Patch from Mark Wooding to introduce a draw_thick_line() function in
[sgt/puzzles] / loopy.c
1 /*
2 * loopy.c:
3 *
4 * An implementation of the Nikoli game 'Loop the loop'.
5 * (c) Mike Pinna, 2005, 2006
6 * Substantially rewritten to allowing for more general types of grid.
7 * (c) Lambros Lambrou 2008
8 *
9 * vim: set shiftwidth=4 :set textwidth=80:
10 */
11
12 /*
13 * Possible future solver enhancements:
14 *
15 * - There's an interesting deductive technique which makes use
16 * of topology rather than just graph theory. Each _face_ in
17 * the grid is either inside or outside the loop; you can tell
18 * that two faces are on the same side of the loop if they're
19 * separated by a LINE_NO (or, more generally, by a path
20 * crossing no LINE_UNKNOWNs and an even number of LINE_YESes),
21 * and on the opposite side of the loop if they're separated by
22 * a LINE_YES (or an odd number of LINE_YESes and no
23 * LINE_UNKNOWNs). Oh, and any face separated from the outside
24 * of the grid by a LINE_YES or a LINE_NO is on the inside or
25 * outside respectively. So if you can track this for all
26 * faces, you figure out the state of the line between a pair
27 * once their relative insideness is known.
28 * + The way I envisage this working is simply to keep an edsf
29 * of all _faces_, which indicates whether they're on
30 * opposite sides of the loop from one another. We also
31 * include a special entry in the edsf for the infinite
32 * exterior "face".
33 * + So, the simple way to do this is to just go through the
34 * edges: every time we see an edge in a state other than
35 * LINE_UNKNOWN which separates two faces that aren't in the
36 * same edsf class, we can rectify that by merging the
37 * classes. Then, conversely, an edge in LINE_UNKNOWN state
38 * which separates two faces that _are_ in the same edsf
39 * class can immediately have its state determined.
40 * + But you can go one better, if you're prepared to loop
41 * over all _pairs_ of edges. Suppose we have edges A and B,
42 * which respectively separate faces A1,A2 and B1,B2.
43 * Suppose that A,B are in the same edge-edsf class and that
44 * A1,B1 (wlog) are in the same face-edsf class; then we can
45 * immediately place A2,B2 into the same face-edsf class (as
46 * each other, not as A1 and A2) one way round or the other.
47 * And conversely again, if A1,B1 are in the same face-edsf
48 * class and so are A2,B2, then we can put A,B into the same
49 * face-edsf class.
50 * * Of course, this deduction requires a quadratic-time
51 * loop over all pairs of edges in the grid, so it should
52 * be reserved until there's nothing easier left to be
53 * done.
54 *
55 * - The generalised grid support has made me (SGT) notice a
56 * possible extension to the loop-avoidance code. When you have
57 * a path of connected edges such that no other edges at all
58 * are incident on any vertex in the middle of the path - or,
59 * alternatively, such that any such edges are already known to
60 * be LINE_NO - then you know those edges are either all
61 * LINE_YES or all LINE_NO. Hence you can mentally merge the
62 * entire path into a single long curly edge for the purposes
63 * of loop avoidance, and look directly at whether or not the
64 * extreme endpoints of the path are connected by some other
65 * route. I find this coming up fairly often when I play on the
66 * octagonal grid setting, so it might be worth implementing in
67 * the solver.
68 *
69 * - (Just a speed optimisation.) Consider some todo list queue where every
70 * time we modify something we mark it for consideration by other bits of
71 * the solver, to save iteration over things that have already been done.
72 */
73
74 #include <stdio.h>
75 #include <stdlib.h>
76 #include <stddef.h>
77 #include <string.h>
78 #include <assert.h>
79 #include <ctype.h>
80 #include <math.h>
81
82 #include "puzzles.h"
83 #include "tree234.h"
84 #include "grid.h"
85
86 /* Debugging options */
87
88 /*
89 #define DEBUG_CACHES
90 #define SHOW_WORKING
91 #define DEBUG_DLINES
92 */
93
94 /* ----------------------------------------------------------------------
95 * Struct, enum and function declarations
96 */
97
98 enum {
99 COL_BACKGROUND,
100 COL_FOREGROUND,
101 COL_LINEUNKNOWN,
102 COL_HIGHLIGHT,
103 COL_MISTAKE,
104 COL_SATISFIED,
105 COL_FAINT,
106 NCOLOURS
107 };
108
109 struct game_state {
110 grid *game_grid;
111
112 /* Put -1 in a face that doesn't get a clue */
113 signed char *clues;
114
115 /* Array of line states, to store whether each line is
116 * YES, NO or UNKNOWN */
117 char *lines;
118
119 unsigned char *line_errors;
120
121 int solved;
122 int cheated;
123
124 /* Used in game_text_format(), so that it knows what type of
125 * grid it's trying to render as ASCII text. */
126 int grid_type;
127 };
128
129 enum solver_status {
130 SOLVER_SOLVED, /* This is the only solution the solver could find */
131 SOLVER_MISTAKE, /* This is definitely not a solution */
132 SOLVER_AMBIGUOUS, /* This _might_ be an ambiguous solution */
133 SOLVER_INCOMPLETE /* This may be a partial solution */
134 };
135
136 /* ------ Solver state ------ */
137 typedef struct solver_state {
138 game_state *state;
139 enum solver_status solver_status;
140 /* NB looplen is the number of dots that are joined together at a point, ie a
141 * looplen of 1 means there are no lines to a particular dot */
142 int *looplen;
143
144 /* Difficulty level of solver. Used by solver functions that want to
145 * vary their behaviour depending on the requested difficulty level. */
146 int diff;
147
148 /* caches */
149 char *dot_yes_count;
150 char *dot_no_count;
151 char *face_yes_count;
152 char *face_no_count;
153 char *dot_solved, *face_solved;
154 int *dotdsf;
155
156 /* Information for Normal level deductions:
157 * For each dline, store a bitmask for whether we know:
158 * (bit 0) at least one is YES
159 * (bit 1) at most one is YES */
160 char *dlines;
161
162 /* Hard level information */
163 int *linedsf;
164 } solver_state;
165
166 /*
167 * Difficulty levels. I do some macro ickery here to ensure that my
168 * enum and the various forms of my name list always match up.
169 */
170
171 #define DIFFLIST(A) \
172 A(EASY,Easy,e) \
173 A(NORMAL,Normal,n) \
174 A(TRICKY,Tricky,t) \
175 A(HARD,Hard,h)
176 #define ENUM(upper,title,lower) DIFF_ ## upper,
177 #define TITLE(upper,title,lower) #title,
178 #define ENCODE(upper,title,lower) #lower
179 #define CONFIG(upper,title,lower) ":" #title
180 enum { DIFFLIST(ENUM) DIFF_MAX };
181 static char const *const diffnames[] = { DIFFLIST(TITLE) };
182 static char const diffchars[] = DIFFLIST(ENCODE);
183 #define DIFFCONFIG DIFFLIST(CONFIG)
184
185 /*
186 * Solver routines, sorted roughly in order of computational cost.
187 * The solver will run the faster deductions first, and slower deductions are
188 * only invoked when the faster deductions are unable to make progress.
189 * Each function is associated with a difficulty level, so that the generated
190 * puzzles are solvable by applying only the functions with the chosen
191 * difficulty level or lower.
192 */
193 #define SOLVERLIST(A) \
194 A(trivial_deductions, DIFF_EASY) \
195 A(dline_deductions, DIFF_NORMAL) \
196 A(linedsf_deductions, DIFF_HARD) \
197 A(loop_deductions, DIFF_EASY)
198 #define SOLVER_FN_DECL(fn,diff) static int fn(solver_state *);
199 #define SOLVER_FN(fn,diff) &fn,
200 #define SOLVER_DIFF(fn,diff) diff,
201 SOLVERLIST(SOLVER_FN_DECL)
202 static int (*(solver_fns[]))(solver_state *) = { SOLVERLIST(SOLVER_FN) };
203 static int const solver_diffs[] = { SOLVERLIST(SOLVER_DIFF) };
204 const int NUM_SOLVERS = sizeof(solver_diffs)/sizeof(*solver_diffs);
205
206 struct game_params {
207 int w, h;
208 int diff;
209 int type;
210
211 /* Grid generation is expensive, so keep a (ref-counted) reference to the
212 * grid for these parameters, and only generate when required. */
213 grid *game_grid;
214 };
215
216 /* line_drawstate is the same as line_state, but with the extra ERROR
217 * possibility. The drawing code copies line_state to line_drawstate,
218 * except in the case that the line is an error. */
219 enum line_state { LINE_YES, LINE_UNKNOWN, LINE_NO };
220 enum line_drawstate { DS_LINE_YES, DS_LINE_UNKNOWN,
221 DS_LINE_NO, DS_LINE_ERROR };
222
223 #define OPP(line_state) \
224 (2 - line_state)
225
226
227 struct game_drawstate {
228 int started;
229 int tilesize;
230 int flashing;
231 char *lines;
232 char *clue_error;
233 char *clue_satisfied;
234 };
235
236 static char *validate_desc(game_params *params, char *desc);
237 static int dot_order(const game_state* state, int i, char line_type);
238 static int face_order(const game_state* state, int i, char line_type);
239 static solver_state *solve_game_rec(const solver_state *sstate);
240
241 #ifdef DEBUG_CACHES
242 static void check_caches(const solver_state* sstate);
243 #else
244 #define check_caches(s)
245 #endif
246
247 /* ------- List of grid generators ------- */
248 #define GRIDLIST(A) \
249 A(Squares,grid_new_square,3,3) \
250 A(Triangular,grid_new_triangular,3,3) \
251 A(Honeycomb,grid_new_honeycomb,3,3) \
252 A(Snub-Square,grid_new_snubsquare,3,3) \
253 A(Cairo,grid_new_cairo,3,4) \
254 A(Great-Hexagonal,grid_new_greathexagonal,3,3) \
255 A(Octagonal,grid_new_octagonal,3,3) \
256 A(Kites,grid_new_kites,3,3)
257
258 #define GRID_NAME(title,fn,amin,omin) #title,
259 #define GRID_CONFIG(title,fn,amin,omin) ":" #title
260 #define GRID_FN(title,fn,amin,omin) &fn,
261 #define GRID_SIZES(title,fn,amin,omin) \
262 {amin, omin, \
263 "Width and height for this grid type must both be at least " #amin, \
264 "At least one of width and height for this grid type must be at least " #omin,},
265 static char const *const gridnames[] = { GRIDLIST(GRID_NAME) };
266 #define GRID_CONFIGS GRIDLIST(GRID_CONFIG)
267 static grid * (*(grid_fns[]))(int w, int h) = { GRIDLIST(GRID_FN) };
268 #define NUM_GRID_TYPES (sizeof(grid_fns) / sizeof(grid_fns[0]))
269 static const struct {
270 int amin, omin;
271 char *aerr, *oerr;
272 } grid_size_limits[] = { GRIDLIST(GRID_SIZES) };
273
274 /* Generates a (dynamically allocated) new grid, according to the
275 * type and size requested in params. Does nothing if the grid is already
276 * generated. The allocated grid is owned by the params object, and will be
277 * freed in free_params(). */
278 static void params_generate_grid(game_params *params)
279 {
280 if (!params->game_grid) {
281 params->game_grid = grid_fns[params->type](params->w, params->h);
282 }
283 }
284
285 /* ----------------------------------------------------------------------
286 * Preprocessor magic
287 */
288
289 /* General constants */
290 #define PREFERRED_TILE_SIZE 32
291 #define BORDER(tilesize) ((tilesize) / 2)
292 #define FLASH_TIME 0.5F
293
294 #define BIT_SET(field, bit) ((field) & (1<<(bit)))
295
296 #define SET_BIT(field, bit) (BIT_SET(field, bit) ? FALSE : \
297 ((field) |= (1<<(bit)), TRUE))
298
299 #define CLEAR_BIT(field, bit) (BIT_SET(field, bit) ? \
300 ((field) &= ~(1<<(bit)), TRUE) : FALSE)
301
302 #define CLUE2CHAR(c) \
303 ((c < 0) ? ' ' : c + '0')
304
305 /* ----------------------------------------------------------------------
306 * General struct manipulation and other straightforward code
307 */
308
309 static game_state *dup_game(game_state *state)
310 {
311 game_state *ret = snew(game_state);
312
313 ret->game_grid = state->game_grid;
314 ret->game_grid->refcount++;
315
316 ret->solved = state->solved;
317 ret->cheated = state->cheated;
318
319 ret->clues = snewn(state->game_grid->num_faces, signed char);
320 memcpy(ret->clues, state->clues, state->game_grid->num_faces);
321
322 ret->lines = snewn(state->game_grid->num_edges, char);
323 memcpy(ret->lines, state->lines, state->game_grid->num_edges);
324
325 ret->line_errors = snewn(state->game_grid->num_edges, unsigned char);
326 memcpy(ret->line_errors, state->line_errors, state->game_grid->num_edges);
327
328 ret->grid_type = state->grid_type;
329 return ret;
330 }
331
332 static void free_game(game_state *state)
333 {
334 if (state) {
335 grid_free(state->game_grid);
336 sfree(state->clues);
337 sfree(state->lines);
338 sfree(state->line_errors);
339 sfree(state);
340 }
341 }
342
343 static solver_state *new_solver_state(game_state *state, int diff) {
344 int i;
345 int num_dots = state->game_grid->num_dots;
346 int num_faces = state->game_grid->num_faces;
347 int num_edges = state->game_grid->num_edges;
348 solver_state *ret = snew(solver_state);
349
350 ret->state = dup_game(state);
351
352 ret->solver_status = SOLVER_INCOMPLETE;
353 ret->diff = diff;
354
355 ret->dotdsf = snew_dsf(num_dots);
356 ret->looplen = snewn(num_dots, int);
357
358 for (i = 0; i < num_dots; i++) {
359 ret->looplen[i] = 1;
360 }
361
362 ret->dot_solved = snewn(num_dots, char);
363 ret->face_solved = snewn(num_faces, char);
364 memset(ret->dot_solved, FALSE, num_dots);
365 memset(ret->face_solved, FALSE, num_faces);
366
367 ret->dot_yes_count = snewn(num_dots, char);
368 memset(ret->dot_yes_count, 0, num_dots);
369 ret->dot_no_count = snewn(num_dots, char);
370 memset(ret->dot_no_count, 0, num_dots);
371 ret->face_yes_count = snewn(num_faces, char);
372 memset(ret->face_yes_count, 0, num_faces);
373 ret->face_no_count = snewn(num_faces, char);
374 memset(ret->face_no_count, 0, num_faces);
375
376 if (diff < DIFF_NORMAL) {
377 ret->dlines = NULL;
378 } else {
379 ret->dlines = snewn(2*num_edges, char);
380 memset(ret->dlines, 0, 2*num_edges);
381 }
382
383 if (diff < DIFF_HARD) {
384 ret->linedsf = NULL;
385 } else {
386 ret->linedsf = snew_dsf(state->game_grid->num_edges);
387 }
388
389 return ret;
390 }
391
392 static void free_solver_state(solver_state *sstate) {
393 if (sstate) {
394 free_game(sstate->state);
395 sfree(sstate->dotdsf);
396 sfree(sstate->looplen);
397 sfree(sstate->dot_solved);
398 sfree(sstate->face_solved);
399 sfree(sstate->dot_yes_count);
400 sfree(sstate->dot_no_count);
401 sfree(sstate->face_yes_count);
402 sfree(sstate->face_no_count);
403
404 /* OK, because sfree(NULL) is a no-op */
405 sfree(sstate->dlines);
406 sfree(sstate->linedsf);
407
408 sfree(sstate);
409 }
410 }
411
412 static solver_state *dup_solver_state(const solver_state *sstate) {
413 game_state *state = sstate->state;
414 int num_dots = state->game_grid->num_dots;
415 int num_faces = state->game_grid->num_faces;
416 int num_edges = state->game_grid->num_edges;
417 solver_state *ret = snew(solver_state);
418
419 ret->state = state = dup_game(sstate->state);
420
421 ret->solver_status = sstate->solver_status;
422 ret->diff = sstate->diff;
423
424 ret->dotdsf = snewn(num_dots, int);
425 ret->looplen = snewn(num_dots, int);
426 memcpy(ret->dotdsf, sstate->dotdsf,
427 num_dots * sizeof(int));
428 memcpy(ret->looplen, sstate->looplen,
429 num_dots * sizeof(int));
430
431 ret->dot_solved = snewn(num_dots, char);
432 ret->face_solved = snewn(num_faces, char);
433 memcpy(ret->dot_solved, sstate->dot_solved, num_dots);
434 memcpy(ret->face_solved, sstate->face_solved, num_faces);
435
436 ret->dot_yes_count = snewn(num_dots, char);
437 memcpy(ret->dot_yes_count, sstate->dot_yes_count, num_dots);
438 ret->dot_no_count = snewn(num_dots, char);
439 memcpy(ret->dot_no_count, sstate->dot_no_count, num_dots);
440
441 ret->face_yes_count = snewn(num_faces, char);
