Tidy up comments.
[sgt/puzzles] / slant.c
1 /*
2 * slant.c: Puzzle from nikoli.co.jp involving drawing a diagonal
3 * line through each square of a grid.
4 */
5
6 /*
7 * In this puzzle you have a grid of squares, each of which must
8 * contain a diagonal line; you also have clue numbers placed at
9 * _points_ of that grid, which means there's a (w+1) x (h+1) array
10 * of possible clue positions.
11 *
12 * I'm therefore going to adopt a rigid convention throughout this
13 * source file of using w and h for the dimensions of the grid of
14 * squares, and W and H for the dimensions of the grid of points.
15 * Thus, W == w+1 and H == h+1 always.
16 *
17 * Clue arrays will be W*H `signed char's, and the clue at each
18 * point will be a number from 0 to 4, or -1 if there's no clue.
19 *
20 * Solution arrays will be W*H `signed char's, and the number at
21 * each point will be +1 for a forward slash (/), -1 for a
22 * backslash (\), and 0 for unknown.
23 */
24
25 #include <stdio.h>
26 #include <stdlib.h>
27 #include <stdarg.h>
28 #include <string.h>
29 #include <assert.h>
30 #include <ctype.h>
31 #include <math.h>
32
33 #include "puzzles.h"
34
35 enum {
36 COL_BACKGROUND,
37 COL_GRID,
38 COL_INK,
39 COL_SLANT1,
40 COL_SLANT2,
41 COL_ERROR,
42 NCOLOURS
43 };
44
45 /*
46 * In standalone solver mode, `verbose' is a variable which can be
47 * set by command-line option; in debugging mode it's simply always
48 * true.
49 */
50 #if defined STANDALONE_SOLVER
51 #define SOLVER_DIAGNOSTICS
52 int verbose = FALSE;
53 #elif defined SOLVER_DIAGNOSTICS
54 #define verbose TRUE
55 #endif
56
57 /*
58 * Difficulty levels. I do some macro ickery here to ensure that my
59 * enum and the various forms of my name list always match up.
60 */
61 #define DIFFLIST(A) \
62 A(EASY,Easy,e) \
63 A(HARD,Hard,h)
64 #define ENUM(upper,title,lower) DIFF_ ## upper,
65 #define TITLE(upper,title,lower) #title,
66 #define ENCODE(upper,title,lower) #lower
67 #define CONFIG(upper,title,lower) ":" #title
68 enum { DIFFLIST(ENUM) DIFFCOUNT };
69 static char const *const slant_diffnames[] = { DIFFLIST(TITLE) };
70 static char const slant_diffchars[] = DIFFLIST(ENCODE);
71 #define DIFFCONFIG DIFFLIST(CONFIG)
72
73 struct game_params {
74 int w, h, diff;
75 };
76
77 typedef struct game_clues {
78 int w, h;
79 signed char *clues;
80 int *tmpdsf;
81 int refcount;
82 } game_clues;
83
84 #define ERR_VERTEX 1
85 #define ERR_SQUARE 2
86 #define ERR_SQUARE_TMP 4
87
88 struct game_state {
89 struct game_params p;
90 game_clues *clues;
91 signed char *soln;
92 unsigned char *errors;
93 int completed;
94 int used_solve; /* used to suppress completion flash */
95 };
96
97 static game_params *default_params(void)
98 {
99 game_params *ret = snew(game_params);
100
101 ret->w = ret->h = 8;
102 ret->diff = DIFF_EASY;
103
104 return ret;
105 }
106
107 static const struct game_params slant_presets[] = {
108 {5, 5, DIFF_EASY},
109 {5, 5, DIFF_HARD},
110 {8, 8, DIFF_EASY},
111 {8, 8, DIFF_HARD},
112 {12, 10, DIFF_EASY},
113 {12, 10, DIFF_HARD},
114 };
115
116 static int game_fetch_preset(int i, char **name, game_params **params)
117 {
118 game_params *ret;
119 char str[80];
120
121 if (i < 0 || i >= lenof(slant_presets))
122 return FALSE;
123
124 ret = snew(game_params);
125 *ret = slant_presets[i];
126
127 sprintf(str, "%dx%d %s", ret->w, ret->h, slant_diffnames[ret->diff]);
128
129 *name = dupstr(str);
130 *params = ret;
131 return TRUE;
132 }
133
134 static void free_params(game_params *params)
135 {
136 sfree(params);
137 }
138
139 static game_params *dup_params(game_params *params)
140 {
141 game_params *ret = snew(game_params);
142 *ret = *params; /* structure copy */
143 return ret;
144 }
145
146 static void decode_params(game_params *ret, char const *string)
147 {
148 ret->w = ret->h = atoi(string);
149 while (*string && isdigit((unsigned char)*string)) string++;
150 if (*string == 'x') {
151 string++;
152 ret->h = atoi(string);
153 while (*string && isdigit((unsigned char)*string)) string++;
154 }
155 if (*string == 'd') {
156 int i;
157 string++;
158 for (i = 0; i < DIFFCOUNT; i++)
159 if (*string == slant_diffchars[i])
160 ret->diff = i;
161 if (*string) string++;
162 }
163 }
164
165 static char *encode_params(game_params *params, int full)
166 {
167 char data[256];
168
169 sprintf(data, "%dx%d", params->w, params->h);
170 if (full)
171 sprintf(data + strlen(data), "d%c", slant_diffchars[params->diff]);
172
173 return dupstr(data);
174 }
175
176 static config_item *game_configure(game_params *params)
177 {
178 config_item *ret;
179 char buf[80];
180
181 ret = snewn(4, config_item);
182
183 ret[0].name = "Width";
184 ret[0].type = C_STRING;
185 sprintf(buf, "%d", params->w);
186 ret[0].sval = dupstr(buf);
187 ret[0].ival = 0;
188
189 ret[1].name = "Height";
190 ret[1].type = C_STRING;
191 sprintf(buf, "%d", params->h);
192 ret[1].sval = dupstr(buf);
193 ret[1].ival = 0;
194
195 ret[2].name = "Difficulty";
196 ret[2].type = C_CHOICES;
197 ret[2].sval = DIFFCONFIG;
198 ret[2].ival = params->diff;
199
200 ret[3].name = NULL;
201 ret[3].type = C_END;
202 ret[3].sval = NULL;
203 ret[3].ival = 0;
204
205 return ret;
206 }
207
208 static game_params *custom_params(config_item *cfg)
209 {
210 game_params *ret = snew(game_params);
211
212 ret->w = atoi(cfg[0].sval);
213 ret->h = atoi(cfg[1].sval);
214 ret->diff = cfg[2].ival;
215
216 return ret;
217 }
218
219 static char *validate_params(game_params *params, int full)
220 {
221 /*
222 * (At least at the time of writing this comment) The grid
223 * generator is actually capable of handling even zero grid
224 * dimensions without crashing. Puzzles with a zero-area grid
225 * are a bit boring, though, because they're already solved :-)
226 * And puzzles with a dimension of 1 can't be made Hard, which
227 * means the simplest thing is to forbid them altogether.
228 */
229
230 if (params->w < 2 || params->h < 2)
231 return "Width and height must both be at least two";
232
233 return NULL;
234 }
235
236 /*
237 * Scratch space for solver.
238 */
239 struct solver_scratch {
240 /*
241 * Disjoint set forest which tracks the connected sets of
242 * points.
243 */
244 int *connected;
245
246 /*
247 * Counts the number of possible exits from each connected set
248 * of points. (That is, the number of possible _simultaneous_
249 * exits: an unconnected point labelled 2 has an exit count of
250 * 2 even if all four possible edges are still under
251 * consideration.)
252 */
253 int *exits;
254
255 /*
256 * Tracks whether each connected set of points includes a
257 * border point.
258 */
259 unsigned char *border;
260
261 /*
262 * Another disjoint set forest. This one tracks _squares_ which
263 * are known to slant in the same direction.
264 */
265 int *equiv;
266
267 /*
268 * Stores slash values which we know for an equivalence class.
269 * When we fill in a square, we set slashval[canonify(x)] to
270 * the same value as soln[x], so that we can then spot other
271 * squares equivalent to it and fill them in immediately via
272 * their known equivalence.
273 */
274 signed char *slashval;
275
276 /*
277 * Stores possible v-shapes. This array is w by h in size, but
278 * not every bit of every entry is meaningful. The bits mean:
279 *
280 * - bit 0 for a square means that that square and the one to
281 * its right might form a v-shape between them
282 * - bit 1 for a square means that that square and the one to
283 * its right might form a ^-shape between them
284 * - bit 2 for a square means that that square and the one
285 * below it might form a >-shape between them
286 * - bit 3 for a square means that that square and the one
287 * below it might form a <-shape between them
288 *
289 * Any starting 1 or 3 clue rules out four bits in this array
290 * immediately; a 2 clue propagates any ruled-out bit past it
291 * (if the two squares on one side of a 2 cannot be a v-shape,
292 * then neither can the two on the other side be the same
293 * v-shape); we can rule out further bits during play using
294 * partially filled 2 clues; whenever a pair of squares is
295 * known not to be _either_ kind of v-shape, we can mark them
296 * as equivalent.
297 */
298 unsigned char *vbitmap;
299
300 /*
301 * Useful to have this information automatically passed to
302 * solver subroutines. (This pointer is not dynamically
303 * allocated by new_scratch and free_scratch.)
304 */
305 const signed char *clues;
306 };
307
308 static struct solver_scratch *new_scratch(int w, int h)
309 {
310 int W = w+1, H = h+1;
311 struct solver_scratch *ret = snew(struct solver_scratch);
312 ret->connected = snewn(W*H, int);
313 ret->exits = snewn(W*H, int);
314 ret->border = snewn(W*H, unsigned char);
315 ret->equiv = snewn(w*h, int);
316 ret->slashval = snewn(w*h, signed char);
317 ret->vbitmap = snewn(w*h, unsigned char);
318 return ret;
319 }
320
321 static void free_scratch(struct solver_scratch *sc)
322 {
323 sfree(sc->vbitmap);
324 sfree(sc->slashval);
325 sfree(sc->equiv);
326 sfree(sc->border);
327 sfree(sc->exits);
328 sfree(sc->connected);
329 sfree(sc);
330 }
331
332 /*
333 * Wrapper on dsf_merge() which updates the `exits' and `border'
334 * arrays.
