Having played new-Loopy a bit recently, I've had occasion to think a
[sgt/puzzles] / loopy.c
1 /*
2 * loopy.c:
3 *
4 * An implementation of the Nikoli game 'Loop the loop'.
5 * (c) Mike Pinna, 2005, 2006
6 * Substantially rewritten to allowing for more general types of grid.
7 * (c) Lambros Lambrou 2008
8 *
9 * vim: set shiftwidth=4 :set textwidth=80:
10 */
11
12 /*
13 * Possible future solver enhancements:
14 *
15 * - There's an interesting deductive technique which makes use
16 * of topology rather than just graph theory. Each _face_ in
17 * the grid is either inside or outside the loop; you can tell
18 * that two faces are on the same side of the loop if they're
19 * separated by a LINE_NO (or, more generally, by a path
20 * crossing no LINE_UNKNOWNs and an even number of LINE_YESes),
21 * and on the opposite side of the loop if they're separated by
22 * a LINE_YES (or an odd number of LINE_YESes and no
23 * LINE_UNKNOWNs). Oh, and any face separated from the outside
24 * of the grid by a LINE_YES or a LINE_NO is on the inside or
25 * outside respectively. So if you can track this for all
26 * faces, you figure out the state of the line between a pair
27 * once their relative insideness is known.
28 * + The way I envisage this working is simply to keep an edsf
29 * of all _faces_, which indicates whether they're on
30 * opposite sides of the loop from one another. We also
31 * include a special entry in the edsf for the infinite
32 * exterior "face".
33 * + So, the simple way to do this is to just go through the
34 * edges: every time we see an edge in a state other than
35 * LINE_UNKNOWN which separates two faces that aren't in the
36 * same edsf class, we can rectify that by merging the
37 * classes. Then, conversely, an edge in LINE_UNKNOWN state
38 * which separates two faces that _are_ in the same edsf
39 * class can immediately have its state determined.
40 * + But you can go one better, if you're prepared to loop
41 * over all _pairs_ of edges. Suppose we have edges A and B,
42 * which respectively separate faces A1,A2 and B1,B2.
43 * Suppose that A,B are in the same edge-edsf class and that
44 * A1,B1 (wlog) are in the same face-edsf class; then we can
45 * immediately place A2,B2 into the same face-edsf class (as
46 * each other, not as A1 and A2) one way round or the other.
47 * And conversely again, if A1,B1 are in the same face-edsf
48 * class and so are A2,B2, then we can put A,B into the same
49 * face-edsf class.
50 * * Of course, this deduction requires a quadratic-time
51 * loop over all pairs of edges in the grid, so it should
52 * be reserved until there's nothing easier left to be
53 * done.
54 *
55 * - The generalised grid support has made me (SGT) notice a
56 * possible extension to the loop-avoidance code. When you have
57 * a path of connected edges such that no other edges at all
58 * are incident on any vertex in the middle of the path - or,
59 * alternatively, such that any such edges are already known to
60 * be LINE_NO - then you know those edges are either all
61 * LINE_YES or all LINE_NO. Hence you can mentally merge the
62 * entire path into a single long curly edge for the purposes
63 * of loop avoidance, and look directly at whether or not the
64 * extreme endpoints of the path are connected by some other
65 * route. I find this coming up fairly often when I play on the
66 * octagonal grid setting, so it might be worth implementing in
67 * the solver.
68 *
69 * - (Just a speed optimisation.) Consider some todo list queue where every
70 * time we modify something we mark it for consideration by other bits of
71 * the solver, to save iteration over things that have already been done.
72 */
73
74 #include <stdio.h>
75 #include <stdlib.h>
76 #include <string.h>
77 #include <assert.h>
78 #include <ctype.h>
79 #include <math.h>
80
81 #include "puzzles.h"
82 #include "tree234.h"
83 #include "grid.h"
84
85 /* Debugging options */
86
87 /*
88 #define DEBUG_CACHES
89 #define SHOW_WORKING
90 #define DEBUG_DLINES
91 */
92
93 /* ----------------------------------------------------------------------
94 * Struct, enum and function declarations
95 */
96
97 enum {
98 COL_BACKGROUND,
99 COL_FOREGROUND,
100 COL_LINEUNKNOWN,
101 COL_HIGHLIGHT,
102 COL_MISTAKE,
103 COL_SATISFIED,
104 NCOLOURS
105 };
106
107 struct game_state {
108 grid *game_grid;
109
110 /* Put -1 in a face that doesn't get a clue */
111 signed char *clues;
112
113 /* Array of line states, to store whether each line is
114 * YES, NO or UNKNOWN */
115 char *lines;
116
117 int solved;
118 int cheated;
119
120 /* Used in game_text_format(), so that it knows what type of
121 * grid it's trying to render as ASCII text. */
122 int grid_type;
123 };
124
125 enum solver_status {
126 SOLVER_SOLVED, /* This is the only solution the solver could find */
127 SOLVER_MISTAKE, /* This is definitely not a solution */
128 SOLVER_AMBIGUOUS, /* This _might_ be an ambiguous solution */
129 SOLVER_INCOMPLETE /* This may be a partial solution */
130 };
131
132 /* ------ Solver state ------ */
133 typedef struct normal {
134 /* For each dline, store a bitmask for whether we know:
135 * (bit 0) at least one is YES
136 * (bit 1) at most one is YES */
137 char *dlines;
138 } normal_mode_state;
139
140 typedef struct hard {
141 int *linedsf;
142 } hard_mode_state;
143
144 typedef struct solver_state {
145 game_state *state;
146 enum solver_status solver_status;
147 /* NB looplen is the number of dots that are joined together at a point, ie a
148 * looplen of 1 means there are no lines to a particular dot */
149 int *looplen;
150
151 /* caches */
152 char *dot_yes_count;
153 char *dot_no_count;
154 char *face_yes_count;
155 char *face_no_count;
156 char *dot_solved, *face_solved;
157 int *dotdsf;
158
159 normal_mode_state *normal;
160 hard_mode_state *hard;
161 } solver_state;
162
163 /*
164 * Difficulty levels. I do some macro ickery here to ensure that my
165 * enum and the various forms of my name list always match up.
166 */
167
168 #define DIFFLIST(A) \
169 A(EASY,Easy,e,easy_mode_deductions) \
170 A(NORMAL,Normal,n,normal_mode_deductions) \
171 A(HARD,Hard,h,hard_mode_deductions)
172 #define ENUM(upper,title,lower,fn) DIFF_ ## upper,
173 #define TITLE(upper,title,lower,fn) #title,
174 #define ENCODE(upper,title,lower,fn) #lower
175 #define CONFIG(upper,title,lower,fn) ":" #title
176 #define SOLVER_FN_DECL(upper,title,lower,fn) static int fn(solver_state *);
177 #define SOLVER_FN(upper,title,lower,fn) &fn,
178 enum { DIFFLIST(ENUM) DIFF_MAX };
179 static char const *const diffnames[] = { DIFFLIST(TITLE) };
180 static char const diffchars[] = DIFFLIST(ENCODE);
181 #define DIFFCONFIG DIFFLIST(CONFIG)
182 DIFFLIST(SOLVER_FN_DECL);
183 static int (*(solver_fns[]))(solver_state *) = { DIFFLIST(SOLVER_FN) };
184
185 struct game_params {
186 int w, h;
187 int diff;
188 int type;
189
190 /* Grid generation is expensive, so keep a (ref-counted) reference to the
191 * grid for these parameters, and only generate when required. */
192 grid *game_grid;
193 };
194
195 enum line_state { LINE_YES, LINE_UNKNOWN, LINE_NO };
196
197 #define OPP(line_state) \
198 (2 - line_state)
199
200
201 struct game_drawstate {
202 int started;
203 int tilesize;
204 int flashing;
205 char *lines;
206 char *clue_error;
207 char *clue_satisfied;
208 };
209
210 static char *validate_desc(game_params *params, char *desc);
211 static int dot_order(const game_state* state, int i, char line_type);
212 static int face_order(const game_state* state, int i, char line_type);
213 static solver_state *solve_game_rec(const solver_state *sstate,
214 int diff);
215
216 #ifdef DEBUG_CACHES
217 static void check_caches(const solver_state* sstate);
218 #else
219 #define check_caches(s)
220 #endif
221
222 /* ------- List of grid generators ------- */
223 #define GRIDLIST(A) \
224 A(Squares,grid_new_square) \
225 A(Triangular,grid_new_triangular) \
226 A(Honeycomb,grid_new_honeycomb) \
227 A(Snub-Square,grid_new_snubsquare) \
228 A(Cairo,grid_new_cairo) \
229 A(Great-Hexagonal,grid_new_greathexagonal) \
230 A(Octagonal,grid_new_octagonal) \
231 A(Kites,grid_new_kites)
232
233 #define GRID_NAME(title,fn) #title,
234 #define GRID_CONFIG(title,fn) ":" #title
235 #define GRID_FN(title,fn) &fn,
236 static char const *const gridnames[] = { GRIDLIST(GRID_NAME) };
237 #define GRID_CONFIGS GRIDLIST(GRID_CONFIG)
238 static grid * (*(grid_fns[]))(int w, int h) = { GRIDLIST(GRID_FN) };
239 static const int NUM_GRID_TYPES = sizeof(grid_fns) / sizeof(grid_fns[0]);
240
241 /* Generates a (dynamically allocated) new grid, according to the
242 * type and size requested in params. Does nothing if the grid is already
243 * generated. The allocated grid is owned by the params object, and will be
244 * freed in free_params(). */
245 static void params_generate_grid(game_params *params)
246 {
247 if (!params->game_grid) {
248 params->game_grid = grid_fns[params->type](params->w, params->h);
249 }
250 }
251
252 /* ----------------------------------------------------------------------
253 * Preprocessor magic
254 */
255
256 /* General constants */
257 #define PREFERRED_TILE_SIZE 32
258 #define BORDER(tilesize) ((tilesize) / 2)
259 #define FLASH_TIME 0.5F
260
261 #define BIT_SET(field, bit) ((field) & (1<<(bit)))
262
