Cleanup: remove the `just_used_solve' field from a number of games
[sgt/puzzles] / twiddle.c
1 /*
2 * twiddle.c: Puzzle involving rearranging a grid of squares by
3 * rotating subsquares. Adapted and generalised from a
4 * door-unlocking puzzle in Metroid Prime 2 (the one in the Main
5 * Gyro Chamber).
6 */
7
8 #include <stdio.h>
9 #include <stdlib.h>
10 #include <string.h>
11 #include <assert.h>
12 #include <ctype.h>
13 #include <math.h>
14
15 #include "puzzles.h"
16
17 #define PREFERRED_TILE_SIZE 48
18 #define TILE_SIZE (ds->tilesize)
19 #define BORDER (TILE_SIZE / 2)
20 #define HIGHLIGHT_WIDTH (TILE_SIZE / 20)
21 #define COORD(x) ( (x) * TILE_SIZE + BORDER )
22 #define FROMCOORD(x) ( ((x) - BORDER + TILE_SIZE) / TILE_SIZE - 1 )
23
24 #define ANIM_PER_RADIUS_UNIT 0.13F
25 #define FLASH_FRAME 0.13F
26
27 enum {
28 COL_BACKGROUND,
29 COL_TEXT,
30 COL_HIGHLIGHT,
31 COL_HIGHLIGHT_GENTLE,
32 COL_LOWLIGHT,
33 COL_LOWLIGHT_GENTLE,
34 NCOLOURS
35 };
36
37 struct game_params {
38 int w, h, n;
39 int rowsonly;
40 int orientable;
41 int movetarget;
42 };
43
44 struct game_state {
45 int w, h, n;
46 int orientable;
47 int *grid;
48 int completed;
49 int used_solve; /* used to suppress completion flash */
50 int movecount, movetarget;
51 int lastx, lasty, lastr; /* coordinates of last rotation */
52 };
53
54 static game_params *default_params(void)
55 {
56 game_params *ret = snew(game_params);
57
58 ret->w = ret->h = 3;
59 ret->n = 2;
60 ret->rowsonly = ret->orientable = FALSE;
61 ret->movetarget = 0;
62
63 return ret;
64 }
65
66
67 static void free_params(game_params *params)
68 {
69 sfree(params);
70 }
71
72 static game_params *dup_params(game_params *params)
73 {
74 game_params *ret = snew(game_params);
75 *ret = *params; /* structure copy */
76 return ret;
77 }
78
79 static int game_fetch_preset(int i, char **name, game_params **params)
80 {
81 static struct {
82 char *title;
83 game_params params;
84 } presets[] = {
85 { "3x3 rows only", { 3, 3, 2, TRUE, FALSE } },
86 { "3x3 normal", { 3, 3, 2, FALSE, FALSE } },
87 { "3x3 orientable", { 3, 3, 2, FALSE, TRUE } },
88 { "4x4 normal", { 4, 4, 2, FALSE } },
89 { "4x4 orientable", { 4, 4, 2, FALSE, TRUE } },
90 { "4x4 radius 3", { 4, 4, 3, FALSE } },
91 { "5x5 radius 3", { 5, 5, 3, FALSE } },
92 { "6x6 radius 4", { 6, 6, 4, FALSE } },
93 };
94
95 if (i < 0 || i >= lenof(presets))
96 return FALSE;
97
98 *name = dupstr(presets[i].title);
99 *params = dup_params(&presets[i].params);
100
101 return TRUE;
102 }
103
104 static void decode_params(game_params *ret, char const *string)
105 {
106 ret->w = ret->h = atoi(string);
107 ret->n = 2;
108 ret->rowsonly = ret->orientable = FALSE;
109 ret->movetarget = 0;
110 while (*string && isdigit((unsigned char)*string)) string++;
111 if (*string == 'x') {
112 string++;
113 ret->h = atoi(string);
114 while (*string && isdigit((unsigned char)*string)) string++;
115 }
116 if (*string == 'n') {
117 string++;
118 ret->n = atoi(string);
119 while (*string && isdigit((unsigned char)*string)) string++;
120 }
121 while (*string) {
122 if (*string == 'r') {
123 ret->rowsonly = TRUE;
124 } else if (*string == 'o') {
125 ret->orientable = TRUE;
126 } else if (*string == 'm') {
127 string++;
128 ret->movetarget = atoi(string);
129 while (string[1] && isdigit((unsigned char)string[1])) string++;
130 }
131 string++;
132 }
133 }
134
135 static char *encode_params(game_params *params, int full)
136 {
137 char buf[256];
138 sprintf(buf, "%dx%dn%d%s%s", params->w, params->h, params->n,
139 params->rowsonly ? "r" : "",
140 params->orientable ? "o" : "");
141 /* Shuffle limit is part of the limited parameters, because we have to
142 * supply the target move count. */
143 if (params->movetarget)
144 sprintf(buf + strlen(buf), "m%d", params->movetarget);
145 return dupstr(buf);
146 }
147
148 static config_item *game_configure(game_params *params)
149 {
150 config_item *ret;
151 char buf[80];
152
153 ret = snewn(7, config_item);
154
155 ret[0].name = "Width";
156 ret[0].type = C_STRING;
157 sprintf(buf, "%d", params->w);
158 ret[0].sval = dupstr(buf);
159 ret[0].ival = 0;
160
161 ret[1].name = "Height";
162 ret[1].type = C_STRING;
163 sprintf(buf, "%d", params->h);
164 ret[1].sval = dupstr(buf);
