 if (sstate_new->solver_status == SOLVER_MISTAKE)
3566 printf("Puzzle is inconsistent\n");
3567 else {
3568 assert(sstate_new->solver_status == SOLVER_SOLVED);
3569 if (s->grid_type == 0) {
3570 fputs(game_text_format(sstate_new->state), stdout);
3571 } else {
3572 printf("Unable to output non-square grids\n");
3573 }
3574 }
3575
3576 free_solver_state(sstate_new);
3577 free_solver_state(sstate);
3578 }
3579 }
3580
3581 return 0;
3582 }
3583
3584 #endif
3585
3586 /* vim: set shiftwidth=4 tabstop=8: */