442 memcpy(ret->face_yes_count, sstate->face_yes_count, num_faces);
443 ret->face_no_count = snewn(num_faces, char);
444 memcpy(ret->face_no_count, sstate->face_no_count, num_faces);
445
446 if (sstate->dlines) {
447 ret->dlines = snewn(2*num_edges, char);
448 memcpy(ret->dlines, sstate->dlines,
449 2*num_edges);
450 } else {
451 ret->dlines = NULL;
452 }
453
454 if (sstate->linedsf) {
455 ret->linedsf = snewn(num_edges, int);
456 memcpy(ret->linedsf, sstate->linedsf,
457 num_edges * sizeof(int));
458 } else {
459 ret->linedsf = NULL;
460 }
461
462 return ret;
463 }
464
465 static game_params *default_params(void)
466 {
467 game_params *ret = snew(game_params);
468
469 #ifdef SLOW_SYSTEM
470 ret->h = 7;
471 ret->w = 7;
472 #else
473 ret->h = 10;
474 ret->w = 10;
475 #endif
476 ret->diff = DIFF_EASY;
477 ret->type = 0;
478
479 ret->game_grid = NULL;
480
481 return ret;
482 }
483
484 static game_params *dup_params(game_params *params)
485 {
486 game_params *ret = snew(game_params);
487
488 *ret = *params; /* structure copy */
489 if (ret->game_grid) {
490 ret->game_grid->refcount++;
491 }
492 return ret;
493 }
494
495 static const game_params presets[] = {
496 #ifdef SMALL_SCREEN
497 { 7, 7, DIFF_EASY, 0, NULL },
498 { 7, 7, DIFF_NORMAL, 0, NULL },
499 { 7, 7, DIFF_HARD, 0, NULL },
500 { 7, 7, DIFF_HARD, 1, NULL },
501 { 7, 7, DIFF_HARD, 2, NULL },
502 { 5, 5, DIFF_HARD, 3, NULL },
503 { 7, 7, DIFF_HARD, 4, NULL },
504 { 5, 4, DIFF_HARD, 5, NULL },
505 { 5, 5, DIFF_HARD, 6, NULL },
506 { 5, 5, DIFF_HARD, 7, NULL },
507 #else
508 { 7, 7, DIFF_EASY, 0, NULL },
509 { 10, 10, DIFF_EASY, 0, NULL },
510 { 7, 7, DIFF_NORMAL, 0, NULL },
511 { 10, 10, DIFF_NORMAL, 0, NULL },
512 { 7, 7, DIFF_HARD, 0, NULL },
513 { 10, 10, DIFF_HARD, 0, NULL },
514 { 10, 10, DIFF_HARD, 1, NULL },
515 { 12, 10, DIFF_HARD, 2, NULL },
516 { 7, 7, DIFF_HARD, 3, NULL },
517 { 9, 9, DIFF_HARD, 4, NULL },
518 { 5, 4, DIFF_HARD, 5, NULL },
519 { 7, 7, DIFF_HARD, 6, NULL },
520 { 5, 5, DIFF_HARD, 7, NULL },
521 #endif
522 };
523
524 static int game_fetch_preset(int i, char **name, game_params **params)
525 {
526 game_params *tmppar;
527 char buf[80];
528
529 if (i < 0 || i >= lenof(presets))
530 return FALSE;
531
532 tmppar = snew(game_params);
533 *tmppar = presets[i];
534 *params = tmppar;
535 sprintf(buf, "%dx%d %s - %s", tmppar->h, tmppar->w,
536 gridnames[tmppar->type], diffnames[tmppar->diff]);
537 *name = dupstr(buf);
538
539 return TRUE;
540 }
541
542 static void free_params(game_params *params)
543 {
544 if (params->game_grid) {
545 grid_free(params->game_grid);
546 }
547 sfree(params);
548 }
549
550 static void decode_params(game_params *params, char const *string)
551 {
552 if (params->game_grid) {
553 grid_free(params->game_grid);
554 params->game_grid = NULL;
555 }
556 params->h = params->w = atoi(string);
557 params->diff = DIFF_EASY;
558 while (*string && isdigit((unsigned char)*string)) string++;
559 if (*string == 'x') {
560 string++;
561 params->h = atoi(string);
562 while (*string && isdigit((unsigned char)*string)) string++;
563 }
564 if (*string == 't') {
565 string++;
566 params->type = atoi(string);
567 while (*string && isdigit((unsigned char)*string)) string++;
568 }
569 if (*string == 'd') {
570 int i;
571 string++;
572 for (i = 0; i < DIFF_MAX; i++)
573 if (*string == diffchars[i])
574 params->diff = i;
575 if (*string) string++;
576 }
577 }
578
579 static char *encode_params(game_params *params, int full)
580 {
581 char str[80];
582 sprintf(str, "%dx%dt%d", params->w, params->h, params->type);
583 if (full)
584 sprintf(str + strlen(str), "d%c", diffchars[params->diff]);
585 return dupstr(str);
586 }
587
588 static config_item *game_configure(game_params *params)
589 {
590 config_item *ret;
591 char buf[80];
592
593 ret = snewn(5, config_item);
594
595 ret[0].name = "Width";
596 ret[0].type = C_STRING;
597 sprintf(buf, "%d", params->w);
598 ret[0].sval = dupstr(buf);
599 ret[0].ival = 0;
600
601 ret[1].name = "Height";
602 ret[1].type = C_STRING;
603 sprintf(buf, "%d", params->h);
604 ret[1].sval = dupstr(buf);
605 ret[1].ival = 0;
606
607 ret[2].name = "Grid type";
608 ret[2].type = C_CHOICES;
609 ret[2].sval = GRID_CONFIGS;
610 ret[2].ival = params->type;
611
612 ret[3].name = "Difficulty";
613 ret[3].type = C_CHOICES;
614 ret[3].sval = DIFFCONFIG;
615 ret[3].ival = params->diff;
616
617 ret[4].name = NULL;
618 ret[4].type = C_END;
619 ret[4].sval = NULL;
620 ret[4].ival = 0;
621
622 return ret;
623 }
624
625 static game_params *custom_params(config_item *cfg)
626 {
627 game_params *ret = snew(game_params);
628
629 ret->w = atoi(cfg[0].sval);
630 ret->h = atoi(cfg[1].sval);
631 ret->type = cfg[2].ival;
632 ret->diff = cfg[3].ival;
633
634 ret->game_grid = NULL;
635 return ret;
636 }
637
638 static char *validate_params(game_params *params, int full)
639 {
640 if (params->type < 0 || params->type >= NUM_GRID_TYPES)
641 return "Illegal grid type";
642 if (params->w < grid_size_limits[params->type].amin ||
643 params->h < grid_size_limits[params->type].amin)
644 return grid_size_limits[params->type].aerr;
645 if (params->w < grid_size_limits[params->type].omin &&
646 params->h < grid_size_limits[params->type].omin)
647 return grid_size_limits[params->type].oerr;
648
649 /*
650 * This shouldn't be able to happen at all, since decode_params
651 * and custom_params will never generate anything that isn't
652 * within range.
653 */
654 assert(params->diff < DIFF_MAX);
655
656 return NULL;
657 }
658
659 /* Returns a newly allocated string describing the current puzzle */
660 static char *state_to_text(const game_state *state)
661 {
662 grid *g = state->game_grid;
663 char *retval;
664 int num_faces = g->num_faces;
665 char *description = snewn(num_faces + 1, char);
666 char *dp = description;
667 int empty_count = 0;
668 int i;
669
670 for (i = 0; i < num_faces; i++) {
671 if (state->clues[i] < 0) {
672 if (empty_count > 25) {
673 dp += sprintf(dp, "%c", (int)(empty_count + 'a' - 1));
674 empty_count = 0;
675 }
676 empty_count++;
677 } else {
678 if (empty_count) {
679 dp += sprintf(dp, "%c", (int)(empty_count + 'a' - 1));
680 empty_count = 0;
681 }
682 dp += sprintf(dp, "%c", (int)CLUE2CHAR(state->clues[i]));
683 }
684 }
685
686 if (empty_count)
687 dp += sprintf(dp, "%c", (int)(empty_count + 'a' - 1));
688
689 retval = dupstr(description);
690 sfree(description);
691
692 return retval;
693 }
694
695 /* We require that the params pass the test in validate_params and that the
696 * description fills the entire game area */
697 static char *validate_desc(game_params *params, char *desc)
698 {
699 int count = 0;
700 grid *g;
701 params_generate_grid(params);
702 g = params->game_grid;
703
704 for (; *desc; ++desc) {
705 if (*desc >= '0' && *desc <= '9') {
706 count++;
707 continue;
708 }
709 if (*desc >= 'a') {
710 count += *desc - 'a' + 1;
711 continue;
712 }
713 return "Unknown character in description";
714 }
715
716 if (count < g->num_faces)
717 return "Description too short for board size";
718 if (count > g->num_faces)
719 return "Description too long for board size";
720
721 return NULL;
722 }
723
724 /* Sums the lengths of the numbers in range [0,n) */
725 /* See equivalent function in solo.c for justification of this. */
726 static int len_0_to_n(int n)
727 {
728 int len = 1; /* Counting 0 as a bit of a special case */
729 int i;
730
731 for (i = 1; i < n; i *= 10) {
732 len += max(n - i, 0);
733 }
734
735 return len;
736 }
737
738 static char *encode_solve_move(const game_state *state)
739 {
740 int len;
741 char *ret, *p;
742 int i;
743 int num_edges = state->game_grid->num_edges;
744
745 /* This is going to return a string representing the moves needed to set
746 * every line in a grid to be the same as the ones in 'state'. The exact
747 * length of this string is predictable. */
748
749 len = 1; /* Count the 'S' prefix */
750 /* Numbers in all lines */
751 len += len_0_to_n(num_edges);
752 /* For each line we also have a letter */
753 len += num_edges;
754
755 ret = snewn(len + 1, char);
756 p = ret;
757
758 p += sprintf(p, "S");
759
760 for (i = 0; i < num_edges; i++) {
761 switch (state->lines[i]) {
762 case LINE_YES:
763 p += sprintf(p, "%dy", i);
764 break;
765 case LINE_NO:
766 p += sprintf(p, "%dn", i);
767 break;
768 }
769 }
770
771 /* No point in doing sums like that if they're going to be wrong */
772 assert(strlen(ret) <= (size_t)len);
773 return ret;
774 }
775
776 static game_ui *new_ui(game_state *state)
777 {
778 return NULL;
779 }
780
781 static void free_ui(game_ui *ui)
782 {
783 }
784
785 static char *encode_ui(game_ui *ui)
786 {
787 return NULL;
788 }
789
790 static void decode_ui(game_ui *ui, char *encoding)
791 {
792 }
793
794 static void game_changed_state(game_ui *ui, game_state *oldstate,
795 game_state *newstate)
796 {
797 }
798
799 static void game_compute_size(game_params *params, int tilesize,
800 int *x, int *y)
801 {
802 grid *g;
803 int grid_width, grid_height, rendered_width, rendered_height;
804
805 params_generate_grid(params);
806 g = params->game_grid;
807 grid_width = g->highest_x - g->lowest_x;
808 grid_height = g->highest_y - g->lowest_y;
809 /* multiply first to minimise rounding error on integer division */
810 rendered_width = grid_width * tilesize / g->tilesize;
811 rendered_height = grid_height * tilesize / g->tilesize;
812 *x = rendered_width + 2 * BORDER(tilesize) + 1;
813 *y = rendered_height + 2 * BORDER(tilesize) + 1;
814 }
815
816 static void game_set_size(drawing *dr, game_drawstate *ds,
817 game_params *params, int tilesize)
818 {
819 ds->tilesize = tilesize;
820 }
821
822 static float *game_colours(frontend *fe, int *ncolours)
823 {
824 float *ret = snewn(4 * NCOLOURS, float);
825
826 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
827
828 ret[COL_FOREGROUND * 3 + 0] = 0.0F;
829 ret[COL_FOREGROUND * 3 + 1] = 0.0F;
830 ret[COL_FOREGROUND * 3 + 2] = 0.0F;
831
832 ret[COL_LINEUNKNOWN * 3 + 0] = 0.8F;
833 ret[COL_LINEUNKNOWN * 3 + 1] = 0.8F;
834 ret[COL_LINEUNKNOWN * 3 + 2] = 0.0F;
835
836 ret[COL_HIGHLIGHT * 3 + 0] = 1.0F;
837 ret[COL_HIGHLIGHT * 3 + 1] = 1.0F;
838 ret[COL_HIGHLIGHT * 3 + 2] = 1.0F;
839
840 ret[COL_MISTAKE * 3 + 0] = 1.0F;
841 ret[COL_MISTAKE * 3 + 1] = 0.0F;
842 ret[COL_MISTAKE * 3 + 2] = 0.0F;
843
844 ret[COL_SATISFIED * 3 + 0] = 0.0F;
845 ret[COL_SATISFIED * 3 + 1] = 0.0F;
846 ret[COL_SATISFIED * 3 + 2] = 0.0F;
847
848 /* We want the faint lines to be a bit darker than the background.
849 * Except if the background is pretty dark already; then it ought to be a
850 * bit lighter. Oy vey.
851 */
852 ret[COL_FAINT * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] * 0.9F;
853 ret[COL_FAINT * 3 + 1] = ret[COL_BACKGROUND * 3 + 1] * 0.9F;
854 ret[COL_FAINT * 3 + 2] = ret[COL_BACKGROUND * 3 + 2] * 0.9F;
855
856 *ncolours = NCOLOURS;
857 return ret;
858 }
859
860 static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
861 {
862 struct game_drawstate *ds = snew(struct game_drawstate);
863 int num_faces = state->game_grid->num_faces;
864 int num_edges = state->game_grid->num_edges;
865
866 ds->tilesize = 0;
867 ds->started = 0;
868 ds->lines = snewn(num_edges, char);
869 ds->clue_error = snewn(num_faces, char);
870 ds->clue_satisfied = snewn(num_faces, char);
871 ds->flashing = 0;
872
873 memset(ds->lines, LINE_UNKNOWN, num_edges);
874 memset(ds->clue_error, 0, num_faces);
875 memset(ds->clue_satisfied, 0, num_faces);
876
877 return ds;
878 }
879
880 static void game_free_drawstate(drawing *dr, game_drawstate *ds)
881 {
882 sfree(ds->clue_error);
883 sfree(ds->clue_satisfied);
884 sfree(ds->lines);
885 sfree(ds);
886 }
887
888 static int game_timing_state(game_state *state, game_ui *ui)
889 {
890 return TRUE;
891 }
892
893 static float game_anim_length(game_state *oldstate, game_state *newstate,
894 int dir, game_ui *ui)
895 {
896 return 0.0F;
897 }
898
899 static int game_can_format_as_text_now(game_params *params)
900 {
901 if (params->type != 0)
902 return FALSE;
903 return TRUE;
904 }
905
906 static char *game_text_format(game_state *state)
907 {
908 int w, h, W, H;
909 int x, y, i;
910 int cell_size;
911 char *ret;
912 grid *g = state->game_grid;
913 grid_face *f;
914
915 assert(state->grid_type == 0);
916
917 /* Work out the basic size unit */
918 f = g->faces; /* first face */
919 assert(f->order == 4);
920 /* The dots are ordered clockwise, so the two opposite
921 * corners are guaranteed to span the square */
922 cell_size = abs(f->dots[0]->x - f->dots[2]->x);
923
924 w = (g->highest_x - g->lowest_x) / cell_size;
925 h = (g->highest_y - g->lowest_y) / cell_size;
926
927 /* Create a blank "canvas" to "draw" on */
928 W = 2 * w + 2;
929 H = 2 * h + 1;
930 ret = snewn(W * H + 1, char);
931 for (y = 0; y < H; y++) {
932 for (x = 0; x < W-1; x++) {
933 ret[y*W + x] = ' ';
934 }
935 ret[y*W + W-1] = '\n';
936 }
937 ret[H*W] = '\0';
938
939 /* Fill in edge info */
940 for (i = 0; i < g->num_edges; i++) {
941 grid_edge *e = g->edges + i;
942 /* Cell coordinates, from (0,0) to (w-1,h-1) */
943 int x1 = (e->dot1->x - g->lowest_x) / cell_size;
944 int x2 = (e->dot2->x - g->lowest_x) / cell_size;
945 int y1 = (e->dot1->y - g->lowest_y) / cell_size;
946 int y2 = (e->dot2->y - g->lowest_y) / cell_size;
947 /* Midpoint, in canvas coordinates (canvas coordinates are just twice
948 * cell coordinates) */
949 x = x1 + x2;
950 y = y1 + y2;
951 switch (state->lines[i]) {
952 case LINE_YES:
953 ret[y*W + x] = (y1 == y2) ? '-' : '|';
954 break;
955 case LINE_NO:
956 ret[y*W + x] = 'x';
957 break;
958 case LINE_UNKNOWN:
959 break; /* already a space */
960 default:
961 assert(!"Illegal line state");
962 }
963 }
964
965 /* Fill in clues */
966 for (i = 0; i < g->num_faces; i++) {
967 int x1, x2, y1, y2;
968
969 f = g->faces + i;
970 assert(f->order == 4);
971 /* Cell coordinates, from (0,0) to (w-1,h-1) */
972 x1 = (f->dots[0]->x - g->lowest_x) / cell_size;
973 x2 = (f->dots[2]->x - g->lowest_x) / cell_size;
974 y1 = (f->dots[0]->y - g->lowest_y) / cell_size;
975 y2 = (f->dots[2]->y - g->lowest_y) / cell_size;
976 /* Midpoint, in canvas coordinates */
977 x = x1 + x2;
978 y = y1 + y2;
979 ret[y*W + x] = CLUE2CHAR(state->clues[i]);
980 }
981 return ret;
982 }
983
984 /* ----------------------------------------------------------------------
985 * Debug code
986 */
987
988 #ifdef DEBUG_CACHES
989 static void check_caches(const solver_state* sstate)
990 {
991 int i;
992 const game_state *state = sstate->state;
993 const grid *g = state->game_grid;
994
995 for (i = 0; i < g->num_dots; i++) {
996 assert(dot_order(state, i, LINE_YES) == sstate->dot_yes_count[i]);
997 assert(dot_order(state, i, LINE_NO) == sstate->dot_no_count[i]);
998 }
999
1000 for (i = 0; i < g->num_faces; i++) {
1001 assert(face_order(state, i, LINE_YES) == sstate->face_yes_count[i]);
1002 assert(face_order(state, i, LINE_NO) == sstate->face_no_count[i]);
1003 }
1004 }
1005
1006 #if 0
1007 #define check_caches(s) \
1008 do { \
1009 fprintf(stderr, "check_caches at line %d\n", __LINE__); \
1010 check_caches(s); \
1011 } while (0)
1012 #endif
1013 #endif /* DEBUG_CACHES */
1014
1015 /* ----------------------------------------------------------------------
1016 * Solver utility functions
1017 */
1018
1019 /* Sets the line (with index i) to the new state 'line_new', and updates
1020 * the cached counts of any affected faces and dots.