165 ret[1].ival = 0;
166
167 ret[2].name = "Rotation radius";
168 ret[2].type = C_STRING;
169 sprintf(buf, "%d", params->n);
170 ret[2].sval = dupstr(buf);
171 ret[2].ival = 0;
172
173 ret[3].name = "One number per row";
174 ret[3].type = C_BOOLEAN;
175 ret[3].sval = NULL;
176 ret[3].ival = params->rowsonly;
177
178 ret[4].name = "Orientation matters";
179 ret[4].type = C_BOOLEAN;
180 ret[4].sval = NULL;
181 ret[4].ival = params->orientable;
182
183 ret[5].name = "Number of shuffling moves";
184 ret[5].type = C_STRING;
185 sprintf(buf, "%d", params->movetarget);
186 ret[5].sval = dupstr(buf);
187 ret[5].ival = 0;
188
189 ret[6].name = NULL;
190 ret[6].type = C_END;
191 ret[6].sval = NULL;
192 ret[6].ival = 0;
193
194 return ret;
195 }
196
197 static game_params *custom_params(config_item *cfg)
198 {
199 game_params *ret = snew(game_params);
200
201 ret->w = atoi(cfg[0].sval);
202 ret->h = atoi(cfg[1].sval);
203 ret->n = atoi(cfg[2].sval);
204 ret->rowsonly = cfg[3].ival;
205 ret->orientable = cfg[4].ival;
206 ret->movetarget = atoi(cfg[5].sval);
207
208 return ret;
209 }
210
211 static char *validate_params(game_params *params, int full)
212 {
213 if (params->n < 2)
214 return "Rotation radius must be at least two";
215 if (params->w < params->n)
216 return "Width must be at least the rotation radius";
217 if (params->h < params->n)
218 return "Height must be at least the rotation radius";
219 return NULL;
220 }
221
222 /*
223 * This function actually performs a rotation on a grid. The `x'
224 * and `y' coordinates passed in are the coordinates of the _top
225 * left corner_ of the rotated region. (Using the centre would have
226 * involved half-integers and been annoyingly fiddly. Clicking in
227 * the centre is good for a user interface, but too inconvenient to
228 * use internally.)
229 */
230 static void do_rotate(int *grid, int w, int h, int n, int orientable,
231 int x, int y, int dir)
232 {
233 int i, j;
234
235 assert(x >= 0 && x+n <= w);
236 assert(y >= 0 && y+n <= h);
237 dir &= 3;
238 if (dir == 0)
239 return; /* nothing to do */
240
241 grid += y*w+x; /* translate region to top corner */
242
243 /*
244 * If we were leaving the result of the rotation in a separate
245 * grid, the simple thing to do would be to loop over each
246 * square within the rotated region and assign it from its
247 * source square. However, to do it in place without taking
248 * O(n^2) memory, we need to be marginally more clever. What
249 * I'm going to do is loop over about one _quarter_ of the
250 * rotated region and permute each element within that quarter
251 * with its rotational coset.
252 *
253 * The size of the region I need to loop over is (n+1)/2 by
254 * n/2, which is an obvious exact quarter for even n and is a
255 * rectangle for odd n. (For odd n, this technique leaves out
256 * one element of the square, which is of course the central
257 * one that never moves anyway.)
258 */
259 for (i = 0; i < (n+1)/2; i++) {
260 for (j = 0; j < n/2; j++) {
261 int k;
262 int g[4];
263 int p[4];
264
265 p[0] = j*w+i;
266 p[1] = i*w+(n-j-1);
267 p[2] = (n-j-1)*w+(n-i-1);
268 p[3] = (n-i-1)*w+j;
269
270 for (k = 0; k < 4; k++)
271 g[k] = grid[p[k]];
272
273 for (k = 0; k < 4; k++) {
274 int v = g[(k+dir) & 3];
275 if (orientable)
276 v ^= ((v+dir) ^ v) & 3; /* alter orientation */
277 grid[p[k]] = v;
278 }
279 }
280 }
281
282 /*
283 * Don't forget the orientation on the centre square, if n is
284 * odd.
285 */
286 if (orientable && (n & 1)) {
287 int v = grid[n/2*(w+1)];
288 v ^= ((v+dir) ^ v) & 3; /* alter orientation */
289 grid[n/2*(w+1)] = v;
290 }
291 }
292
293 static int grid_complete(int *grid, int wh, int orientable)
294 {
295 int ok = TRUE;
296 int i;
297 for (i = 1; i < wh; i++)
298 if (grid[i] < grid[i-1])
299 ok = FALSE;
300 if (orientable) {
301 for (i = 0; i < wh; i++)
302 if (grid[i] & 3)
303 ok = FALSE;
304 }
305 return ok;
306 }
307
308 static char *new_game_desc(game_params *params, random_state *rs,
309 char **aux, int interactive)
310 {
311 int *grid;
312 int w = params->w, h = params->h, n = params->n, wh = w*h;
313 int i;
314 char *ret;
315 int retlen;
316 int total_moves;
317
318 /*
319 * Set up a solved grid.