335 */
336 static void merge_vertices(int *connected,
337 struct solver_scratch *sc, int i, int j)
338 {
339 int exits = -1, border = FALSE; /* initialise to placate optimiser */
340
341 if (sc) {
342 i = dsf_canonify(connected, i);
343 j = dsf_canonify(connected, j);
344
345 /*
346 * We have used one possible exit from each of the two
347 * classes. Thus, the viable exit count of the new class is
348 * the sum of the old exit counts minus two.
349 */
350 exits = sc->exits[i] + sc->exits[j] - 2;
351
352 border = sc->border[i] || sc->border[j];
353 }
354
355 dsf_merge(connected, i, j);
356
357 if (sc) {
358 i = dsf_canonify(connected, i);
359 sc->exits[i] = exits;
360 sc->border[i] = border;
361 }
362 }
363
364 /*
365 * Called when we have just blocked one way out of a particular
366 * point. If that point is a non-clue point (thus has a variable
367 * number of exits), we have therefore decreased its potential exit
368 * count, so we must decrement the exit count for the group as a
369 * whole.
370 */
371 static void decr_exits(struct solver_scratch *sc, int i)
372 {
373 if (sc->clues[i] < 0) {
374 i = dsf_canonify(sc->connected, i);
375 sc->exits[i]--;
376 }
377 }
378
379 static void fill_square(int w, int h, int x, int y, int v,
380 signed char *soln,
381 int *connected, struct solver_scratch *sc)
382 {
383 int W = w+1 /*, H = h+1 */;
384
385 assert(x >= 0 && x < w && y >= 0 && y < h);
386
387 if (soln[y*w+x] != 0) {
388 return; /* do nothing */
389 }
390
391 #ifdef SOLVER_DIAGNOSTICS
392 if (verbose)
393 printf(" placing %c in %d,%d\n", v == -1 ? '\\' : '/', x, y);
394 #endif
395
396 soln[y*w+x] = v;
397
398 if (sc) {
399 int c = dsf_canonify(sc->equiv, y*w+x);
400 sc->slashval[c] = v;
401 }
402
403 if (v < 0) {
404 merge_vertices(connected, sc, y*W+x, (y+1)*W+(x+1));
405 if (sc) {
406 decr_exits(sc, y*W+(x+1));
407 decr_exits(sc, (y+1)*W+x);
408 }
409 } else {
410 merge_vertices(connected, sc, y*W+(x+1), (y+1)*W+x);
411 if (sc) {
412 decr_exits(sc, y*W+x);
413 decr_exits(sc, (y+1)*W+(x+1));
414 }
415 }
416 }
417
418 static int vbitmap_clear(int w, int h, struct solver_scratch *sc,
419 int x, int y, int vbits, char *reason, ...)
420 {
421 int done_something = FALSE;
422 int vbit;
423
424 for (vbit = 1; vbit <= 8; vbit <<= 1)
425 if (vbits & sc->vbitmap[y*w+x] & vbit) {
426 done_something = TRUE;
427 #ifdef SOLVER_DIAGNOSTICS
428 if (verbose) {
429 va_list ap;
430
431 printf("ruling out %c shape at (%d,%d)-(%d,%d) (",
432 "!v^!>!!!<"[vbit], x, y,
433 x+((vbit&0x3)!=0), y+((vbit&0xC)!=0));
434
435 va_start(ap, reason);
436 vprintf(reason, ap);
437 va_end(ap);
438
439 printf(")\n");
440 }
441 #endif
442 sc->vbitmap[y*w+x] &= ~vbit;
443 }
444
445 return done_something;
446 }
447
448 /*
449 * Solver. Returns 0 for impossibility, 1 for success, 2 for
450 * ambiguity or failure to converge.
451 */
452 static int slant_solve(int w, int h, const signed char *clues,
453 signed char *soln, struct solver_scratch *sc,
454 int difficulty)
455 {
456 int W = w+1, H = h+1;
457 int x, y, i, j;
458 int done_something;
459
460 /*
461 * Clear the output.
462 */
463 memset(soln, 0, w*h);
464
465 sc->clues = clues;
466
467 /*
468 * Establish a disjoint set forest for tracking connectedness
469 * between grid points.
470 */
471 for (i = 0; i < W*H; i++)
472 sc->connected[i] = i; /* initially all distinct */
473
474 /*
475 * Establish a disjoint set forest for tracking which squares
476 * are known to slant in the same direction.
477 */
478 for (i = 0; i < w*h; i++)
479 sc->equiv[i] = i; /* initially all distinct */
480
481 /*
482 * Clear the slashval array.
483 */
484 memset(sc->slashval, 0, w*h);
485
486 /*
487 * Set up the vbitmap array. Initially all types of v are possible.
488 */
489 memset(sc->vbitmap, 0xF, w*h);
490
491 /*
492 * Initialise the `exits' and `border' arrays. These are used
493 * to do second-order loop avoidance: the dual of the no loops
494 * constraint is that every point must be somehow connected to
495 * the border of the grid (otherwise there would be a solid
496 * loop around it which prevented this).
497 *
498 * I define a `dead end' to be a connected group of points
499 * which contains no border point, and which can form at most
500 * one new connection outside itself. Then I forbid placing an
501 * edge so that it connects together two dead-end groups, since
502 * this would yield a non-border-connected isolated subgraph
503 * with no further scope to extend it.
504 */
505 for (y = 0; y < H; y++)
506 for (x = 0; x < W; x++) {
507 if (y == 0 || y == H-1 || x == 0 || x == W-1)
508 sc->border[y*W+x] = TRUE;
509 else
510 sc->border[y*W+x] = FALSE;
511
512 if (clues[y*W+x] < 0)
513 sc->exits[y*W+x] = 4;
514 else
515 sc->exits[y*W+x] = clues[y*W+x];
516 }
517
518 /*
519 * Repeatedly try to deduce something until we can't.
520 */
521 do {
522 done_something = FALSE;
523
524 /*
525 * Any clue point with the number of remaining lines equal
526 * to zero or to the number of remaining undecided
527 * neighbouring squares can be filled in completely.
528 */
529 for (y = 0; y < H; y++)
530 for (x = 0; x < W; x++) {
531 struct {
532 int pos, slash;
533 } neighbours[4];
534 int nneighbours;
535 int nu, nl, c, s, eq, eq2, last, meq, mj1, mj2;
536
537 if ((c = clues[y*W+x]) < 0)
538 continue;
539
540 /*
541 * We have a clue point. Start by listing its
542 * neighbouring squares, in order around the point,
543 * together with the type of slash that would be
544 * required in that square to connect to the point.
545 */
546 nneighbours = 0;
547 if (x > 0 && y > 0) {
548 neighbours[nneighbours].pos = (y-1)*w+(x-1);
549 neighbours[nneighbours].slash = -1;
550 nneighbours++;
551 }
552 if (x > 0 && y < h) {
553 neighbours[nneighbours].pos = y*w+(x-1);
554 neighbours[nneighbours].slash = +1;
555 nneighbours++;
556 }
557 if (x < w && y < h) {
558 neighbours[nneighbours].pos = y*w+x;
559 neighbours[nneighbours].slash = -1;
560 nneighbours++;
561 }
562 if (x < w && y > 0) {
563 neighbours[nneighbours].pos = (y-1)*w+x;
564 neighbours[nneighbours].slash = +1;
565 nneighbours++;
566 }
567
568 /*
569 * Count up the number of undecided neighbours, and
570 * also the number of lines already present.
571 *
572 * If we're not on DIFF_EASY, then in this loop we
573 * also track whether we've seen two adjacent empty
574 * squares belonging to the same equivalence class
575 * (meaning they have the same type of slash). If
576 * so, we count them jointly as one line.
577 */
578 nu = 0;
579 nl = c;
580 last = neighbours[nneighbours-1].pos;
581 if (soln[last] == 0)
582 eq = dsf_canonify(sc->equiv, last);
583 else
584 eq = -1;
585 meq = mj1 = mj2 = -1;
586 for (i = 0; i < nneighbours; i++) {
587 j = neighbours[i].pos;
588 s = neighbours[i].slash;
589 if (soln[j] == 0) {
590 nu++; /* undecided */
591 if (meq < 0 && difficulty > DIFF_EASY) {
592 eq2 = dsf_canonify(sc->equiv, j);
593 if (eq == eq2 && last != j) {
594 /*
595 * We've found an equivalent pair.
596 * Mark it. This also inhibits any
597 * further equivalence tracking
598 * around this square, since we can
599 * only handle one pair (and in
600 * particular we want to avoid
601 * being misled by two overlapping
602 * equivalence pairs).
603 */
604 meq = eq;
605 mj1 = last;
606 mj2 = j;
607 nl--; /* count one line */
608 nu -= 2; /* and lose two undecideds */
609 } else
610 eq = eq2;
611 }
612 } else {
613 eq = -1;
614 if (soln[j] == s)
615 nl--; /* here's a line */
616 }
617 last = j;
618 }
619
620 /*
621 * Check the counts.
622 */
623 if (nl < 0 || nl > nu) {
624 /*
625 * No consistent value for this at all!
626 */
627 #ifdef SOLVER_DIAGNOSTICS
628 if (verbose)
629 printf("need %d / %d lines around clue point at %d,%d!\n",
630 nl, nu, x, y);
631 #endif
632 return 0; /* impossible */
633 }
634
635 if (nu > 0 && (nl == 0 || nl == nu)) {
636 #ifdef SOLVER_DIAGNOSTICS
637 if (verbose) {
638 if (meq >= 0)
639 printf("partially (since %d,%d == %d,%d) ",
640 mj1%w, mj1/w, mj2%w, mj2/w);
641 printf("%s around clue point at %d,%d\n",
642 nl ? "filling" : "emptying", x, y);
643 }
644 #endif
645 for (i = 0; i < nneighbours; i++) {
646 j = neighbours[i].pos;
647 s = neighbours[i].slash;
648 if (soln[j] == 0 && j != mj1 && j != mj2)
649 fill_square(w, h, j%w, j/w, (nl ? s : -s), soln,
650 sc->connected, sc);
651 }
652
653 done_something = TRUE;
654 } else if (nu == 2 && nl == 1 && difficulty > DIFF_EASY) {
655 /*
656 * If we have precisely two undecided squares
657 * and precisely one line to place between
658 * them, _and_ those squares are adjacent, then
659 * we can mark them as equivalent to one
660 * another.