263 #define SET_BIT(field, bit) (BIT_SET(field, bit) ? FALSE : \
264 ((field) |= (1<<(bit)), TRUE))
265
266 #define CLEAR_BIT(field, bit) (BIT_SET(field, bit) ? \
267 ((field) &= ~(1<<(bit)), TRUE) : FALSE)
268
269 #define CLUE2CHAR(c) \
270 ((c < 0) ? ' ' : c + '0')
271
272 /* ----------------------------------------------------------------------
273 * General struct manipulation and other straightforward code
274 */
275
276 static game_state *dup_game(game_state *state)
277 {
278 game_state *ret = snew(game_state);
279
280 ret->game_grid = state->game_grid;
281 ret->game_grid->refcount++;
282
283 ret->solved = state->solved;
284 ret->cheated = state->cheated;
285
286 ret->clues = snewn(state->game_grid->num_faces, signed char);
287 memcpy(ret->clues, state->clues, state->game_grid->num_faces);
288
289 ret->lines = snewn(state->game_grid->num_edges, char);
290 memcpy(ret->lines, state->lines, state->game_grid->num_edges);
291
292 ret->grid_type = state->grid_type;
293 return ret;
294 }
295
296 static void free_game(game_state *state)
297 {
298 if (state) {
299 grid_free(state->game_grid);
300 sfree(state->clues);
301 sfree(state->lines);
302 sfree(state);
303 }
304 }
305
306 static solver_state *new_solver_state(game_state *state, int diff) {
307 int i;
308 int num_dots = state->game_grid->num_dots;
309 int num_faces = state->game_grid->num_faces;
310 int num_edges = state->game_grid->num_edges;
311 solver_state *ret = snew(solver_state);
312
313 ret->state = dup_game(state);
314
315 ret->solver_status = SOLVER_INCOMPLETE;
316
317 ret->dotdsf = snew_dsf(num_dots);
318 ret->looplen = snewn(num_dots, int);
319
320 for (i = 0; i < num_dots; i++) {
321 ret->looplen[i] = 1;
322 }
323
324 ret->dot_solved = snewn(num_dots, char);
325 ret->face_solved = snewn(num_faces, char);
326 memset(ret->dot_solved, FALSE, num_dots);
327 memset(ret->face_solved, FALSE, num_faces);
328
329 ret->dot_yes_count = snewn(num_dots, char);
330 memset(ret->dot_yes_count, 0, num_dots);
331 ret->dot_no_count = snewn(num_dots, char);
332 memset(ret->dot_no_count, 0, num_dots);
333 ret->face_yes_count = snewn(num_faces, char);
334 memset(ret->face_yes_count, 0, num_faces);
335 ret->face_no_count = snewn(num_faces, char);
336 memset(ret->face_no_count, 0, num_faces);
337
338 if (diff < DIFF_NORMAL) {
339 ret->normal = NULL;
340 } else {
341 ret->normal = snew(normal_mode_state);
342 ret->normal->dlines = snewn(2*num_edges, char);
343 memset(ret->normal->dlines, 0, 2*num_edges);
344 }
345
346 if (diff < DIFF_HARD) {
347 ret->hard = NULL;
348 } else {
349 ret->hard = snew(hard_mode_state);
350 ret->hard->linedsf = snew_dsf(state->game_grid->num_edges);
351 }
352
353 return ret;
354 }
355
356 static void free_solver_state(solver_state *sstate) {
357 if (sstate) {
358 free_game(sstate->state);
359 sfree(sstate->dotdsf);
360 sfree(sstate->looplen);
361 sfree(sstate->dot_solved);
362 sfree(sstate->face_solved);
363 sfree(sstate->dot_yes_count);
364 sfree(sstate->dot_no_count);
365 sfree(sstate->face_yes_count);
366 sfree(sstate->face_no_count);
367
368 if (sstate->normal) {
369 sfree(sstate->normal->dlines);
370 sfree(sstate->normal);
371 }
372
373 if (sstate->hard) {
374 sfree(sstate->hard->linedsf);
375 sfree(sstate->hard);
376 }
377
378 sfree(sstate);
379 }
380 }
381
382 static solver_state *dup_solver_state(const solver_state *sstate) {
383 game_state *state = sstate->state;
384 int num_dots = state->game_grid->num_dots;
385 int num_faces = state->game_grid->num_faces;
386 int num_edges = state->game_grid->num_edges;
387 solver_state *ret = snew(solver_state);
388
389 ret->state = state = dup_game(sstate->state);
390
391 ret->solver_status = sstate->solver_status;
392
393 ret->dotdsf = snewn(num_dots, int);
394 ret->looplen = snewn(num_dots, int);
395 memcpy(ret->dotdsf, sstate->dotdsf,
396 num_dots * sizeof(int));
397 memcpy(ret->looplen, sstate->looplen,
398 num_dots * sizeof(int));
399
400 ret->dot_solved = snewn(num_dots, char);
401 ret->face_solved = snewn(num_faces, char);
402 memcpy(ret->dot_solved, sstate->dot_solved, num_dots);
403 memcpy(ret->face_solved, sstate->face_solved, num_faces);
404
405 ret->dot_yes_count = snewn(num_dots, char);
406 memcpy(ret->dot_yes_count, sstate->dot_yes_count, num_dots);
407 ret->dot_no_count = snewn(num_dots, char);
408 memcpy(ret->dot_no_count, sstate->dot_no_count, num_dots);
409
410 ret->face_yes_count = snewn(num_faces, char);
411 memcpy(ret->face_yes_count, sstate->face_yes_count, num_faces);
412 ret->face_no_count = snewn(num_faces, char);
413 memcpy(ret->face_no_count, sstate->face_no_count, num_faces);
414
415 if (sstate->normal) {
416 ret->normal = snew(normal_mode_state);
417 ret->normal->dlines = snewn(2*num_edges, char);
418 memcpy(ret->normal->dlines, sstate->normal->dlines,
419 2*num_edges);
420 } else {
421 ret->normal = NULL;
422 }
423
424 if (sstate->hard) {
425 ret->hard = snew(hard_mode_state);
426 ret->hard->linedsf = snewn(num_edges, int);
427 memcpy(ret->hard->linedsf, sstate->hard->linedsf,
428 num_edges * sizeof(int));
429 } else {
430 ret->hard = NULL;
431 }
432
433 return ret;
434 }
435
436 static game_params *default_params(void)
437 {
438 game_params *ret = snew(game_params);
439
440 #ifdef SLOW_SYSTEM
441 ret->h = 7;
442 ret->w = 7;
443 #else
444 ret->h = 10;
445 ret->w = 10;
446 #endif
447 ret->diff = DIFF_EASY;
448 ret->type = 0;
449
450 ret->game_grid = NULL;
451
452 return ret;
453 }
454
455 static game_params *dup_params(game_params *params)
456 {
457 game_params *ret = snew(game_params);
458
459 *ret = *params; /* structure copy */
460 if (ret->game_grid) {
461 ret->game_grid->refcount++;
462 }
463 return ret;
464 }
465
466 static const game_params presets[] = {
467 { 7, 7, DIFF_EASY, 0, NULL },
468 { 10, 10, DIFF_EASY, 0, NULL },
469 { 7, 7, DIFF_NORMAL, 0, NULL },
470 { 10, 10, DIFF_NORMAL, 0, NULL },
471 { 7, 7, DIFF_HARD, 0, NULL },
472 { 10, 10, DIFF_HARD, 0, NULL },
473 { 10, 10, DIFF_HARD, 1, NULL },
474 { 12, 10, DIFF_HARD, 2, NULL },
475 { 7, 7, DIFF_HARD, 3, NULL },
476 { 9, 9, DIFF_HARD, 4, NULL },
477 { 5, 4, DIFF_HARD, 5, NULL },
478 { 7, 7, DIFF_HARD, 6, NULL },
479 { 5, 5, DIFF_HARD, 7, NULL },
480 };
481
482 static int game_fetch_preset(int i, char **name, game_params **params)
483 {
484 game_params *tmppar;
485 char buf[80];
486
487 if (i < 0 || i >= lenof(presets))
488 return FALSE;
489
490 tmppar = snew(game_params);
491 *tmppar = presets[i];
492 *params = tmppar;
493 sprintf(buf, "%dx%d %s - %s", tmppar->h, tmppar->w,
494 gridnames[tmppar->type], diffnames[tmppar->diff]);
495 *name = dupstr(buf);
496
497 return TRUE;
498 }
499
500 static void free_params(game_params *params)
501 {
502 if (params->game_grid) {
503 grid_free(params->game_grid);
504 }
505 sfree(params);
506 }
507
508 static void decode_params(game_params *params, char const *string)
509 {
510 if (params->game_grid) {
511 grid_free(params->game_grid);
512 params->game_grid = NULL;
513 }
514 params->h = params->w = atoi(string);
515 params->diff = DIFF_EASY;
516 while (*string && isdigit((unsigned char)*string)) string++;
517 if (*string == 'x') {
518 string++;
519 params->h = atoi(string);
520 while (*string && isdigit((unsigned char)*string)) string++;
521 }
522 if (*string == 't') {
523 string++;
524 params->type = atoi(string);
525 while (*string && isdigit((unsigned char)*string)) string++;
526 }
527 if (*string == 'd') {
528 int i;
529 string++;
530 for (i = 0; i < DIFF_MAX; i++)
531 if (*string == diffchars[i])
532 params->diff = i;
533 if (*string) string++;
534 }
535 }
536
537 static char *encode_params(game_params *params, int full)
538 {
539 char str[80];
540 sprintf(str, "%dx%dt%d", params->w, params->h, params->type);
541 if (full)
542 sprintf(str + strlen(str), "d%c", diffchars[params->diff]);
543 return dupstr(str);
544 }
545
546 static config_item *game_configure(game_params *params)
547 {
548 config_item *ret;
549 char buf[80];
550
551 ret = snewn(5, config_item);
552
553 ret[0].name = "Width";
554 ret[0].type = C_STRING;
555 sprintf(buf, "%d", params->w);
556 ret[0].sval = dupstr(buf);
557 ret[0].ival = 0;
558
559 ret[1].name = "Height";
560 ret[1].type = C_STRING;
561 sprintf(buf, "%d", params->h);
562 ret[1].sval = dupstr(buf);
563 ret[1].ival = 0;
564
565 ret[2].name = "Grid type";
566 ret[2].type = C_CHOICES;
567 ret[2].sval = GRID_CONFIGS;
568 ret[2].ival = params->type;
569
570 ret[3].name = "Difficulty";
571 ret[3].type = C_CHOICES;
572 ret[3].sval = DIFFCONFIG;
573 ret[3].ival = params->diff;
574
575 ret[4].name = NULL;
576 ret[4].type = C_END;
577 ret[4].sval = NULL;
578 ret[4].ival = 0;
579
580 return ret;
581 }
582
583 static game_params *custom_params(config_item *cfg)
584 {
585 game_params *ret = snew(game_params);
586
587 ret->w = atoi(cfg[0].sval);
588 ret->h = atoi(cfg[1].sval);
589 ret->type = cfg[2].ival;
590 ret->diff = cfg[3].ival;
591
592 ret->game_grid = NULL;
593 return ret;
594 }
595
596 static char *validate_params(game_params *params, int full)
597 {
598 if (params->w < 3 || params->h < 3)
599 return "Width and height must both be at least 3";
600 if (params->type < 0 || params->type >= NUM_GRID_TYPES)
601 return "Illegal grid type";
602
603 /*
604 * This shouldn't be able to happen at all, since decode_params
605 * and custom_params will never generate anything that isn't
606 * within range.