320 */
321 grid = snewn(wh, int);
322 for (i = 0; i < wh; i++)
323 grid[i] = ((params->rowsonly ? i/w : i) + 1) * 4;
324
325 /*
326 * Shuffle it. This game is complex enough that I don't feel up
327 * to analysing its full symmetry properties (particularly at
328 * n=4 and above!), so I'm going to do it the pedestrian way
329 * and simply shuffle the grid by making a long sequence of
330 * randomly chosen moves.
331 */
332 total_moves = params->movetarget;
333 if (!total_moves)
334 /* Add a random move to avoid parity issues. */
335 total_moves = w*h*n*n*2 + random_upto(rs, 2);
336
337 do {
338 int *prevmoves;
339 int rw, rh; /* w/h of rotation centre space */
340
341 rw = w - n + 1;
342 rh = h - n + 1;
343 prevmoves = snewn(rw * rh, int);
344 for (i = 0; i < rw * rh; i++)
345 prevmoves[i] = 0;
346
347 for (i = 0; i < total_moves; i++) {
348 int x, y, r, oldtotal, newtotal, dx, dy;
349
350 do {
351 x = random_upto(rs, w - n + 1);
352 y = random_upto(rs, h - n + 1);
353 r = 2 * random_upto(rs, 2) - 1;
354
355 /*
356 * See if any previous rotations has happened at
357 * this point which nothing has overlapped since.
358 * If so, ensure we haven't either undone a
359 * previous move or repeated one so many times that
360 * it turns into fewer moves in the inverse
361 * direction (i.e. three identical rotations).
362 */
363 oldtotal = prevmoves[y*rw+x];
364 newtotal = oldtotal + r;
365
366 /*
367 * Special case here for w==h==n, in which case
368 * there is actually no way to _avoid_ all moves
369 * repeating or undoing previous ones.
370 */
371 } while ((w != n || h != n) &&
372 (abs(newtotal) < abs(oldtotal) || abs(newtotal) > 2));
373
374 do_rotate(grid, w, h, n, params->orientable, x, y, r);
375
376 /*
377 * Log the rotation we've just performed at this point,
378 * for inversion detection in the next move.
379 *
380 * Also zero a section of the prevmoves array, because
381 * any rotation area which _overlaps_ this one is now
382 * entirely safe to perform further moves in.
383 *
384 * Two rotation areas overlap if their top left
385 * coordinates differ by strictly less than n in both
386 * directions
387 */
388 prevmoves[y*rw+x] += r;
389 for (dy = -n+1; dy <= n-1; dy++) {
390 if (y + dy < 0 || y + dy >= rh)
391 continue;
392 for (dx = -n+1; dx <= n-1; dx++) {
393 if (x + dx < 0 || x + dx >= rw)
394 continue;
395 if (dx == 0 && dy == 0)
396 continue;
397 prevmoves[(y+dy)*rw+(x+dx)] = 0;
398 }
399 }
400 }
401
402 sfree(prevmoves);
403
404 } while (grid_complete(grid, wh, params->orientable));
405
406 /*
407 * Now construct the game description, by describing the grid
408 * as a simple sequence of integers. They're comma-separated,
409 * unless the puzzle is orientable in which case they're
410 * separated by orientation letters `u', `d', `l' and `r'.
411 */
412 ret = NULL;
413 retlen = 0;
414 for (i = 0; i < wh; i++) {
415 char buf[80];
416 int k;
417
418 k = sprintf(buf, "%d%c", grid[i] / 4,
419 (char)(params->orientable ? "uldr"[grid[i] & 3] : ','));
420
421 ret = sresize(ret, retlen + k + 1, char);
422 strcpy(ret + retlen, buf);
423 retlen += k;
424 }
425 if (!params->orientable)
426 ret[retlen-1] = '\0'; /* delete last comma */
427
428 sfree(grid);
429 return ret;
430 }
431
432 static char *validate_desc(game_params *params, char *desc)
433 {
434 char *p, *err;
435 int w = params->w, h = params->h, wh = w*h;
436 int i;
437
438 p = desc;
439 err = NULL;
440
441 for (i = 0; i < wh; i++) {
442 if (*p < '0' || *p > '9')
443 return "Not enough numbers in string";
444 while (*p >= '0' && *p <= '9')
445 p++;
446 if (!params->orientable && i < wh-1) {
447 if (*p != ',')
448 return "Expected comma after number";
449 } else if (params->orientable && i < wh) {
450 if (*p != 'l' && *p != 'r' && *p != 'u' && *p != 'd')
451 return "Expected orientation letter after number";
452 } else if (i == wh-1 && *p) {
453 return "Excess junk at end of string";
454 }
455
456 if (*p) p++; /* eat comma */
457 }
458
459 return NULL;
460 }
461
462 static game_state *new_game(midend *me, game_params *params, char *desc)
463 {
464 game_state *state = snew(game_state);
465 int w = params->w, h = params->h, n = params->n, wh = w*h;
466 int i;
467 char *p;
468
469 state->w = w;
470 state->h = h;
471 state->n = n;
472 state->orientable = params->orientable;
473 state->completed = 0;
474 state->used_solve = FALSE;
475 state->movecount = 0;
476 state->movetarget = params->movetarget;
477 state->lastx = state->lasty = state->lastr = -1;
478
479 state->grid = snewn(wh, int);
480
481 p = desc;
482
483 for (i = 0; i < wh; i++) {
484 state->grid[i] = 4 * atoi(p);
485 while (*p >= '0' && *p <= '9')
486 p++;
487 if (*p) {
488 if (params->orientable) {
489 switch (*p) {
490 case 'l': state->grid[i] |= 1; break;
491 case 'd': state->grid[i] |= 2; break;