661 *
662 * This even applies if meq >= 0: if we have a
663 * 2 clue point and two of its neighbours are
664 * already marked equivalent, we can indeed
665 * mark the other two as equivalent.
666 *
667 * We don't bother with this on DIFF_EASY,
668 * since we wouldn't have used the results
669 * anyway.
670 */
671 last = -1;
672 for (i = 0; i < nneighbours; i++) {
673 j = neighbours[i].pos;
674 if (soln[j] == 0 && j != mj1 && j != mj2) {
675 if (last < 0)
676 last = i;
677 else if (last == i-1 || (last == 0 && i == 3))
678 break; /* found a pair */
679 }
680 }
681 if (i < nneighbours) {
682 int sv1, sv2;
683
684 assert(last >= 0);
685 /*
686 * neighbours[last] and neighbours[i] are
687 * the pair. Mark them equivalent.
688 */
689 #ifdef SOLVER_DIAGNOSTICS
690 if (verbose) {
691 if (meq >= 0)
692 printf("since %d,%d == %d,%d, ",
693 mj1%w, mj1/w, mj2%w, mj2/w);
694 }
695 #endif
696 mj1 = neighbours[last].pos;
697 mj2 = neighbours[i].pos;
698 #ifdef SOLVER_DIAGNOSTICS
699 if (verbose)
700 printf("clue point at %d,%d implies %d,%d == %d,"
701 "%d\n", x, y, mj1%w, mj1/w, mj2%w, mj2/w);
702 #endif
703 mj1 = dsf_canonify(sc->equiv, mj1);
704 sv1 = sc->slashval[mj1];
705 mj2 = dsf_canonify(sc->equiv, mj2);
706 sv2 = sc->slashval[mj2];
707 if (sv1 != 0 && sv2 != 0 && sv1 != sv2) {
708 #ifdef SOLVER_DIAGNOSTICS
709 if (verbose)
710 printf("merged two equivalence classes with"
711 " different slash values!\n");
712 #endif
713 return 0;
714 }
715 sv1 = sv1 ? sv1 : sv2;
716 dsf_merge(sc->equiv, mj1, mj2);
717 mj1 = dsf_canonify(sc->equiv, mj1);
718 sc->slashval[mj1] = sv1;
719 }
720 }
721 }
722
723 if (done_something)
724 continue;
725
726 /*
727 * Failing that, we now apply the second condition, which
728 * is that no square may be filled in such a way as to form
729 * a loop. Also in this loop (since it's over squares
730 * rather than points), we check slashval to see if we've
731 * already filled in another square in the same equivalence
732 * class.
733 *
734 * The slashval check is disabled on DIFF_EASY, as is dead
735 * end avoidance. Only _immediate_ loop avoidance remains.
736 */
737 for (y = 0; y < h; y++)
738 for (x = 0; x < w; x++) {
739 int fs, bs, v;
740 int c1, c2;
741 #ifdef SOLVER_DIAGNOSTICS
742 char *reason = "<internal error>";
743 #endif
744
745 if (soln[y*w+x])
746 continue; /* got this one already */
747
748 fs = FALSE;
749 bs = FALSE;
750
751 if (difficulty > DIFF_EASY)
752 v = sc->slashval[dsf_canonify(sc->equiv, y*w+x)];
753 else
754 v = 0;
755
756 /*
757 * Try to rule out connectivity between (x,y) and
758 * (x+1,y+1); if successful, we will deduce that we
759 * must have a forward slash.
760 */
761 c1 = dsf_canonify(sc->connected, y*W+x);
762 c2 = dsf_canonify(sc->connected, (y+1)*W+(x+1));
763 if (c1 == c2) {
764 fs = TRUE;
765 #ifdef SOLVER_DIAGNOSTICS
766 reason = "simple loop avoidance";
767 #endif
768 }
769 if (difficulty > DIFF_EASY &&
770 !sc->border[c1] && !sc->border[c2] &&
771 sc->exits[c1] <= 1 && sc->exits[c2] <= 1) {
772 fs = TRUE;
773 #ifdef SOLVER_DIAGNOSTICS
774 reason = "dead end avoidance";
775 #endif
776 }
777 if (v == +1) {
778 fs = TRUE;
779 #ifdef SOLVER_DIAGNOSTICS
780 reason = "equivalence to an already filled square";
781 #endif
782 }
783
784 /*
785 * Now do the same between (x+1,y) and (x,y+1), to
786 * see if we are required to have a backslash.
787 */
788 c1 = dsf_canonify(sc->connected, y*W+(x+1));
789 c2 = dsf_canonify(sc->connected, (y+1)*W+x);
790 if (c1 == c2) {
791 bs = TRUE;
792 #ifdef SOLVER_DIAGNOSTICS
793 reason = "simple loop avoidance";
794 #endif
795 }
796 if (difficulty > DIFF_EASY &&
797 !sc->border[c1] && !sc->border[c2] &&
798 sc->exits[c1] <= 1 && sc->exits[c2] <= 1) {
799 bs = TRUE;
800 #ifdef SOLVER_DIAGNOSTICS
801 reason = "dead end avoidance";
802 #endif
803 }
804 if (v == -1) {
805 bs = TRUE;
806 #ifdef SOLVER_DIAGNOSTICS
807 reason = "equivalence to an already filled square";
808 #endif
809 }
810
811 if (fs && bs) {
812 /*
813 * No consistent value for this at all!
814 */
815 #ifdef SOLVER_DIAGNOSTICS
816 if (verbose)
817 printf("%d,%d has no consistent slash!\n", x, y);
818 #endif
819 return 0; /* impossible */
820 }
821
822 if (fs) {
823 #ifdef SOLVER_DIAGNOSTICS
824 if (verbose)
825 printf("employing %s\n", reason);
826 #endif
827 fill_square(w, h, x, y, +1, soln, sc->connected, sc);
828 done_something = TRUE;
829 } else if (bs) {
830 #ifdef SOLVER_DIAGNOSTICS
831 if (verbose)
832 printf("employing %s\n", reason);
833 #endif
834 fill_square(w, h, x, y, -1, soln, sc->connected, sc);
835 done_something = TRUE;
836 }
837 }
838
839 if (done_something)
840 continue;
841
842 /*
843 * Now see what we can do with the vbitmap array. All
844 * vbitmap deductions are disabled at Easy level.
845 */
846 if (difficulty <= DIFF_EASY)
847 continue;
848
849 for (y = 0; y < h; y++)
850 for (x = 0; x < w; x++) {
851 int s, c;
852
853 /*
854 * Any line already placed in a square must rule
855 * out any type of v which contradicts it.
856 */
857 if ((s = soln[y*w+x]) != 0) {
858 if (x > 0)
859 done_something |=
860 vbitmap_clear(w, h, sc, x-1, y, (s < 0 ? 0x1 : 0x2),
861 "contradicts known edge at (%d,%d)",x,y);
862 if (x+1 < w)
863 done_something |=
864 vbitmap_clear(w, h, sc, x, y, (s < 0 ? 0x2 : 0x1),
865 "contradicts known edge at (%d,%d)",x,y);
866 if (y > 0)
867 done_something |=
868 vbitmap_clear(w, h, sc, x, y-1, (s < 0 ? 0x4 : 0x8),
869 "contradicts known edge at (%d,%d)",x,y);
870 if (y+1 < h)
871 done_something |=
872 vbitmap_clear(w, h, sc, x, y, (s < 0 ? 0x8 : 0x4),
873 "contradicts known edge at (%d,%d)",x,y);
874 }
875
876 /*
877 * If both types of v are ruled out for a pair of
878 * adjacent squares, mark them as equivalent.
879 */
880 if (x+1 < w && !(sc->vbitmap[y*w+x] & 0x3)) {
881 int n1 = y*w+x, n2 = y*w+(x+1);
882 if (dsf_canonify(sc->equiv, n1) !=
883 dsf_canonify(sc->equiv, n2)) {
884 dsf_merge(sc->equiv, n1, n2);
885 done_something = TRUE;
886 #ifdef SOLVER_DIAGNOSTICS
887 if (verbose)
888 printf("(%d,%d) and (%d,%d) must be equivalent"
889 " because both v-shapes are ruled out\n",
890 x, y, x+1, y);
891 #endif
892 }
893 }
894 if (y+1 < h && !(sc->vbitmap[y*w+x] & 0xC)) {
895 int n1 = y*w+x, n2 = (y+1)*w+x;
896 if (dsf_canonify(sc->equiv, n1) !=
897 dsf_canonify(sc->equiv, n2)) {
898 dsf_merge(sc->equiv, n1, n2);
899 done_something = TRUE;
900 #ifdef SOLVER_DIAGNOSTICS
901 if (verbose)
902 printf("(%d,%d) and (%d,%d) must be equivalent"
903 " because both v-shapes are ruled out\n",
904 x, y, x, y+1);
905 #endif
906 }
907 }
908
909 /*
910 * The remaining work in this loop only works
911 * around non-edge clue points.
912 */
913 if (y == 0 || x == 0)
914 continue;
915 if ((c = clues[y*W+x]) < 0)
916 continue;
917
918 /*
919 * x,y marks a clue point not on the grid edge. See
920 * if this clue point allows us to rule out any v
921 * shapes.
922 */
923
924 if (c == 1) {
925 /*
926 * A 1 clue can never have any v shape pointing
927 * at it.
928 */
929 done_something |=
930 vbitmap_clear(w, h, sc, x-1, y-1, 0x5,
931 "points at 1 clue at (%d,%d)", x, y);
932 done_something |=
933 vbitmap_clear(w, h, sc, x-1, y, 0x2,
934 "points at 1 clue at (%d,%d)", x, y);
935 done_something |=
936 vbitmap_clear(w, h, sc, x, y-1, 0x8,
937 "points at 1 clue at (%d,%d)", x, y);
938 } else if (c == 3) {
939 /*
940 * A 3 clue can never have any v shape pointing
941 * away from it.