607 */
608 assert(params->diff < DIFF_MAX);
609
610 return NULL;
611 }
612
613 /* Returns a newly allocated string describing the current puzzle */
614 static char *state_to_text(const game_state *state)
615 {
616 grid *g = state->game_grid;
617 char *retval;
618 int num_faces = g->num_faces;
619 char *description = snewn(num_faces + 1, char);
620 char *dp = description;
621 int empty_count = 0;
622 int i;
623
624 for (i = 0; i < num_faces; i++) {
625 if (state->clues[i] < 0) {
626 if (empty_count > 25) {
627 dp += sprintf(dp, "%c", (int)(empty_count + 'a' - 1));
628 empty_count = 0;
629 }
630 empty_count++;
631 } else {
632 if (empty_count) {
633 dp += sprintf(dp, "%c", (int)(empty_count + 'a' - 1));
634 empty_count = 0;
635 }
636 dp += sprintf(dp, "%c", (int)CLUE2CHAR(state->clues[i]));
637 }
638 }
639
640 if (empty_count)
641 dp += sprintf(dp, "%c", (int)(empty_count + 'a' - 1));
642
643 retval = dupstr(description);
644 sfree(description);
645
646 return retval;
647 }
648
649 /* We require that the params pass the test in validate_params and that the
650 * description fills the entire game area */
651 static char *validate_desc(game_params *params, char *desc)
652 {
653 int count = 0;
654 grid *g;
655 params_generate_grid(params);
656 g = params->game_grid;
657
658 for (; *desc; ++desc) {
659 if (*desc >= '0' && *desc <= '9') {
660 count++;
661 continue;
662 }
663 if (*desc >= 'a') {
664 count += *desc - 'a' + 1;
665 continue;
666 }
667 return "Unknown character in description";
668 }
669
670 if (count < g->num_faces)
671 return "Description too short for board size";
672 if (count > g->num_faces)
673 return "Description too long for board size";
674
675 return NULL;
676 }
677
678 /* Sums the lengths of the numbers in range [0,n) */
679 /* See equivalent function in solo.c for justification of this. */
680 static int len_0_to_n(int n)
681 {
682 int len = 1; /* Counting 0 as a bit of a special case */
683 int i;
684
685 for (i = 1; i < n; i *= 10) {
686 len += max(n - i, 0);
687 }
688
689 return len;
690 }
691
692 static char *encode_solve_move(const game_state *state)
693 {
694 int len;
695 char *ret, *p;
696 int i;
697 int num_edges = state->game_grid->num_edges;
698
699 /* This is going to return a string representing the moves needed to set
700 * every line in a grid to be the same as the ones in 'state'. The exact
701 * length of this string is predictable. */
702
703 len = 1; /* Count the 'S' prefix */
704 /* Numbers in all lines */
705 len += len_0_to_n(num_edges);
706 /* For each line we also have a letter */
707 len += num_edges;
708
709 ret = snewn(len + 1, char);
710 p = ret;
711
712 p += sprintf(p, "S");
713
714 for (i = 0; i < num_edges; i++) {
715 switch (state->lines[i]) {
716 case LINE_YES:
717 p += sprintf(p, "%dy", i);
718 break;
719 case LINE_NO:
720 p += sprintf(p, "%dn", i);
721 break;
722 }
723 }
724
725 /* No point in doing sums like that if they're going to be wrong */
726 assert(strlen(ret) <= (size_t)len);
727 return ret;
728 }
729
730 static game_ui *new_ui(game_state *state)
731 {
732 return NULL;
733 }
734
735 static void free_ui(game_ui *ui)
736 {
737 }
738
739 static char *encode_ui(game_ui *ui)
740 {
741 return NULL;
742 }
743
744 static void decode_ui(game_ui *ui, char *encoding)
745 {
746 }
747
748 static void game_changed_state(game_ui *ui, game_state *oldstate,
749 game_state *newstate)
750 {
751 }
752
753 static void game_compute_size(game_params *params, int tilesize,
754 int *x, int *y)
755 {
756 grid *g;
757 int grid_width, grid_height, rendered_width, rendered_height;
758
759 params_generate_grid(params);
760 g = params->game_grid;
761 grid_width = g->highest_x - g->lowest_x;
762 grid_height = g->highest_y - g->lowest_y;
763 /* multiply first to minimise rounding error on integer division */
764 rendered_width = grid_width * tilesize / g->tilesize;
765 rendered_height = grid_height * tilesize / g->tilesize;
766 *x = rendered_width + 2 * BORDER(tilesize) + 1;
767 *y = rendered_height + 2 * BORDER(tilesize) + 1;
768 }
769
770 static void game_set_size(drawing *dr, game_drawstate *ds,
771 game_params *params, int tilesize)
772 {
773 ds->tilesize = tilesize;
774 }
775
776 static float *game_colours(frontend *fe, int *ncolours)
777 {
778 float *ret = snewn(4 * NCOLOURS, float);
779
780 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
781
782 ret[COL_FOREGROUND * 3 + 0] = 0.0F;
783 ret[COL_FOREGROUND * 3 + 1] = 0.0F;
784 ret[COL_FOREGROUND * 3 + 2] = 0.0F;
785
786 ret[COL_LINEUNKNOWN * 3 + 0] = 0.8F;
787 ret[COL_LINEUNKNOWN * 3 + 1] = 0.8F;
788 ret[COL_LINEUNKNOWN * 3 + 2] = 0.0F;
789
790 ret[COL_HIGHLIGHT * 3 + 0] = 1.0F;
791 ret[COL_HIGHLIGHT * 3 + 1] = 1.0F;
792 ret[COL_HIGHLIGHT * 3 + 2] = 1.0F;
793
794 ret[COL_MISTAKE * 3 + 0] = 1.0F;
795 ret[COL_MISTAKE * 3 + 1] = 0.0F;
796 ret[COL_MISTAKE * 3 + 2] = 0.0F;
797
798 ret[COL_SATISFIED * 3 + 0] = 0.0F;
799 ret[COL_SATISFIED * 3 + 1] = 0.0F;
800 ret[COL_SATISFIED * 3 + 2] = 0.0F;
801
802 *ncolours = NCOLOURS;
803 return ret;
804 }
805
806 static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
807 {
808 struct game_drawstate *ds = snew(struct game_drawstate);
809 int num_faces = state->game_grid->num_faces;
810 int num_edges = state->game_grid->num_edges;
811
812 ds->tilesize = 0;
813 ds->started = 0;
814 ds->lines = snewn(num_edges, char);
815 ds->clue_error = snewn(num_faces, char);
816 ds->clue_satisfied = snewn(num_faces, char);
817 ds->flashing = 0;
818
819 memset(ds->lines, LINE_UNKNOWN, num_edges);
820 memset(ds->clue_error, 0, num_faces);
821 memset(ds->clue_satisfied, 0, num_faces);
822
823 return ds;
824 }
825
826 static void game_free_drawstate(drawing *dr, game_drawstate *ds)
827 {
828 sfree(ds->clue_error);
829 sfree(ds->clue_satisfied);
830 sfree(ds->lines);
831 sfree(ds);
832 }
833
834 static int game_timing_state(game_state *state, game_ui *ui)
835 {
836 return TRUE;
837 }
838
839 static float game_anim_length(game_state *oldstate, game_state *newstate,
840 int dir, game_ui *ui)
841 {
842 return 0.0F;
843 }
844
845 static int game_can_format_as_text_now(game_params *params)
846 {
847 if (params->type != 0)
848 return FALSE;
849 return TRUE;
850 }
851
852 static char *game_text_format(game_state *state)
853 {
854 int w, h, W, H;
855 int x, y, i;
856 int cell_size;
857 char *ret;
858 grid *g = state->game_grid;
859 grid_face *f;
860
861 assert(state->grid_type == 0);
862
863 /* Work out the basic size unit */
864 f = g->faces; /* first face */
865 assert(f->order == 4);
866 /* The dots are ordered clockwise, so the two opposite
867 * corners are guaranteed to span the square */
868 cell_size = abs(f->dots[0]->x - f->dots[2]->x);
869
870 w = (g->highest_x - g->lowest_x) / cell_size;
871 h = (g->highest_y - g->lowest_y) / cell_size;
872
873 /* Create a blank "canvas" to "draw" on */
874 W = 2 * w + 2;
875 H = 2 * h + 1;
876 ret = snewn(W * H + 1, char);
877 for (y = 0; y < H; y++) {
878 for (x = 0; x < W-1; x++) {
879 ret[y*W + x] = ' ';
880 }
881 ret[y*W + W-1] = '\n';
882 }
883 ret[H*W] = '\0';
884
885 /* Fill in edge info */
886 for (i = 0; i < g->num_edges; i++) {
887 grid_edge *e = g->edges + i;
888 /* Cell coordinates, from (0,0) to (w-1,h-1) */
889 int x1 = (e->dot1->x - g->lowest_x) / cell_size;
890 int x2 = (e->dot2->x - g->lowest_x) / cell_size;
891 int y1 = (e->dot1->y - g->lowest_y) / cell_size;
892 int y2 = (e->dot2->y - g->lowest_y) / cell_size;
893 /* Midpoint, in canvas coordinates (canvas coordinates are just twice
894 * cell coordinates) */
895 x = x1 + x2;
896 y = y1 + y2;
897 switch (state->lines[i]) {
898 case LINE_YES:
899 ret[y*W + x] = (y1 == y2) ? '-' : '|';
900 break;
901 case LINE_NO:
902 ret[y*W + x] = 'x';
903 break;
904 case LINE_UNKNOWN:
905 break; /* already a space */
906 default:
907 assert(!"Illegal line state");
908 }
909 }
910
911 /* Fill in clues */
912 for (i = 0; i < g->num_faces; i++) {
913 int x1, x2, y1, y2;
914
915 f = g->faces + i;
916 assert(f->order == 4);
917 /* Cell coordinates, from (0,0) to (w-1,h-1) */
918 x1 = (f->dots[0]->x - g->lowest_x) / cell_size;
919 x2 = (f->dots[2]->x - g->lowest_x) / cell_size;
920 y1 = (f->dots[0]->y - g->lowest_y) / cell_size;
921 y2 = (f->dots[2]->y - g->lowest_y) / cell_size;
922 /* Midpoint, in canvas coordinates */
923 x = x1 + x2;
924 y = y1 + y2;
925 ret[y*W + x] = CLUE2CHAR(state->clues[i]);
926 }
927 return ret;
928 }
929
930 /* ----------------------------------------------------------------------
931 * Debug code
932 */
933
934 #ifdef DEBUG_CACHES
935 static void check_caches(const solver_state* sstate)
936 {
937 int i;
938 const game_state *state = sstate->state;
939 const grid *g = state->game_grid;
940
941 for (i = 0; i < g->num_dots; i++) {
942 assert(dot_order(state, i, LINE_YES) == sstate->dot_yes_count[i]);
943 assert(dot_order(state, i, LINE_NO) == sstate->dot_no_count[i]);
944 }
945
946 for (i = 0; i < g->num_faces; i++) {
947 assert(face_order(state, i, LINE_YES) == sstate->face_yes_count[i]);
948 assert(face_order(state, i, LINE_NO) == sstate->face_no_count[i]);
949 }
950 }
951
952 #if 0
953 #define check_caches(s) \
954 do { \
955 fprintf(stderr, "check_caches at line %d\n", __LINE__); \
956 check_caches(s); \
957 } while (0)
958 #endif
959 #endif /* DEBUG_CACHES */
960
961 /* ----------------------------------------------------------------------
962 * Solver utility functions
963 */
964
965 /* Sets the line (with index i) to the new state 'line_new', and updates
966 * the cached counts of any affected faces and dots.
967 * Returns TRUE if this actually changed the line's state. */
968 static int solver_set_line(solver_state *sstate, int i,
969 enum line_state line_new
970 #ifdef SHOW_WORKING
971 , const char *reason
972 #endif
973 )
974 {
975 game_state *state = sstate->state;
976 grid *g;
977 grid_edge *e;
978
979 assert(line_new != LINE_UNKNOWN);
980
981 check_caches(sstate);
982
983 if (state->lines[i] == line_new) {
984 return FALSE; /* nothing changed */
985 }
986 state->lines[i] = line_new;
987
988 #ifdef SHOW_WORKING
989 fprintf(stderr, "solver: set line [%d] to %s (%s)\n",
990 i, line_new == LINE_YES ? "YES" : "NO",
991 reason);
992 #endif
993
994 g = state->game_grid;
995 e = g->edges + i;
996
997 /* Update the cache for both dots and both faces affected by this. */
998 if (line_new == LINE_YES) {
999 sstate->dot_yes_count[e->dot1 - g->dots]++;
1000 sstate->dot_yes_count[e->dot2 - g->dots]++;
1001 if (e->face1) {
1002 sstate->face_yes_count[e->face1 - g->faces]++;
1003 }
1004 if (e->face2) {
1005 sstate->face_yes_count[e->face2 - g->faces]++;
1006 }
1007 } else {
1008 sstate->dot_no_count[e->dot1 - g->dots]++;
1009 sstate->dot_no_count[e->dot2 - g->dots]++;
1010 if (e->face1) {
1011 sstate->face_no_count[e->face1 - g->faces]++;
1012 }
1013 if (e->face2) {
1014 sstate->face_no_count[e->face2 - g->faces]++;
1015 }
1016 }
1017
1018 check_caches(sstate);
1019 return TRUE;
1020 }
1021
1022 #ifdef SHOW_WORKING
1023 #define solver_set_line(a, b, c) \
1024 solver_set_line(a, b, c, __FUNCTION__)
1025 #endif
1026
1027 /*
1028 * Merge two dots due to the existence of an edge between them.
1029 * Updates the dsf tracking equivalence classes, and keeps track of
1030 * the length of path each dot is currently a part of.
1031 * Returns TRUE if the dots were already linked, ie if they are part of a
1032 * closed loop, and false otherwise.