492 case 'r': state->grid[i] |= 3; break;
493 }
494 }
495 p++;
496 }
497 }
498
499 return state;
500 }
501
502 static game_state *dup_game(game_state *state)
503 {
504 game_state *ret = snew(game_state);
505
506 ret->w = state->w;
507 ret->h = state->h;
508 ret->n = state->n;
509 ret->orientable = state->orientable;
510 ret->completed = state->completed;
511 ret->movecount = state->movecount;
512 ret->movetarget = state->movetarget;
513 ret->lastx = state->lastx;
514 ret->lasty = state->lasty;
515 ret->lastr = state->lastr;
516 ret->used_solve = state->used_solve;
517
518 ret->grid = snewn(ret->w * ret->h, int);
519 memcpy(ret->grid, state->grid, ret->w * ret->h * sizeof(int));
520
521 return ret;
522 }
523
524 static void free_game(game_state *state)
525 {
526 sfree(state->grid);
527 sfree(state);
528 }
529
530 static int compare_int(const void *av, const void *bv)
531 {
532 const int *a = (const int *)av;
533 const int *b = (const int *)bv;
534 if (*a < *b)
535 return -1;
536 else if (*a > *b)
537 return +1;
538 else
539 return 0;
540 }
541
542 static char *solve_game(game_state *state, game_state *currstate,
543 char *aux, char **error)
544 {
545 return dupstr("S");
546 }
547
548 static char *game_text_format(game_state *state)
549 {
550 char *ret, *p, buf[80];
551 int i, x, y, col, o, maxlen;
552
553 /*
554 * First work out how many characters we need to display each
555 * number. We're pretty flexible on grid contents here, so we
556 * have to scan the entire grid.
557 */
558 col = 0;
559 for (i = 0; i < state->w * state->h; i++) {
560 x = sprintf(buf, "%d", state->grid[i] / 4);
561 if (col < x) col = x;
562 }
563 o = (state->orientable ? 1 : 0);
564
565 /*
566 * Now we know the exact total size of the grid we're going to
567 * produce: it's got h rows, each containing w lots of col+o,
568 * w-1 spaces and a trailing newline.
569 */
570 maxlen = state->h * state->w * (col+o+1);
571
572 ret = snewn(maxlen+1, char);
573 p = ret;
574
575 for (y = 0; y < state->h; y++) {
576 for (x = 0; x < state->w; x++) {
577 int v = state->grid[state->w*y+x];
578 sprintf(buf, "%*d", col, v/4);
579 memcpy(p, buf, col);
580 p += col;
581 if (o)
582 *p++ = "^<v>"[v & 3];
583 if (x+1 == state->w)
584 *p++ = '\n';
585 else
586 *p++ = ' ';
587 }
588 }
589
590 assert(p - ret == maxlen);
591 *p = '\0';
592 return ret;
593 }
594
595 static game_ui *new_ui(game_state *state)
596 {
597 return NULL;
598 }
599
600 static void free_ui(game_ui *ui)
601 {
602 }
603
604 static char *encode_ui(game_ui *ui)
605 {
606 return NULL;
607 }
608
609 static void decode_ui(game_ui *ui, char *encoding)
610 {
611 }
612
613 static void game_changed_state(game_ui *ui, game_state *oldstate,
614 game_state *newstate)
615 {
616 }
617
618 struct game_drawstate {
619 int started;
620 int w, h, bgcolour;
621 int *grid;
622 int tilesize;
623 };
624
625 static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
626 int x, int y, int button)
627 {
628 int w = state->w, h = state->h, n = state->n /* , wh = w*h */;
629 char buf[80];
630 int dir;
631
632 button = button & (~MOD_MASK | MOD_NUM_KEYPAD);
633
634 if (button == LEFT_BUTTON || button == RIGHT_BUTTON) {
635 /*
636 * Determine the coordinates of the click. We offset by n-1
637 * half-blocks so that the user must click at the centre of
638 * a rotation region rather than at the corner.
639 */
640 x -= (n-1) * TILE_SIZE / 2;
641 y -= (n-1) * TILE_SIZE / 2;
642 x = FROMCOORD(x);
643 y = FROMCOORD(y);
644 dir = (button == LEFT_BUTTON ? 1 : -1);
645 if (x < 0 || x > w-n || y < 0 || y > h-n)
646 return NULL;
647 } else if (button == 'a' || button == 'A' || button==MOD_NUM_KEYPAD+'7') {
648 x = y = 0;
649 dir = (button == 'A' ? -1 : +1);
650 } else if (button == 'b' || button == 'B' || button==MOD_NUM_KEYPAD+'9') {
651 x = w-n;
652 y = 0;
653 dir = (button == 'B' ? -1 : +1);
654 } else if (button == 'c' || button == 'C' || button==MOD_NUM_KEYPAD+'1') {
655 x = 0;
656 y = h-n;
657 dir = (button == 'C' ? -1 : +1);
658 } else if (button == 'd' || button == 'D' || button==MOD_NUM_KEYPAD+'3') {
659 x = w-n;
660 y = h-n;
661 dir = (button == 'D' ? -1 : +1);
662 } else if (button==MOD_NUM_KEYPAD+'8' && (w-n) % 2 == 0) {
663 x = (w-n) / 2;
664 y = 0;
665 dir = +1;
666 } else if (button==MOD_NUM_KEYPAD+'2' && (w-n) % 2 == 0) {
667 x = (w-n) / 2;
668 y = h-n;
669 dir = +1;
670 } else if (button==MOD_NUM_KEYPAD+'4' && (h-n) % 2 == 0) {
671 x = 0;
672 y = (h-n) / 2;
673 dir = +1;
674 } else if (button==MOD_NUM_KEYPAD+'6' && (h-n) % 2 == 0) {
675 x = w-n;
676 y = (h-n) / 2;
677 dir = +1;
678 } else if (button==MOD_NUM_KEYPAD+'5' && (w-n) % 2 == 0 && (h-n) % 2 == 0){
679 x = (w-n) / 2;
680 y = (h-n) / 2;
681 dir = +1;
682 } else {
683 return NULL; /* no move to be made */
684 }
685
686 /*
687 * If we reach here, we have a valid move.