942 */
943 done_something |=
944 vbitmap_clear(w, h, sc, x-1, y-1, 0xA,
945 "points away from 3 clue at (%d,%d)", x, y);
946 done_something |=
947 vbitmap_clear(w, h, sc, x-1, y, 0x1,
948 "points away from 3 clue at (%d,%d)", x, y);
949 done_something |=
950 vbitmap_clear(w, h, sc, x, y-1, 0x4,
951 "points away from 3 clue at (%d,%d)", x, y);
952 } else if (c == 2) {
953 /*
954 * If a 2 clue has any kind of v ruled out on
955 * one side of it, the same v is ruled out on
956 * the other side.
957 */
958 done_something |=
959 vbitmap_clear(w, h, sc, x-1, y-1,
960 (sc->vbitmap[(y )*w+(x-1)] & 0x3) ^ 0x3,
961 "propagated by 2 clue at (%d,%d)", x, y);
962 done_something |=
963 vbitmap_clear(w, h, sc, x-1, y-1,
964 (sc->vbitmap[(y-1)*w+(x )] & 0xC) ^ 0xC,
965 "propagated by 2 clue at (%d,%d)", x, y);
966 done_something |=
967 vbitmap_clear(w, h, sc, x-1, y,
968 (sc->vbitmap[(y-1)*w+(x-1)] & 0x3) ^ 0x3,
969 "propagated by 2 clue at (%d,%d)", x, y);
970 done_something |=
971 vbitmap_clear(w, h, sc, x, y-1,
972 (sc->vbitmap[(y-1)*w+(x-1)] & 0xC) ^ 0xC,
973 "propagated by 2 clue at (%d,%d)", x, y);
974 }
975
976 #undef CLEARBITS
977
978 }
979
980 } while (done_something);
981
982 /*
983 * Solver can make no more progress. See if the grid is full.
984 */
985 for (i = 0; i < w*h; i++)
986 if (!soln[i])
987 return 2; /* failed to converge */
988 return 1; /* success */
989 }
990
991 /*
992 * Filled-grid generator.
993 */
994 static void slant_generate(int w, int h, signed char *soln, random_state *rs)
995 {
996 int W = w+1, H = h+1;
997 int x, y, i;
998 int *connected, *indices;
999
1000 /*
1001 * Clear the output.
1002 */
1003 memset(soln, 0, w*h);
1004
1005 /*
1006 * Establish a disjoint set forest for tracking connectedness
1007 * between grid points.
1008 */
1009 connected = snewn(W*H, int);
1010 for (i = 0; i < W*H; i++)
1011 connected[i] = i; /* initially all distinct */
1012
1013 /*
1014 * Prepare a list of the squares in the grid, and fill them in
1015 * in a random order.
1016 */
1017 indices = snewn(w*h, int);
1018 for (i = 0; i < w*h; i++)
1019 indices[i] = i;
1020 shuffle(indices, w*h, sizeof(*indices), rs);
1021
1022 /*
1023 * Fill in each one in turn.
1024 */
1025 for (i = 0; i < w*h; i++) {
1026 int fs, bs, v;
1027
1028 y = indices[i] / w;
1029 x = indices[i] % w;
1030
1031 fs = (dsf_canonify(connected, y*W+x) ==
1032 dsf_canonify(connected, (y+1)*W+(x+1)));
1033 bs = (dsf_canonify(connected, (y+1)*W+x) ==
1034 dsf_canonify(connected, y*W+(x+1)));
1035
1036 /*
1037 * It isn't possible to get into a situation where we
1038 * aren't allowed to place _either_ type of slash in a
1039 * square. Thus, filled-grid generation never has to
1040 * backtrack.
1041 *
1042 * Proof (thanks to Gareth Taylor):
1043 *
1044 * If it were possible, it would have to be because there
1045 * was an existing path (not using this square) between the
1046 * top-left and bottom-right corners of this square, and
1047 * another between the other two. These two paths would
1048 * have to cross at some point.
1049 *
1050 * Obviously they can't cross in the middle of a square, so
1051 * they must cross by sharing a point in common. But this
1052 * isn't possible either: if you chessboard-colour all the
1053 * points on the grid, you find that any continuous
1054 * diagonal path is entirely composed of points of the same
1055 * colour. And one of our two hypothetical paths is between
1056 * two black points, and the other is between two white
1057 * points - therefore they can have no point in common. []
1058 */
1059 assert(!(fs && bs));
1060
1061 v = fs ? +1 : bs ? -1 : 2 * random_upto(rs, 2) - 1;
1062 fill_square(w, h, x, y, v, soln, connected, NULL);
1063 }
1064
1065 sfree(indices);
1066 sfree(connected);
1067 }
1068
1069 static char *new_game_desc(game_params *params, random_state *rs,
1070 char **aux, int interactive)
1071 {
1072 int w = params->w, h = params->h, W = w+1, H = h+1;
1073 signed char *soln, *tmpsoln, *clues;
1074 int *clueindices;
1075 struct solver_scratch *sc;
1076 int x, y, v, i, j;
1077 char *desc;
1078
1079 soln = snewn(w*h, signed char);
1080 tmpsoln = snewn(w*h, signed char);
1081 clues = snewn(W*H, signed char);
1082 clueindices = snewn(W*H, int);
1083 sc = new_scratch(w, h);
1084
1085 do {
1086 /*
1087 * Create the filled grid.
1088 */
1089 slant_generate(w, h, soln, rs);
1090
1091 /*
1092 * Fill in the complete set of clues.
1093 */
1094 for (y = 0; y < H; y++)
1095 for (x = 0; x < W; x++) {
1096 v = 0;
1097
1098 if (x > 0 && y > 0 && soln[(y-1)*w+(x-1)] == -1) v++;
1099 if (x > 0 && y < h && soln[y*w+(x-1)] == +1) v++;
1100 if (x < w && y > 0 && soln[(y-1)*w+x] == +1) v++;
1101 if (x < w && y < h && soln[y*w+x] == -1) v++;
1102
1103 clues[y*W+x] = v;
1104 }
1105
1106 /*
1107 * With all clue points filled in, all puzzles are easy: we can
1108 * simply process the clue points in lexicographic order, and
1109 * at each clue point we will always have at most one square
1110 * undecided, which we can then fill in uniquely.
1111 */
1112 assert(slant_solve(w, h, clues, tmpsoln, sc, DIFF_EASY) == 1);
1113
1114 /*
1115 * Remove as many clues as possible while retaining solubility.
1116 *
1117 * In DIFF_HARD mode, we prioritise the removal of obvious
1118 * starting points (4s, 0s, border 2s and corner 1s), on
1119 * the grounds that having as few of these as possible
1120 * seems like a good thing. In particular, we can often get
1121 * away without _any_ completely obvious starting points,
1122 * which is even better.
1123 */
1124 for (i = 0; i < W*H; i++)
1125 clueindices[i] = i;
1126 shuffle(clueindices, W*H, sizeof(*clueindices), rs);
1127 for (j = 0; j < 2; j++) {
1128 for (i = 0; i < W*H; i++) {
1129 int pass, yb, xb;
1130
1131 y = clueindices[i] / W;
1132 x = clueindices[i] % W;
1133 v = clues[y*W+x];
1134
1135 /*
1136 * Identify which pass we should process this point
1137 * in. If it's an obvious start point, _or_ we're
1138 * in DIFF_EASY, then it goes in pass 0; otherwise
1139 * pass 1.
1140 */
1141 xb = (x == 0 || x == W-1);
1142 yb = (y == 0 || y == H-1);
1143 if (params->diff == DIFF_EASY || v == 4 || v == 0 ||
1144 (v == 2 && (xb||yb)) || (v == 1 && xb && yb))
1145 pass = 0;
1146 else
1147 pass = 1;
1148
1149 if (pass == j) {
1150 clues[y*W+x] = -1;
1151 if (slant_solve(w, h, clues, tmpsoln, sc,
1152 params->diff) != 1)
1153 clues[y*W+x] = v; /* put it back */
1154 }
1155 }
1156 }
1157
1158 /*
1159 * And finally, verify that the grid is of _at least_ the
1160 * requested difficulty, by running the solver one level
1161 * down and verifying that it can't manage it.
1162 */
1163 } while (params->diff > 0 &&
1164 slant_solve(w, h, clues, tmpsoln, sc, params->diff - 1) <= 1);
1165
1166 /*
1167 * Now we have the clue set as it will be presented to the
1168 * user. Encode it in a game desc.
1169 */
1170 {
1171 char *p;
1172 int run, i;
1173
1174 desc = snewn(W*H+1, char);
1175 p = desc;
1176 run = 0;
1177 for (i = 0; i <= W*H; i++) {
1178 int n = (i < W*H ? clues[i] : -2);
1179
1180 if (n == -1)
1181 run++;
1182 else {
1183 if (run) {
1184 while (run > 0) {
1185 int c = 'a' - 1 + run;
1186 if (run > 26)
1187 c = 'z';
1188 *p++ = c;
1189 run -= c - ('a' - 1);
1190 }
1191 }
1192 if (n >= 0)
1193 *p++ = '0' + n;
1194 run = 0;
1195 }
1196 }
1197 assert(p - desc <= W*H);
1198 *p++ = '\0';
1199 desc = sresize(desc, p - desc, char);
1200 }
1201
1202 /*
1203 * Encode the solution as an aux_info.