1021 * Returns TRUE if this actually changed the line's state. */
1022 static int solver_set_line(solver_state *sstate, int i,
1023 enum line_state line_new
1024 #ifdef SHOW_WORKING
1025 , const char *reason
1026 #endif
1027 )
1028 {
1029 game_state *state = sstate->state;
1030 grid *g;
1031 grid_edge *e;
1032
1033 assert(line_new != LINE_UNKNOWN);
1034
1035 check_caches(sstate);
1036
1037 if (state->lines[i] == line_new) {
1038 return FALSE; /* nothing changed */
1039 }
1040 state->lines[i] = line_new;
1041
1042 #ifdef SHOW_WORKING
1043 fprintf(stderr, "solver: set line [%d] to %s (%s)\n",
1044 i, line_new == LINE_YES ? "YES" : "NO",
1045 reason);
1046 #endif
1047
1048 g = state->game_grid;
1049 e = g->edges + i;
1050
1051 /* Update the cache for both dots and both faces affected by this. */
1052 if (line_new == LINE_YES) {
1053 sstate->dot_yes_count[e->dot1 - g->dots]++;
1054 sstate->dot_yes_count[e->dot2 - g->dots]++;
1055 if (e->face1) {
1056 sstate->face_yes_count[e->face1 - g->faces]++;
1057 }
1058 if (e->face2) {
1059 sstate->face_yes_count[e->face2 - g->faces]++;
1060 }
1061 } else {
1062 sstate->dot_no_count[e->dot1 - g->dots]++;
1063 sstate->dot_no_count[e->dot2 - g->dots]++;
1064 if (e->face1) {
1065 sstate->face_no_count[e->face1 - g->faces]++;
1066 }
1067 if (e->face2) {
1068 sstate->face_no_count[e->face2 - g->faces]++;
1069 }
1070 }
1071
1072 check_caches(sstate);
1073 return TRUE;
1074 }
1075
1076 #ifdef SHOW_WORKING
1077 #define solver_set_line(a, b, c) \
1078 solver_set_line(a, b, c, __FUNCTION__)
1079 #endif
1080
1081 /*
1082 * Merge two dots due to the existence of an edge between them.
1083 * Updates the dsf tracking equivalence classes, and keeps track of
1084 * the length of path each dot is currently a part of.
1085 * Returns TRUE if the dots were already linked, ie if they are part of a
1086 * closed loop, and false otherwise.
1087 */
1088 static int merge_dots(solver_state *sstate, int edge_index)
1089 {
1090 int i, j, len;
1091 grid *g = sstate->state->game_grid;
1092 grid_edge *e = g->edges + edge_index;
1093
1094 i = e->dot1 - g->dots;
1095 j = e->dot2 - g->dots;
1096
1097 i = dsf_canonify(sstate->dotdsf, i);
1098 j = dsf_canonify(sstate->dotdsf, j);
1099
1100 if (i == j) {
1101 return TRUE;
1102 } else {
1103 len = sstate->looplen[i] + sstate->looplen[j];
1104 dsf_merge(sstate->dotdsf, i, j);
1105 i = dsf_canonify(sstate->dotdsf, i);
1106 sstate->looplen[i] = len;
1107 return FALSE;
1108 }
1109 }
1110
1111 /* Merge two lines because the solver has deduced that they must be either
1112 * identical or opposite. Returns TRUE if this is new information, otherwise
1113 * FALSE. */
1114 static int merge_lines(solver_state *sstate, int i, int j, int inverse
1115 #ifdef SHOW_WORKING
1116 , const char *reason
1117 #endif
1118 )
1119 {
1120 int inv_tmp;
1121
1122 assert(i < sstate->state->game_grid->num_edges);
1123 assert(j < sstate->state->game_grid->num_edges);
1124
1125 i = edsf_canonify(sstate->linedsf, i, &inv_tmp);
1126 inverse ^= inv_tmp;
1127 j = edsf_canonify(sstate->linedsf, j, &inv_tmp);
1128 inverse ^= inv_tmp;
1129
1130 edsf_merge(sstate->linedsf, i, j, inverse);
1131
1132 #ifdef SHOW_WORKING
1133 if (i != j) {
1134 fprintf(stderr, "%s [%d] [%d] %s(%s)\n",
1135 __FUNCTION__, i, j,
1136 inverse ? "inverse " : "", reason);
1137 }
1138 #endif
1139 return (i != j);
1140 }
1141
1142 #ifdef SHOW_WORKING
1143 #define merge_lines(a, b, c, d) \
1144 merge_lines(a, b, c, d, __FUNCTION__)
1145 #endif
1146
1147 /* Count the number of lines of a particular type currently going into the
1148 * given dot. */
1149 static int dot_order(const game_state* state, int dot, char line_type)
1150 {
1151 int n = 0;
1152 grid *g = state->game_grid;
1153 grid_dot *d = g->dots + dot;
1154 int i;
1155
1156 for (i = 0; i < d->order; i++) {
1157 grid_edge *e = d->edges[i];
1158 if (state->lines[e - g->edges] == line_type)
1159 ++n;
1160 }
1161 return n;
1162 }
1163
1164 /* Count the number of lines of a particular type currently surrounding the
1165 * given face */
1166 static int face_order(const game_state* state, int face, char line_type)
1167 {
1168 int n = 0;
1169 grid *g = state->game_grid;
1170 grid_face *f = g->faces + face;
1171 int i;
1172
1173 for (i = 0; i < f->order; i++) {
1174 grid_edge *e = f->edges[i];
1175 if (state->lines[e - g->edges] == line_type)
1176 ++n;
1177 }
1178 return n;
1179 }
1180
1181 /* Set all lines bordering a dot of type old_type to type new_type
1182 * Return value tells caller whether this function actually did anything */
1183 static int dot_setall(solver_state *sstate, int dot,
1184 char old_type, char new_type)
1185 {
1186 int retval = FALSE, r;
1187 game_state *state = sstate->state;
1188 grid *g;
1189 grid_dot *d;
1190 int i;
1191
1192 if (old_type == new_type)
1193 return FALSE;
1194
1195 g = state->game_grid;
1196 d = g->dots + dot;
1197
1198 for (i = 0; i < d->order; i++) {
1199 int line_index = d->edges[i] - g->edges;
1200 if (state->lines[line_index] == old_type) {
1201 r = solver_set_line(sstate, line_index, new_type);
1202 assert(r == TRUE);
1203 retval = TRUE;
1204 }
1205 }
1206 return retval;
1207 }
1208
1209 /* Set all lines bordering a face of type old_type to type new_type */
1210 static int face_setall(solver_state *sstate, int face,
1211 char old_type, char new_type)
1212 {
1213 int retval = FALSE, r;
1214 game_state *state = sstate->state;
1215 grid *g;
1216 grid_face *f;
1217 int i;
1218
1219 if (old_type == new_type)
1220 return FALSE;
1221
1222 g = state->game_grid;
1223 f = g->faces + face;
1224
1225 for (i = 0; i < f->order; i++) {
1226 int line_index = f->edges[i] - g->edges;
1227 if (state->lines[line_index] == old_type) {
1228 r = solver_set_line(sstate, line_index, new_type);
1229 assert(r == TRUE);
1230 retval = TRUE;
1231 }
1232 }
1233 return retval;
1234 }
1235
1236 /* ----------------------------------------------------------------------
1237 * Loop generation and clue removal
1238 */
1239
1240 /* We're going to store lists of current candidate faces for colouring black
1241 * or white.
1242 * Each face gets a 'score', which tells us how adding that face right
1243 * now would affect the curliness of the solution loop. We're trying to
1244 * maximise that quantity so will bias our random selection of faces to
1245 * colour those with high scores */
1246 struct face_score {
1247 int white_score;
1248 int black_score;
1249 unsigned long random;
1250 /* No need to store a grid_face* here. The 'face_scores' array will
1251 * be a list of 'face_score' objects, one for each face of the grid, so
1252 * the position (index) within the 'face_scores' array will determine
1253 * which face corresponds to a particular face_score.
1254 * Having a single 'face_scores' array for all faces simplifies memory
1255 * management, and probably improves performance, because we don't have to
1256 * malloc/free each individual face_score, and we don't have to maintain
1257 * a mapping from grid_face* pointers to face_score* pointers.
1258 */
1259 };
1260
1261 static int generic_sort_cmpfn(void *v1, void *v2, size_t offset)
1262 {
1263 struct face_score *f1 = v1;
1264 struct face_score *f2 = v2;
1265 int r;
1266
1267 r = *(int *)((char *)f2 + offset) - *(int *)((char *)f1 + offset);
1268 if (r) {
1269 return r;
1270 }
1271
1272 if (f1->random < f2->random)
1273 return -1;
1274 else if (f1->random > f2->random)
1275 return 1;
1276
1277 /*
1278 * It's _just_ possible that two faces might have been given
1279 * the same random value. In that situation, fall back to
1280 * comparing based on the positions within the face_scores list.
1281 * This introduces a tiny directional bias, but not a significant one.
1282 */
1283 return f1 - f2;
1284 }
1285
1286 static int white_sort_cmpfn(void *v1, void *v2)
1287 {
1288 return generic_sort_cmpfn(v1, v2, offsetof(struct face_score,white_score));
1289 }
1290
1291 static int black_sort_cmpfn(void *v1, void *v2)
1292 {
1293 return generic_sort_cmpfn(v1, v2, offsetof(struct face_score,black_score));
1294 }
1295
1296 enum face_colour { FACE_WHITE, FACE_GREY, FACE_BLACK };
1297
1298 /* face should be of type grid_face* here. */
1299 #define FACE_COLOUR(face) \
1300 ( (face) == NULL ? FACE_BLACK : \
1301 board[(face) - g->faces] )
1302
1303 /* 'board' is an array of these enums, indicating which faces are
1304 * currently black/white/grey. 'colour' is FACE_WHITE or FACE_BLACK.
1305 * Returns whether it's legal to colour the given face with this colour. */
1306 static int can_colour_face(grid *g, char* board, int face_index,
1307 enum face_colour colour)
1308 {
1309 int i, j;
1310 grid_face *test_face = g->faces + face_index;
1311 grid_face *starting_face, *current_face;
1312 grid_dot *starting_dot;
1313 int transitions;
1314 int current_state, s; /* booleans: equal or not-equal to 'colour' */
1315 int found_same_coloured_neighbour = FALSE;
1316 assert(board[face_index] != colour);
1317
1318 /* Can only consider a face for colouring if it's adjacent to a face
1319 * with the same colour. */
1320 for (i = 0; i < test_face->order; i++) {
1321 grid_edge *e = test_face->edges[i];
1322 grid_face *f = (e->face1 == test_face) ? e->face2 : e->face1;
1323 if (FACE_COLOUR(f) == colour) {
1324 found_same_coloured_neighbour = TRUE;
1325 break;
1326 }
1327 }
1328 if (!found_same_coloured_neighbour)
1329 return FALSE;
1330
1331 /* Need to avoid creating a loop of faces of this colour around some
1332 * differently-coloured faces.
1333 * Also need to avoid meeting a same-coloured face at a corner, with
1334 * other-coloured faces in between. Here's a simple test that (I believe)
1335 * takes care of both these conditions:
1336 *
1337 * Take the circular path formed by this face's edges, and inflate it
1338 * slightly outwards. Imagine walking around this path and consider
1339 * the faces that you visit in sequence. This will include all faces
1340 * touching the given face, either along an edge or just at a corner.
1341 * Count the number of 'colour'/not-'colour' transitions you encounter, as
1342 * you walk along the complete loop. This will obviously turn out to be
1343 * an even number.
1344 * If 0, we're either in the middle of an "island" of this colour (should
1345 * be impossible as we're not supposed to create black or white loops),
1346 * or we're about to start a new island - also not allowed.
1347 * If 4 or greater, there are too many separate coloured regions touching
1348 * this face, and colouring it would create a loop or a corner-violation.
1349 * The only allowed case is when the count is exactly 2. */
1350
1351 /* i points to a dot around the test face.
1352 * j points to a face around the i^th dot.
1353 * The current face will always be:
1354 * test_face->dots[i]->faces[j]
1355 * We assume dots go clockwise around the test face,
1356 * and faces go clockwise around dots. */
1357
1358 /*
1359 * The end condition is slightly fiddly. In sufficiently strange
1360 * degenerate grids, our test face may be adjacent to the same
1361 * other face multiple times (typically if it's the exterior
1362 * face). Consider this, in particular:
1363 *
1364 * +--+
1365 * | |
1366 * +--+--+
1367 * | | |
1368 * +--+--+
1369 *
1370 * The bottom left face there is adjacent to the exterior face
1371 * twice, so we can't just terminate our iteration when we reach
1372 * the same _face_ we started at. Furthermore, we can't
1373 * condition on having the same (i,j) pair either, because
1374 * several (i,j) pairs identify the bottom left contiguity with
1375 * the exterior face! We canonicalise the (i,j) pair by taking
1376 * one step around before we set the termination tracking.
1377 */
1378
1379 i = j = 0;
1380 current_face = test_face->dots[0]->faces[0];
1381 if (current_face == test_face) {
1382 j = 1;
1383 current_face = test_face->dots[0]->faces[1];
1384 }
1385 transitions = 0;
1386 current_state = (FACE_COLOUR(current_face) == colour);
1387 starting_dot = NULL;
1388 starting_face = NULL;
1389 while (TRUE) {
1390 /* Advance to next face.
1391 * Need to loop here because it might take several goes to
1392 * find it. */
1393 while (TRUE) {
1394 j++;
1395 if (j == test_face->dots[i]->order)
1396 j = 0;
1397
1398 if (test_face->dots[i]->faces[j] == test_face) {
1399 /* Advance to next dot round test_face, then
1400 * find current_face around new dot
1401 * and advance to the next face clockwise */
1402 i++;
1403 if (i == test_face->order)
1404 i = 0;
1405 for (j = 0; j < test_face->dots[i]->order; j++) {
1406 if (test_face->dots[i]->faces[j] == current_face)
1407 break;
1408 }
1409 /* Must actually find current_face around new dot,
1410 * or else something's wrong with the grid. */
1411 assert(j != test_face->dots[i]->order);
1412 /* Found, so advance to next face and try again */
1413 } else {
1414 break;
1415 }
1416 }
1417 /* (i,j) are now advanced to next face */
1418 current_face = test_face->dots[i]->faces[j];
1419 s = (FACE_COLOUR(current_face) == colour);
1420 if (!starting_dot) {
1421 starting_dot = test_face->dots[i];
1422 starting_face = current_face;
1423 current_state = s;
1424 } else {
1425 if (s != current_state) {
1426 ++transitions;
1427 current_state = s;
1428 if (transitions > 2)
1429 break;
1430 }
1431 if (test_face->dots[i] == starting_dot &&
1432 current_face == starting_face)
1433 break;
1434 }
1435 }
1436
1437 return (transitions == 2) ? TRUE : FALSE;
1438 }
1439
1440 /* Count the number of neighbours of 'face', having colour 'colour' */
1441 static int face_num_neighbours(grid *g, char *board, grid_face *face,
1442 enum face_colour colour)
1443 {
1444 int colour_count = 0;
1445 int i;
1446 grid_face *f;
1447 grid_edge *e;
1448 for (i = 0; i < face->order; i++) {
1449 e = face->edges[i];
1450 f = (e->face1 == face) ? e->face2 : e->face1;
1451 if (FACE_COLOUR(f) == colour)
1452 ++colour_count;
1453 }
1454 return colour_count;
1455 }
1456
1457 /* The 'score' of a face reflects its current desirability for selection
1458 * as the next face to colour white or black. We want to encourage moving
1459 * into grey areas and increasing loopiness, so we give scores according to
1460 * how many of the face's neighbours are currently coloured the same as the
1461 * proposed colour. */
1462 static int face_score(grid *g, char *board, grid_face *face,
1463 enum face_colour colour)
1464 {
1465 /* Simple formula: score = 0 - num. same-coloured neighbours,
1466 * so a higher score means fewer same-coloured neighbours. */
1467 return -face_num_neighbours(g, board, face, colour);
1468 }
1469
1470 /* Generate a new complete set of clues for the given game_state.
1471 * The method is to generate a WHITE/BLACK colouring of all the faces,
1472 * such that the WHITE faces will define the inside of the path, and the
1473 * BLACK faces define the outside.
1474 * To do this, we initially colour all faces GREY. The infinite space outside
1475 * the grid is coloured BLACK, and we choose a random face to colour WHITE.
1476 * Then we gradually grow the BLACK and the WHITE regions, eliminating GREY
1477 * faces, until the grid is filled with BLACK/WHITE. As we grow the regions,
1478 * we avoid creating loops of a single colour, to preserve the topological
1479 * shape of the WHITE and BLACK regions.
1480 * We also try to make the boundary as loopy and twisty as possible, to avoid
1481 * generating paths that are uninteresting.
1482 * The algorithm works by choosing a BLACK/WHITE colour, then choosing a GREY
1483 * face that can be coloured with that colour (without violating the
1484 * topological shape of that region). It's not obvious, but I think this
1485 * algorithm is guaranteed to terminate without leaving any GREY faces behind.
1486 * Indeed, if there are any GREY faces at all, both the WHITE and BLACK
1487 * regions can be grown.
1488 * This is checked using assert()ions, and I haven't seen any failures yet.
1489 *
1490 * Hand-wavy proof: imagine what can go wrong...
1491 *
1492 * Could the white faces get completely cut off by the black faces, and still
1493 * leave some grey faces remaining?
1494 * No, because then the black faces would form a loop around both the white
1495 * faces and the grey faces, which is disallowed because we continually
1496 * maintain the correct topological shape of the black region.
1497 * Similarly, the black faces can never get cut off by the white faces. That
1498 * means both the WHITE and BLACK regions always have some room to grow into
1499 * the GREY regions.
1500 * Could it be that we can't colour some GREY face, because there are too many
1501 * WHITE/BLACK transitions as we walk round the face? (see the
1502 * can_colour_face() function for details)
1503 * No. Imagine otherwise, and we see WHITE/BLACK/WHITE/BLACK as we walk
1504 * around the face. The two WHITE faces would be connected by a WHITE path,
1505 * and the BLACK faces would be connected by a BLACK path. These paths would
1506 * have to cross, which is impossible.
1507 * Another thing that could go wrong: perhaps we can't find any GREY face to
1508 * colour WHITE, because it would create a loop-violation or a corner-violation
1509 * with the other WHITE faces?