1033 */
1034 static int merge_dots(solver_state *sstate, int edge_index)
1035 {
1036 int i, j, len;
1037 grid *g = sstate->state->game_grid;
1038 grid_edge *e = g->edges + edge_index;
1039
1040 i = e->dot1 - g->dots;
1041 j = e->dot2 - g->dots;
1042
1043 i = dsf_canonify(sstate->dotdsf, i);
1044 j = dsf_canonify(sstate->dotdsf, j);
1045
1046 if (i == j) {
1047 return TRUE;
1048 } else {
1049 len = sstate->looplen[i] + sstate->looplen[j];
1050 dsf_merge(sstate->dotdsf, i, j);
1051 i = dsf_canonify(sstate->dotdsf, i);
1052 sstate->looplen[i] = len;
1053 return FALSE;
1054 }
1055 }
1056
1057 /* Merge two lines because the solver has deduced that they must be either
1058 * identical or opposite. Returns TRUE if this is new information, otherwise
1059 * FALSE. */
1060 static int merge_lines(solver_state *sstate, int i, int j, int inverse
1061 #ifdef SHOW_WORKING
1062 , const char *reason
1063 #endif
1064 )
1065 {
1066 int inv_tmp;
1067
1068 assert(i < sstate->state->game_grid->num_edges);
1069 assert(j < sstate->state->game_grid->num_edges);
1070
1071 i = edsf_canonify(sstate->hard->linedsf, i, &inv_tmp);
1072 inverse ^= inv_tmp;
1073 j = edsf_canonify(sstate->hard->linedsf, j, &inv_tmp);
1074 inverse ^= inv_tmp;
1075
1076 edsf_merge(sstate->hard->linedsf, i, j, inverse);
1077
1078 #ifdef SHOW_WORKING
1079 if (i != j) {
1080 fprintf(stderr, "%s [%d] [%d] %s(%s)\n",
1081 __FUNCTION__, i, j,
1082 inverse ? "inverse " : "", reason);
1083 }
1084 #endif
1085 return (i != j);
1086 }
1087
1088 #ifdef SHOW_WORKING
1089 #define merge_lines(a, b, c, d) \
1090 merge_lines(a, b, c, d, __FUNCTION__)
1091 #endif
1092
1093 /* Count the number of lines of a particular type currently going into the
1094 * given dot. */
1095 static int dot_order(const game_state* state, int dot, char line_type)
1096 {
1097 int n = 0;
1098 grid *g = state->game_grid;
1099 grid_dot *d = g->dots + dot;
1100 int i;
1101
1102 for (i = 0; i < d->order; i++) {
1103 grid_edge *e = d->edges[i];
1104 if (state->lines[e - g->edges] == line_type)
1105 ++n;
1106 }
1107 return n;
1108 }
1109
1110 /* Count the number of lines of a particular type currently surrounding the
1111 * given face */
1112 static int face_order(const game_state* state, int face, char line_type)
1113 {
1114 int n = 0;
1115 grid *g = state->game_grid;
1116 grid_face *f = g->faces + face;
1117 int i;
1118
1119 for (i = 0; i < f->order; i++) {
1120 grid_edge *e = f->edges[i];
1121 if (state->lines[e - g->edges] == line_type)
1122 ++n;
1123 }
1124 return n;
1125 }
1126
1127 /* Set all lines bordering a dot of type old_type to type new_type
1128 * Return value tells caller whether this function actually did anything */
1129 static int dot_setall(solver_state *sstate, int dot,
1130 char old_type, char new_type)
1131 {
1132 int retval = FALSE, r;
1133 game_state *state = sstate->state;
1134 grid *g;
1135 grid_dot *d;
1136 int i;
1137
1138 if (old_type == new_type)
1139 return FALSE;
1140
1141 g = state->game_grid;
1142 d = g->dots + dot;
1143
1144 for (i = 0; i < d->order; i++) {
1145 int line_index = d->edges[i] - g->edges;
1146 if (state->lines[line_index] == old_type) {
1147 r = solver_set_line(sstate, line_index, new_type);
1148 assert(r == TRUE);
1149 retval = TRUE;
1150 }
1151 }
1152 return retval;
1153 }
1154
1155 /* Set all lines bordering a face of type old_type to type new_type */
1156 static int face_setall(solver_state *sstate, int face,
1157 char old_type, char new_type)
1158 {
1159 int retval = FALSE, r;
1160 game_state *state = sstate->state;
1161 grid *g;
1162 grid_face *f;
1163 int i;
1164
1165 if (old_type == new_type)
1166 return FALSE;
1167
1168 g = state->game_grid;
1169 f = g->faces + face;
1170
1171 for (i = 0; i < f->order; i++) {
1172 int line_index = f->edges[i] - g->edges;
1173 if (state->lines[line_index] == old_type) {
1174 r = solver_set_line(sstate, line_index, new_type);
1175 assert(r == TRUE);
1176 retval = TRUE;
1177 }
1178 }
1179 return retval;
1180 }
1181
1182 /* ----------------------------------------------------------------------
1183 * Loop generation and clue removal
1184 */
1185
1186 /* We're going to store a list of current candidate faces for lighting.
1187 * Each face gets a 'score', which tells us how adding that face right
1188 * now would affect the length of the solution loop. We're trying to
1189 * maximise that quantity so will bias our random selection of faces to
1190 * light towards those with high scores */
1191 struct face {
1192 int score;
1193 unsigned long random;
1194 grid_face *f;
1195 };
1196
1197 static int get_face_cmpfn(void *v1, void *v2)
1198 {
1199 struct face *f1 = v1;
1200 struct face *f2 = v2;
1201 /* These grid_face pointers always point into the same list of
1202 * 'grid_face's, so it's valid to subtract them. */
1203 return f1->f - f2->f;
1204 }
1205
1206 static int face_sort_cmpfn(void *v1, void *v2)
1207 {
1208 struct face *f1 = v1;
1209 struct face *f2 = v2;
1210 int r;
1211
1212 r = f2->score - f1->score;
1213 if (r) {
1214 return r;
1215 }
1216
1217 if (f1->random < f2->random)
1218 return -1;
1219 else if (f1->random > f2->random)
1220 return 1;
1221
1222 /*
1223 * It's _just_ possible that two faces might have been given
1224 * the same random value. In that situation, fall back to
1225 * comparing based on the positions within the grid's face-list.
1226 * This introduces a tiny directional bias, but not a significant one.
1227 */
1228 return get_face_cmpfn(f1, f2);
1229 }
1230
1231 enum { FACE_LIT, FACE_UNLIT };
1232
1233 /* face should be of type grid_face* here. */
1234 #define FACE_LIT_STATE(face) \
1235 ( (face) == NULL ? FACE_UNLIT : \
1236 board[(face) - g->faces] )
1237
1238 /* 'board' is an array of these enums, indicating which faces are
1239 * currently lit. Returns whether it's legal to light up the
1240 * given face. */
1241 static int can_light_face(grid *g, char* board, int face_index)
1242 {
1243 int i, j;
1244 grid_face *test_face = g->faces + face_index;
1245 grid_face *starting_face, *current_face;
1246 int transitions;
1247 int current_state, s;
1248 int found_lit_neighbour = FALSE;
1249 assert(board[face_index] == FACE_UNLIT);
1250
1251 /* Can only consider a face for lighting if it's adjacent to an
1252 * already lit face. */
1253 for (i = 0; i < test_face->order; i++) {
1254 grid_edge *e = test_face->edges[i];
1255 grid_face *f = (e->face1 == test_face) ? e->face2 : e->face1;
1256 if (FACE_LIT_STATE(f) == FACE_LIT) {
1257 found_lit_neighbour = TRUE;
1258 break;
1259 }
1260 }
1261 if (!found_lit_neighbour)
1262 return FALSE;
1263
1264 /* Need to avoid creating a loop of lit faces around some unlit faces.
1265 * Also need to avoid meeting another lit face at a corner, with
1266 * unlit faces in between. Here's a simple test that (I believe) takes
1267 * care of both these conditions:
1268 *
1269 * Take the circular path formed by this face's edges, and inflate it
1270 * slightly outwards. Imagine walking around this path and consider
1271 * the faces that you visit in sequence. This will include all faces
1272 * touching the given face, either along an edge or just at a corner.
1273 * Count the number of LIT/UNLIT transitions you encounter, as you walk
1274 * along the complete loop. This will obviously turn out to be an even
1275 * number.
1276 * If 0, we're either in a completely unlit zone, or this face is a hole
1277 * in a completely lit zone. If the former, we would create a brand new
1278 * island by lighting this face. And the latter ought to be impossible -
1279 * it would mean there's already a lit loop, so something went wrong
1280 * earlier.
1281 * If 4 or greater, there are too many separate lit regions touching this
1282 * face, and lighting it up would create a loop or a corner-violation.
1283 * The only allowed case is when the count is exactly 2. */
1284
1285 /* i points to a dot around the test face.
1286 * j points to a face around the i^th dot.
1287 * The current face will always be:
1288 * test_face->dots[i]->faces[j]
1289 * We assume dots go clockwise around the test face,
1290 * and faces go clockwise around dots. */
1291 i = j = 0;
1292 starting_face = test_face->dots[0]->faces[0];
1293 if (starting_face == test_face) {
1294 j = 1;
1295 starting_face = test_face->dots[0]->faces[1];
1296 }
1297 current_face = starting_face;
1298 transitions = 0;
1299 current_state = FACE_LIT_STATE(current_face);
1300
1301 do {
1302 /* Advance to next face.
1303 * Need to loop here because it might take several goes to
1304 * find it. */
1305 while (TRUE) {
1306 j++;
1307 if (j == test_face->dots[i]->order)
1308 j = 0;
1309
1310 if (test_face->dots[i]->faces[j] == test_face) {
1311 /* Advance to next dot round test_face, then
1312 * find current_face around new dot
1313 * and advance to the next face clockwise */
1314 i++;
1315 if (i == test_face->order)
1316 i = 0;
1317 for (j = 0; j < test_face->dots[i]->order; j++) {
1318 if (test_face->dots[i]->faces[j] == current_face)
1319 break;
1320 }
1321 /* Must actually find current_face around new dot,
1322 * or else something's wrong with the grid. */
1323 assert(j != test_face->dots[i]->order);
1324 /* Found, so advance to next face and try again */
1325 } else {
1326 break;
1327 }
1328 }
1329 /* (i,j) are now advanced to next face */
1330 current_face = test_face->dots[i]->faces[j];
1331 s = FACE_LIT_STATE(current_face);
1332 if (s != current_state) {
1333 ++transitions;
1334 current_state = s;
1335 if (transitions > 2)
1336 return FALSE; /* no point in continuing */
1337 }
1338 } while (current_face != starting_face);
1339
1340 return (transitions == 2) ? TRUE : FALSE;
1341 }
1342
1343 /* The 'score' of a face reflects its current desirability for selection
1344 * as the next face to light. We want to encourage moving into uncharted
1345 * areas so we give scores according to how many of the face's neighbours
1346 * are currently unlit. */
1347 static int face_score(grid *g, char *board, grid_face *face)
1348 {
1349 /* Simple formula: score = neighbours unlit - neighbours lit */
1350 int lit_count = 0, unlit_count = 0;
1351 int i;
1352 grid_face *f;
1353 grid_edge *e;
1354 for (i = 0; i < face->order; i++) {
1355 e = face->edges[i];
1356 f = (e->face1 == face) ? e->face2 : e->face1;
1357 if (FACE_LIT_STATE(f) == FACE_LIT)
1358 ++lit_count;
1359 else
1360 ++unlit_count;
1361 }
1362 return unlit_count - lit_count;
1363 }
1364
1365 /* Generate a new complete set of clues for the given game_state. */
1366 static void add_full_clues(game_state *state, random_state *rs)
1367 {
1368 signed char *clues = state->clues;
1369 char *board;
1370 grid *g = state->game_grid;
1371 int i, j, c;
1372 int num_faces = g->num_faces;
1373 int first_time = TRUE;
1374
1375 struct face *face, *tmpface;
1376 struct face face_pos;
1377
1378 /* These will contain exactly the same information, sorted into different
1379 * orders */
1380 tree234 *lightable_faces_sorted, *lightable_faces_gettable;
1381
1382 #define IS_LIGHTING_CANDIDATE(i) \
1383 (board[i] == FACE_UNLIT && \
1384 can_light_face(g, board, i))
1385
1386 board = snewn(num_faces, char);
1387
1388 /* Make a board */
1389 memset(board, FACE_UNLIT, num_faces);
1390
1391 /* We need a way of favouring faces that will increase our loopiness.
1392 * We do this by maintaining a list of all candidate faces sorted by
1393 * their score and choose randomly from that with appropriate skew.