1204 */
1205 {
1206 char *auxbuf;
1207 *aux = auxbuf = snewn(w*h+1, char);
1208 for (i = 0; i < w*h; i++)
1209 auxbuf[i] = soln[i] < 0 ? '\\' : '/';
1210 auxbuf[w*h] = '\0';
1211 }
1212
1213 free_scratch(sc);
1214 sfree(clueindices);
1215 sfree(clues);
1216 sfree(tmpsoln);
1217 sfree(soln);
1218
1219 return desc;
1220 }
1221
1222 static char *validate_desc(game_params *params, char *desc)
1223 {
1224 int w = params->w, h = params->h, W = w+1, H = h+1;
1225 int area = W*H;
1226 int squares = 0;
1227
1228 while (*desc) {
1229 int n = *desc++;
1230 if (n >= 'a' && n <= 'z') {
1231 squares += n - 'a' + 1;
1232 } else if (n >= '0' && n <= '4') {
1233 squares++;
1234 } else
1235 return "Invalid character in game description";
1236 }
1237
1238 if (squares < area)
1239 return "Not enough data to fill grid";
1240
1241 if (squares > area)
1242 return "Too much data to fit in grid";
1243
1244 return NULL;
1245 }
1246
1247 static game_state *new_game(midend *me, game_params *params, char *desc)
1248 {
1249 int w = params->w, h = params->h, W = w+1, H = h+1;
1250 game_state *state = snew(game_state);
1251 int area = W*H;
1252 int squares = 0;
1253
1254 state->p = *params;
1255 state->soln = snewn(w*h, signed char);
1256 memset(state->soln, 0, w*h);
1257 state->completed = state->used_solve = FALSE;
1258 state->errors = snewn(W*H, unsigned char);
1259 memset(state->errors, 0, W*H);
1260
1261 state->clues = snew(game_clues);
1262 state->clues->w = w;
1263 state->clues->h = h;
1264 state->clues->clues = snewn(W*H, signed char);
1265 state->clues->refcount = 1;
1266 state->clues->tmpdsf = snewn(W*H, int);
1267 memset(state->clues->clues, -1, W*H);
1268 while (*desc) {
1269 int n = *desc++;
1270 if (n >= 'a' && n <= 'z') {
1271 squares += n - 'a' + 1;
1272 } else if (n >= '0' && n <= '4') {
1273 state->clues->clues[squares++] = n - '0';
1274 } else
1275 assert(!"can't get here");
1276 }
1277 assert(squares == area);
1278
1279 return state;
1280 }
1281
1282 static game_state *dup_game(game_state *state)
1283 {
1284 int w = state->p.w, h = state->p.h, W = w+1, H = h+1;
1285 game_state *ret = snew(game_state);
1286
1287 ret->p = state->p;
1288 ret->clues = state->clues;
1289 ret->clues->refcount++;
1290 ret->completed = state->completed;
1291 ret->used_solve = state->used_solve;
1292
1293 ret->soln = snewn(w*h, signed char);
1294 memcpy(ret->soln, state->soln, w*h);
1295
1296 ret->errors = snewn(W*H, unsigned char);
1297 memcpy(ret->errors, state->errors, W*H);
1298
1299 return ret;
1300 }
1301
1302 static void free_game(game_state *state)
1303 {
1304 sfree(state->errors);
1305 sfree(state->soln);
1306 assert(state->clues);
1307 if (--state->clues->refcount <= 0) {
1308 sfree(state->clues->clues);
1309 sfree(state->clues->tmpdsf);
1310 sfree(state->clues);
1311 }
1312 sfree(state);
1313 }
1314
1315 /*
1316 * Utility function to return the current degree of a vertex. If
1317 * `anti' is set, it returns the number of filled-in edges
1318 * surrounding the point which _don't_ connect to it; thus 4 minus
1319 * its anti-degree is the maximum degree it could have if all the
1320 * empty spaces around it were filled in.
1321 *
1322 * (Yes, _4_ minus its anti-degree even if it's a border vertex.)
1323 *
1324 * If ret > 0, *sx and *sy are set to the coordinates of one of the
1325 * squares that contributed to it.
1326 */
1327 static int vertex_degree(int w, int h, signed char *soln, int x, int y,
1328 int anti, int *sx, int *sy)
1329 {
1330 int ret = 0;
1331
1332 assert(x >= 0 && x <= w && y >= 0 && y <= h);
1333 if (x > 0 && y > 0 && soln[(y-1)*w+(x-1)] - anti < 0) {
1334 if (sx) *sx = x-1;
1335 if (sy) *sy = y-1;
1336 ret++;
1337 }
1338 if (x > 0 && y < h && soln[y*w+(x-1)] + anti > 0) {
1339 if (sx) *sx = x-1;
1340 if (sy) *sy = y;
1341 ret++;
1342 }
1343 if (x < w && y > 0 && soln[(y-1)*w+x] + anti > 0) {
1344 if (sx) *sx = x;
1345 if (sy) *sy = y-1;
1346 ret++;
1347 }
1348 if (x < w && y < h && soln[y*w+x] - anti < 0) {
1349 if (sx) *sx = x;
1350 if (sy) *sy = y;
1351 ret++;
1352 }
1353
1354 return anti ? 4 - ret : ret;
1355 }
1356
1357 static int check_completion(game_state *state)
1358 {
1359 int w = state->p.w, h = state->p.h, W = w+1, H = h+1;
1360 int i, x, y, err = FALSE;
1361 int *dsf;
1362
1363 memset(state->errors, 0, W*H);
1364
1365 /*
1366 * To detect loops in the grid, we iterate through each edge
1367 * building up a dsf of connected components, and raise the
1368 * alarm whenever we find an edge that connects two
1369 * already-connected vertices.
1370 *
1371 * We use the `tmpdsf' scratch space in the shared clues
1372 * structure, to avoid mallocing too often.
1373 *
1374 * When we find such an edge, we then search around the grid to
1375 * find the loop it is a part of, so that we can highlight it
1376 * as an error for the user. We do this by the hand-on-one-wall
1377 * technique: the search will follow branches off the inside of
1378 * the loop, discover they're dead ends, and unhighlight them
1379 * again when returning to the actual loop.
1380 *
1381 * This technique guarantees that every loop it tracks will
1382 * surround a disjoint area of the grid (since if an existing
1383 * loop appears on the boundary of a new one, so that there are
1384 * multiple possible paths that would come back to the starting
1385 * point, it will pick the one that allows it to turn right
1386 * most sharply and hence the one that does not re-surround the
1387 * area of the previous one). Thus, the total time taken in
1388 * searching round loops is linear in the grid area since every
1389 * edge is visited at most twice.
1390 */
1391 dsf = state->clues->tmpdsf;
1392 for (i = 0; i < W*H; i++)
1393 dsf[i] = i; /* initially all distinct */
1394 for (y = 0; y < h; y++)
1395 for (x = 0; x < w; x++) {
1396 int i1, i2;
1397
1398 if (state->soln[y*w+x] == 0)
1399 continue;
1400 if (state->soln[y*w+x] < 0) {
1401 i1 = y*W+x;
1402 i2 = (y+1)*W+(x+1);
1403 } else {
1404 i1 = y*W+(x+1);
1405 i2 = (y+1)*W+x;
1406 }
1407
1408 /*
1409 * Our edge connects i1 with i2. If they're already
1410 * connected, flag an error. Otherwise, link them.
1411 */
1412 if (dsf_canonify(dsf, i1) == dsf_canonify(dsf, i2)) {
1413 int x1, y1, x2, y2, dx, dy, dt, pass;
1414
1415 err = TRUE;
1416
1417 /*
1418 * Now search around the boundary of the loop to
1419 * highlight it.
1420 *
1421 * We have to do this in two passes. The first
1422 * time, we toggle ERR_SQUARE_TMP on each edge;
1423 * this pass terminates with ERR_SQUARE_TMP set on
1424 * exactly the loop edges. In the second pass, we
1425 * trace round that loop again and turn
1426 * ERR_SQUARE_TMP into ERR_SQUARE. We have to do
1427 * this because otherwise we might cancel part of a
1428 * loop highlighted in a previous iteration of the
1429 * outer loop.
1430 */
1431
1432 for (pass = 0; pass < 2; pass++) {
1433
1434 x1 = i1 % W;
1435 y1 = i1 / W;
1436 x2 = i2 % W;
1437 y2 = i2 / W;
1438
1439 do {
1440 /* Mark this edge. */
1441 if (pass == 0) {
1442 state->errors[min(y1,y2)*W+min(x1,x2)] ^=
1443 ERR_SQUARE_TMP;
1444 } else {
1445 state->errors[min(y1,y2)*W+min(x1,x2)] |=
1446 ERR_SQUARE;
1447 state->errors[min(y1,y2)*W+min(x1,x2)] &=
1448 ~ERR_SQUARE_TMP;
1449 }
1450
1451 /*
1452 * Progress to the next edge by turning as
1453 * sharply right as possible. In fact we do
1454 * this by facing back along the edge and
1455 * turning _left_ until we see an edge we
1456 * can follow.
1457 */
1458 dx = x1 - x2;
1459 dy = y1 - y2;
1460
1461 for (i = 0; i < 4; i++) {
1462 /*
1463 * Rotate (dx,dy) to the left.
1464 */
1465 dt = dx; dx = dy; dy = -dt;
1466
1467 /*
1468 * See if (x2,y2) has an edge in direction
1469 * (dx,dy).
1470 */
1471 if (x2+dx < 0 || x2+dx >= W ||
1472 y2+dy < 0 || y2+dy >= H)
1473 continue; /* off the side of the grid */
1474 /* In the second pass, ignore unmarked edges. */
1475 if (pass == 1 &&
1476 !(state->errors[(y2-(dy<0))*W+x2-(dx<0)] &
1477 ERR_SQUARE_TMP))
1478 continue;
1479 if (state->soln[(y2-(dy<0))*w+x2-(dx<0)] ==
1480 (dx==dy ? -1 : +1))
1481 break;
1482 }
1483
1484 /*
1485 * In pass 0, we expect to have found
1486 * _some_ edge we can follow, even if it
1487 * was found by rotating all the way round
1488 * and going back the way we came.
1489 *
1490 * In pass 1, because we're removing the
1491 * mark on each edge that allows us to
1492 * follow it, we expect to find _no_ edge
1493 * we can follow when we've come all the
1494 * way round the loop.
1495 */
1496 if (pass == 1 && i == 4)
1497 break;
1498 assert(i < 4);
1499
1500 /*
1501 * Set x1,y1 to x2,y2, and x2,y2 to be the
1502 * other end of the new edge.
1503 */
1504 x1 = x2;
1505 y1 = y2;
1506 x2 += dx;
1507 y2 += dy;
1508 } while (y2*W+x2 != i2);
1509
1510 }
1511
1512 } else
1513 dsf_merge(dsf, i1, i2);
1514 }
1515
1516 /*
1517 * Now go through and check the degree of each clue vertex, and
1518 * mark it with ERR_VERTEX if it cannot be fulfilled.