1510 * This is a little bit tricky to prove impossible. Imagine you have such a
1511 * GREY face (that is, if you coloured it WHITE, you would create a WHITE loop
1512 * or corner violation).
1513 * That would cut all the non-white area into two blobs. One of those blobs
1514 * must be free of BLACK faces (because the BLACK stuff is a connected blob).
1515 * So we have a connected GREY area, completely surrounded by WHITE
1516 * (including the GREY face we've tentatively coloured WHITE).
1517 * A well-known result in graph theory says that you can always find a GREY
1518 * face whose removal leaves the remaining GREY area connected. And it says
1519 * there are at least two such faces, so we can always choose the one that
1520 * isn't the "tentative" GREY face. Colouring that face WHITE leaves
1521 * everything nice and connected, including that "tentative" GREY face which
1522 * acts as a gateway to the rest of the non-WHITE grid.
1523 */
1524 static void add_full_clues(game_state *state, random_state *rs)
1525 {
1526 signed char *clues = state->clues;
1527 char *board;
1528 grid *g = state->game_grid;
1529 int i, j;
1530 int num_faces = g->num_faces;
1531 struct face_score *face_scores; /* Array of face_score objects */
1532 struct face_score *fs; /* Points somewhere in the above list */
1533 struct grid_face *cur_face;
1534 tree234 *lightable_faces_sorted;
1535 tree234 *darkable_faces_sorted;
1536 int *face_list;
1537 int do_random_pass;
1538
1539 board = snewn(num_faces, char);
1540
1541 /* Make a board */
1542 memset(board, FACE_GREY, num_faces);
1543
1544 /* Create and initialise the list of face_scores */
1545 face_scores = snewn(num_faces, struct face_score);
1546 for (i = 0; i < num_faces; i++) {
1547 face_scores[i].random = random_bits(rs, 31);
1548 face_scores[i].black_score = face_scores[i].white_score = 0;
1549 }
1550
1551 /* Colour a random, finite face white. The infinite face is implicitly
1552 * coloured black. Together, they will seed the random growth process
1553 * for the black and white areas. */
1554 i = random_upto(rs, num_faces);
1555 board[i] = FACE_WHITE;
1556
1557 /* We need a way of favouring faces that will increase our loopiness.
1558 * We do this by maintaining a list of all candidate faces sorted by
1559 * their score and choose randomly from that with appropriate skew.
1560 * In order to avoid consistently biasing towards particular faces, we
1561 * need the sort order _within_ each group of scores to be completely
1562 * random. But it would be abusing the hospitality of the tree234 data
1563 * structure if our comparison function were nondeterministic :-). So with
1564 * each face we associate a random number that does not change during a
1565 * particular run of the generator, and use that as a secondary sort key.
1566 * Yes, this means we will be biased towards particular random faces in
1567 * any one run but that doesn't actually matter. */
1568
1569 lightable_faces_sorted = newtree234(white_sort_cmpfn);
1570 darkable_faces_sorted = newtree234(black_sort_cmpfn);
1571
1572 /* Initialise the lists of lightable and darkable faces. This is
1573 * slightly different from the code inside the while-loop, because we need
1574 * to check every face of the board (the grid structure does not keep a
1575 * list of the infinite face's neighbours). */
1576 for (i = 0; i < num_faces; i++) {
1577 grid_face *f = g->faces + i;
1578 struct face_score *fs = face_scores + i;
1579 if (board[i] != FACE_GREY) continue;
1580 /* We need the full colourability check here, it's not enough simply
1581 * to check neighbourhood. On some grids, a neighbour of the infinite
1582 * face is not necessarily darkable. */
1583 if (can_colour_face(g, board, i, FACE_BLACK)) {
1584 fs->black_score = face_score(g, board, f, FACE_BLACK);
1585 add234(darkable_faces_sorted, fs);
1586 }
1587 if (can_colour_face(g, board, i, FACE_WHITE)) {
1588 fs->white_score = face_score(g, board, f, FACE_WHITE);
1589 add234(lightable_faces_sorted, fs);
1590 }
1591 }
1592
1593 /* Colour faces one at a time until no more faces are colourable. */
1594 while (TRUE)
1595 {
1596 enum face_colour colour;
1597 struct face_score *fs_white, *fs_black;
1598 int c_lightable = count234(lightable_faces_sorted);
1599 int c_darkable = count234(darkable_faces_sorted);
1600 if (c_lightable == 0 && c_darkable == 0) {
1601 /* No more faces we can use at all. */
1602 break;
1603 }
1604 assert(c_lightable != 0 && c_darkable != 0);
1605
1606 fs_white = (struct face_score *)index234(lightable_faces_sorted, 0);
1607 fs_black = (struct face_score *)index234(darkable_faces_sorted, 0);
1608
1609 /* Choose a colour, and colour the best available face
1610 * with that colour. */
1611 colour = random_upto(rs, 2) ? FACE_WHITE : FACE_BLACK;
1612
1613 if (colour == FACE_WHITE)
1614 fs = fs_white;
1615 else
1616 fs = fs_black;
1617 assert(fs);
1618 i = fs - face_scores;
1619 assert(board[i] == FACE_GREY);
1620 board[i] = colour;
1621
1622 /* Remove this newly-coloured face from the lists. These lists should
1623 * only contain grey faces. */
1624 del234(lightable_faces_sorted, fs);
1625 del234(darkable_faces_sorted, fs);
1626
1627 /* Remember which face we've just coloured */
1628 cur_face = g->faces + i;
1629
1630 /* The face we've just coloured potentially affects the colourability
1631 * and the scores of any neighbouring faces (touching at a corner or
1632 * edge). So the search needs to be conducted around all faces
1633 * touching the one we've just lit. Iterate over its corners, then
1634 * over each corner's faces. For each such face, we remove it from
1635 * the lists, recalculate any scores, then add it back to the lists
1636 * (depending on whether it is lightable, darkable or both). */
1637 for (i = 0; i < cur_face->order; i++) {
1638 grid_dot *d = cur_face->dots[i];
1639 for (j = 0; j < d->order; j++) {
1640 grid_face *f = d->faces[j];
1641 int fi; /* face index of f */
1642
1643 if (f == NULL)
1644 continue;
1645 if (f == cur_face)
1646 continue;
1647
1648 /* If the face is already coloured, it won't be on our
1649 * lightable/darkable lists anyway, so we can skip it without
1650 * bothering with the removal step. */
1651 if (FACE_COLOUR(f) != FACE_GREY) continue;
1652
1653 /* Find the face index and face_score* corresponding to f */
1654 fi = f - g->faces;
1655 fs = face_scores + fi;
1656
1657 /* Remove from lightable list if it's in there. We do this,
1658 * even if it is still lightable, because the score might
1659 * be different, and we need to remove-then-add to maintain
1660 * correct sort order. */
1661 del234(lightable_faces_sorted, fs);
1662 if (can_colour_face(g, board, fi, FACE_WHITE)) {
1663 fs->white_score = face_score(g, board, f, FACE_WHITE);
1664 add234(lightable_faces_sorted, fs);
1665 }
1666 /* Do the same for darkable list. */
1667 del234(darkable_faces_sorted, fs);
1668 if (can_colour_face(g, board, fi, FACE_BLACK)) {
1669 fs->black_score = face_score(g, board, f, FACE_BLACK);
1670 add234(darkable_faces_sorted, fs);
1671 }
1672 }
1673 }
1674 }
1675
1676 /* Clean up */
1677 freetree234(lightable_faces_sorted);
1678 freetree234(darkable_faces_sorted);
1679 sfree(face_scores);
1680
1681 /* The next step requires a shuffled list of all faces */
1682 face_list = snewn(num_faces, int);
1683 for (i = 0; i < num_faces; ++i) {
1684 face_list[i] = i;
1685 }
1686 shuffle(face_list, num_faces, sizeof(int), rs);
1687
1688 /* The above loop-generation algorithm can often leave large clumps
1689 * of faces of one colour. In extreme cases, the resulting path can be
1690 * degenerate and not very satisfying to solve.
1691 * This next step alleviates this problem:
1692 * Go through the shuffled list, and flip the colour of any face we can
1693 * legally flip, and which is adjacent to only one face of the opposite
1694 * colour - this tends to grow 'tendrils' into any clumps.
1695 * Repeat until we can find no more faces to flip. This will
1696 * eventually terminate, because each flip increases the loop's
1697 * perimeter, which cannot increase for ever.
1698 * The resulting path will have maximal loopiness (in the sense that it
1699 * cannot be improved "locally". Unfortunately, this allows a player to
1700 * make some illicit deductions. To combat this (and make the path more
1701 * interesting), we do one final pass making random flips. */
1702
1703 /* Set to TRUE for final pass */
1704 do_random_pass = FALSE;
1705
1706 while (TRUE) {
1707 /* Remember whether a flip occurred during this pass */
1708 int flipped = FALSE;
1709
1710 for (i = 0; i < num_faces; ++i) {
1711 int j = face_list[i];
1712 enum face_colour opp =
1713 (board[j] == FACE_WHITE) ? FACE_BLACK : FACE_WHITE;
1714 if (can_colour_face(g, board, j, opp)) {
1715 grid_face *face = g->faces +j;
1716 if (do_random_pass) {
1717 /* final random pass */
1718 if (!random_upto(rs, 10))
1719 board[j] = opp;
1720 } else {
1721 /* normal pass - flip when neighbour count is 1 */
1722 if (face_num_neighbours(g, board, face, opp) == 1) {
1723 board[j] = opp;
1724 flipped = TRUE;
1725 }
1726 }
1727 }
1728 }
1729
1730 if (do_random_pass) break;
1731 if (!flipped) do_random_pass = TRUE;
1732 }
1733
1734 sfree(face_list);
1735
1736 /* Fill out all the clues by initialising to 0, then iterating over
1737 * all edges and incrementing each clue as we find edges that border
1738 * between BLACK/WHITE faces. While we're at it, we verify that the
1739 * algorithm does work, and there aren't any GREY faces still there. */
1740 memset(clues, 0, num_faces);
1741 for (i = 0; i < g->num_edges; i++) {
1742 grid_edge *e = g->edges + i;
1743 grid_face *f1 = e->face1;
1744 grid_face *f2 = e->face2;
1745 enum face_colour c1 = FACE_COLOUR(f1);
1746 enum face_colour c2 = FACE_COLOUR(f2);
1747 assert(c1 != FACE_GREY);
1748 assert(c2 != FACE_GREY);
1749 if (c1 != c2) {
1750 if (f1) clues[f1 - g->faces]++;
1751 if (f2) clues[f2 - g->faces]++;
1752 }
1753 }
1754
1755 sfree(board);
1756 }
1757
1758
1759 static int game_has_unique_soln(const game_state *state, int diff)
1760 {
1761 int ret;
1762 solver_state *sstate_new;
1763 solver_state *sstate = new_solver_state((game_state *)state, diff);
1764
1765 sstate_new = solve_game_rec(sstate);
1766
1767 assert(sstate_new->solver_status != SOLVER_MISTAKE);
1768 ret = (sstate_new->solver_status == SOLVER_SOLVED);
1769
1770 free_solver_state(sstate_new);
1771 free_solver_state(sstate);
1772
1773 return ret;
1774 }
1775
1776
1777 /* Remove clues one at a time at random. */
1778 static game_state *remove_clues(game_state *state, random_state *rs,
1779 int diff)
1780 {
1781 int *face_list;
1782 int num_faces = state->game_grid->num_faces;
1783 game_state *ret = dup_game(state), *saved_ret;
1784 int n;
1785
1786 /* We need to remove some clues. We'll do this by forming a list of all
1787 * available clues, shuffling it, then going along one at a
1788 * time clearing each clue in turn for which doing so doesn't render the
1789 * board unsolvable. */
1790 face_list = snewn(num_faces, int);
1791 for (n = 0; n < num_faces; ++n) {
1792 face_list[n] = n;
1793 }
1794
1795 shuffle(face_list, num_faces, sizeof(int), rs);
1796
1797 for (n = 0; n < num_faces; ++n) {
1798 saved_ret = dup_game(ret);
1799 ret->clues[face_list[n]] = -1;
1800
1801 if (game_has_unique_soln(ret, diff)) {
1802 free_game(saved_ret);
1803 } else {
1804 free_game(ret);
1805 ret = saved_ret;
1806 }
1807 }
1808 sfree(face_list);
1809
1810 return ret;
1811 }
1812
1813
1814 static char *new_game_desc(game_params *params, random_state *rs,
1815 char **aux, int interactive)
1816 {
1817 /* solution and description both use run-length encoding in obvious ways */
1818 char *retval;
1819 grid *g;
1820 game_state *state = snew(game_state);
1821 game_state *state_new;
1822 params_generate_grid(params);
1823 state->game_grid = g = params->game_grid;
1824 g->refcount++;
1825 state->clues = snewn(g->num_faces, signed char);
1826 state->lines = snewn(g->num_edges, char);
1827 state->line_errors = snewn(g->num_edges, unsigned char);
1828
1829 state->grid_type = params->type;
1830
1831 newboard_please:
1832
1833 memset(state->lines, LINE_UNKNOWN, g->num_edges);
1834 memset(state->line_errors, 0, g->num_edges);
1835
1836 state->solved = state->cheated = FALSE;
1837
1838 /* Get a new random solvable board with all its clues filled in. Yes, this
1839 * can loop for ever if the params are suitably unfavourable, but
1840 * preventing games smaller than 4x4 seems to stop this happening */
1841 do {
1842 add_full_clues(state, rs);
1843 } while (!game_has_unique_soln(state, params->diff));
1844
1845 state_new = remove_clues(state, rs, params->diff);
1846 free_game(state);
1847 state = state_new;
1848
1849
1850 if (params->diff > 0 && game_has_unique_soln(state, params->diff-1)) {
1851 #ifdef SHOW_WORKING
1852 fprintf(stderr, "Rejecting board, it is too easy\n");
1853 #endif
1854 goto newboard_please;
1855 }
1856
1857 retval = state_to_text(state);
1858
1859 free_game(state);
1860
1861 assert(!validate_desc(params, retval));
1862
1863 return retval;
1864 }
1865
1866 static game_state *new_game(midend *me, game_params *params, char *desc)
1867 {
1868 int i;
1869 game_state *state = snew(game_state);
1870 int empties_to_make = 0;
1871 int n;
1872 const char *dp = desc;
1873 grid *g;
1874 int num_faces, num_edges;
1875
1876 params_generate_grid(params);
1877 state->game_grid = g = params->game_grid;
1878 g->refcount++;
1879 num_faces = g->num_faces;
1880 num_edges = g->num_edges;
1881
1882 state->clues = snewn(num_faces, signed char);
1883 state->lines = snewn(num_edges, char);
1884 state->line_errors = snewn(num_edges, unsigned char);
1885
1886 state->solved = state->cheated = FALSE;
1887
1888 state->grid_type = params->type;
1889
1890 for (i = 0; i < num_faces; i++) {
1891 if (empties_to_make) {
1892 empties_to_make--;
1893 state->clues[i] = -1;
1894 continue;
1895 }
1896
1897 assert(*dp);
1898 n = *dp - '0';
1899 if (n >= 0 && n < 10) {
1900 state->clues[i] = n;
1901 } else {
1902 n = *dp - 'a' + 1;
1903 assert(n > 0);
1904 state->clues[i] = -1;
1905 empties_to_make = n - 1;
1906 }
1907 ++dp;
1908 }
1909
1910 memset(state->lines, LINE_UNKNOWN, num_edges);
1911 memset(state->line_errors, 0, num_edges);
1912 return state;
1913 }
1914
1915 /* Calculates the line_errors data, and checks if the current state is a
1916 * solution */
1917 static int check_completion(game_state *state)
1918 {
1919 grid *g = state->game_grid;
1920 int *dsf;
1921 int num_faces = g->num_faces;
1922 int i;
1923 int infinite_area, finite_area;
1924 int loops_found = 0;
1925 int found_edge_not_in_loop = FALSE;
1926
1927 memset(state->line_errors, 0, g->num_edges);
1928
1929 /* LL implementation of SGT's idea:
1930 * A loop will partition the grid into an inside and an outside.
1931 * If there is more than one loop, the grid will be partitioned into
1932 * even more distinct regions. We can therefore track equivalence of
1933 * faces, by saying that two faces are equivalent when there is a non-YES
1934 * edge between them.
1935 * We could keep track of the number of connected components, by counting
1936 * the number of dsf-merges that aren't no-ops.
1937 * But we're only interested in 3 separate cases:
1938 * no loops, one loop, more than one loop.
1939 *
1940 * No loops: all faces are equivalent to the infinite face.
1941 * One loop: only two equivalence classes - finite and infinite.
1942 * >= 2 loops: there are 2 distinct finite regions.
1943 *
1944 * So we simply make two passes through all the edges.
1945 * In the first pass, we dsf-merge the two faces bordering each non-YES
1946 * edge.
1947 * In the second pass, we look for YES-edges bordering:
1948 * a) two non-equivalent faces.
1949 * b) two non-equivalent faces, and one of them is part of a different
1950 * finite area from the first finite area we've seen.
1951 *
1952 * An occurrence of a) means there is at least one loop.
1953 * An occurrence of b) means there is more than one loop.
1954 * Edges satisfying a) are marked as errors.
1955 *
1956 * While we're at it, we set a flag if we find a YES edge that is not
1957 * part of a loop.
1958 * This information will help decide, if there's a single loop, whether it
1959 * is a candidate for being a solution (that is, all YES edges are part of
1960 * this loop).
1961 *
1962 * If there is a candidate loop, we then go through all clues and check
1963 * they are all satisfied. If so, we have found a solution and we can
1964 * unmark all line_errors.
1965 */
1966
1967 /* Infinite face is at the end - its index is num_faces.