1394 * In order to avoid consistently biasing towards particular faces, we
1395 * need the sort order _within_ each group of scores to be completely
1396 * random. But it would be abusing the hospitality of the tree234 data
1397 * structure if our comparison function were nondeterministic :-). So with
1398 * each face we associate a random number that does not change during a
1399 * particular run of the generator, and use that as a secondary sort key.
1400 * Yes, this means we will be biased towards particular random faces in
1401 * any one run but that doesn't actually matter. */
1402
1403 lightable_faces_sorted = newtree234(face_sort_cmpfn);
1404 lightable_faces_gettable = newtree234(get_face_cmpfn);
1405 #define ADD_FACE(f) \
1406 do { \
1407 struct face *x = add234(lightable_faces_sorted, f); \
1408 assert(x == f); \
1409 x = add234(lightable_faces_gettable, f); \
1410 assert(x == f); \
1411 } while (0)
1412
1413 #define REMOVE_FACE(f) \
1414 do { \
1415 struct face *x = del234(lightable_faces_sorted, f); \
1416 assert(x); \
1417 x = del234(lightable_faces_gettable, f); \
1418 assert(x); \
1419 } while (0)
1420
1421 /* Light faces one at a time until the board is interesting enough */
1422 while (TRUE)
1423 {
1424 if (first_time) {
1425 first_time = FALSE;
1426 /* lightable_faces_xxx are empty, so start the process by
1427 * lighting up the middle face. These tree234s should
1428 * remain empty, consistent with what would happen if
1429 * first_time were FALSE. */
1430 board[g->middle_face - g->faces] = FACE_LIT;
1431 face = snew(struct face);
1432 face->f = g->middle_face;
1433 /* No need to initialise any more of 'face' here, no other fields
1434 * are used in this case. */
1435 } else {
1436 /* We have count234(lightable_faces_gettable) possibilities, and in
1437 * lightable_faces_sorted they are sorted with the most desirable
1438 * first. */
1439 c = count234(lightable_faces_sorted);
1440 if (c == 0)
1441 break;
1442 assert(c == count234(lightable_faces_gettable));
1443
1444 /* Check that the best face available is any good */
1445 face = (struct face *)index234(lightable_faces_sorted, 0);
1446 assert(face);
1447
1448 /*
1449 * The situation for a general grid is slightly different from
1450 * a square grid. Decreasing the perimeter should be allowed
1451 * sometimes (think about creating a hexagon of lit triangles,
1452 * for example). For if it were _never_ done, then the user would
1453 * be able to illicitly deduce certain things. So we do it
1454 * sometimes but not always.
1455 */
1456 if (face->score <= 0 && random_upto(rs, 2) == 0) {
1457 break;
1458 }
1459
1460 assert(face->f); /* not the infinite face */
1461 assert(FACE_LIT_STATE(face->f) == FACE_UNLIT);
1462
1463 /* Update data structures */
1464 /* Light up the face and remove it from the lists */
1465 board[face->f - g->faces] = FACE_LIT;
1466 REMOVE_FACE(face);
1467 }
1468
1469 /* The face we've just lit up potentially affects the lightability
1470 * of any neighbouring faces (touching at a corner or edge). So the
1471 * search needs to be conducted around all faces touching the one
1472 * we've just lit. Iterate over its corners, then over each corner's
1473 * faces. */
1474 for (i = 0; i < face->f->order; i++) {
1475 grid_dot *d = face->f->dots[i];
1476 for (j = 0; j < d->order; j++) {
1477 grid_face *f2 = d->faces[j];
1478 if (f2 == NULL)
1479 continue;
1480 if (f2 == face->f)
1481 continue;
1482 face_pos.f = f2;
1483 tmpface = find234(lightable_faces_gettable, &face_pos, NULL);
1484 if (tmpface) {
1485 assert(tmpface->f == face_pos.f);
1486 assert(FACE_LIT_STATE(tmpface->f) == FACE_UNLIT);
1487 REMOVE_FACE(tmpface);
1488 } else {
1489 tmpface = snew(struct face);
1490 tmpface->f = face_pos.f;
1491 tmpface->random = random_bits(rs, 31);
1492 }
1493 tmpface->score = face_score(g, board, tmpface->f);
1494
1495 if (IS_LIGHTING_CANDIDATE(tmpface->f - g->faces)) {
1496 ADD_FACE(tmpface);
1497 } else {
1498 sfree(tmpface);
1499 }
1500 }
1501 }
1502 sfree(face);
1503 }
1504
1505 /* Clean up */
1506 while ((face = delpos234(lightable_faces_gettable, 0)) != NULL)
1507 sfree(face);
1508 freetree234(lightable_faces_gettable);
1509 freetree234(lightable_faces_sorted);
1510
1511 /* Fill out all the clues by initialising to 0, then iterating over
1512 * all edges and incrementing each clue as we find edges that border
1513 * between LIT/UNLIT faces */
1514 memset(clues, 0, num_faces);
1515 for (i = 0; i < g->num_edges; i++) {
1516 grid_edge *e = g->edges + i;
1517 grid_face *f1 = e->face1;
1518 grid_face *f2 = e->face2;
1519 if (FACE_LIT_STATE(f1) != FACE_LIT_STATE(f2)) {
1520 if (f1) clues[f1 - g->faces]++;
1521 if (f2) clues[f2 - g->faces]++;
1522 }
1523 }
1524
1525 sfree(board);
1526 }
1527
1528
1529 static int game_has_unique_soln(const game_state *state, int diff)
1530 {
1531 int ret;
1532 solver_state *sstate_new;
1533 solver_state *sstate = new_solver_state((game_state *)state, diff);
1534
1535 sstate_new = solve_game_rec(sstate, diff);
1536
1537 assert(sstate_new->solver_status != SOLVER_MISTAKE);
1538 ret = (sstate_new->solver_status == SOLVER_SOLVED);
1539
1540 free_solver_state(sstate_new);
1541 free_solver_state(sstate);
1542
1543 return ret;
1544 }
1545
1546
1547 /* Remove clues one at a time at random. */
1548 static game_state *remove_clues(game_state *state, random_state *rs,
1549 int diff)
1550 {
1551 int *face_list;
1552 int num_faces = state->game_grid->num_faces;
1553 game_state *ret = dup_game(state), *saved_ret;
1554 int n;
1555
1556 /* We need to remove some clues. We'll do this by forming a list of all
1557 * available clues, shuffling it, then going along one at a
1558 * time clearing each clue in turn for which doing so doesn't render the
1559 * board unsolvable. */
1560 face_list = snewn(num_faces, int);
1561 for (n = 0; n < num_faces; ++n) {
1562 face_list[n] = n;
1563 }
1564
1565 shuffle(face_list, num_faces, sizeof(int), rs);
1566
1567 for (n = 0; n < num_faces; ++n) {
1568 saved_ret = dup_game(ret);
1569 ret->clues[face_list[n]] = -1;
1570
1571 if (game_has_unique_soln(ret, diff)) {
1572 free_game(saved_ret);
1573 } else {
1574 free_game(ret);
1575 ret = saved_ret;
1576 }
1577 }
1578 sfree(face_list);
1579
1580 return ret;
1581 }
1582
1583
1584 static char *new_game_desc(game_params *params, random_state *rs,
1585 char **aux, int interactive)
1586 {
1587 /* solution and description both use run-length encoding in obvious ways */
1588 char *retval;
1589 grid *g;
1590 game_state *state = snew(game_state);
1591 game_state *state_new;
1592 params_generate_grid(params);
1593 state->game_grid = g = params->game_grid;
1594 g->refcount++;
1595 state->clues = snewn(g->num_faces, signed char);
1596 state->lines = snewn(g->num_edges, char);
1597
1598 state->grid_type = params->type;
1599
1600 newboard_please:
1601
1602 memset(state->lines, LINE_UNKNOWN, g->num_edges);
1603
1604 state->solved = state->cheated = FALSE;
1605
1606 /* Get a new random solvable board with all its clues filled in. Yes, this
1607 * can loop for ever if the params are suitably unfavourable, but
1608 * preventing games smaller than 4x4 seems to stop this happening */
1609 do {
1610 add_full_clues(state, rs);
1611 } while (!game_has_unique_soln(state, params->diff));
1612
1613 state_new = remove_clues(state, rs, params->diff);
1614 free_game(state);
1615 state = state_new;
1616
1617
1618 if (params->diff > 0 && game_has_unique_soln(state, params->diff-1)) {
1619 #ifdef SHOW_WORKING
1620 fprintf(stderr, "Rejecting board, it is too easy\n");
1621 #endif
1622 goto newboard_please;
1623 }
1624
1625 retval = state_to_text(state);
1626
1627 free_game(state);
1628
1629 assert(!validate_desc(params, retval));
1630
1631 return retval;
1632 }
1633
1634 static game_state *new_game(midend *me, game_params *params, char *desc)
1635 {
1636 int i;
1637 game_state *state = snew(game_state);
1638 int empties_to_make = 0;
1639 int n;
1640 const char *dp = desc;
1641 grid *g;
1642 int num_faces, num_edges;
1643
1644 params_generate_grid(params);
1645 state->game_grid = g = params->game_grid;
1646 g->refcount++;
1647 num_faces = g->num_faces;
1648 num_edges = g->num_edges;
1649
1650 state->clues = snewn(num_faces, signed char);
1651 state->lines = snewn(num_edges, char);
1652
1653 state->solved = state->cheated = FALSE;
1654
1655 state->grid_type = params->type;
1656
1657 for (i = 0; i < num_faces; i++) {
1658 if (empties_to_make) {
1659 empties_to_make--;
1660 state->clues[i] = -1;
1661 continue;
1662 }
1663
1664 assert(*dp);
1665 n = *dp - '0';
1666 if (n >= 0 && n < 10) {
1667 state->clues[i] = n;
1668 } else {
1669 n = *dp - 'a' + 1;
1670 assert(n > 0);
1671 state->clues[i] = -1;
1672 empties_to_make = n - 1;
1673 }
1674 ++dp;
1675 }
1676
1677 memset(state->lines, LINE_UNKNOWN, num_edges);
1678
1679 return state;
1680 }
1681
1682 enum { LOOP_NONE=0, LOOP_SOLN, LOOP_NOT_SOLN };
1683
1684 /* ----------------------------------------------------------------------
1685 * Solver logic
1686 *
1687 * Our solver modes operate as follows. Each mode also uses the modes above it.
1688 *
1689 * Easy Mode
1690 * Just implement the rules of the game.
1691 *
1692 * Normal Mode
1693 * For each (adjacent) pair of lines through each dot we store a bit for
1694 * whether at least one of them is on and whether at most one is on. (If we
1695 * know both or neither is on that's already stored more directly.)
1696 *
1697 * Advanced Mode
1698 * Use edsf data structure to make equivalence classes of lines that are
1699 * known identical to or opposite to one another.
1700 */
1701
1702
1703 /* DLines:
1704 * For general grids, we consider "dlines" to be pairs of lines joined
1705 * at a dot. The lines must be adjacent around the dot, so we can think of
1706 * a dline as being a dot+face combination. Or, a dot+edge combination where
1707 * the second edge is taken to be the next clockwise edge from the dot.
1708 * Original loopy code didn't have this extra restriction of the lines being
1709 * adjacent. From my tests with square grids, this extra restriction seems to
1710 * take little, if anything, away from the quality of the puzzles.
1711 * A dline can be uniquely identified by an edge/dot combination, given that
1712 * a dline-pair always goes clockwise around its common dot. The edge/dot
1713 * combination can be represented by an edge/bool combination - if bool is
1714 * TRUE, use edge->dot1 else use edge->dot2. So the total number of dlines is
1715 * exactly twice the number of edges in the grid - although the dlines
1716 * spanning the infinite face are not all that useful to the solver.
1717 * Note that, by convention, a dline goes clockwise around its common dot,
1718 * which means the dline goes anti-clockwise around its common face.