1519 */
1520 for (y = 0; y < H; y++)
1521 for (x = 0; x < W; x++) {
1522 int c;
1523
1524 if ((c = state->clues->clues[y*W+x]) < 0)
1525 continue;
1526
1527 /*
1528 * Check to see if there are too many connections to
1529 * this vertex _or_ too many non-connections. Either is
1530 * grounds for marking the vertex as erroneous.
1531 */
1532 if (vertex_degree(w, h, state->soln, x, y,
1533 FALSE, NULL, NULL) > c ||
1534 vertex_degree(w, h, state->soln, x, y,
1535 TRUE, NULL, NULL) > 4-c) {
1536 state->errors[y*W+x] |= ERR_VERTEX;
1537 err = TRUE;
1538 }
1539 }
1540
1541 /*
1542 * Now our actual victory condition is that (a) none of the
1543 * above code marked anything as erroneous, and (b) every
1544 * square has an edge in it.
1545 */
1546
1547 if (err)
1548 return FALSE;
1549
1550 for (y = 0; y < h; y++)
1551 for (x = 0; x < w; x++)
1552 if (state->soln[y*w+x] == 0)
1553 return FALSE;
1554
1555 return TRUE;
1556 }
1557
1558 static char *solve_game(game_state *state, game_state *currstate,
1559 char *aux, char **error)
1560 {
1561 int w = state->p.w, h = state->p.h;
1562 signed char *soln;
1563 int bs, ret;
1564 int free_soln = FALSE;
1565 char *move, buf[80];
1566 int movelen, movesize;
1567 int x, y;
1568
1569 if (aux) {
1570 /*
1571 * If we already have the solution, save ourselves some
1572 * time.
1573 */
1574 soln = (signed char *)aux;
1575 bs = (signed char)'\\';
1576 free_soln = FALSE;
1577 } else {
1578 struct solver_scratch *sc = new_scratch(w, h);
1579 soln = snewn(w*h, signed char);
1580 bs = -1;
1581 ret = slant_solve(w, h, state->clues->clues, soln, sc, DIFF_HARD);
1582 free_scratch(sc);
1583 if (ret != 1) {
1584 sfree(soln);
1585 if (ret == 0)
1586 *error = "This puzzle is not self-consistent";
1587 else
1588 *error = "Unable to find a unique solution for this puzzle";
1589 return NULL;
1590 }
1591 free_soln = TRUE;
1592 }
1593
1594 /*
1595 * Construct a move string which turns the current state into
1596 * the solved state.
1597 */
1598 movesize = 256;
1599 move = snewn(movesize, char);
1600 movelen = 0;
1601 move[movelen++] = 'S';
1602 move[movelen] = '\0';
1603 for (y = 0; y < h; y++)
1604 for (x = 0; x < w; x++) {
1605 int v = (soln[y*w+x] == bs ? -1 : +1);
1606 if (state->soln[y*w+x] != v) {
1607 int len = sprintf(buf, ";%c%d,%d", (int)(v < 0 ? '\\' : '/'), x, y);
1608 if (movelen + len >= movesize) {
1609 movesize = movelen + len + 256;
1610 move = sresize(move, movesize, char);
1611 }
1612 strcpy(move + movelen, buf);
1613 movelen += len;
1614 }
1615 }
1616
1617 if (free_soln)
1618 sfree(soln);
1619
1620 return move;
1621 }
1622
1623 static char *game_text_format(game_state *state)
1624 {
1625 int w = state->p.w, h = state->p.h, W = w+1, H = h+1;
1626 int x, y, len;
1627 char *ret, *p;
1628
1629 /*
1630 * There are h+H rows of w+W columns.
1631 */
1632 len = (h+H) * (w+W+1) + 1;
1633 ret = snewn(len, char);
1634 p = ret;
1635
1636 for (y = 0; y < H; y++) {
1637 for (x = 0; x < W; x++) {
1638 if (state->clues->clues[y*W+x] >= 0)
1639 *p++ = state->clues->clues[y*W+x] + '0';
1640 else
1641 *p++ = '+';
1642 if (x < w)
1643 *p++ = '-';
1644 }
1645 *p++ = '\n';
1646 if (y < h) {
1647 for (x = 0; x < W; x++) {
1648 *p++ = '|';
1649 if (x < w) {
1650 if (state->soln[y*w+x] != 0)
1651 *p++ = (state->soln[y*w+x] < 0 ? '\\' : '/');
1652 else
1653 *p++ = ' ';
1654 }
1655 }
1656 *p++ = '\n';
1657 }
1658 }
1659 *p++ = '\0';
1660
1661 assert(p - ret == len);
1662 return ret;
1663 }
1664
1665 static game_ui *new_ui(game_state *state)
1666 {
1667 return NULL;
1668 }
1669
1670 static void free_ui(game_ui *ui)
1671 {
1672 }
1673
1674 static char *encode_ui(game_ui *ui)
1675 {
1676 return NULL;
1677 }
1678
1679 static void decode_ui(game_ui *ui, char *encoding)
1680 {
1681 }
1682
1683 static void game_changed_state(game_ui *ui, game_state *oldstate,
1684 game_state *newstate)
1685 {
1686 }
1687
1688 #define PREFERRED_TILESIZE 32
1689 #define TILESIZE (ds->tilesize)
1690 #define BORDER TILESIZE
1691 #define CLUE_RADIUS (TILESIZE / 3)
1692 #define CLUE_TEXTSIZE (TILESIZE / 2)
1693 #define COORD(x) ( (x) * TILESIZE + BORDER )
1694 #define FROMCOORD(x) ( ((x) - BORDER + TILESIZE) / TILESIZE - 1 )
1695
1696 #define FLASH_TIME 0.30F
1697
1698 /*
1699 * Bit fields in the `grid' and `todraw' elements of the drawstate.
1700 */
1701 #define BACKSLASH 0x00000001L
1702 #define FORWSLASH 0x00000002L
1703 #define L_T 0x00000004L
1704 #define ERR_L_T 0x00000008L
1705 #define L_B 0x00000010L
1706 #define ERR_L_B 0x00000020L
1707 #define T_L 0x00000040L
1708 #define ERR_T_L 0x00000080L
1709 #define T_R 0x00000100L
1710 #define ERR_T_R 0x00000200L
1711 #define C_TL 0x00000400L
1712 #define ERR_C_TL 0x00000800L
1713 #define FLASH 0x00001000L
1714 #define ERRSLASH 0x00002000L
1715 #define ERR_TL 0x00004000L
1716 #define ERR_TR 0x00008000L
1717 #define ERR_BL 0x00010000L
1718 #define ERR_BR 0x00020000L
1719
1720 struct game_drawstate {
1721 int tilesize;
1722 int started;
1723 long *grid;
1724 long *todraw;
1725 };
1726
1727 static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
1728 int x, int y, int button)
1729 {
1730 int w = state->p.w, h = state->p.h;
1731
1732 if (button == LEFT_BUTTON || button == RIGHT_BUTTON) {
1733 int v;
1734 char buf[80];
1735
1736 /*
1737 * This is an utterly awful hack which I should really sort out
1738 * by means of a proper configuration mechanism. One Slant
1739 * player has observed that they prefer the mouse buttons to
1740 * function exactly the opposite way round, so here's a
1741 * mechanism for environment-based configuration. I cache the
1742 * result in a global variable - yuck! - to avoid repeated
1743 * lookups.
1744 */
1745 {
1746 static int swap_buttons = -1;
1747 if (swap_buttons < 0) {
1748 char *env = getenv("SLANT_SWAP_BUTTONS");
1749 swap_buttons = (env && (env[0] == 'y' || env[0] == 'Y'));
1750 }
1751 if (swap_buttons) {
1752 if (button == LEFT_BUTTON)
1753 button = RIGHT_BUTTON;
1754 else
1755 button = LEFT_BUTTON;
1756 }
1757 }
1758
1759 x = FROMCOORD(x);
1760 y = FROMCOORD(y);
1761 if (x < 0 || y < 0 || x >= w || y >= h)
1762 return NULL;
1763
1764 if (button == LEFT_BUTTON) {
1765 /*
1766 * Left-clicking cycles blank -> \ -> / -> blank.
1767 */
1768 v = state->soln[y*w+x] - 1;
1769 if (v == -2)
1770 v = +1;
1771 } else {
1772 /*
1773 * Right-clicking cycles blank -> / -> \ -> blank.
1774 */
1775 v = state->soln[y*w+x] + 1;
1776 if (v == +2)
1777 v = -1;
1778 }
1779
1780 sprintf(buf, "%c%d,%d", (int)(v==-1 ? '\\' : v==+1 ? '/' : 'C'), x, y);
1781 return dupstr(buf);
1782 }
1783
1784 return NULL;
1785 }
1786
1787 static game_state *execute_move(game_state *state, char *move)
1788 {
1789 int w = state->p.w, h = state->p.h;
1790 char c;
1791 int x, y, n;
1792 game_state *ret = dup_game(state);
1793
1794 while (*move) {
1795 c = *move;
1796 if (c == 'S') {
1797 ret->used_solve = TRUE;
1798 move++;
1799 } else if (c == '\\' || c == '/' || c == 'C') {
1800 move++;
1801 if (sscanf(move, "%d,%d%n", &x, &y, &n) != 2 ||
1802 x < 0 || y < 0 || x >= w || y >= h) {
1803 free_game(ret);
1804 return NULL;
1805 }
1806 ret->soln[y*w+x] = (c == '\\' ? -1 : c == '/' ? +1 : 0);
1807 move += n;
1808 } else {
1809 free_game(ret);
1810 return NULL;
1811 }
1812 if (*move == ';')
1813 move++;
1814 else if (*move) {
1815 free_game(ret);
1816 return NULL;
1817 }
1818 }
1819
1820 /*
1821 * We never clear the `completed' flag, but we must always
1822 * re-run the completion check because it also highlights
1823 * errors in the grid.
1824 */
1825 ret->completed = check_completion(ret) || ret->completed;
1826
1827 return ret;
1828 }
1829
1830 /* ----------------------------------------------------------------------
1831 * Drawing routines.