1968 * This macro is just to make this obvious! */
1969 #define INF_FACE num_faces
1970 dsf = snewn(num_faces + 1, int);
1971 dsf_init(dsf, num_faces + 1);
1972
1973 /* First pass */
1974 for (i = 0; i < g->num_edges; i++) {
1975 grid_edge *e = g->edges + i;
1976 int f1 = e->face1 ? e->face1 - g->faces : INF_FACE;
1977 int f2 = e->face2 ? e->face2 - g->faces : INF_FACE;
1978 if (state->lines[i] != LINE_YES)
1979 dsf_merge(dsf, f1, f2);
1980 }
1981
1982 /* Second pass */
1983 infinite_area = dsf_canonify(dsf, INF_FACE);
1984 finite_area = -1;
1985 for (i = 0; i < g->num_edges; i++) {
1986 grid_edge *e = g->edges + i;
1987 int f1 = e->face1 ? e->face1 - g->faces : INF_FACE;
1988 int can1 = dsf_canonify(dsf, f1);
1989 int f2 = e->face2 ? e->face2 - g->faces : INF_FACE;
1990 int can2 = dsf_canonify(dsf, f2);
1991 if (state->lines[i] != LINE_YES) continue;
1992
1993 if (can1 == can2) {
1994 /* Faces are equivalent, so this edge not part of a loop */
1995 found_edge_not_in_loop = TRUE;
1996 continue;
1997 }
1998 state->line_errors[i] = TRUE;
1999 if (loops_found == 0) loops_found = 1;
2000
2001 /* Don't bother with further checks if we've already found 2 loops */
2002 if (loops_found == 2) continue;
2003
2004 if (finite_area == -1) {
2005 /* Found our first finite area */
2006 if (can1 != infinite_area)
2007 finite_area = can1;
2008 else
2009 finite_area = can2;
2010 }
2011
2012 /* Have we found a second area? */
2013 if (finite_area != -1) {
2014 if (can1 != infinite_area && can1 != finite_area) {
2015 loops_found = 2;
2016 continue;
2017 }
2018 if (can2 != infinite_area && can2 != finite_area) {
2019 loops_found = 2;
2020 }
2021 }
2022 }
2023
2024 /*
2025 printf("loops_found = %d\n", loops_found);
2026 printf("found_edge_not_in_loop = %s\n",
2027 found_edge_not_in_loop ? "TRUE" : "FALSE");
2028 */
2029
2030 sfree(dsf); /* No longer need the dsf */
2031
2032 /* Have we found a candidate loop? */
2033 if (loops_found == 1 && !found_edge_not_in_loop) {
2034 /* Yes, so check all clues are satisfied */
2035 int found_clue_violation = FALSE;
2036 for (i = 0; i < num_faces; i++) {
2037 int c = state->clues[i];
2038 if (c >= 0) {
2039 if (face_order(state, i, LINE_YES) != c) {
2040 found_clue_violation = TRUE;
2041 break;
2042 }
2043 }
2044 }
2045
2046 if (!found_clue_violation) {
2047 /* The loop is good */
2048 memset(state->line_errors, 0, g->num_edges);
2049 return TRUE; /* No need to bother checking for dot violations */
2050 }
2051 }
2052
2053 /* Check for dot violations */
2054 for (i = 0; i < g->num_dots; i++) {
2055 int yes = dot_order(state, i, LINE_YES);
2056 int unknown = dot_order(state, i, LINE_UNKNOWN);
2057 if ((yes == 1 && unknown == 0) || (yes >= 3)) {
2058 /* violation, so mark all YES edges as errors */
2059 grid_dot *d = g->dots + i;
2060 int j;
2061 for (j = 0; j < d->order; j++) {
2062 int e = d->edges[j] - g->edges;
2063 if (state->lines[e] == LINE_YES)
2064 state->line_errors[e] = TRUE;
2065 }
2066 }
2067 }
2068 return FALSE;
2069 }
2070
2071 /* ----------------------------------------------------------------------
2072 * Solver logic
2073 *
2074 * Our solver modes operate as follows. Each mode also uses the modes above it.
2075 *
2076 * Easy Mode
2077 * Just implement the rules of the game.
2078 *
2079 * Normal and Tricky Modes
2080 * For each (adjacent) pair of lines through each dot we store a bit for
2081 * whether at least one of them is on and whether at most one is on. (If we
2082 * know both or neither is on that's already stored more directly.)
2083 *
2084 * Advanced Mode
2085 * Use edsf data structure to make equivalence classes of lines that are
2086 * known identical to or opposite to one another.
2087 */
2088
2089
2090 /* DLines:
2091 * For general grids, we consider "dlines" to be pairs of lines joined
2092 * at a dot. The lines must be adjacent around the dot, so we can think of
2093 * a dline as being a dot+face combination. Or, a dot+edge combination where
2094 * the second edge is taken to be the next clockwise edge from the dot.
2095 * Original loopy code didn't have this extra restriction of the lines being
2096 * adjacent. From my tests with square grids, this extra restriction seems to
2097 * take little, if anything, away from the quality of the puzzles.
2098 * A dline can be uniquely identified by an edge/dot combination, given that
2099 * a dline-pair always goes clockwise around its common dot. The edge/dot
2100 * combination can be represented by an edge/bool combination - if bool is
2101 * TRUE, use edge->dot1 else use edge->dot2. So the total number of dlines is
2102 * exactly twice the number of edges in the grid - although the dlines
2103 * spanning the infinite face are not all that useful to the solver.
2104 * Note that, by convention, a dline goes clockwise around its common dot,
2105 * which means the dline goes anti-clockwise around its common face.
2106 */
2107
2108 /* Helper functions for obtaining an index into an array of dlines, given
2109 * various information. We assume the grid layout conventions about how
2110 * the various lists are interleaved - see grid_make_consistent() for
2111 * details. */
2112
2113 /* i points to the first edge of the dline pair, reading clockwise around
2114 * the dot. */
2115 static int dline_index_from_dot(grid *g, grid_dot *d, int i)
2116 {
2117 grid_edge *e = d->edges[i];
2118 int ret;
2119 #ifdef DEBUG_DLINES
2120 grid_edge *e2;
2121 int i2 = i+1;
2122 if (i2 == d->order) i2 = 0;
2123 e2 = d->edges[i2];
2124 #endif
2125 ret = 2 * (e - g->edges) + ((e->dot1 == d) ? 1 : 0);
2126 #ifdef DEBUG_DLINES
2127 printf("dline_index_from_dot: d=%d,i=%d, edges [%d,%d] - %d\n",
2128 (int)(d - g->dots), i, (int)(e - g->edges),
2129 (int)(e2 - g->edges), ret);
2130 #endif
2131 return ret;
2132 }
2133 /* i points to the second edge of the dline pair, reading clockwise around
2134 * the face. That is, the edges of the dline, starting at edge{i}, read
2135 * anti-clockwise around the face. By layout conventions, the common dot
2136 * of the dline will be f->dots[i] */
2137 static int dline_index_from_face(grid *g, grid_face *f, int i)
2138 {
2139 grid_edge *e = f->edges[i];
2140 grid_dot *d = f->dots[i];
2141 int ret;
2142 #ifdef DEBUG_DLINES
2143 grid_edge *e2;
2144 int i2 = i - 1;
2145 if (i2 < 0) i2 += f->order;
2146 e2 = f->edges[i2];
2147 #endif
2148 ret = 2 * (e - g->edges) + ((e->dot1 == d) ? 1 : 0);
2149 #ifdef DEBUG_DLINES
2150 printf("dline_index_from_face: f=%d,i=%d, edges [%d,%d] - %d\n",
2151 (int)(f - g->faces), i, (int)(e - g->edges),
2152 (int)(e2 - g->edges), ret);
2153 #endif
2154 return ret;
2155 }
2156 static int is_atleastone(const char *dline_array, int index)
2157 {
2158 return BIT_SET(dline_array[index], 0);
2159 }
2160 static int set_atleastone(char *dline_array, int index)
2161 {
2162 return SET_BIT(dline_array[index], 0);
2163 }
2164 static int is_atmostone(const char *dline_array, int index)
2165 {
2166 return BIT_SET(dline_array[index], 1);
2167 }
2168 static int set_atmostone(char *dline_array, int index)
2169 {
2170 return SET_BIT(dline_array[index], 1);
2171 }
2172
2173 static void array_setall(char *array, char from, char to, int len)
2174 {
2175 char *p = array, *p_old = p;
2176 int len_remaining = len;
2177
2178 while ((p = memchr(p, from, len_remaining))) {
2179 *p = to;
2180 len_remaining -= p - p_old;
2181 p_old = p;
2182 }
2183 }
2184
2185 /* Helper, called when doing dline dot deductions, in the case where we
2186 * have 4 UNKNOWNs, and two of them (adjacent) have *exactly* one YES between
2187 * them (because of dline atmostone/atleastone).
2188 * On entry, edge points to the first of these two UNKNOWNs. This function
2189 * will find the opposite UNKNOWNS (if they are adjacent to one another)
2190 * and set their corresponding dline to atleastone. (Setting atmostone
2191 * already happens in earlier dline deductions) */
2192 static int dline_set_opp_atleastone(solver_state *sstate,
2193 grid_dot *d, int edge)
2194 {
2195 game_state *state = sstate->state;
2196 grid *g = state->game_grid;
2197 int N = d->order;
2198 int opp, opp2;
2199 for (opp = 0; opp < N; opp++) {
2200 int opp_dline_index;
2201 if (opp == edge || opp == edge+1 || opp == edge-1)
2202 continue;
2203 if (opp == 0 && edge == N-1)
2204 continue;
2205 if (opp == N-1 && edge == 0)
2206 continue;
2207 opp2 = opp + 1;
2208 if (opp2 == N) opp2 = 0;
2209 /* Check if opp, opp2 point to LINE_UNKNOWNs */
2210 if (state->lines[d->edges[opp] - g->edges] != LINE_UNKNOWN)
2211 continue;
2212 if (state->lines[d->edges[opp2] - g->edges] != LINE_UNKNOWN)
2213 continue;
2214 /* Found opposite UNKNOWNS and they're next to each other */
2215 opp_dline_index = dline_index_from_dot(g, d, opp);
2216 return set_atleastone(sstate->dlines, opp_dline_index);
2217 }
2218 return FALSE;
2219 }
2220
2221
2222 /* Set pairs of lines around this face which are known to be identical, to
2223 * the given line_state */
2224 static int face_setall_identical(solver_state *sstate, int face_index,
2225 enum line_state line_new)
2226 {
2227 /* can[dir] contains the canonical line associated with the line in
2228 * direction dir from the square in question. Similarly inv[dir] is
2229 * whether or not the line in question is inverse to its canonical
2230 * element. */
2231 int retval = FALSE;
2232 game_state *state = sstate->state;
2233 grid *g = state->game_grid;
2234 grid_face *f = g->faces + face_index;
2235 int N = f->order;
2236 int i, j;
2237 int can1, can2, inv1, inv2;
2238
2239 for (i = 0; i < N; i++) {
2240 int line1_index = f->edges[i] - g->edges;
2241 if (state->lines[line1_index] != LINE_UNKNOWN)
2242 continue;
2243 for (j = i + 1; j < N; j++) {
2244 int line2_index = f->edges[j] - g->edges;
2245 if (state->lines[line2_index] != LINE_UNKNOWN)
2246 continue;
2247
2248 /* Found two UNKNOWNS */
2249 can1 = edsf_canonify(sstate->linedsf, line1_index, &inv1);
2250 can2 = edsf_canonify(sstate->linedsf, line2_index, &inv2);
2251 if (can1 == can2 && inv1 == inv2) {
2252 solver_set_line(sstate, line1_index, line_new);
2253 solver_set_line(sstate, line2_index, line_new);
2254 }
2255 }
2256 }
2257 return retval;
2258 }
2259
2260 /* Given a dot or face, and a count of LINE_UNKNOWNs, find them and
2261 * return the edge indices into e. */
2262 static void find_unknowns(game_state *state,
2263 grid_edge **edge_list, /* Edge list to search (from a face or a dot) */
2264 int expected_count, /* Number of UNKNOWNs (comes from solver's cache) */
2265 int *e /* Returned edge indices */)
2266 {
2267 int c = 0;
2268 grid *g = state->game_grid;
2269 while (c < expected_count) {
2270 int line_index = *edge_list - g->edges;
2271 if (state->lines[line_index] == LINE_UNKNOWN) {
2272 e[c] = line_index;
2273 c++;
2274 }
2275 ++edge_list;
2276 }
2277 }
2278
2279 /* If we have a list of edges, and we know whether the number of YESs should
2280 * be odd or even, and there are only a few UNKNOWNs, we can do some simple
2281 * linedsf deductions. This can be used for both face and dot deductions.
2282 * Returns the difficulty level of the next solver that should be used,
2283 * or DIFF_MAX if no progress was made. */
2284 static int parity_deductions(solver_state *sstate,
2285 grid_edge **edge_list, /* Edge list (from a face or a dot) */
2286 int total_parity, /* Expected number of YESs modulo 2 (either 0 or 1) */
2287 int unknown_count)
2288 {
2289 game_state *state = sstate->state;
2290 int diff = DIFF_MAX;
2291 int *linedsf = sstate->linedsf;
2292
2293 if (unknown_count == 2) {
2294 /* Lines are known alike/opposite, depending on inv. */
2295 int e[2];
2296 find_unknowns(state, edge_list, 2, e);
2297 if (merge_lines(sstate, e[0], e[1], total_parity))
2298 diff = min(diff, DIFF_HARD);
2299 } else if (unknown_count == 3) {
2300 int e[3];
2301 int can[3]; /* canonical edges */
2302 int inv[3]; /* whether can[x] is inverse to e[x] */
2303 find_unknowns(state, edge_list, 3, e);
2304 can[0] = edsf_canonify(linedsf, e[0], inv);
2305 can[1] = edsf_canonify(linedsf, e[1], inv+1);
2306 can[2] = edsf_canonify(linedsf, e[2], inv+2);
2307 if (can[0] == can[1]) {
2308 if (solver_set_line(sstate, e[2], (total_parity^inv[0]^inv[1]) ?
2309 LINE_YES : LINE_NO))
2310 diff = min(diff, DIFF_EASY);
2311 }
2312 if (can[0] == can[2]) {
2313 if (solver_set_line(sstate, e[1], (total_parity^inv[0]^inv[2]) ?
2314 LINE_YES : LINE_NO))
2315 diff = min(diff, DIFF_EASY);
2316 }
2317 if (can[1] == can[2]) {
2318 if (solver_set_line(sstate, e[0], (total_parity^inv[1]^inv[2]) ?
2319 LINE_YES : LINE_NO))
2320 diff = min(diff, DIFF_EASY);
2321 }
2322 } else if (unknown_count == 4) {
2323 int e[4];
2324 int can[4]; /* canonical edges */
2325 int inv[4]; /* whether can[x] is inverse to e[x] */
2326 find_unknowns(state, edge_list, 4, e);
2327 can[0] = edsf_canonify(linedsf, e[0], inv);
2328 can[1] = edsf_canonify(linedsf, e[1], inv+1);
2329 can[2] = edsf_canonify(linedsf, e[2], inv+2);
2330 can[3] = edsf_canonify(linedsf, e[3], inv+3);
2331 if (can[0] == can[1]) {
2332 if (merge_lines(sstate, e[2], e[3], total_parity^inv[0]^inv[1]))
2333 diff = min(diff, DIFF_HARD);
2334 } else if (can[0] == can[2]) {
2335 if (merge_lines(sstate, e[1], e[3], total_parity^inv[0]^inv[2]))
2336 diff = min(diff, DIFF_HARD);
2337 } else if (can[0] == can[3]) {
2338 if (merge_lines(sstate, e[1], e[2], total_parity^inv[0]^inv[3]))
2339 diff = min(diff, DIFF_HARD);
2340 } else if (can[1] == can[2]) {
2341 if (merge_lines(sstate, e[0], e[3], total_parity^inv[1]^inv[2]))
2342 diff = min(diff, DIFF_HARD);
2343 } else if (can[1] == can[3]) {
2344 if (merge_lines(sstate, e[0], e[2], total_parity^inv[1]^inv[3]))
2345 diff = min(diff, DIFF_HARD);
2346 } else if (can[2] == can[3]) {
2347 if (merge_lines(sstate, e[0], e[1], total_parity^inv[2]^inv[3]))
2348 diff = min(diff, DIFF_HARD);
2349 }
2350 }
2351 return diff;
2352 }
2353
2354
2355 /*
2356 * These are the main solver functions.
2357 *
2358 * Their return values are diff values corresponding to the lowest mode solver
2359 * that would notice the work that they have done. For example if the normal
2360 * mode solver adds actual lines or crosses, it will return DIFF_EASY as the
2361 * easy mode solver might be able to make progress using that. It doesn't make
2362 * sense for one of them to return a diff value higher than that of the
2363 * function itself.
2364 *
2365 * Each function returns the lowest value it can, as early as possible, in
2366 * order to try and pass as much work as possible back to the lower level
2367 * solvers which progress more quickly.
2368 */
2369
2370 /* PROPOSED NEW DESIGN:
2371 * We have a work queue consisting of 'events' notifying us that something has
2372 * happened that a particular solver mode might be interested in. For example
2373 * the hard mode solver might do something that helps the normal mode solver at
2374 * dot [x,y] in which case it will enqueue an event recording this fact. Then
2375 * we pull events off the work queue, and hand each in turn to the solver that
2376 * is interested in them. If a solver reports that it failed we pass the same
2377 * event on to progressively more advanced solvers and the loop detector. Once
2378 * we've exhausted an event, or it has helped us progress, we drop it and
2379 * continue to the next one. The events are sorted first in order of solver
2380 * complexity (easy first) then order of insertion (oldest first).
2381 * Once we run out of events we loop over each permitted solver in turn
2382 * (easiest first) until either a deduction is made (and an event therefore
2383 * emerges) or no further deductions can be made (in which case we've failed).
2384 *
2385 * QUESTIONS:
2386 * * How do we 'loop over' a solver when both dots and squares are concerned.
2387 * Answer: first all squares then all dots.