688 */
689 sprintf(buf, "M%d,%d,%d", x, y, dir);
690 return dupstr(buf);
691 }
692
693 static game_state *execute_move(game_state *from, char *move)
694 {
695 game_state *ret;
696 int w = from->w, h = from->h, n = from->n, wh = w*h;
697 int x, y, dir;
698
699 if (!strcmp(move, "S")) {
700 int i;
701 ret = dup_game(from);
702
703 /*
704 * Simply replace the grid with a solved one. For this game,
705 * this isn't a useful operation for actually telling the user
706 * what they should have done, but it is useful for
707 * conveniently being able to get hold of a clean state from
708 * which to practise manoeuvres.
709 */
710 qsort(ret->grid, ret->w*ret->h, sizeof(int), compare_int);
711 for (i = 0; i < ret->w*ret->h; i++)
712 ret->grid[i] &= ~3;
713 ret->used_solve = TRUE;
714 ret->completed = ret->movecount = 1;
715
716 return ret;
717 }
718
719 if (move[0] != 'M' ||
720 sscanf(move+1, "%d,%d,%d", &x, &y, &dir) != 3 ||
721 x < 0 || y < 0 || x > from->w - n || y > from->h - n)
722 return NULL; /* can't parse this move string */
723
724 ret = dup_game(from);
725 ret->movecount++;
726 do_rotate(ret->grid, w, h, n, ret->orientable, x, y, dir);
727 ret->lastx = x;
728 ret->lasty = y;
729 ret->lastr = dir;
730
731 /*
732 * See if the game has been completed. To do this we simply
733 * test that the grid contents are in increasing order.
734 */
735 if (!ret->completed && grid_complete(ret->grid, wh, ret->orientable))
736 ret->completed = ret->movecount;
737 return ret;
738 }
739
740 /* ----------------------------------------------------------------------
741 * Drawing routines.
742 */
743
744 static void game_compute_size(game_params *params, int tilesize,
745 int *x, int *y)
746 {
747 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
748 struct { int tilesize; } ads, *ds = &ads;
749 ads.tilesize = tilesize;
750
751 *x = TILE_SIZE * params->w + 2 * BORDER;
752 *y = TILE_SIZE * params->h + 2 * BORDER;
753 }
754
755 static void game_set_size(drawing *dr, game_drawstate *ds,
756 game_params *params, int tilesize)
757 {
758 ds->tilesize = tilesize;
759 }
760
761 static float *game_colours(frontend *fe, int *ncolours)
762 {
763 float *ret = snewn(3 * NCOLOURS, float);
764 int i;
765
766 game_mkhighlight(fe, ret, COL_BACKGROUND, COL_HIGHLIGHT, COL_LOWLIGHT);
767
768 for (i = 0; i < 3; i++) {
769 ret[COL_HIGHLIGHT_GENTLE * 3 + i] = ret[COL_BACKGROUND * 3 + i] * 1.1F;
770 ret[COL_LOWLIGHT_GENTLE * 3 + i] = ret[COL_BACKGROUND * 3 + i] * 0.9F;
771 ret[COL_TEXT * 3 + i] = 0.0;
772 }
773
774 *ncolours = NCOLOURS;
775 return ret;
776 }
777
778 static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
779 {
780 struct game_drawstate *ds = snew(struct game_drawstate);
781 int i;
782
783 ds->started = FALSE;
784 ds->w = state->w;
785 ds->h = state->h;
786 ds->bgcolour = COL_BACKGROUND;
787 ds->grid = snewn(ds->w*ds->h, int);
788 ds->tilesize = 0; /* haven't decided yet */
789 for (i = 0; i < ds->w*ds->h; i++)
790 ds->grid[i] = -1;
791
792 return ds;
793 }
794
795 static void game_free_drawstate(drawing *dr, game_drawstate *ds)
796 {
797 sfree(ds->grid);
798 sfree(ds);
799 }
800
801 struct rotation {
802 int cx, cy, cw, ch; /* clip region */
803 int ox, oy; /* rotation origin */
804 float c, s; /* cos and sin of rotation angle */
805 int lc, rc, tc, bc; /* colours of tile edges */
806 };
807
808 static void rotate(int *xy, struct rotation *rot)
809 {
810 if (rot) {
811 float xf = xy[0] - rot->ox, yf = xy[1] - rot->oy;
812 float xf2, yf2;
813
814 xf2 = rot->c * xf + rot->s * yf;
815 yf2 = - rot->s * xf + rot->c * yf;
816
817 xy[0] = xf2 + rot->ox + 0.5; /* round to nearest */
818 xy[1] = yf2 + rot->oy + 0.5; /* round to nearest */
819 }
820 }
821
822 static void draw_tile(drawing *dr, game_drawstate *ds, game_state *state,
823 int x, int y, int tile, int flash_colour,
824 struct rotation *rot)
825 {
826 int coords[8];
827 char str[40];
828
829 /*
830 * If we've been passed a rotation region but we're drawing a
831 * tile which is outside it, we must draw it normally. This can
832 * occur if we're cleaning up after a completion flash while a
833 * new move is also being made.