1832 */
1833
1834 static void game_compute_size(game_params *params, int tilesize,
1835 int *x, int *y)
1836 {
1837 /* fool the macros */
1838 struct dummy { int tilesize; } dummy = { tilesize }, *ds = &dummy;
1839
1840 *x = 2 * BORDER + params->w * TILESIZE + 1;
1841 *y = 2 * BORDER + params->h * TILESIZE + 1;
1842 }
1843
1844 static void game_set_size(drawing *dr, game_drawstate *ds,
1845 game_params *params, int tilesize)
1846 {
1847 ds->tilesize = tilesize;
1848 }
1849
1850 static float *game_colours(frontend *fe, int *ncolours)
1851 {
1852 float *ret = snewn(3 * NCOLOURS, float);
1853
1854 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
1855
1856 ret[COL_GRID * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] * 0.7F;
1857 ret[COL_GRID * 3 + 1] = ret[COL_BACKGROUND * 3 + 1] * 0.7F;
1858 ret[COL_GRID * 3 + 2] = ret[COL_BACKGROUND * 3 + 2] * 0.7F;
1859
1860 ret[COL_INK * 3 + 0] = 0.0F;
1861 ret[COL_INK * 3 + 1] = 0.0F;
1862 ret[COL_INK * 3 + 2] = 0.0F;
1863
1864 ret[COL_SLANT1 * 3 + 0] = 0.0F;
1865 ret[COL_SLANT1 * 3 + 1] = 0.0F;
1866 ret[COL_SLANT1 * 3 + 2] = 0.0F;
1867
1868 ret[COL_SLANT2 * 3 + 0] = 0.0F;
1869 ret[COL_SLANT2 * 3 + 1] = 0.0F;
1870 ret[COL_SLANT2 * 3 + 2] = 0.0F;
1871
1872 ret[COL_ERROR * 3 + 0] = 1.0F;
1873 ret[COL_ERROR * 3 + 1] = 0.0F;
1874 ret[COL_ERROR * 3 + 2] = 0.0F;
1875
1876 *ncolours = NCOLOURS;
1877 return ret;
1878 }
1879
1880 static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
1881 {
1882 int w = state->p.w, h = state->p.h;
1883 int i;
1884 struct game_drawstate *ds = snew(struct game_drawstate);
1885
1886 ds->tilesize = 0;
1887 ds->started = FALSE;
1888 ds->grid = snewn((w+2)*(h+2), long);
1889 ds->todraw = snewn((w+2)*(h+2), long);
1890 for (i = 0; i < (w+2)*(h+2); i++)
1891 ds->grid[i] = ds->todraw[i] = -1;
1892
1893 return ds;
1894 }
1895
1896 static void game_free_drawstate(drawing *dr, game_drawstate *ds)
1897 {
1898 sfree(ds->todraw);
1899 sfree(ds->grid);
1900 sfree(ds);
1901 }
1902
1903 static void draw_clue(drawing *dr, game_drawstate *ds,
1904 int x, int y, long v, long err, int bg, int colour)
1905 {
1906 char p[2];
1907 int ccol = colour >= 0 ? colour : ((x ^ y) & 1) ? COL_SLANT1 : COL_SLANT2;
1908 int tcol = colour >= 0 ? colour : err ? COL_ERROR : COL_INK;
1909
1910 if (v < 0)
1911 return;
1912
1913 p[0] = v + '0';
1914 p[1] = '\0';
1915 draw_circle(dr, COORD(x), COORD(y), CLUE_RADIUS,
1916 bg >= 0 ? bg : COL_BACKGROUND, ccol);
1917 draw_text(dr, COORD(x), COORD(y), FONT_VARIABLE,
1918 CLUE_TEXTSIZE, ALIGN_VCENTRE|ALIGN_HCENTRE, tcol, p);
1919 }
1920
1921 static void draw_tile(drawing *dr, game_drawstate *ds, game_clues *clues,
1922 int x, int y, long v)
1923 {
1924 int w = clues->w, h = clues->h, W = w+1 /*, H = h+1 */;
1925 int chesscolour = (x ^ y) & 1;
1926 int fscol = chesscolour ? COL_SLANT2 : COL_SLANT1;
1927 int bscol = chesscolour ? COL_SLANT1 : COL_SLANT2;
1928
1929 clip(dr, COORD(x), COORD(y), TILESIZE, TILESIZE);
1930
1931 draw_rect(dr, COORD(x), COORD(y), TILESIZE, TILESIZE,
1932 (v & FLASH) ? COL_GRID : COL_BACKGROUND);
1933
1934 /*
1935 * Draw the grid lines.
1936 */
1937 if (x >= 0 && x < w && y >= 0)
1938 draw_rect(dr, COORD(x), COORD(y), TILESIZE+1, 1, COL_GRID);
1939 if (x >= 0 && x < w && y < h)
1940 draw_rect(dr, COORD(x), COORD(y+1), TILESIZE+1, 1, COL_GRID);
1941 if (y >= 0 && y < h && x >= 0)
1942 draw_rect(dr, COORD(x), COORD(y), 1, TILESIZE+1, COL_GRID);
1943 if (y >= 0 && y < h && x < w)
1944 draw_rect(dr, COORD(x+1), COORD(y), 1, TILESIZE+1, COL_GRID);
1945 if (x == -1 && y == -1)
1946 draw_rect(dr, COORD(x+1), COORD(y+1), 1, 1, COL_GRID);
1947 if (x == -1 && y == h)
1948 draw_rect(dr, COORD(x+1), COORD(y), 1, 1, COL_GRID);
1949 if (x == w && y == -1)
1950 draw_rect(dr, COORD(x), COORD(y+1), 1, 1, COL_GRID);
1951 if (x == w && y == h)
1952 draw_rect(dr, COORD(x), COORD(y), 1, 1, COL_GRID);
1953
1954 /*
1955 * Draw the slash.
1956 */
1957 if (v & BACKSLASH) {
1958 int scol = (v & ERRSLASH) ? COL_ERROR : bscol;
1959 draw_line(dr, COORD(x), COORD(y), COORD(x+1), COORD(y+1), scol);
1960 draw_line(dr, COORD(x)+1, COORD(y), COORD(x+1), COORD(y+1)-1,
1961 scol);
1962 draw_line(dr, COORD(x), COORD(y)+1, COORD(x+1)-1, COORD(y+1),
1963 scol);
1964 } else if (v & FORWSLASH) {
1965 int scol = (v & ERRSLASH) ? COL_ERROR : fscol;
1966 draw_line(dr, COORD(x+1), COORD(y), COORD(x), COORD(y+1), scol);
1967 draw_line(dr, COORD(x+1)-1, COORD(y), COORD(x), COORD(y+1)-1,
1968 scol);
1969 draw_line(dr, COORD(x+1), COORD(y)+1, COORD(x)+1, COORD(y+1),
1970 scol);
1971 }
1972
1973 /*
1974 * Draw dots on the grid corners that appear if a slash is in a
1975 * neighbouring cell.
1976 */
1977 if (v & (L_T | BACKSLASH))
1978 draw_rect(dr, COORD(x), COORD(y)+1, 1, 1,
1979 (v & ERR_L_T ? COL_ERROR : bscol));
1980 if (v & (L_B | FORWSLASH))
1981 draw_rect(dr, COORD(x), COORD(y+1)-1, 1, 1,
1982 (v & ERR_L_B ? COL_ERROR : fscol));
1983 if (v & (T_L | BACKSLASH))
1984 draw_rect(dr, COORD(x)+1, COORD(y), 1, 1,
1985 (v & ERR_T_L ? COL_ERROR : bscol));
1986 if (v & (T_R | FORWSLASH))
1987 draw_rect(dr, COORD(x+1)-1, COORD(y), 1, 1,
1988 (v & ERR_T_R ? COL_ERROR : fscol));
1989 if (v & (C_TL | BACKSLASH))
1990 draw_rect(dr, COORD(x), COORD(y), 1, 1,
1991 (v & ERR_C_TL ? COL_ERROR : bscol));
1992
1993 /*
1994 * And finally the clues at the corners.
1995 */
1996 if (x >= 0 && y >= 0)
1997 draw_clue(dr, ds, x, y, clues->clues[y*W+x], v & ERR_TL, -1, -1);
1998 if (x < w && y >= 0)
1999 draw_clue(dr, ds, x+1, y, clues->clues[y*W+(x+1)], v & ERR_TR, -1, -1);
2000 if (x >= 0 && y < h)
2001 draw_clue(dr, ds, x, y+1, clues->clues[(y+1)*W+x], v & ERR_BL, -1, -1);
2002 if (x < w && y < h)
2003 draw_clue(dr, ds, x+1, y+1, clues->clues[(y+1)*W+(x+1)], v & ERR_BR,
2004 -1, -1);
2005
2006 unclip(dr);
2007 draw_update(dr, COORD(x), COORD(y), TILESIZE, TILESIZE);
2008 }
2009
2010 static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
2011 game_state *state, int dir, game_ui *ui,
2012 float animtime, float flashtime)
2013 {
2014 int w = state->p.w, h = state->p.h, W = w+1, H = h+1;
2015 int x, y;
2016 int flashing;
2017
2018 if (flashtime > 0)
2019 flashing = (int)(flashtime * 3 / FLASH_TIME) != 1;
2020 else
2021 flashing = FALSE;
2022
2023 if (!ds->started) {
2024 int ww, wh;
2025 game_compute_size(&state->p, TILESIZE, &ww, &wh);
2026 draw_rect(dr, 0, 0, ww, wh, COL_BACKGROUND);
2027 draw_update(dr, 0, 0, ww, wh);
2028 ds->started = TRUE;
2029 }
2030
2031 /*
2032 * Loop over the grid and work out where all the slashes are.
2033 * We need to do this because a slash in one square affects the
2034 * drawing of the next one along.