1719 */
1720
1721 /* Helper functions for obtaining an index into an array of dlines, given
1722 * various information. We assume the grid layout conventions about how
1723 * the various lists are interleaved - see grid_make_consistent() for
1724 * details. */
1725
1726 /* i points to the first edge of the dline pair, reading clockwise around
1727 * the dot. */
1728 static int dline_index_from_dot(grid *g, grid_dot *d, int i)
1729 {
1730 grid_edge *e = d->edges[i];
1731 int ret;
1732 #ifdef DEBUG_DLINES
1733 grid_edge *e2;
1734 int i2 = i+1;
1735 if (i2 == d->order) i2 = 0;
1736 e2 = d->edges[i2];
1737 #endif
1738 ret = 2 * (e - g->edges) + ((e->dot1 == d) ? 1 : 0);
1739 #ifdef DEBUG_DLINES
1740 printf("dline_index_from_dot: d=%d,i=%d, edges [%d,%d] - %d\n",
1741 (int)(d - g->dots), i, (int)(e - g->edges),
1742 (int)(e2 - g->edges), ret);
1743 #endif
1744 return ret;
1745 }
1746 /* i points to the second edge of the dline pair, reading clockwise around
1747 * the face. That is, the edges of the dline, starting at edge{i}, read
1748 * anti-clockwise around the face. By layout conventions, the common dot
1749 * of the dline will be f->dots[i] */
1750 static int dline_index_from_face(grid *g, grid_face *f, int i)
1751 {
1752 grid_edge *e = f->edges[i];
1753 grid_dot *d = f->dots[i];
1754 int ret;
1755 #ifdef DEBUG_DLINES
1756 grid_edge *e2;
1757 int i2 = i - 1;
1758 if (i2 < 0) i2 += f->order;
1759 e2 = f->edges[i2];
1760 #endif
1761 ret = 2 * (e - g->edges) + ((e->dot1 == d) ? 1 : 0);
1762 #ifdef DEBUG_DLINES
1763 printf("dline_index_from_face: f=%d,i=%d, edges [%d,%d] - %d\n",
1764 (int)(f - g->faces), i, (int)(e - g->edges),
1765 (int)(e2 - g->edges), ret);
1766 #endif
1767 return ret;
1768 }
1769 static int is_atleastone(const char *dline_array, int index)
1770 {
1771 return BIT_SET(dline_array[index], 0);
1772 }
1773 static int set_atleastone(char *dline_array, int index)
1774 {
1775 return SET_BIT(dline_array[index], 0);
1776 }
1777 static int is_atmostone(const char *dline_array, int index)
1778 {
1779 return BIT_SET(dline_array[index], 1);
1780 }
1781 static int set_atmostone(char *dline_array, int index)
1782 {
1783 return SET_BIT(dline_array[index], 1);
1784 }
1785
1786 static void array_setall(char *array, char from, char to, int len)
1787 {
1788 char *p = array, *p_old = p;
1789 int len_remaining = len;
1790
1791 while ((p = memchr(p, from, len_remaining))) {
1792 *p = to;
1793 len_remaining -= p - p_old;
1794 p_old = p;
1795 }
1796 }
1797
1798 /* Helper, called when doing dline dot deductions, in the case where we
1799 * have 4 UNKNOWNs, and two of them (adjacent) have *exactly* one YES between
1800 * them (because of dline atmostone/atleastone).
1801 * On entry, edge points to the first of these two UNKNOWNs. This function
1802 * will find the opposite UNKNOWNS (if they are adjacent to one another)
1803 * and set their corresponding dline to atleastone. (Setting atmostone
1804 * already happens in earlier dline deductions) */
1805 static int dline_set_opp_atleastone(solver_state *sstate,
1806 grid_dot *d, int edge)
1807 {
1808 game_state *state = sstate->state;
1809 grid *g = state->game_grid;
1810 int N = d->order;
1811 int opp, opp2;
1812 for (opp = 0; opp < N; opp++) {
1813 int opp_dline_index;
1814 if (opp == edge || opp == edge+1 || opp == edge-1)
1815 continue;
1816 if (opp == 0 && edge == N-1)
1817 continue;
1818 if (opp == N-1 && edge == 0)
1819 continue;
1820 opp2 = opp + 1;
1821 if (opp2 == N) opp2 = 0;
1822 /* Check if opp, opp2 point to LINE_UNKNOWNs */
1823 if (state->lines[d->edges[opp] - g->edges] != LINE_UNKNOWN)
1824 continue;
1825 if (state->lines[d->edges[opp2] - g->edges] != LINE_UNKNOWN)
1826 continue;
1827 /* Found opposite UNKNOWNS and they're next to each other */
1828 opp_dline_index = dline_index_from_dot(g, d, opp);
1829 return set_atleastone(sstate->normal->dlines, opp_dline_index);
1830 }
1831 return FALSE;
1832 }
1833
1834
1835 /* Set pairs of lines around this face which are known to be identical, to
1836 * the given line_state */
1837 static int face_setall_identical(solver_state *sstate, int face_index,
1838 enum line_state line_new)
1839 {
1840 /* can[dir] contains the canonical line associated with the line in
1841 * direction dir from the square in question. Similarly inv[dir] is
1842 * whether or not the line in question is inverse to its canonical
1843 * element. */
1844 int retval = FALSE;
1845 game_state *state = sstate->state;
1846 grid *g = state->game_grid;
1847 grid_face *f = g->faces + face_index;
1848 int N = f->order;
1849 int i, j;
1850 int can1, can2, inv1, inv2;
1851
1852 for (i = 0; i < N; i++) {
1853 int line1_index = f->edges[i] - g->edges;
1854 if (state->lines[line1_index] != LINE_UNKNOWN)
1855 continue;
1856 for (j = i + 1; j < N; j++) {
1857 int line2_index = f->edges[j] - g->edges;
1858 if (state->lines[line2_index] != LINE_UNKNOWN)
1859 continue;
1860
1861 /* Found two UNKNOWNS */
1862 can1 = edsf_canonify(sstate->hard->linedsf, line1_index, &inv1);
1863 can2 = edsf_canonify(sstate->hard->linedsf, line2_index, &inv2);
1864 if (can1 == can2 && inv1 == inv2) {
1865 solver_set_line(sstate, line1_index, line_new);
1866 solver_set_line(sstate, line2_index, line_new);
1867 }
1868 }
1869 }
1870 return retval;
1871 }
1872
1873 /* Given a dot or face, and a count of LINE_UNKNOWNs, find them and
1874 * return the edge indices into e. */
1875 static void find_unknowns(game_state *state,
1876 grid_edge **edge_list, /* Edge list to search (from a face or a dot) */
1877 int expected_count, /* Number of UNKNOWNs (comes from solver's cache) */
1878 int *e /* Returned edge indices */)
1879 {
1880 int c = 0;
1881 grid *g = state->game_grid;
1882 while (c < expected_count) {
1883 int line_index = *edge_list - g->edges;
1884 if (state->lines[line_index] == LINE_UNKNOWN) {
1885 e[c] = line_index;
1886 c++;
1887 }
1888 ++edge_list;
1889 }
1890 }
1891
1892 /* If we have a list of edges, and we know whether the number of YESs should
1893 * be odd or even, and there are only a few UNKNOWNs, we can do some simple
1894 * linedsf deductions. This can be used for both face and dot deductions.
1895 * Returns the difficulty level of the next solver that should be used,
1896 * or DIFF_MAX if no progress was made. */
1897 static int parity_deductions(solver_state *sstate,
1898 grid_edge **edge_list, /* Edge list (from a face or a dot) */
1899 int total_parity, /* Expected number of YESs modulo 2 (either 0 or 1) */
1900 int unknown_count)
1901 {
1902 game_state *state = sstate->state;
1903 int diff = DIFF_MAX;
1904 int *linedsf = sstate->hard->linedsf;
1905
1906 if (unknown_count == 2) {
1907 /* Lines are known alike/opposite, depending on inv. */
1908 int e[2];
1909 find_unknowns(state, edge_list, 2, e);
1910 if (merge_lines(sstate, e[0], e[1], total_parity))
1911 diff = min(diff, DIFF_HARD);
1912 } else if (unknown_count == 3) {
1913 int e[3];
1914 int can[3]; /* canonical edges */
1915 int inv[3]; /* whether can[x] is inverse to e[x] */
1916 find_unknowns(state, edge_list, 3, e);
1917 can[0] = edsf_canonify(linedsf, e[0], inv);
1918 can[1] = edsf_canonify(linedsf, e[1], inv+1);
1919 can[2] = edsf_canonify(linedsf, e[2], inv+2);
1920 if (can[0] == can[1]) {
1921 if (solver_set_line(sstate, e[2], (total_parity^inv[0]^inv[1]) ?
1922 LINE_YES : LINE_NO))
1923 diff = min(diff, DIFF_EASY);
1924 }
1925 if (can[0] == can[2]) {
1926 if (solver_set_line(sstate, e[1], (total_parity^inv[0]^inv[2]) ?
1927 LINE_YES : LINE_NO))
1928 diff = min(diff, DIFF_EASY);
1929 }
1930 if (can[1] == can[2]) {
1931 if (solver_set_line(sstate, e[0], (total_parity^inv[1]^inv[2]) ?
1932 LINE_YES : LINE_NO))
1933 diff = min(diff, DIFF_EASY);
1934 }
1935 } else if (unknown_count == 4) {
1936 int e[4];
1937 int can[4]; /* canonical edges */
1938 int inv[4]; /* whether can[x] is inverse to e[x] */
1939 find_unknowns(state, edge_list, 4, e);
1940 can[0] = edsf_canonify(linedsf, e[0], inv);
1941 can[1] = edsf_canonify(linedsf, e[1], inv+1);
1942 can[2] = edsf_canonify(linedsf, e[2], inv+2);
1943 can[3] = edsf_canonify(linedsf, e[3], inv+3);
1944 if (can[0] == can[1]) {
1945 if (merge_lines(sstate, e[2], e[3], total_parity^inv[0]^inv[1]))
1946 diff = min(diff, DIFF_HARD);
1947 } else if (can[0] == can[2]) {
1948 if (merge_lines(sstate, e[1], e[3], total_parity^inv[0]^inv[2]))
1949 diff = min(diff, DIFF_HARD);
1950 } else if (can[0] == can[3]) {
1951 if (merge_lines(sstate, e[1], e[2], total_parity^inv[0]^inv[3]))
1952 diff = min(diff, DIFF_HARD);
1953 } else if (can[1] == can[2]) {
1954 if (merge_lines(sstate, e[0], e[3], total_parity^inv[1]^inv[2]))
1955 diff = min(diff, DIFF_HARD);
1956 } else if (can[1] == can[3]) {
1957 if (merge_lines(sstate, e[0], e[2], total_parity^inv[1]^inv[3]))
1958 diff = min(diff, DIFF_HARD);
1959 } else if (can[2] == can[3]) {
1960 if (merge_lines(sstate, e[0], e[1], total_parity^inv[2]^inv[3]))
1961 diff = min(diff, DIFF_HARD);
1962 }
1963 }
1964 return diff;
1965 }
1966
1967
1968 /*
1969 * These are the main solver functions.
1970 *
1971 * Their return values are diff values corresponding to the lowest mode solver
1972 * that would notice the work that they have done. For example if the normal
1973 * mode solver adds actual lines or crosses, it will return DIFF_EASY as the
1974 * easy mode solver might be able to make progress using that. It doesn't make
1975 * sense for one of them to return a diff value higher than that of the
1976 * function itself.
1977 *
1978 * Each function returns the lowest value it can, as early as possible, in
1979 * order to try and pass as much work as possible back to the lower level
1980 * solvers which progress more quickly.
1981 */
1982
1983 /* PROPOSED NEW DESIGN:
1984 * We have a work queue consisting of 'events' notifying us that something has
1985 * happened that a particular solver mode might be interested in. For example
1986 * the hard mode solver might do something that helps the normal mode solver at
1987 * dot [x,y] in which case it will enqueue an event recording this fact. Then
1988 * we pull events off the work queue, and hand each in turn to the solver that
1989 * is interested in them. If a solver reports that it failed we pass the same
1990 * event on to progressively more advanced solvers and the loop detector. Once
1991 * we've exhausted an event, or it has helped us progress, we drop it and
1992 * continue to the next one. The events are sorted first in order of solver
1993 * complexity (easy first) then order of insertion (oldest first).