2388 */
2389
2390 static int trivial_deductions(solver_state *sstate)
2391 {
2392 int i, current_yes, current_no;
2393 game_state *state = sstate->state;
2394 grid *g = state->game_grid;
2395 int diff = DIFF_MAX;
2396
2397 /* Per-face deductions */
2398 for (i = 0; i < g->num_faces; i++) {
2399 grid_face *f = g->faces + i;
2400
2401 if (sstate->face_solved[i])
2402 continue;
2403
2404 current_yes = sstate->face_yes_count[i];
2405 current_no = sstate->face_no_count[i];
2406
2407 if (current_yes + current_no == f->order) {
2408 sstate->face_solved[i] = TRUE;
2409 continue;
2410 }
2411
2412 if (state->clues[i] < 0)
2413 continue;
2414
2415 if (state->clues[i] < current_yes) {
2416 sstate->solver_status = SOLVER_MISTAKE;
2417 return DIFF_EASY;
2418 }
2419 if (state->clues[i] == current_yes) {
2420 if (face_setall(sstate, i, LINE_UNKNOWN, LINE_NO))
2421 diff = min(diff, DIFF_EASY);
2422 sstate->face_solved[i] = TRUE;
2423 continue;
2424 }
2425
2426 if (f->order - state->clues[i] < current_no) {
2427 sstate->solver_status = SOLVER_MISTAKE;
2428 return DIFF_EASY;
2429 }
2430 if (f->order - state->clues[i] == current_no) {
2431 if (face_setall(sstate, i, LINE_UNKNOWN, LINE_YES))
2432 diff = min(diff, DIFF_EASY);
2433 sstate->face_solved[i] = TRUE;
2434 continue;
2435 }
2436 }
2437
2438 check_caches(sstate);
2439
2440 /* Per-dot deductions */
2441 for (i = 0; i < g->num_dots; i++) {
2442 grid_dot *d = g->dots + i;
2443 int yes, no, unknown;
2444
2445 if (sstate->dot_solved[i])
2446 continue;
2447
2448 yes = sstate->dot_yes_count[i];
2449 no = sstate->dot_no_count[i];
2450 unknown = d->order - yes - no;
2451
2452 if (yes == 0) {
2453 if (unknown == 0) {
2454 sstate->dot_solved[i] = TRUE;
2455 } else if (unknown == 1) {
2456 dot_setall(sstate, i, LINE_UNKNOWN, LINE_NO);
2457 diff = min(diff, DIFF_EASY);
2458 sstate->dot_solved[i] = TRUE;
2459 }
2460 } else if (yes == 1) {
2461 if (unknown == 0) {
2462 sstate->solver_status = SOLVER_MISTAKE;
2463 return DIFF_EASY;
2464 } else if (unknown == 1) {
2465 dot_setall(sstate, i, LINE_UNKNOWN, LINE_YES);
2466 diff = min(diff, DIFF_EASY);
2467 }
2468 } else if (yes == 2) {
2469 if (unknown > 0) {
2470 dot_setall(sstate, i, LINE_UNKNOWN, LINE_NO);
2471 diff = min(diff, DIFF_EASY);
2472 }
2473 sstate->dot_solved[i] = TRUE;
2474 } else {
2475 sstate->solver_status = SOLVER_MISTAKE;
2476 return DIFF_EASY;
2477 }
2478 }
2479
2480 check_caches(sstate);
2481
2482 return diff;
2483 }
2484
2485 static int dline_deductions(solver_state *sstate)
2486 {
2487 game_state *state = sstate->state;
2488 grid *g = state->game_grid;
2489 char *dlines = sstate->dlines;
2490 int i;
2491 int diff = DIFF_MAX;
2492
2493 /* ------ Face deductions ------ */
2494
2495 /* Given a set of dline atmostone/atleastone constraints, need to figure
2496 * out if we can deduce any further info. For more general faces than
2497 * squares, this turns out to be a tricky problem.
2498 * The approach taken here is to define (per face) NxN matrices:
2499 * "maxs" and "mins".
2500 * The entries maxs(j,k) and mins(j,k) define the upper and lower limits
2501 * for the possible number of edges that are YES between positions j and k
2502 * going clockwise around the face. Can think of j and k as marking dots
2503 * around the face (recall the labelling scheme: edge0 joins dot0 to dot1,
2504 * edge1 joins dot1 to dot2 etc).
2505 * Trivially, mins(j,j) = maxs(j,j) = 0, and we don't even bother storing
2506 * these. mins(j,j+1) and maxs(j,j+1) are determined by whether edge{j}
2507 * is YES, NO or UNKNOWN. mins(j,j+2) and maxs(j,j+2) are related to
2508 * the dline atmostone/atleastone status for edges j and j+1.
2509 *
2510 * Then we calculate the remaining entries recursively. We definitely
2511 * know that
2512 * mins(j,k) >= { mins(j,u) + mins(u,k) } for any u between j and k.
2513 * This is because any valid placement of YESs between j and k must give
2514 * a valid placement between j and u, and also between u and k.
2515 * I believe it's sufficient to use just the two values of u:
2516 * j+1 and j+2. Seems to work well in practice - the bounds we compute
2517 * are rigorous, even if they might not be best-possible.
2518 *
2519 * Once we have maxs and mins calculated, we can make inferences about
2520 * each dline{j,j+1} by looking at the possible complementary edge-counts
2521 * mins(j+2,j) and maxs(j+2,j) and comparing these with the face clue.
2522 * As well as dlines, we can make similar inferences about single edges.
2523 * For example, consider a pentagon with clue 3, and we know at most one
2524 * of (edge0, edge1) is YES, and at most one of (edge2, edge3) is YES.
2525 * We could then deduce edge4 is YES, because maxs(0,4) would be 2, so
2526 * that final edge would have to be YES to make the count up to 3.
2527 */
2528
2529 /* Much quicker to allocate arrays on the stack than the heap, so
2530 * define the largest possible face size, and base our array allocations
2531 * on that. We check this with an assertion, in case someone decides to
2532 * make a grid which has larger faces than this. Note, this algorithm
2533 * could get quite expensive if there are many large faces. */
2534 #define MAX_FACE_SIZE 8
2535
2536 for (i = 0; i < g->num_faces; i++) {
2537 int maxs[MAX_FACE_SIZE][MAX_FACE_SIZE];
2538 int mins[MAX_FACE_SIZE][MAX_FACE_SIZE];
2539 grid_face *f = g->faces + i;
2540 int N = f->order;
2541 int j,m;
2542 int clue = state->clues[i];
2543 assert(N <= MAX_FACE_SIZE);
2544 if (sstate->face_solved[i])
2545 continue;
2546 if (clue < 0) continue;
2547
2548 /* Calculate the (j,j+1) entries */
2549 for (j = 0; j < N; j++) {
2550 int edge_index = f->edges[j] - g->edges;
2551 int dline_index;
2552 enum line_state line1 = state->lines[edge_index];
2553 enum line_state line2;
2554 int tmp;
2555 int k = j + 1;
2556 if (k >= N) k = 0;
2557 maxs[j][k] = (line1 == LINE_NO) ? 0 : 1;
2558 mins[j][k] = (line1 == LINE_YES) ? 1 : 0;
2559 /* Calculate the (j,j+2) entries */
2560 dline_index = dline_index_from_face(g, f, k);
2561 edge_index = f->edges[k] - g->edges;
2562 line2 = state->lines[edge_index];
2563 k++;
2564 if (k >= N) k = 0;
2565
2566 /* max */
2567 tmp = 2;
2568 if (line1 == LINE_NO) tmp--;
2569 if (line2 == LINE_NO) tmp--;
2570 if (tmp == 2 && is_atmostone(dlines, dline_index))
2571 tmp = 1;
2572 maxs[j][k] = tmp;
2573
2574 /* min */
2575 tmp = 0;
2576 if (line1 == LINE_YES) tmp++;
2577 if (line2 == LINE_YES) tmp++;
2578 if (tmp == 0 && is_atleastone(dlines, dline_index))
2579 tmp = 1;
2580 mins[j][k] = tmp;
2581 }
2582
2583 /* Calculate the (j,j+m) entries for m between 3 and N-1 */
2584 for (m = 3; m < N; m++) {
2585 for (j = 0; j < N; j++) {
2586 int k = j + m;
2587 int u = j + 1;
2588 int v = j + 2;
2589 int tmp;
2590 if (k >= N) k -= N;
2591 if (u >= N) u -= N;
2592 if (v >= N) v -= N;
2593 maxs[j][k] = maxs[j][u] + maxs[u][k];
2594 mins[j][k] = mins[j][u] + mins[u][k];
2595 tmp = maxs[j][v] + maxs[v][k];
2596 maxs[j][k] = min(maxs[j][k], tmp);
2597 tmp = mins[j][v] + mins[v][k];
2598 mins[j][k] = max(mins[j][k], tmp);
2599 }
2600 }
2601
2602 /* See if we can make any deductions */
2603 for (j = 0; j < N; j++) {
2604 int k;
2605 grid_edge *e = f->edges[j];
2606 int line_index = e - g->edges;
2607 int dline_index;
2608
2609 if (state->lines[line_index] != LINE_UNKNOWN)
2610 continue;
2611 k = j + 1;
2612 if (k >= N) k = 0;
2613
2614 /* minimum YESs in the complement of this edge */
2615 if (mins[k][j] > clue) {
2616 sstate->solver_status = SOLVER_MISTAKE;
2617 return DIFF_EASY;
2618 }
2619 if (mins[k][j] == clue) {
2620 /* setting this edge to YES would make at least
2621 * (clue+1) edges - contradiction */
2622 solver_set_line(sstate, line_index, LINE_NO);
2623 diff = min(diff, DIFF_EASY);
2624 }
2625 if (maxs[k][j] < clue - 1) {
2626 sstate->solver_status = SOLVER_MISTAKE;
2627 return DIFF_EASY;
2628 }
2629 if (maxs[k][j] == clue - 1) {
2630 /* Only way to satisfy the clue is to set edge{j} as YES */
2631 solver_set_line(sstate, line_index, LINE_YES);
2632 diff = min(diff, DIFF_EASY);
2633 }
2634
2635 /* More advanced deduction that allows propagation along diagonal
2636 * chains of faces connected by dots, for example, 3-2-...-2-3
2637 * in square grids. */
2638 if (sstate->diff >= DIFF_TRICKY) {
2639 /* Now see if we can make dline deduction for edges{j,j+1} */
2640 e = f->edges[k];
2641 if (state->lines[e - g->edges] != LINE_UNKNOWN)
2642 /* Only worth doing this for an UNKNOWN,UNKNOWN pair.
2643 * Dlines where one of the edges is known, are handled in the
2644 * dot-deductions */
2645 continue;
2646
2647 dline_index = dline_index_from_face(g, f, k);
2648 k++;
2649 if (k >= N) k = 0;
2650
2651 /* minimum YESs in the complement of this dline */
2652 if (mins[k][j] > clue - 2) {
2653 /* Adding 2 YESs would break the clue */
2654 if (set_atmostone(dlines, dline_index))
2655 diff = min(diff, DIFF_NORMAL);
2656 }
2657 /* maximum YESs in the complement of this dline */
2658 if (maxs[k][j] < clue) {
2659 /* Adding 2 NOs would mean not enough YESs */
2660 if (set_atleastone(dlines, dline_index))
2661 diff = min(diff, DIFF_NORMAL);
2662 }
2663 }
2664 }
2665 }
2666
2667 if (diff < DIFF_NORMAL)
2668 return diff;
2669
2670 /* ------ Dot deductions ------ */
2671
2672 for (i = 0; i < g->num_dots; i++) {
2673 grid_dot *d = g->dots + i;
2674 int N = d->order;
2675 int yes, no, unknown;
2676 int j;
2677 if (sstate->dot_solved[i])
2678 continue;
2679 yes = sstate->dot_yes_count[i];
2680 no = sstate->dot_no_count[i];
2681 unknown = N - yes - no;
2682
2683 for (j = 0; j < N; j++) {
2684 int k;
2685 int dline_index;
2686 int line1_index, line2_index;
2687 enum line_state line1, line2;
2688 k = j + 1;
2689 if (k >= N) k = 0;
2690 dline_index = dline_index_from_dot(g, d, j);
2691 line1_index = d->edges[j] - g->edges;
2692 line2_index = d->edges[k] - g->edges;
2693 line1 = state->lines[line1_index];
2694 line2 = state->lines[line2_index];
2695
2696 /* Infer dline state from line state */
2697 if (line1 == LINE_NO || line2 == LINE_NO) {
2698 if (set_atmostone(dlines, dline_index))
2699 diff = min(diff, DIFF_NORMAL);
2700 }
2701 if (line1 == LINE_YES || line2 == LINE_YES) {
2702 if (set_atleastone(dlines, dline_index))
2703 diff = min(diff, DIFF_NORMAL);
2704 }
2705 /* Infer line state from dline state */
2706 if (is_atmostone(dlines, dline_index)) {
2707 if (line1 == LINE_YES && line2 == LINE_UNKNOWN) {
2708 solver_set_line(sstate, line2_index, LINE_NO);
2709 diff = min(diff, DIFF_EASY);
2710 }
2711 if (line2 == LINE_YES && line1 == LINE_UNKNOWN) {
2712 solver_set_line(sstate, line1_index, LINE_NO);
2713 diff = min(diff, DIFF_EASY);
2714 }
2715 }
2716 if (is_atleastone(dlines, dline_index)) {
2717 if (line1 == LINE_NO && line2 == LINE_UNKNOWN) {
2718 solver_set_line(sstate, line2_index, LINE_YES);
2719 diff = min(diff, DIFF_EASY);
2720 }
2721 if (line2 == LINE_NO && line1 == LINE_UNKNOWN) {
2722 solver_set_line(sstate, line1_index, LINE_YES);
2723 diff = min(diff, DIFF_EASY);
2724 }
2725 }
2726 /* Deductions that depend on the numbers of lines.
2727 * Only bother if both lines are UNKNOWN, otherwise the
2728 * easy-mode solver (or deductions above) would have taken
2729 * care of it. */
2730 if (line1 != LINE_UNKNOWN || line2 != LINE_UNKNOWN)
2731 continue;
2732
2733 if (yes == 0 && unknown == 2) {
2734 /* Both these unknowns must be identical. If we know
2735 * atmostone or atleastone, we can make progress. */
2736 if (is_atmostone(dlines, dline_index)) {
2737 solver_set_line(sstate, line1_index, LINE_NO);
2738 solver_set_line(sstate, line2_index, LINE_NO);
2739 diff = min(diff, DIFF_EASY);
2740 }
2741 if (is_atleastone(dlines, dline_index)) {
2742 solver_set_line(sstate, line1_index, LINE_YES);
2743 solver_set_line(sstate, line2_index, LINE_YES);
2744 diff = min(diff, DIFF_EASY);
2745 }
2746 }
2747 if (yes == 1) {
2748 if (set_atmostone(dlines, dline_index))
2749 diff = min(diff, DIFF_NORMAL);
2750 if (unknown == 2) {
2751 if (set_atleastone(dlines, dline_index))
2752 diff = min(diff, DIFF_NORMAL);
2753 }
2754 }
2755
2756 /* More advanced deduction that allows propagation along diagonal
2757 * chains of faces connected by dots, for example: 3-2-...-2-3
2758 * in square grids. */
2759 if (sstate->diff >= DIFF_TRICKY) {
2760 /* If we have atleastone set for this dline, infer
2761 * atmostone for each "opposite" dline (that is, each
2762 * dline without edges in common with this one).
2763 * Again, this test is only worth doing if both these
2764 * lines are UNKNOWN. For if one of these lines were YES,
2765 * the (yes == 1) test above would kick in instead. */
2766 if (is_atleastone(dlines, dline_index)) {
2767 int opp;
2768 for (opp = 0; opp < N; opp++) {
2769 int opp_dline_index;
2770 if (opp == j || opp == j+1 || opp == j-1)
2771 continue;
2772 if (j == 0 && opp == N-1)
2773 continue;
2774 if (j == N-1 && opp == 0)
2775 continue;
2776 opp_dline_index = dline_index_from_dot(g, d, opp);
2777 if (set_atmostone(dlines, opp_dline_index))
2778 diff = min(diff, DIFF_NORMAL);
2779 }
2780 if (yes == 0 && is_atmostone(dlines, dline_index)) {
2781 /* This dline has *exactly* one YES and there are no
2782 * other YESs. This allows more deductions. */
2783 if (unknown == 3) {
2784 /* Third unknown must be YES */
2785 for (opp = 0; opp < N; opp++) {
2786 int opp_index;
2787 if (opp == j || opp == k)
2788 continue;
2789 opp_index = d->edges[opp] - g->edges;
2790 if (state->lines[opp_index] == LINE_UNKNOWN) {
2791 solver_set_line(sstate, opp_index,
2792 LINE_YES);
2793 diff = min(diff, DIFF_EASY);
2794 }
2795 }
2796 } else if (unknown == 4) {
2797 /* Exactly one of opposite UNKNOWNS is YES. We've
2798 * already set atmostone, so set atleastone as
2799 * well.
2800 */
2801 if (dline_set_opp_atleastone(sstate, d, j))
2802 diff = min(diff, DIFF_NORMAL);
2803 }
2804 }
2805 }
2806 }
2807 }
2808 }
2809 return diff;
2810 }
2811
2812 static int linedsf_deductions(solver_state *sstate)
2813 {
2814 game_state *state = sstate->state;
2815 grid *g = state->game_grid;
2816 char *dlines = sstate->dlines;
2817 int i;
2818 int diff = DIFF_MAX;
2819 int diff_tmp;
2820
2821 /* ------ Face deductions ------ */
2822
2823 /* A fully-general linedsf deduction seems overly complicated
2824 * (I suspect the problem is NP-complete, though in practice it might just
2825 * be doable because faces are limited in size).