2035 */
2036 for (y = -1; y <= h; y++)
2037 for (x = -1; x <= w; x++) {
2038 if (x >= 0 && x < w && y >= 0 && y < h)
2039 ds->todraw[(y+1)*(w+2)+(x+1)] = flashing ? FLASH : 0;
2040 else
2041 ds->todraw[(y+1)*(w+2)+(x+1)] = 0;
2042 }
2043
2044 for (y = 0; y < h; y++) {
2045 for (x = 0; x < w; x++) {
2046 int err = state->errors[y*W+x] & ERR_SQUARE;
2047
2048 if (state->soln[y*w+x] < 0) {
2049 ds->todraw[(y+1)*(w+2)+(x+1)] |= BACKSLASH;
2050 ds->todraw[(y+2)*(w+2)+(x+1)] |= T_R;
2051 ds->todraw[(y+1)*(w+2)+(x+2)] |= L_B;
2052 ds->todraw[(y+2)*(w+2)+(x+2)] |= C_TL;
2053 if (err) {
2054 ds->todraw[(y+1)*(w+2)+(x+1)] |= ERRSLASH |
2055 ERR_T_L | ERR_L_T | ERR_C_TL;
2056 ds->todraw[(y+2)*(w+2)+(x+1)] |= ERR_T_R;
2057 ds->todraw[(y+1)*(w+2)+(x+2)] |= ERR_L_B;
2058 ds->todraw[(y+2)*(w+2)+(x+2)] |= ERR_C_TL;
2059 }
2060 } else if (state->soln[y*w+x] > 0) {
2061 ds->todraw[(y+1)*(w+2)+(x+1)] |= FORWSLASH;
2062 ds->todraw[(y+1)*(w+2)+(x+2)] |= L_T | C_TL;
2063 ds->todraw[(y+2)*(w+2)+(x+1)] |= T_L | C_TL;
2064 if (err) {
2065 ds->todraw[(y+1)*(w+2)+(x+1)] |= ERRSLASH |
2066 ERR_L_B | ERR_T_R;
2067 ds->todraw[(y+1)*(w+2)+(x+2)] |= ERR_L_T | ERR_C_TL;
2068 ds->todraw[(y+2)*(w+2)+(x+1)] |= ERR_T_L | ERR_C_TL;
2069 }
2070 }
2071 }
2072 }
2073
2074 for (y = 0; y < H; y++)
2075 for (x = 0; x < W; x++)
2076 if (state->errors[y*W+x] & ERR_VERTEX) {
2077 ds->todraw[y*(w+2)+x] |= ERR_BR;
2078 ds->todraw[y*(w+2)+(x+1)] |= ERR_BL;
2079 ds->todraw[(y+1)*(w+2)+x] |= ERR_TR;
2080 ds->todraw[(y+1)*(w+2)+(x+1)] |= ERR_TL;
2081 }
2082
2083 /*
2084 * Now go through and draw the grid squares.
2085 */
2086 for (y = -1; y <= h; y++) {
2087 for (x = -1; x <= w; x++) {
2088 if (ds->todraw[(y+1)*(w+2)+(x+1)] != ds->grid[(y+1)*(w+2)+(x+1)]) {
2089 draw_tile(dr, ds, state->clues, x, y,
2090 ds->todraw[(y+1)*(w+2)+(x+1)]);
2091 ds->grid[(y+1)*(w+2)+(x+1)] = ds->todraw[(y+1)*(w+2)+(x+1)];
2092 }
2093 }
2094 }
2095 }
2096
2097 static float game_anim_length(game_state *oldstate, game_state *newstate,
2098 int dir, game_ui *ui)
2099 {
2100 return 0.0F;
2101 }
2102
2103 static float game_flash_length(game_state *oldstate, game_state *newstate,
2104 int dir, game_ui *ui)
2105 {
2106 if (!oldstate->completed && newstate->completed &&
2107 !oldstate->used_solve && !newstate->used_solve)
2108 return FLASH_TIME;
2109
2110 return 0.0F;
2111 }
2112
2113 static int game_timing_state(game_state *state, game_ui *ui)
2114 {
2115 return TRUE;
2116 }
2117
2118 static void game_print_size(game_params *params, float *x, float *y)
2119 {
2120 int pw, ph;
2121
2122 /*
2123 * I'll use 6mm squares by default.
2124 */
2125 game_compute_size(params, 600, &pw, &ph);
2126 *x = pw / 100.0;
2127 *y = ph / 100.0;
2128 }
2129
2130 static void game_print(drawing *dr, game_state *state, int tilesize)
2131 {
2132 int w = state->p.w, h = state->p.h, W = w+1;
2133 int ink = print_mono_colour(dr, 0);
2134 int paper = print_mono_colour(dr, 1);
2135 int x, y;
2136
2137 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
2138 game_drawstate ads, *ds = &ads;
2139 game_set_size(dr, ds, NULL, tilesize);
2140
2141 /*
2142 * Border.
2143 */
2144 print_line_width(dr, TILESIZE / 16);
2145 draw_rect_outline(dr, COORD(0), COORD(0), w*TILESIZE, h*TILESIZE, ink);
2146
2147 /*
2148 * Grid.
2149 */
2150 print_line_width(dr, TILESIZE / 24);
2151 for (x = 1; x < w; x++)
2152 draw_line(dr, COORD(x), COORD(0), COORD(x), COORD(h), ink);
2153 for (y = 1; y < h; y++)
2154 draw_line(dr, COORD(0), COORD(y), COORD(w), COORD(y), ink);
2155
2156 /*
2157 * Solution.
2158 */
2159 print_line_width(dr, TILESIZE / 12);
2160 for (y = 0; y < h; y++)
2161 for (x = 0; x < w; x++)
2162 if (state->soln[y*w+x]) {
2163 int ly, ry;
2164 /*
2165 * To prevent nasty line-ending artefacts at
2166 * corners, I'll do something slightly cunning
2167 * here.
2168 */
2169 clip(dr, COORD(x), COORD(y), TILESIZE, TILESIZE);
2170 if (state->soln[y*w+x] < 0)
2171 ly = y-1, ry = y+2;
2172 else
2173 ry = y-1, ly = y+2;
2174 draw_line(dr, COORD(x-1), COORD(ly), COORD(x+2), COORD(ry),
2175 ink);
2176 unclip(dr);
2177 }
2178
2179 /*
2180 * Clues.
2181 */
2182 print_line_width(dr, TILESIZE / 24);
2183 for (y = 0; y <= h; y++)
2184 for (x = 0; x <= w; x++)
2185 draw_clue(dr, ds, x, y, state->clues->clues[y*W+x],
2186 FALSE, paper, ink);
2187 }
2188
2189 #ifdef COMBINED
2190 #define thegame slant
2191 #endif
2192
2193 const struct game thegame = {
2194 "Slant", "games.slant",
2195 default_params,
2196 game_fetch_preset,
2197 decode_params,
2198 encode_params,
2199 free_params,
2200 dup_params,
2201 TRUE, game_configure, custom_params,
2202 validate_params,
2203 new_game_desc,
2204 validate_desc,
2205 new_game,
2206 dup_game,
2207 free_game,
2208 TRUE, solve_game,
2209 TRUE, game_text_format,
2210 new_ui,
2211 free_ui,
2212 encode_ui,
2213 decode_ui,
2214 game_changed_state,
2215 interpret_move,
2216 execute_move,
2217 PREFERRED_TILESIZE, game_compute_size, game_set_size,
2218 game_colours,
2219 game_new_drawstate,
2220 game_free_drawstate,
2221 game_redraw,
2222 game_anim_length,
2223 game_flash_length,
2224 TRUE, FALSE, game_print_size, game_print,
2225 FALSE, /* wants_statusbar */
2226 FALSE, game_timing_state,
2227 0, /* flags */
2228 };
2229
2230 #ifdef STANDALONE_SOLVER
2231
2232 #include <stdarg.h>
2233
2234 int main(int argc, char **argv)
2235 {
2236 game_params *p;
2237 game_state *s;
2238 char *id = NULL, *desc, *err;
2239 int grade = FALSE;
2240 int ret, diff, really_verbose = FALSE;
2241 struct solver_scratch *sc;
2242
2243 while (--argc > 0) {
2244 char *p = *++argv;
2245 if (!strcmp(p, "-v")) {
2246 really_verbose = TRUE;
2247 } else if (!strcmp(p, "-g")) {
2248 grade = TRUE;
2249 } else if (*p == '-') {
2250 fprintf(stderr, "%s: unrecognised option `%s'\n", argv[0], p);
2251 return 1;
2252 } else {
2253 id = p;
2254 }
2255 }
2256
2257 if (!id) {
2258 fprintf(stderr, "usage: %s [-g | -v] <game_id>\n", argv[0]);
2259 return 1;
2260 }
2261
2262 desc = strchr(id, ':');
2263 if (!desc) {
2264 fprintf(stderr, "%s: game id expects a colon in it\n", argv[0]);
2265 return 1;
2266 }
2267 *desc++ = '\0';
2268
2269 p = default_params();
2270 decode_params(p, id);
2271 err = validate_desc(p, desc);
2272 if (err) {
2273 fprintf(stderr, "%s: %s\n", argv[0], err);
2274 return 1;
2275 }
2276 s = new_game(NULL, p, desc);
2277
2278 sc = new_scratch(p->w, p->h);
2279
2280 /*
2281 * When solving an Easy puzzle, we don't want to bother the
2282 * user with Hard-level deductions. For this reason, we grade
2283 * the puzzle internally before doing anything else.
2284 */
2285 ret = -1; /* placate optimiser */
2286 for (diff = 0; diff < DIFFCOUNT; diff++) {
2287 ret = slant_solve(p->w, p->h, s->clues->clues,
2288 s->soln, sc, diff);
2289 if (ret < 2)
2290 break;
2291 }
2292
2293 if (diff == DIFFCOUNT) {
2294 if (grade)
2295 printf("Difficulty rating: harder than Hard, or ambiguous\n");
2296 else
2297 printf("Unable to find a unique solution\n");
2298 } else {
2299 if (grade) {
2300 if (ret == 0)
2301 printf("Difficulty rating: impossible (no solution exists)\n");
2302 else if (ret == 1)
2303 printf("Difficulty rating: %s\n", slant_diffnames[diff]);
2304 } else {
2305 verbose = really_verbose;
2306 ret = slant_solve(p->w, p->h, s->clues->clues,
2307 s->soln, sc, diff);
2308 if (ret == 0)
2309 printf("Puzzle is inconsistent\n");
2310 else
2311 fputs(game_text_format(s), stdout);
2312 }
2313 }
2314
2315 return 0;
2316 }
2317
2318 #endif