1994 * Once we run out of events we loop over each permitted solver in turn
1995 * (easiest first) until either a deduction is made (and an event therefore
1996 * emerges) or no further deductions can be made (in which case we've failed).
1997 *
1998 * QUESTIONS:
1999 * * How do we 'loop over' a solver when both dots and squares are concerned.
2000 * Answer: first all squares then all dots.
2001 */
2002
2003 static int easy_mode_deductions(solver_state *sstate)
2004 {
2005 int i, current_yes, current_no;
2006 game_state *state = sstate->state;
2007 grid *g = state->game_grid;
2008 int diff = DIFF_MAX;
2009
2010 /* Per-face deductions */
2011 for (i = 0; i < g->num_faces; i++) {
2012 grid_face *f = g->faces + i;
2013
2014 if (sstate->face_solved[i])
2015 continue;
2016
2017 current_yes = sstate->face_yes_count[i];
2018 current_no = sstate->face_no_count[i];
2019
2020 if (current_yes + current_no == f->order) {
2021 sstate->face_solved[i] = TRUE;
2022 continue;
2023 }
2024
2025 if (state->clues[i] < 0)
2026 continue;
2027
2028 if (state->clues[i] < current_yes) {
2029 sstate->solver_status = SOLVER_MISTAKE;
2030 return DIFF_EASY;
2031 }
2032 if (state->clues[i] == current_yes) {
2033 if (face_setall(sstate, i, LINE_UNKNOWN, LINE_NO))
2034 diff = min(diff, DIFF_EASY);
2035 sstate->face_solved[i] = TRUE;
2036 continue;
2037 }
2038
2039 if (f->order - state->clues[i] < current_no) {
2040 sstate->solver_status = SOLVER_MISTAKE;
2041 return DIFF_EASY;
2042 }
2043 if (f->order - state->clues[i] == current_no) {
2044 if (face_setall(sstate, i, LINE_UNKNOWN, LINE_YES))
2045 diff = min(diff, DIFF_EASY);
2046 sstate->face_solved[i] = TRUE;
2047 continue;
2048 }
2049 }
2050
2051 check_caches(sstate);
2052
2053 /* Per-dot deductions */
2054 for (i = 0; i < g->num_dots; i++) {
2055 grid_dot *d = g->dots + i;
2056 int yes, no, unknown;
2057
2058 if (sstate->dot_solved[i])
2059 continue;
2060
2061 yes = sstate->dot_yes_count[i];
2062 no = sstate->dot_no_count[i];
2063 unknown = d->order - yes - no;
2064
2065 if (yes == 0) {
2066 if (unknown == 0) {
2067 sstate->dot_solved[i] = TRUE;
2068 } else if (unknown == 1) {
2069 dot_setall(sstate, i, LINE_UNKNOWN, LINE_NO);
2070 diff = min(diff, DIFF_EASY);
2071 sstate->dot_solved[i] = TRUE;
2072 }
2073 } else if (yes == 1) {
2074 if (unknown == 0) {
2075 sstate->solver_status = SOLVER_MISTAKE;
2076 return DIFF_EASY;
2077 } else if (unknown == 1) {
2078 dot_setall(sstate, i, LINE_UNKNOWN, LINE_YES);
2079 diff = min(diff, DIFF_EASY);
2080 }
2081 } else if (yes == 2) {
2082 if (unknown > 0) {
2083 dot_setall(sstate, i, LINE_UNKNOWN, LINE_NO);
2084 diff = min(diff, DIFF_EASY);
2085 }
2086 sstate->dot_solved[i] = TRUE;
2087 } else {
2088 sstate->solver_status = SOLVER_MISTAKE;
2089 return DIFF_EASY;
2090 }
2091 }
2092
2093 check_caches(sstate);
2094
2095 return diff;
2096 }
2097
2098 static int normal_mode_deductions(solver_state *sstate)
2099 {
2100 game_state *state = sstate->state;
2101 grid *g = state->game_grid;
2102 char *dlines = sstate->normal->dlines;
2103 int i;
2104 int diff = DIFF_MAX;
2105
2106 /* ------ Face deductions ------ */
2107
2108 /* Given a set of dline atmostone/atleastone constraints, need to figure
2109 * out if we can deduce any further info. For more general faces than
2110 * squares, this turns out to be a tricky problem.
2111 * The approach taken here is to define (per face) NxN matrices:
2112 * "maxs" and "mins".
2113 * The entries maxs(j,k) and mins(j,k) define the upper and lower limits
2114 * for the possible number of edges that are YES between positions j and k
2115 * going clockwise around the face. Can think of j and k as marking dots
2116 * around the face (recall the labelling scheme: edge0 joins dot0 to dot1,
2117 * edge1 joins dot1 to dot2 etc).
2118 * Trivially, mins(j,j) = maxs(j,j) = 0, and we don't even bother storing
2119 * these. mins(j,j+1) and maxs(j,j+1) are determined by whether edge{j}
2120 * is YES, NO or UNKNOWN. mins(j,j+2) and maxs(j,j+2) are related to
2121 * the dline atmostone/atleastone status for edges j and j+1.
2122 *
2123 * Then we calculate the remaining entries recursively. We definitely
2124 * know that
2125 * mins(j,k) >= { mins(j,u) + mins(u,k) } for any u between j and k.
2126 * This is because any valid placement of YESs between j and k must give
2127 * a valid placement between j and u, and also between u and k.
2128 * I believe it's sufficient to use just the two values of u:
2129 * j+1 and j+2. Seems to work well in practice - the bounds we compute
2130 * are rigorous, even if they might not be best-possible.
2131 *
2132 * Once we have maxs and mins calculated, we can make inferences about
2133 * each dline{j,j+1} by looking at the possible complementary edge-counts
2134 * mins(j+2,j) and maxs(j+2,j) and comparing these with the face clue.
2135 * As well as dlines, we can make similar inferences about single edges.
2136 * For example, consider a pentagon with clue 3, and we know at most one
2137 * of (edge0, edge1) is YES, and at most one of (edge2, edge3) is YES.
2138 * We could then deduce edge4 is YES, because maxs(0,4) would be 2, so
2139 * that final edge would have to be YES to make the count up to 3.
2140 */
2141
2142 /* Much quicker to allocate arrays on the stack than the heap, so
2143 * define the largest possible face size, and base our array allocations
2144 * on that. We check this with an assertion, in case someone decides to
2145 * make a grid which has larger faces than this. Note, this algorithm
2146 * could get quite expensive if there are many large faces. */
2147 #define MAX_FACE_SIZE 8
2148
2149 for (i = 0; i < g->num_faces; i++) {
2150 int maxs[MAX_FACE_SIZE][MAX_FACE_SIZE];
2151 int mins[MAX_FACE_SIZE][MAX_FACE_SIZE];
2152 grid_face *f = g->faces + i;
2153 int N = f->order;
2154 int j,m;
2155 int clue = state->clues[i];
2156 assert(N <= MAX_FACE_SIZE);
2157 if (sstate->face_solved[i])
2158 continue;
2159 if (clue < 0) continue;
2160
2161 /* Calculate the (j,j+1) entries */
2162 for (j = 0; j < N; j++) {
2163 int edge_index = f->edges[j] - g->edges;
2164 int dline_index;
2165 enum line_state line1 = state->lines[edge_index];
2166 enum line_state line2;
2167 int tmp;
2168 int k = j + 1;
2169 if (k >= N) k = 0;
2170 maxs[j][k] = (line1 == LINE_NO) ? 0 : 1;
2171 mins[j][k] = (line1 == LINE_YES) ? 1 : 0;
2172 /* Calculate the (j,j+2) entries */
2173 dline_index = dline_index_from_face(g, f, k);
2174 edge_index = f->edges[k] - g->edges;
2175 line2 = state->lines[edge_index];
2176 k++;
2177 if (k >= N) k = 0;
2178
2179 /* max */
2180 tmp = 2;
2181 if (line1 == LINE_NO) tmp--;
2182 if (line2 == LINE_NO) tmp--;
2183 if (tmp == 2 && is_atmostone(dlines, dline_index))
2184 tmp = 1;
2185 maxs[j][k] = tmp;
2186
2187 /* min */
2188 tmp = 0;
2189 if (line1 == LINE_YES) tmp++;
2190 if (line2 == LINE_YES) tmp++;
2191 if (tmp == 0 && is_atleastone(dlines, dline_index))
2192 tmp = 1;
2193 mins[j][k] = tmp;
2194 }
2195
2196 /* Calculate the (j,j+m) entries for m between 3 and N-1 */
2197 for (m = 3; m < N; m++) {
2198 for (j = 0; j < N; j++) {
2199 int k = j + m;
2200 int u = j + 1;
2201 int v = j + 2;
2202 int tmp;
2203 if (k >= N) k -= N;
2204 if (u >= N) u -= N;
2205 if (v >= N) v -= N;
2206 maxs[j][k] = maxs[j][u] + maxs[u][k];
2207 mins[j][k] = mins[j][u] + mins[u][k];
2208 tmp = maxs[j][v] + maxs[v][k];
2209 maxs[j][k] = min(maxs[j][k], tmp);
2210 tmp = mins[j][v] + mins[v][k];
2211 mins[j][k] = max(mins[j][k], tmp);
2212 }
2213 }
2214
2215 /* See if we can make any deductions */
2216 for (j = 0; j < N; j++) {
2217 int k;
2218 grid_edge *e = f->edges[j];
2219 int line_index = e - g->edges;
2220 int dline_index;
2221
2222 if (state->lines[line_index] != LINE_UNKNOWN)
2223 continue;
2224 k = j + 1;
2225 if (k >= N) k = 0;
2226
2227 /* minimum YESs in the complement of this edge */
2228 if (mins[k][j] > clue) {
2229 sstate->solver_status = SOLVER_MISTAKE;
2230 return DIFF_EASY;
2231 }
2232 if (mins[k][j] == clue) {
2233 /* setting this edge to YES would make at least
2234 * (clue+1) edges - contradiction */
2235 solver_set_line(sstate, line_index, LINE_NO);
2236 diff = min(diff, DIFF_EASY);
2237 }
2238 if (maxs[k][j] < clue - 1) {
2239 sstate->solver_status = SOLVER_MISTAKE;
2240 return DIFF_EASY;
2241 }
2242 if (maxs[k][j] == clue - 1) {
2243 /* Only way to satisfy the clue is to set edge{j} as YES */
2244 solver_set_line(sstate, line_index, LINE_YES);
2245 diff = min(diff, DIFF_EASY);
2246 }
2247
2248 /* Now see if we can make dline deduction for edges{j,j+1} */
2249 e = f->edges[k];
2250 if (state->lines[e - g->edges] != LINE_UNKNOWN)
2251 /* Only worth doing this for an UNKNOWN,UNKNOWN pair.