834 */
835 if (rot && (x < rot->cx || y < rot->cy ||
836 x >= rot->cx+rot->cw || y >= rot->cy+rot->ch))
837 rot = NULL;
838
839 if (rot)
840 clip(dr, rot->cx, rot->cy, rot->cw, rot->ch);
841
842 /*
843 * We must draw each side of the tile's highlight separately,
844 * because in some cases (during rotation) they will all need
845 * to be different colours.
846 */
847
848 /* The centre point is common to all sides. */
849 coords[4] = x + TILE_SIZE / 2;
850 coords[5] = y + TILE_SIZE / 2;
851 rotate(coords+4, rot);
852
853 /* Right side. */
854 coords[0] = x + TILE_SIZE - 1;
855 coords[1] = y + TILE_SIZE - 1;
856 rotate(coords+0, rot);
857 coords[2] = x + TILE_SIZE - 1;
858 coords[3] = y;
859 rotate(coords+2, rot);
860 draw_polygon(dr, coords, 3, rot ? rot->rc : COL_LOWLIGHT,
861 rot ? rot->rc : COL_LOWLIGHT);
862
863 /* Bottom side. */
864 coords[2] = x;
865 coords[3] = y + TILE_SIZE - 1;
866 rotate(coords+2, rot);
867 draw_polygon(dr, coords, 3, rot ? rot->bc : COL_LOWLIGHT,
868 rot ? rot->bc : COL_LOWLIGHT);
869
870 /* Left side. */
871 coords[0] = x;
872 coords[1] = y;
873 rotate(coords+0, rot);
874 draw_polygon(dr, coords, 3, rot ? rot->lc : COL_HIGHLIGHT,
875 rot ? rot->lc : COL_HIGHLIGHT);
876
877 /* Top side. */
878 coords[2] = x + TILE_SIZE - 1;
879 coords[3] = y;
880 rotate(coords+2, rot);
881 draw_polygon(dr, coords, 3, rot ? rot->tc : COL_HIGHLIGHT,
882 rot ? rot->tc : COL_HIGHLIGHT);
883
884 /*
885 * Now the main blank area in the centre of the tile.
886 */
887 if (rot) {
888 coords[0] = x + HIGHLIGHT_WIDTH;
889 coords[1] = y + HIGHLIGHT_WIDTH;
890 rotate(coords+0, rot);
891 coords[2] = x + HIGHLIGHT_WIDTH;
892 coords[3] = y + TILE_SIZE - 1 - HIGHLIGHT_WIDTH;
893 rotate(coords+2, rot);
894 coords[4] = x + TILE_SIZE - 1 - HIGHLIGHT_WIDTH;
895 coords[5] = y + TILE_SIZE - 1 - HIGHLIGHT_WIDTH;
896 rotate(coords+4, rot);
897 coords[6] = x + TILE_SIZE - 1 - HIGHLIGHT_WIDTH;
898 coords[7] = y + HIGHLIGHT_WIDTH;
899 rotate(coords+6, rot);
900 draw_polygon(dr, coords, 4, flash_colour, flash_colour);
901 } else {
902 draw_rect(dr, x + HIGHLIGHT_WIDTH, y + HIGHLIGHT_WIDTH,
903 TILE_SIZE - 2*HIGHLIGHT_WIDTH, TILE_SIZE - 2*HIGHLIGHT_WIDTH,
904 flash_colour);
905 }
906
907 /*
908 * Next, the triangles for orientation.