2826 * For simplicity, we only consider *pairs* of LINE_UNKNOWNS that are
2827 * known to be identical. If setting them both to YES (or NO) would break
2828 * the clue, set them to NO (or YES). */
2829
2830 for (i = 0; i < g->num_faces; i++) {
2831 int N, yes, no, unknown;
2832 int clue;
2833
2834 if (sstate->face_solved[i])
2835 continue;
2836 clue = state->clues[i];
2837 if (clue < 0)
2838 continue;
2839
2840 N = g->faces[i].order;
2841 yes = sstate->face_yes_count[i];
2842 if (yes + 1 == clue) {
2843 if (face_setall_identical(sstate, i, LINE_NO))
2844 diff = min(diff, DIFF_EASY);
2845 }
2846 no = sstate->face_no_count[i];
2847 if (no + 1 == N - clue) {
2848 if (face_setall_identical(sstate, i, LINE_YES))
2849 diff = min(diff, DIFF_EASY);
2850 }
2851
2852 /* Reload YES count, it might have changed */
2853 yes = sstate->face_yes_count[i];
2854 unknown = N - no - yes;
2855
2856 /* Deductions with small number of LINE_UNKNOWNs, based on overall
2857 * parity of lines. */
2858 diff_tmp = parity_deductions(sstate, g->faces[i].edges,
2859 (clue - yes) % 2, unknown);
2860 diff = min(diff, diff_tmp);
2861 }
2862
2863 /* ------ Dot deductions ------ */
2864 for (i = 0; i < g->num_dots; i++) {
2865 grid_dot *d = g->dots + i;
2866 int N = d->order;
2867 int j;
2868 int yes, no, unknown;
2869 /* Go through dlines, and do any dline<->linedsf deductions wherever
2870 * we find two UNKNOWNS. */
2871 for (j = 0; j < N; j++) {
2872 int dline_index = dline_index_from_dot(g, d, j);
2873 int line1_index;
2874 int line2_index;
2875 int can1, can2, inv1, inv2;
2876 int j2;
2877 line1_index = d->edges[j] - g->edges;
2878 if (state->lines[line1_index] != LINE_UNKNOWN)
2879 continue;
2880 j2 = j + 1;
2881 if (j2 == N) j2 = 0;
2882 line2_index = d->edges[j2] - g->edges;
2883 if (state->lines[line2_index] != LINE_UNKNOWN)
2884 continue;
2885 /* Infer dline flags from linedsf */
2886 can1 = edsf_canonify(sstate->linedsf, line1_index, &inv1);
2887 can2 = edsf_canonify(sstate->linedsf, line2_index, &inv2);
2888 if (can1 == can2 && inv1 != inv2) {
2889 /* These are opposites, so set dline atmostone/atleastone */
2890 if (set_atmostone(dlines, dline_index))
2891 diff = min(diff, DIFF_NORMAL);
2892 if (set_atleastone(dlines, dline_index))
2893 diff = min(diff, DIFF_NORMAL);
2894 continue;
2895 }
2896 /* Infer linedsf from dline flags */
2897 if (is_atmostone(dlines, dline_index)
2898 && is_atleastone(dlines, dline_index)) {
2899 if (merge_lines(sstate, line1_index, line2_index, 1))
2900 diff = min(diff, DIFF_HARD);
2901 }
2902 }
2903
2904 /* Deductions with small number of LINE_UNKNOWNs, based on overall
2905 * parity of lines. */
2906 yes = sstate->dot_yes_count[i];
2907 no = sstate->dot_no_count[i];
2908 unknown = N - yes - no;
2909 diff_tmp = parity_deductions(sstate, d->edges,
2910 yes % 2, unknown);
2911 diff = min(diff, diff_tmp);
2912 }
2913
2914 /* ------ Edge dsf deductions ------ */
2915
2916 /* If the state of a line is known, deduce the state of its canonical line
2917 * too, and vice versa. */
2918 for (i = 0; i < g->num_edges; i++) {
2919 int can, inv;
2920 enum line_state s;
2921 can = edsf_canonify(sstate->linedsf, i, &inv);
2922 if (can == i)
2923 continue;
2924 s = sstate->state->lines[can];
2925 if (s != LINE_UNKNOWN) {
2926 if (solver_set_line(sstate, i, inv ? OPP(s) : s))
2927 diff = min(diff, DIFF_EASY);
2928 } else {
2929 s = sstate->state->lines[i];
2930 if (s != LINE_UNKNOWN) {
2931 if (solver_set_line(sstate, can, inv ? OPP(s) : s))
2932 diff = min(diff, DIFF_EASY);
2933 }
2934 }
2935 }
2936
2937 return diff;
2938 }
2939
2940 static int loop_deductions(solver_state *sstate)
2941 {
2942 int edgecount = 0, clues = 0, satclues = 0, sm1clues = 0;
2943 game_state *state = sstate->state;
2944 grid *g = state->game_grid;
2945 int shortest_chainlen = g->num_dots;
2946 int loop_found = FALSE;
2947 int dots_connected;
2948 int progress = FALSE;
2949 int i;
2950
2951 /*
2952 * Go through the grid and update for all the new edges.
2953 * Since merge_dots() is idempotent, the simplest way to
2954 * do this is just to update for _all_ the edges.
2955 * Also, while we're here, we count the edges.
2956 */
2957 for (i = 0; i < g->num_edges; i++) {
2958 if (state->lines[i] == LINE_YES) {
2959 loop_found |= merge_dots(sstate, i);
2960 edgecount++;
2961 }
2962 }
2963
2964 /*
2965 * Count the clues, count the satisfied clues, and count the
2966 * satisfied-minus-one clues.
2967 */
2968 for (i = 0; i < g->num_faces; i++) {
2969 int c = state->clues[i];
2970 if (c >= 0) {
2971 int o = sstate->face_yes_count[i];
2972 if (o == c)
2973 satclues++;
2974 else if (o == c-1)
2975 sm1clues++;
2976 clues++;
2977 }
2978 }
2979
2980 for (i = 0; i < g->num_dots; ++i) {
2981 dots_connected =
2982 sstate->looplen[dsf_canonify(sstate->dotdsf, i)];
2983 if (dots_connected > 1)
2984 shortest_chainlen = min(shortest_chainlen, dots_connected);
2985 }
2986
2987 assert(sstate->solver_status == SOLVER_INCOMPLETE);
2988
2989 if (satclues == clues && shortest_chainlen == edgecount) {
2990 sstate->solver_status = SOLVER_SOLVED;
2991 /* This discovery clearly counts as progress, even if we haven't
2992 * just added any lines or anything */
2993 progress = TRUE;
2994 goto finished_loop_deductionsing;
2995 }
2996
2997 /*
2998 * Now go through looking for LINE_UNKNOWN edges which
2999 * connect two dots that are already in the same
3000 * equivalence class. If we find one, test to see if the
3001 * loop it would create is a solution.
3002 */
3003 for (i = 0; i < g->num_edges; i++) {
3004 grid_edge *e = g->edges + i;
3005 int d1 = e->dot1 - g->dots;
3006 int d2 = e->dot2 - g->dots;
3007 int eqclass, val;
3008 if (state->lines[i] != LINE_UNKNOWN)
3009 continue;
3010
3011 eqclass = dsf_canonify(sstate->dotdsf, d1);
3012 if (eqclass != dsf_canonify(sstate->dotdsf, d2))
3013 continue;
3014
3015 val = LINE_NO; /* loop is bad until proven otherwise */
3016
3017 /*
3018 * This edge would form a loop. Next
3019 * question: how long would the loop be?
3020 * Would it equal the total number of edges
3021 * (plus the one we'd be adding if we added
3022 * it)?
3023 */
3024 if (sstate->looplen[eqclass] == edgecount + 1) {
3025 int sm1_nearby;
3026
3027 /*
3028 * This edge would form a loop which
3029 * took in all the edges in the entire
3030 * grid. So now we need to work out
3031 * whether it would be a valid solution
3032 * to the puzzle, which means we have to
3033 * check if it satisfies all the clues.
3034 * This means that every clue must be
3035 * either satisfied or satisfied-minus-
3036 * 1, and also that the number of
3037 * satisfied-minus-1 clues must be at
3038 * most two and they must lie on either
3039 * side of this edge.
3040 */
3041 sm1_nearby = 0;
3042 if (e->face1) {
3043 int f = e->face1 - g->faces;
3044 int c = state->clues[f];
3045 if (c >= 0 && sstate->face_yes_count[f] == c - 1)
3046 sm1_nearby++;
3047 }
3048 if (e->face2) {
3049 int f = e->face2 - g->faces;
3050 int c = state->clues[f];
3051 if (c >= 0 && sstate->face_yes_count[f] == c - 1)
3052 sm1_nearby++;
3053 }
3054 if (sm1clues == sm1_nearby &&
3055 sm1clues + satclues == clues) {
3056 val = LINE_YES; /* loop is good! */
3057 }
3058 }
3059
3060 /*
3061 * Right. Now we know that adding this edge
3062 * would form a loop, and we know whether
3063 * that loop would be a viable solution or
3064 * not.
3065 *
3066 * If adding this edge produces a solution,
3067 * then we know we've found _a_ solution but
3068 * we don't know that it's _the_ solution -
3069 * if it were provably the solution then
3070 * we'd have deduced this edge some time ago
3071 * without the need to do loop detection. So
3072 * in this state we return SOLVER_AMBIGUOUS,
3073 * which has the effect that hitting Solve
3074 * on a user-provided puzzle will fill in a
3075 * solution but using the solver to
3076 * construct new puzzles won't consider this
3077 * a reasonable deduction for the user to
3078 * make.
3079 */
3080 progress = solver_set_line(sstate, i, val);
3081 assert(progress == TRUE);
3082 if (val == LINE_YES) {
3083 sstate->solver_status = SOLVER_AMBIGUOUS;
3084 goto finished_loop_deductionsing;
3085 }
3086 }
3087
3088 finished_loop_deductionsing:
3089 return progress ? DIFF_EASY : DIFF_MAX;
3090 }
3091
3092 /* This will return a dynamically allocated solver_state containing the (more)
3093 * solved grid */
3094 static solver_state *solve_game_rec(const solver_state *sstate_start)
3095 {
3096 solver_state *sstate;
3097
3098 /* Index of the solver we should call next. */
3099 int i = 0;
3100
3101 /* As a speed-optimisation, we avoid re-running solvers that we know
3102 * won't make any progress. This happens when a high-difficulty
3103 * solver makes a deduction that can only help other high-difficulty
3104 * solvers.
3105 * For example: if a new 'dline' flag is set by dline_deductions, the
3106 * trivial_deductions solver cannot do anything with this information.
3107 * If we've already run the trivial_deductions solver (because it's
3108 * earlier in the list), there's no point running it again.
3109 *
3110 * Therefore: if a solver is earlier in the list than "threshold_index",
3111 * we don't bother running it if it's difficulty level is less than
3112 * "threshold_diff".
3113 */
3114 int threshold_diff = 0;
3115 int threshold_index = 0;
3116
3117 sstate = dup_solver_state(sstate_start);
3118
3119 check_caches(sstate);
3120
3121 while (i < NUM_SOLVERS) {
3122 if (sstate->solver_status == SOLVER_MISTAKE)
3123 return sstate;
3124 if (sstate->solver_status == SOLVER_SOLVED ||
3125 sstate->solver_status == SOLVER_AMBIGUOUS) {
3126 /* solver finished */
3127 break;
3128 }
3129
3130 if ((solver_diffs[i] >= threshold_diff || i >= threshold_index)
3131 && solver_diffs[i] <= sstate->diff) {
3132 /* current_solver is eligible, so use it */
3133 int next_diff = solver_fns[i](sstate);
3134 if (next_diff != DIFF_MAX) {
3135 /* solver made progress, so use new thresholds and
3136 * start again at top of list. */
3137 threshold_diff = next_diff;
3138 threshold_index = i;
3139 i = 0;
3140 continue;
3141 }
3142 }
3143 /* current_solver is ineligible, or failed to make progress, so
3144 * go to the next solver in the list */
3145 i++;
3146 }
3147
3148 if (sstate->solver_status == SOLVER_SOLVED ||
3149 sstate->solver_status == SOLVER_AMBIGUOUS) {
3150 /* s/LINE_UNKNOWN/LINE_NO/g */
3151 array_setall(sstate->state->lines, LINE_UNKNOWN, LINE_NO,
3152 sstate->state->game_grid->num_edges);
3153 return sstate;
3154 }
3155
3156 return sstate;
3157 }
3158
3159 static char *solve_game(game_state *state, game_state *currstate,
3160 char *aux, char **error)
3161 {
3162 char *soln = NULL;
3163 solver_state *sstate, *new_sstate;
3164
3165 sstate = new_solver_state(state, DIFF_MAX);
3166 new_sstate = solve_game_rec(sstate);
3167
3168 if (new_sstate->solver_status == SOLVER_SOLVED) {
3169 soln = encode_solve_move(new_sstate->state);
3170 } else if (new_sstate->solver_status == SOLVER_AMBIGUOUS) {
3171 soln = encode_solve_move(new_sstate->state);
3172 /**error = "Solver found ambiguous solutions"; */
3173 } else {
3174 soln = encode_solve_move(new_sstate->state);
3175 /**error = "Solver failed"; */
3176 }
3177
3178 free_solver_state(new_sstate);
3179 free_solver_state(sstate);
3180
3181 return soln;
3182 }
3183
3184 /* ----------------------------------------------------------------------
3185 * Drawing and mouse-handling
3186 */
3187
3188 static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
3189 int x, int y, int button)
3190 {
3191 grid *g = state->game_grid;
3192 grid_edge *e;
3193 int i;
3194 char *ret, buf[80];
3195 char button_char = ' ';
3196 enum line_state old_state;
3197
3198 button &= ~MOD_MASK;
3199
3200 /* Convert mouse-click (x,y) to grid coordinates */
3201 x -= BORDER(ds->tilesize);
3202 y -= BORDER(ds->tilesize);
3203 x = x * g->tilesize / ds->tilesize;
3204 y = y * g->tilesize / ds->tilesize;
3205 x += g->lowest_x;
3206 y += g->lowest_y;
3207
3208 e = grid_nearest_edge(g, x, y);
3209 if (e == NULL)
3210 return NULL;
3211
3212 i = e - g->edges;
3213
3214 /* I think it's only possible to play this game with mouse clicks, sorry */
3215 /* Maybe will add mouse drag support some time */
3216 old_state = state->lines[i];
3217
3218 switch (button) {
3219 case LEFT_BUTTON:
3220 switch (old_state) {
3221 case LINE_UNKNOWN:
3222 button_char = 'y';
3223 break;
3224 case LINE_YES:
3225 #ifdef STYLUS_BASED
3226 button_char = 'n';
3227 break;
3228 #endif
3229 case LINE_NO:
3230 button_char = 'u';
3231 break;
3232 }
3233 break;
3234 case MIDDLE_BUTTON:
3235 button_char = 'u';
3236 break;
3237 case RIGHT_BUTTON:
3238 switch (old_state) {
3239 case LINE_UNKNOWN:
3240 button_char = 'n';
3241 break;
3242 case LINE_NO:
3243 #ifdef STYLUS_BASED
3244 button_char = 'y';
3245 break;
3246 #endif
3247 case LINE_YES:
3248 button_char = 'u';
3249 break;
3250 }
3251 break;
3252 default:
3253 return NULL;
3254 }
3255
3256
3257 sprintf(buf, "%d%c", i, (int)button_char);
3258 ret = dupstr(buf);
3259
3260 return ret;
3261 }
3262
3263 static game_state *execute_move(game_state *state, char *move)
3264 {
3265 int i;
3266 game_state *newstate = dup_game(state);
3267
3268 if (move[0] == 'S') {
3269 move++;
3270 newstate->cheated = TRUE;
3271 }
3272
3273 while (*move) {
3274 i = atoi(move);
3275 if (i < 0 || i >= newstate->game_grid->num_edges)
3276 goto fail;
3277 move += strspn(move, "1234567890");
3278 switch (*(move++)) {
3279 case 'y':
3280 newstate->lines[i] = LINE_YES;
3281 break;
3282 case 'n':
3283 newstate->lines[i] = LINE_NO;
3284 break;
3285 case 'u':
3286 newstate->lines[i] = LINE_UNKNOWN;
3287 break;
3288 default:
3289 goto fail;
3290 }
3291 }
3292
3293 /*
3294 * Check for completion.
3295 */
3296 if (check_completion(newstate))
3297 newstate->solved = TRUE;
3298
3299 return newstate;
3300
3301 fail:
3302 free_game(newstate);
3303 return NULL;
3304 }
3305
3306 /* ----------------------------------------------------------------------
3307 * Drawing routines.
3308 */
3309
3310 /* Convert from grid coordinates to screen coordinates */
3311 static void grid_to_screen(const game_drawstate *ds, const grid *g,
3312 int grid_x, int grid_y, int *x, int *y)
3313 {
3314 *x = grid_x - g->lowest_x;
3315 *y = grid_y - g->lowest_y;
3316 *x = *x * ds->tilesize / g->tilesize;
3317 *y = *y * ds->tilesize / g->tilesize;
3318 *x += BORDER(ds->tilesize);
3319 *y += BORDER(ds->tilesize);
3320 }
3321
3322 /* Returns (into x,y) position of centre of face for rendering the text clue.
3323 */
3324 static void face_text_pos(const game_drawstate *ds, const grid *g,
3325 const grid_face *f, int *x, int *y)
3326 {
3327 int i;
3328
3329 /* Simplest solution is the centroid. Might not work in some cases. */
3330
3331 /* Another algorithm to look into:
3332 * Find the midpoints of the sides, find the bounding-box,
3333 * then take the centre of that. */
3334
3335 /* Best solution probably involves incentres (inscribed circles) */
3336
3337 int sx = 0, sy = 0; /* sums */
3338 for (i = 0; i < f->order; i++) {
3339 grid_dot *d = f->dots[i];
3340 sx += d->x;
3341 sy += d->y;
3342 }
3343 sx /= f->order;
3344 sy /= f->order;
3345
3346 /* convert to screen coordinates */
3347 grid_to_screen(ds, g, sx, sy, x, y);
3348 }
3349
3350 static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
3351 game_state *state, int dir, game_ui *ui,
3352 float animtime, float flashtime)
3353 {
3354 grid *g = state->game_grid;
3355 int border = BORDER(ds->tilesize);
3356 int i, n;
3357 char c[2];
3358 int line_colour, flash_changed;
3359 int clue_mistake;
3360 int clue_satisfied;
3361
3362 if (!ds->started) {
3363 /*
3364 * The initial contents of the window are not guaranteed and
3365 * can vary with front ends. To be on the safe side, all games
3366 * should start by drawing a big background-colour rectangle
3367 * covering the whole window.