909 */
910 if (state->orientable) {
911 int xdx, xdy, ydx, ydy;
912 int cx, cy, displ, displ2;
913 switch (tile & 3) {
914 case 0:
915 xdx = 1, xdy = 0;
916 ydx = 0, ydy = 1;
917 break;
918 case 1:
919 xdx = 0, xdy = -1;
920 ydx = 1, ydy = 0;
921 break;
922 case 2:
923 xdx = -1, xdy = 0;
924 ydx = 0, ydy = -1;
925 break;
926 default /* case 3 */:
927 xdx = 0, xdy = 1;
928 ydx = -1, ydy = 0;
929 break;
930 }
931
932 cx = x + TILE_SIZE / 2;
933 cy = y + TILE_SIZE / 2;
934 displ = TILE_SIZE / 2 - HIGHLIGHT_WIDTH - 2;
935 displ2 = TILE_SIZE / 3 - HIGHLIGHT_WIDTH;
936
937 coords[0] = cx - displ * xdx + displ2 * ydx;
938 coords[1] = cy - displ * xdy + displ2 * ydy;
939 rotate(coords+0, rot);
940 coords[2] = cx + displ * xdx + displ2 * ydx;
941 coords[3] = cy + displ * xdy + displ2 * ydy;
942 rotate(coords+2, rot);
943 coords[4] = cx - displ * ydx;
944 coords[5] = cy - displ * ydy;
945 rotate(coords+4, rot);
946 draw_polygon(dr, coords, 3, COL_LOWLIGHT_GENTLE, COL_LOWLIGHT_GENTLE);
947 }
948
949 coords[0] = x + TILE_SIZE/2;
950 coords[1] = y + TILE_SIZE/2;
951 rotate(coords+0, rot);
952 sprintf(str, "%d", tile / 4);
953 draw_text(dr, coords[0], coords[1],
954 FONT_VARIABLE, TILE_SIZE/3, ALIGN_VCENTRE | ALIGN_HCENTRE,
955 COL_TEXT, str);
956
957 if (rot)
958 unclip(dr);
959
960 draw_update(dr, x, y, TILE_SIZE, TILE_SIZE);
961 }
962
963 static int highlight_colour(float angle)
964 {
965 int colours[32] = {
966 COL_LOWLIGHT,
967 COL_LOWLIGHT_GENTLE,
968 COL_LOWLIGHT_GENTLE,
969 COL_LOWLIGHT_GENTLE,
970 COL_HIGHLIGHT_GENTLE,
971 COL_HIGHLIGHT_GENTLE,
972 COL_HIGHLIGHT_GENTLE,
973 COL_HIGHLIGHT,
974 COL_HIGHLIGHT,
975 COL_HIGHLIGHT,
976 COL_HIGHLIGHT,
977 COL_HIGHLIGHT,
978 COL_HIGHLIGHT,
979 COL_HIGHLIGHT,
980 COL_HIGHLIGHT,
981 COL_HIGHLIGHT,
982 COL_HIGHLIGHT,
983 COL_HIGHLIGHT_GENTLE,
984 COL_HIGHLIGHT_GENTLE,
985 COL_HIGHLIGHT_GENTLE,
986 COL_LOWLIGHT_GENTLE,
987 COL_LOWLIGHT_GENTLE,
988 COL_LOWLIGHT_GENTLE,
989 COL_LOWLIGHT,
990 COL_LOWLIGHT,
991 COL_LOWLIGHT,
992 COL_LOWLIGHT,
993 COL_LOWLIGHT,
994 COL_LOWLIGHT,
995 COL_LOWLIGHT,
996 COL_LOWLIGHT,
997 COL_LOWLIGHT,
998 };
999
1000 return colours[(int)((angle + 2*PI) / (PI/16)) & 31];
1001 }
1002
1003 static float game_anim_length(game_state *oldstate, game_state *newstate,
1004 int dir, game_ui *ui)
1005 {
1006 return ANIM_PER_RADIUS_UNIT * sqrt(newstate->n-1);
1007 }
1008
1009 static float game_flash_length(game_state *oldstate, game_state *newstate,
1010 int dir, game_ui *ui)
1011 {
1012 if (!oldstate->completed && newstate->completed &&
1013 !oldstate->used_solve && !newstate->used_solve)
1014 return 2 * FLASH_FRAME;
1015 else
1016 return 0.0F;
1017 }
1018
1019 static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
1020 game_state *state, int dir, game_ui *ui,
1021 float animtime, float flashtime)
1022 {
1023 int i, bgcolour;
1024 struct rotation srot, *rot;
1025 int lastx = -1, lasty = -1, lastr = -1;
1026
1027 if (flashtime > 0) {
1028 int frame = (int)(flashtime / FLASH_FRAME);
1029 bgcolour = (frame % 2 ? COL_LOWLIGHT : COL_HIGHLIGHT);
1030 } else
1031 bgcolour = COL_BACKGROUND;
1032
1033 if (!ds->started) {
1034 int coords[10];
1035
1036 draw_rect(dr, 0, 0,
1037 TILE_SIZE * state->w + 2 * BORDER,
1038 TILE_SIZE * state->h + 2 * BORDER, COL_BACKGROUND);
1039 draw_update(dr, 0, 0,
1040 TILE_SIZE * state->w + 2 * BORDER,
1041 TILE_SIZE * state->h + 2 * BORDER);
1042
1043 /*
1044 * Recessed area containing the whole puzzle.
1045 */
1046 coords[0] = COORD(state->w) + HIGHLIGHT_WIDTH - 1;
1047 coords[1] = COORD(state->h) + HIGHLIGHT_WIDTH - 1;
1048 coords[2] = COORD(state->w) + HIGHLIGHT_WIDTH - 1;
1049 coords[3] = COORD(0) - HIGHLIGHT_WIDTH;
1050 coords[4] = coords[2] - TILE_SIZE;
1051 coords[5] = coords[3] + TILE_SIZE;
1052 coords[8] = COORD(0) - HIGHLIGHT_WIDTH;
1053 coords[9] = COORD(state->h) + HIGHLIGHT_WIDTH - 1;
1054 coords[6] = coords[8] + TILE_SIZE;
1055 coords[7] = coords[9] - TILE_SIZE;
1056 draw_polygon(dr, coords, 5, COL_HIGHLIGHT, COL_HIGHLIGHT);
1057
1058 coords[1] = COORD(0) - HIGHLIGHT_WIDTH;
1059 coords[0] = COORD(0) - HIGHLIGHT_WIDTH;
1060 draw_polygon(dr, coords, 5, COL_LOWLIGHT, COL_LOWLIGHT);
1061
1062 ds->started = TRUE;
1063 }
1064
1065 /*
1066 * If we're drawing any rotated tiles, sort out the rotation
1067 * parameters, and also zap the rotation region to the
1068 * background colour before doing anything else.
1069 */
1070 if (oldstate) {
1071 float angle;
1072 float anim_max = game_anim_length(oldstate, state, dir, ui);
1073
1074 if (dir > 0) {
1075 lastx = state->lastx;
1076 lasty = state->lasty;
1077 lastr = state->lastr;
1078 } else {
1079 lastx = oldstate->lastx;
1080 lasty = oldstate->lasty;
1081 lastr = -oldstate->lastr;
1082 }
1083
1084 rot = &srot;
1085 rot->cx = COORD(lastx);
1086 rot->cy = COORD(lasty);
1087 rot->cw = rot->ch = TILE_SIZE * state->n;
1088 rot->ox = rot->cx + rot->cw/2;
1089 rot->oy = rot->cy + rot->ch/2;
1090 angle = (-PI/2 * lastr) * (1.0 - animtime / anim_max);
1091 rot->c = cos(angle);
1092 rot->s = sin(angle);
1093
1094 /*
1095 * Sort out the colours of the various sides of the tile.
1096 */
1097 rot->lc = highlight_colour(PI + angle);
1098 rot->rc = highlight_colour(angle);
1099 rot->tc = highlight_colour(PI/2 + angle);
1100 rot->bc = highlight_colour(-PI/2 + angle);
1101
1102 draw_rect(dr, rot->cx, rot->cy, rot->cw, rot->ch, bgcolour);
1103 } else
1104 rot = NULL;
1105
1106 /*
1107 * Now draw each tile.
1108 */
1109 for (i = 0; i < state->w * state->h; i++) {
1110 int t;
1111 int tx = i % state->w, ty = i / state->w;
1112
1113 /*
1114 * Figure out what should be displayed at this location.
1115 * Usually it will be state->grid[i], unless we're in the
1116 * middle of animating an actual rotation and this cell is
1117 * within the rotation region, in which case we set -1
1118 * (always display).
1119 */
1120 if (oldstate && lastx >= 0 && lasty >= 0 &&
1121 tx >= lastx && tx < lastx + state->n &&
1122 ty >= lasty && ty < lasty + state->n)
1123 t = -1;
1124 else
1125 t = state->grid[i];
1126
1127 if (ds->bgcolour != bgcolour || /* always redraw when flashing */
1128 ds->grid[i] != t || ds->grid[i] == -1 || t == -1) {
1129 int x = COORD(tx), y = COORD(ty);
1130
1131 draw_tile(dr, ds, state, x, y, state->grid[i], bgcolour, rot);
1132 ds->grid[i] = t;
1133 }
1134 }
1135 ds->bgcolour = bgcolour;
1136
1137 /*
1138 * Update the status bar.
1139 */
1140 {
1141 char statusbuf[256];
1142
1143 /*
1144 * Don't show the new status until we're also showing the
1145 * new _state_ - after the game animation is complete.
1146 */
1147 if (oldstate)
1148 state = oldstate;
1149
1150 if (state->used_solve)
1151 sprintf(statusbuf, "Moves since auto-solve: %d",
1152 state->movecount - state->completed);
1153 else {
1154 sprintf(statusbuf, "%sMoves: %d",
1155 (state->completed ? "COMPLETED! " : ""),
1156 (state->completed ? state->completed : state->movecount));
1157 if (state->movetarget)
1158 sprintf(statusbuf+strlen(statusbuf), " (target %d)",
1159 state->movetarget);
1160 }
1161
1162 status_bar(dr, statusbuf);
1163 }
1164 }
1165
1166 static int game_timing_state(game_state *state, game_ui *ui)
1167 {
1168 return TRUE;
1169 }
1170
1171 static void game_print_size(game_params *params, float *x, float *y)
1172 {
1173 }
1174
1175 static void game_print(drawing *dr, game_state *state, int tilesize)
1176 {
1177 }
1178
1179 #ifdef COMBINED
1180 #define thegame twiddle
1181 #endif
1182
1183 const struct game thegame = {
1184 "Twiddle", "games.twiddle",
1185 default_params,
1186 game_fetch_preset,
1187 decode_params,
1188 encode_params,
1189 free_params,
1190 dup_params,
1191 TRUE, game_configure, custom_params,
1192 validate_params,
1193 new_game_desc,
1194 validate_desc,
1195 new_game,
1196 dup_game,
1197 free_game,
1198 TRUE, solve_game,
1199 TRUE, game_text_format,
1200 new_ui,
1201 free_ui,
1202 encode_ui,
1203 decode_ui,
1204 game_changed_state,
1205 interpret_move,
1206 execute_move,
1207 PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
1208 game_colours,
1209 game_new_drawstate,
1210 game_free_drawstate,
1211 game_redraw,
1212 game_anim_length,
1213 game_flash_length,
1214 FALSE, FALSE, game_print_size, game_print,
1215 TRUE, /* wants_statusbar */
1216 FALSE, game_timing_state,
1217 0, /* flags */
1218 };