3368 */
3369 int grid_width = g->highest_x - g->lowest_x;
3370 int grid_height = g->highest_y - g->lowest_y;
3371 int w = grid_width * ds->tilesize / g->tilesize;
3372 int h = grid_height * ds->tilesize / g->tilesize;
3373 draw_rect(dr, 0, 0, w + 2 * border + 1, h + 2 * border + 1,
3374 COL_BACKGROUND);
3375
3376 /* Draw clues */
3377 for (i = 0; i < g->num_faces; i++) {
3378 grid_face *f;
3379 int x, y;
3380
3381 c[0] = CLUE2CHAR(state->clues[i]);
3382 c[1] = '\0';
3383 f = g->faces + i;
3384 face_text_pos(ds, g, f, &x, &y);
3385 draw_text(dr, x, y, FONT_VARIABLE, ds->tilesize/2,
3386 ALIGN_VCENTRE | ALIGN_HCENTRE, COL_FOREGROUND, c);
3387 }
3388 draw_update(dr, 0, 0, w + 2 * border, h + 2 * border);
3389 }
3390
3391 if (flashtime > 0 &&
3392 (flashtime <= FLASH_TIME/3 ||
3393 flashtime >= FLASH_TIME*2/3)) {
3394 flash_changed = !ds->flashing;
3395 ds->flashing = TRUE;
3396 } else {
3397 flash_changed = ds->flashing;
3398 ds->flashing = FALSE;
3399 }
3400
3401 /* Some platforms may perform anti-aliasing, which may prevent clean
3402 * repainting of lines when the colour is changed.
3403 * If a line needs to be over-drawn in a different colour, erase a
3404 * bounding-box around the line, then flag all nearby objects for redraw.
3405 */
3406 if (ds->started) {
3407 const char redraw_flag = (char)(1<<7);
3408 for (i = 0; i < g->num_edges; i++) {
3409 char prev_ds = (ds->lines[i] & ~redraw_flag);
3410 char new_ds = state->lines[i];
3411 if (state->line_errors[i])
3412 new_ds = DS_LINE_ERROR;
3413
3414 /* If we're changing state, AND
3415 * the previous state was a coloured line */
3416 if ((prev_ds != new_ds) && (prev_ds != LINE_NO)) {
3417 grid_edge *e = g->edges + i;
3418 int x1 = e->dot1->x;
3419 int y1 = e->dot1->y;
3420 int x2 = e->dot2->x;
3421 int y2 = e->dot2->y;
3422 int xmin, xmax, ymin, ymax;
3423 int j;
3424 grid_to_screen(ds, g, x1, y1, &x1, &y1);
3425 grid_to_screen(ds, g, x2, y2, &x2, &y2);
3426 /* Allow extra margin for dots, and thickness of lines */
3427 xmin = min(x1, x2) - 2;
3428 xmax = max(x1, x2) + 2;
3429 ymin = min(y1, y2) - 2;
3430 ymax = max(y1, y2) + 2;
3431 /* For testing, I find it helpful to change COL_BACKGROUND
3432 * to COL_SATISFIED here. */
3433 draw_rect(dr, xmin, ymin, xmax - xmin + 1, ymax - ymin + 1,
3434 COL_BACKGROUND);
3435 draw_update(dr, xmin, ymin, xmax - xmin + 1, ymax - ymin + 1);
3436
3437 /* Mark nearby lines for redraw */
3438 for (j = 0; j < e->dot1->order; j++)
3439 ds->lines[e->dot1->edges[j] - g->edges] |= redraw_flag;
3440 for (j = 0; j < e->dot2->order; j++)
3441 ds->lines[e->dot2->edges[j] - g->edges] |= redraw_flag;
3442 /* Mark nearby clues for redraw. Use a value that is
3443 * neither TRUE nor FALSE for this. */
3444 if (e->face1)
3445 ds->clue_error[e->face1 - g->faces] = 2;
3446 if (e->face2)
3447 ds->clue_error[e->face2 - g->faces] = 2;
3448 }
3449 }
3450 }
3451
3452 /* Redraw clue colours if necessary */
3453 for (i = 0; i < g->num_faces; i++) {
3454 grid_face *f = g->faces + i;
3455 int sides = f->order;
3456 int j;
3457 n = state->clues[i];
3458 if (n < 0)
3459 continue;
3460
3461 c[0] = CLUE2CHAR(n);
3462 c[1] = '\0';
3463
3464 clue_mistake = (face_order(state, i, LINE_YES) > n ||
3465 face_order(state, i, LINE_NO ) > (sides-n));
3466
3467 clue_satisfied = (face_order(state, i, LINE_YES) == n &&
3468 face_order(state, i, LINE_NO ) == (sides-n));
3469
3470 if (clue_mistake != ds->clue_error[i]
3471 || clue_satisfied != ds->clue_satisfied[i]) {
3472 int x, y;
3473 face_text_pos(ds, g, f, &x, &y);
3474 /* There seems to be a certain amount of trial-and-error
3475 * involved in working out the correct bounding-box for
3476 * the text. */
3477 draw_rect(dr, x - ds->tilesize/4 - 1, y - ds->tilesize/4 - 3,
3478 ds->tilesize/2 + 2, ds->tilesize/2 + 5,
3479 COL_BACKGROUND);
3480 draw_text(dr, x, y,
3481 FONT_VARIABLE, ds->tilesize/2,
3482 ALIGN_VCENTRE | ALIGN_HCENTRE,
3483 clue_mistake ? COL_MISTAKE :
3484 clue_satisfied ? COL_SATISFIED : COL_FOREGROUND, c);
3485 draw_update(dr, x - ds->tilesize/4 - 1, y - ds->tilesize/4 - 3,
3486 ds->tilesize/2 + 2, ds->tilesize/2 + 5);
3487
3488 ds->clue_error[i] = clue_mistake;
3489 ds->clue_satisfied[i] = clue_satisfied;
3490
3491 /* Sometimes, the bounding-box encroaches into the surrounding
3492 * lines (particularly if the window is resized fairly small).
3493 * So redraw them. */
3494 for (j = 0; j < f->order; j++)
3495 ds->lines[f->edges[j] - g->edges] = -1;
3496 }
3497 }
3498
3499 /* Lines */
3500 for (i = 0; i < g->num_edges; i++) {
3501 grid_edge *e = g->edges + i;
3502 int x1, x2, y1, y2;
3503 int xmin, ymin, xmax, ymax;
3504 char new_ds, need_draw;
3505 new_ds = state->lines[i];
3506 if (state->line_errors[i])
3507 new_ds = DS_LINE_ERROR;
3508 need_draw = (new_ds != ds->lines[i]) ? TRUE : FALSE;
3509 if (flash_changed && (state->lines[i] == LINE_YES))
3510 need_draw = TRUE;
3511 if (!ds->started)
3512 need_draw = TRUE; /* draw everything at the start */
3513 ds->lines[i] = new_ds;
3514 if (!need_draw)
3515 continue;
3516 if (state->line_errors[i])
3517 line_colour = COL_MISTAKE;
3518 else if (state->lines[i] == LINE_UNKNOWN)
3519 line_colour = COL_LINEUNKNOWN;
3520 else if (state->lines[i] == LINE_NO)
3521 line_colour = COL_FAINT;
3522 else if (ds->flashing)
3523 line_colour = COL_HIGHLIGHT;
3524 else
3525 line_colour = COL_FOREGROUND;
3526
3527 /* Convert from grid to screen coordinates */
3528 grid_to_screen(ds, g, e->dot1->x, e->dot1->y, &x1, &y1);
3529 grid_to_screen(ds, g, e->dot2->x, e->dot2->y, &x2, &y2);
3530
3531 xmin = min(x1, x2);
3532 xmax = max(x1, x2);
3533 ymin = min(y1, y2);
3534 ymax = max(y1, y2);
3535
3536 if (line_colour == COL_FAINT) {
3537 static int draw_faint_lines = -1;
3538 if (draw_faint_lines < 0) {
3539 char *env = getenv("LOOPY_FAINT_LINES");
3540 draw_faint_lines = (!env || (env[0] == 'y' ||
3541 env[0] == 'Y'));
3542 }
3543 if (draw_faint_lines)
3544 draw_line(dr, x1, y1, x2, y2, line_colour);
3545 } else {
3546 draw_thick_line(dr, 3.0,
3547 x1 + 0.5, y1 + 0.5,
3548 x2 + 0.5, y2 + 0.5,
3549 line_colour);
3550 }
3551 if (ds->started) {
3552 /* Draw dots at ends of the line */
3553 draw_circle(dr, x1, y1, 2, COL_FOREGROUND, COL_FOREGROUND);
3554 draw_circle(dr, x2, y2, 2, COL_FOREGROUND, COL_FOREGROUND);
3555 }
3556 draw_update(dr, xmin-2, ymin-2, xmax - xmin + 4, ymax - ymin + 4);
3557 }
3558
3559 /* Draw dots */
3560 if (!ds->started) {
3561 for (i = 0; i < g->num_dots; i++) {
3562 grid_dot *d = g->dots + i;
3563 int x, y;
3564 grid_to_screen(ds, g, d->x, d->y, &x, &y);
3565 draw_circle(dr, x, y, 2, COL_FOREGROUND, COL_FOREGROUND);
3566 }
3567 }
3568 ds->started = TRUE;
3569 }
3570
3571 static float game_flash_length(game_state *oldstate, game_state *newstate,
3572 int dir, game_ui *ui)
3573 {
3574 if (!oldstate->solved && newstate->solved &&
3575 !oldstate->cheated && !newstate->cheated) {
3576 return FLASH_TIME;
3577 }
3578
3579 return 0.0F;
3580 }
3581
3582 static void game_print_size(game_params *params, float *x, float *y)
3583 {
3584 int pw, ph;
3585
3586 /*
3587 * I'll use 7mm "squares" by default.
3588 */
3589 game_compute_size(params, 700, &pw, &ph);
3590 *x = pw / 100.0F;
3591 *y = ph / 100.0F;
3592 }
3593
3594 static void game_print(drawing *dr, game_state *state, int tilesize)
3595 {
3596 int ink = print_mono_colour(dr, 0);
3597 int i;
3598 game_drawstate ads, *ds = &ads;
3599 grid *g = state->game_grid;
3600
3601 ds->tilesize = tilesize;
3602
3603 for (i = 0; i < g->num_dots; i++) {
3604 int x, y;
3605 grid_to_screen(ds, g, g->dots[i].x, g->dots[i].y, &x, &y);
3606 draw_circle(dr, x, y, ds->tilesize / 15, ink, ink);
3607 }
3608
3609 /*
3610 * Clues.
3611 */
3612 for (i = 0; i < g->num_faces; i++) {
3613 grid_face *f = g->faces + i;
3614 int clue = state->clues[i];
3615 if (clue >= 0) {
3616 char c[2];
3617 int x, y;
3618 c[0] = CLUE2CHAR(clue);
3619 c[1] = '\0';
3620 face_text_pos(ds, g, f, &x, &y);
3621 draw_text(dr, x, y,
3622 FONT_VARIABLE, ds->tilesize / 2,
3623 ALIGN_VCENTRE | ALIGN_HCENTRE, ink, c);
3624 }
3625 }
3626
3627 /*
3628 * Lines.
3629 */
3630 for (i = 0; i < g->num_edges; i++) {
3631 int thickness = (state->lines[i] == LINE_YES) ? 30 : 150;
3632 grid_edge *e = g->edges + i;
3633 int x1, y1, x2, y2;
3634 grid_to_screen(ds, g, e->dot1->x, e->dot1->y, &x1, &y1);
3635 grid_to_screen(ds, g, e->dot2->x, e->dot2->y, &x2, &y2);
3636 if (state->lines[i] == LINE_YES)
3637 {
3638 /* (dx, dy) points from (x1, y1) to (x2, y2).
3639 * The line is then "fattened" in a perpendicular
3640 * direction to create a thin rectangle. */
3641 double d = sqrt(SQ((double)x1 - x2) + SQ((double)y1 - y2));
3642 double dx = (x2 - x1) / d;
3643 double dy = (y2 - y1) / d;
3644 int points[8];
3645
3646 dx = (dx * ds->tilesize) / thickness;
3647 dy = (dy * ds->tilesize) / thickness;
3648 points[0] = x1 + (int)dy;
3649 points[1] = y1 - (int)dx;
3650 points[2] = x1 - (int)dy;
3651 points[3] = y1 + (int)dx;
3652 points[4] = x2 - (int)dy;
3653 points[5] = y2 + (int)dx;
3654 points[6] = x2 + (int)dy;
3655 points[7] = y2 - (int)dx;
3656 draw_polygon(dr, points, 4, ink, ink);
3657 }
3658 else
3659 {
3660 /* Draw a dotted line */
3661 int divisions = 6;
3662 int j;
3663 for (j = 1; j < divisions; j++) {
3664 /* Weighted average */
3665 int x = (x1 * (divisions -j) + x2 * j) / divisions;
3666 int y = (y1 * (divisions -j) + y2 * j) / divisions;
3667 draw_circle(dr, x, y, ds->tilesize / thickness, ink, ink);
3668 }
3669 }
3670 }
3671 }
3672
3673 #ifdef COMBINED
3674 #define thegame loopy
3675 #endif
3676
3677 const struct game thegame = {
3678 "Loopy", "games.loopy", "loopy",
3679 default_params,
3680 game_fetch_preset,
3681 decode_params,
3682 encode_params,
3683 free_params,
3684 dup_params,
3685 TRUE, game_configure, custom_params,
3686 validate_params,
3687 new_game_desc,
3688 validate_desc,
3689 new_game,
3690 dup_game,
3691 free_game,
3692 1, solve_game,
3693 TRUE, game_can_format_as_text_now, game_text_format,
3694 new_ui,
3695 free_ui,
3696 encode_ui,
3697 decode_ui,
3698 game_changed_state,
3699 interpret_move,
3700 execute_move,
3701 PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
3702 game_colours,
3703 game_new_drawstate,
3704 game_free_drawstate,
3705 game_redraw,
3706 game_anim_length,
3707 game_flash_length,
3708 TRUE, FALSE, game_print_size, game_print,
3709 FALSE /* wants_statusbar */,
3710 FALSE, game_timing_state,
3711 0, /* mouse_priorities */
3712 };
3713
3714 #ifdef STANDALONE_SOLVER
3715
3716 /*
3717 * Half-hearted standalone solver. It can't output the solution to
3718 * anything but a square puzzle, and it can't log the deductions
3719 * it makes either. But it can solve square puzzles, and more
3720 * importantly it can use its solver to grade the difficulty of
3721 * any puzzle you give it.
3722 */
3723
3724 #include <stdarg.h>
3725
3726 int main(int argc, char **argv)
3727 {
3728 game_params *p;
3729 game_state *s;
3730 char *id = NULL, *desc, *err;
3731 int grade = FALSE;
3732 int ret, diff;
3733 #if 0 /* verbose solver not supported here (yet) */
3734 int really_verbose = FALSE;
3735 #endif
3736
3737 while (--argc > 0) {
3738 char *p = *++argv;
3739 #if 0 /* verbose solver not supported here (yet) */
3740 if (!strcmp(p, "-v")) {
3741 really_verbose = TRUE;
3742 } else
3743 #endif
3744 if (!strcmp(p, "-g")) {
3745 grade = TRUE;
3746 } else if (*p == '-') {
3747 fprintf(stderr, "%s: unrecognised option `%s'\n", argv[0], p);
3748 return 1;
3749 } else {
3750 id = p;
3751 }
3752 }
3753
3754 if (!id) {
3755 fprintf(stderr, "usage: %s [-g | -v] <game_id>\n", argv[0]);
3756 return 1;
3757 }
3758
3759 desc = strchr(id, ':');
3760 if (!desc) {
3761 fprintf(stderr, "%s: game id expects a colon in it\n", argv[0]);
3762 return 1;
3763 }
3764 *desc++ = '\0';
3765
3766 p = default_params();
3767 decode_params(p, id);
3768 err = validate_desc(p, desc);
3769 if (err) {
3770 fprintf(stderr, "%s: %s\n", argv[0], err);
3771 return 1;
3772 }
3773 s = new_game(NULL, p, desc);
3774
3775 /*
3776 * When solving an Easy puzzle, we don't want to bother the
3777 * user with Hard-level deductions. For this reason, we grade
3778 * the puzzle internally before doing anything else.
3779 */
3780 ret = -1; /* placate optimiser */
3781 for (diff = 0; diff < DIFF_MAX; diff++) {
3782 solver_state *sstate_new;
3783 solver_state *sstate = new_solver_state((game_state *)s, diff);
3784
3785 sstate_new = solve_game_rec(sstate);
3786
3787 if (sstate_new->solver_status == SOLVER_MISTAKE)
3788 ret = 0;
3789 else if (sstate_new->solver_status == SOLVER_SOLVED)
3790 ret = 1;
3791 else
3792 ret = 2;
3793
3794 free_solver_state(sstate_new);
3795 free_solver_state(sstate);
3796
3797 if (ret < 2)
3798 break;
3799 }
3800
3801 if (diff == DIFF_MAX) {
3802 if (grade)
3803 printf("Difficulty rating: harder than Hard, or ambiguous\n");
3804 else
3805 printf("Unable to find a unique solution\n");
3806 } else {
3807 if (grade) {
3808 if (ret == 0)
3809 printf("Difficulty rating: impossible (no solution exists)\n");
3810 else if (ret == 1)
3811 printf("Difficulty rating: %s\n", diffnames[diff]);
3812 } else {
3813 solver_state *sstate_new;
3814 solver_state *sstate = new_solver_state((game_state *)s, diff);
3815
3816 /* If we supported a verbose solver, we'd set verbosity here */
3817
3818 sstate_new = solve_game_rec(sstate);
3819
3820 if (sstate_new->solver_status == SOLVER_MISTAKE)
3821 printf("Puzzle is inconsistent\n");
3822 else {
3823 assert(sstate_new->solver_status == SOLVER_SOLVED);
3824 if (s->grid_type == 0) {
3825 fputs(game_text_format(sstate_new->state), stdout);
3826 } else {
3827 printf("Unable to output non-square grids\n");
3828 }
3829 }
3830
3831 free_solver_state(sstate_new);
3832 free_solver_state(sstate);
3833 }
3834 }
3835
3836 return 0;
3837 }
3838
3839 #endif