2252 * Dlines where one of the edges is known, are handled in the
2253 * dot-deductions */
2254 continue;
2255
2256 dline_index = dline_index_from_face(g, f, k);
2257 k++;
2258 if (k >= N) k = 0;
2259
2260 /* minimum YESs in the complement of this dline */
2261 if (mins[k][j] > clue - 2) {
2262 /* Adding 2 YESs would break the clue */
2263 if (set_atmostone(dlines, dline_index))
2264 diff = min(diff, DIFF_NORMAL);
2265 }
2266 /* maximum YESs in the complement of this dline */
2267 if (maxs[k][j] < clue) {
2268 /* Adding 2 NOs would mean not enough YESs */
2269 if (set_atleastone(dlines, dline_index))
2270 diff = min(diff, DIFF_NORMAL);
2271 }
2272 }
2273 }
2274
2275 if (diff < DIFF_NORMAL)
2276 return diff;
2277
2278 /* ------ Dot deductions ------ */
2279
2280 for (i = 0; i < g->num_dots; i++) {
2281 grid_dot *d = g->dots + i;
2282 int N = d->order;
2283 int yes, no, unknown;
2284 int j;
2285 if (sstate->dot_solved[i])
2286 continue;
2287 yes = sstate->dot_yes_count[i];
2288 no = sstate->dot_no_count[i];
2289 unknown = N - yes - no;
2290
2291 for (j = 0; j < N; j++) {
2292 int k;
2293 int dline_index;
2294 int line1_index, line2_index;
2295 enum line_state line1, line2;
2296 k = j + 1;
2297 if (k >= N) k = 0;
2298 dline_index = dline_index_from_dot(g, d, j);
2299 line1_index = d->edges[j] - g->edges;
2300 line2_index = d->edges[k] - g->edges;
2301 line1 = state->lines[line1_index];
2302 line2 = state->lines[line2_index];
2303
2304 /* Infer dline state from line state */
2305 if (line1 == LINE_NO || line2 == LINE_NO) {
2306 if (set_atmostone(dlines, dline_index))
2307 diff = min(diff, DIFF_NORMAL);
2308 }
2309 if (line1 == LINE_YES || line2 == LINE_YES) {
2310 if (set_atleastone(dlines, dline_index))
2311 diff = min(diff, DIFF_NORMAL);
2312 }
2313 /* Infer line state from dline state */
2314 if (is_atmostone(dlines, dline_index)) {
2315 if (line1 == LINE_YES && line2 == LINE_UNKNOWN) {
2316 solver_set_line(sstate, line2_index, LINE_NO);
2317 diff = min(diff, DIFF_EASY);
2318 }
2319 if (line2 == LINE_YES && line1 == LINE_UNKNOWN) {
2320 solver_set_line(sstate, line1_index, LINE_NO);
2321 diff = min(diff, DIFF_EASY);
2322 }
2323 }
2324 if (is_atleastone(dlines, dline_index)) {
2325 if (line1 == LINE_NO && line2 == LINE_UNKNOWN) {
2326 solver_set_line(sstate, line2_index, LINE_YES);
2327 diff = min(diff, DIFF_EASY);
2328 }
2329 if (line2 == LINE_NO && line1 == LINE_UNKNOWN) {
2330 solver_set_line(sstate, line1_index, LINE_YES);
2331 diff = min(diff, DIFF_EASY);
2332 }
2333 }
2334 /* Deductions that depend on the numbers of lines.
2335 * Only bother if both lines are UNKNOWN, otherwise the
2336 * easy-mode solver (or deductions above) would have taken
2337 * care of it. */
2338 if (line1 != LINE_UNKNOWN || line2 != LINE_UNKNOWN)
2339 continue;
2340
2341 if (yes == 0 && unknown == 2) {
2342 /* Both these unknowns must be identical. If we know
2343 * atmostone or atleastone, we can make progress. */
2344 if (is_atmostone(dlines, dline_index)) {
2345 solver_set_line(sstate, line1_index, LINE_NO);
2346 solver_set_line(sstate, line2_index, LINE_NO);
2347 diff = min(diff, DIFF_EASY);
2348 }
2349 if (is_atleastone(dlines, dline_index)) {
2350 solver_set_line(sstate, line1_index, LINE_YES);
2351 solver_set_line(sstate, line2_index, LINE_YES);
2352 diff = min(diff, DIFF_EASY);
2353 }
2354 }
2355 if (yes == 1) {
2356 if (set_atmostone(dlines, dline_index))
2357 diff = min(diff, DIFF_NORMAL);
2358 if (unknown == 2) {
2359 if (set_atleastone(dlines, dline_index))
2360 diff = min(diff, DIFF_NORMAL);
2361 }
2362 }
2363
2364 /* If we have atleastone set for this dline, infer
2365 * atmostone for each "opposite" dline (that is, each
2366 * dline without edges in common with this one).
2367 * Again, this test is only worth doing if both these
2368 * lines are UNKNOWN. For if one of these lines were YES,
2369 * the (yes == 1) test above would kick in instead. */
2370 if (is_atleastone(dlines, dline_index)) {
2371 int opp;
2372 for (opp = 0; opp < N; opp++) {
2373 int opp_dline_index;
2374 if (opp == j || opp == j+1 || opp == j-1)
2375 continue;
2376 if (j == 0 && opp == N-1)
2377 continue;
2378 if (j == N-1 && opp == 0)
2379 continue;
2380 opp_dline_index = dline_index_from_dot(g, d, opp);
2381 if (set_atmostone(dlines, opp_dline_index))
2382 diff = min(diff, DIFF_NORMAL);
2383 }
2384
2385 if (yes == 0 && is_atmostone(dlines, dline_index)) {
2386 /* This dline has *exactly* one YES and there are no
2387 * other YESs. This allows more deductions. */
2388 if (unknown == 3) {
2389 /* Third unknown must be YES */
2390 for (opp = 0; opp < N; opp++) {
2391 int opp_index;
2392 if (opp == j || opp == k)
2393 continue;
2394 opp_index = d->edges[opp] - g->edges;
2395 if (state->lines[opp_index] == LINE_UNKNOWN) {
2396 solver_set_line(sstate, opp_index, LINE_YES);
2397 diff = min(diff, DIFF_EASY);
2398 }
2399 }
2400 } else if (unknown == 4) {
2401 /* Exactly one of opposite UNKNOWNS is YES. We've
2402 * already set atmostone, so set atleastone as well.
2403 */
2404 if (dline_set_opp_atleastone(sstate, d, j))
2405 diff = min(diff, DIFF_NORMAL);
2406 }
2407 }
2408 }
2409 }
2410 }
2411 return diff;
2412 }
2413
2414 static int hard_mode_deductions(solver_state *sstate)
2415 {
2416 game_state *state = sstate->state;
2417 grid *g = state->game_grid;
2418 char *dlines = sstate->normal->dlines;
2419 int i;
2420 int diff = DIFF_MAX;
2421 int diff_tmp;
2422
2423 /* ------ Face deductions ------ */
2424
2425 /* A fully-general linedsf deduction seems overly complicated
2426 * (I suspect the problem is NP-complete, though in practice it might just
2427 * be doable because faces are limited in size).
2428 * For simplicity, we only consider *pairs* of LINE_UNKNOWNS that are
2429 * known to be identical. If setting them both to YES (or NO) would break
2430 * the clue, set them to NO (or YES). */
2431
2432 for (i = 0; i < g->num_faces; i++) {
2433 int N, yes, no, unknown;
2434 int clue;
2435
2436 if (sstate->face_solved[i])
2437 continue;
2438 clue = state->clues[i];
2439 if (clue < 0)
2440 continue;
2441
2442 N = g->faces[i].order;
2443 yes = sstate->face_yes_count[i];
2444 if (yes + 1 == clue) {
2445 if (face_setall_identical(sstate, i, LINE_NO))
2446 diff = min(diff, DIFF_EASY);
2447 }
2448 no = sstate->face_no_count[i];
2449 if (no + 1 == N - clue) {
2450 if (face_setall_identical(sstate, i, LINE_YES))
2451 diff = min(diff, DIFF_EASY);
2452 }
2453
2454 /* Reload YES count, it might have changed */
2455 yes = sstate->face_yes_count[i];
2456 unknown = N - no - yes;
2457
2458 /* Deductions with small number of LINE_UNKNOWNs, based on overall
2459 * parity of lines. */
2460 diff_tmp = parity_deductions(sstate, g->faces[i].edges,
2461 (clue - yes) % 2, unknown);
2462 diff = min(diff, diff_tmp);
2463 }
2464
2465 /* ------ Dot deductions ------ */
2466 for (i = 0; i < g->num_dots; i++) {
2467 grid_dot *d = g->dots + i;
2468 int N = d->order;
2469 int j;
2470 int yes, no, unknown;
2471 /* Go through dlines, and do any dline<->linedsf deductions wherever
2472 * we find two UNKNOWNS. */
2473 for (j = 0; j < N; j++) {
2474 int dline_index = dline_index_from_dot(g, d, j);
2475 int line1_index;
2476 int line2_index;
2477 int can1, can2, inv1, inv2;
2478 int j2;
2479 line1_index = d->edges[j] - g->edges;
2480 if (state->lines[line1_index] != LINE_UNKNOWN)
2481 continue;
2482 j2 = j + 1;
2483 if (j2 == N) j2 = 0;
2484 line2_index = d->edges[j2] - g->edges;
2485 if (state->lines[line2_index] != LINE_UNKNOWN)
2486 continue;
2487 /* Infer dline flags from linedsf */
2488 can1 = edsf_canonify(sstate->hard->linedsf, line1_index, &inv1);
2489 can2 = edsf_canonify(sstate->hard->linedsf, line2_index, &inv2);
2490 if (can1 == can2 && inv1 != inv2) {
2491 /* These are opposites, so set dline atmostone/atleastone */
2492 if (set_atmostone(dlines, dline_index))
2493 diff = min(diff, DIFF_NORMAL);
2494 if (set_atleastone(dlines, dline_index))
2495 diff = min(diff, DIFF_NORMAL);
2496 continue;
2497 }
2498 /* Infer linedsf from dline flags */
2499 if (is_atmostone(dlines, dline_index)
2500 && is_atleastone(dlines, dline_index)) {
2501 if (merge_lines(sstate, line1_index, line2_index, 1))
2502 diff = min(diff, DIFF_HARD);
2503 }
2504 }
2505
2506 /* Deductions with small number of LINE_UNKNOWNs, based on overall
2507 * parity of lines. */
2508 yes = sstate->dot_yes_count[i];
2509 no = sstate->dot_no_count[i];
2510 unknown = N - yes - no;
2511 diff_tmp = parity_deductions(sstate, d->edges,
2512 yes % 2, unknown);
2513 diff = min(diff, diff_tmp);
2514 }
2515
2516 /* ------ Edge dsf deductions ------ */
2517
2518 /* If the state of a line is known, deduce the state of its canonical line
2519 * too, and vice versa. */
2520 for (i = 0; i < g->num_edges; i++) {
2521 int can, inv;
2522 enum line_state s;
2523 can = edsf_canonify(sstate->hard->linedsf, i, &inv);
2524 if (can == i)
2525 continue;
2526 s = sstate->state->lines[can];
2527 if (s != LINE_UNKNOWN) {
2528 if (solver_set_line(sstate, i, inv ? OPP(s) : s))
2529 diff = min(diff, DIFF_EASY);
2530 } else {
2531 s = sstate->state->lines[i];
2532 if (s != LINE_UNKNOWN) {
2533 if (solver_set_line(sstate, can, inv ? OPP(s) : s))
2534 diff = min(diff, DIFF_EASY);
2535 }
2536 }
2537 }
2538
2539 return diff;
2540 }
2541
2542 static int loop_deductions(solver_state *sstate)
2543 {
2544 int edgecount = 0, clues = 0, satclues = 0, sm1clues = 0;
2545 game_state *state = sstate->state;
2546 grid *g = state->game_grid;
2547 int shortest_chainlen = g->num_dots;
2548 int loop_found = FALSE;
2549 int dots_connected;
2550 int progress = FALSE;
2551 int i;
2552
2553 /*
2554 * Go through the grid and update for all the new edges.
2555 * Since merge_dots() is idempotent, the simplest way to
2556 * do this is just to update for _all_ the edges.
2557 * Also, while we're here, we count the edges.
2558 */
2559 for (i = 0; i < g->num_edges; i++) {
2560 if (state->lines[i] == LINE_YES) {
2561 loop_found |= merge_dots(sstate, i);
2562 edgecount++;
2563 }
2564 }
2565
2566 /*
2567 * Count the clues, count the satisfied clues, and count the
2568 * satisfied-minus-one clues.
2569 */
2570 for (i = 0; i < g->num_faces; i++) {
2571 int c = state->clues[i];
2572 if (c >= 0) {
2573 int o = sstate->face_yes_count[i];
2574 if (o == c)
2575 satclues++;
2576 else if (o == c-1)
2577 sm1clues++;
2578 clues++;
2579 }
2580 }
2581
2582 for (i = 0; i < g->num_dots; ++i) {
2583 dots_connected =
2584 sstate->looplen[dsf_canonify(sstate->dotdsf, i)];
2585 if (dots_connected > 1)
2586 shortest_chainlen = min(shortest_chainlen, dots_connected);
2587 }
2588
2589 assert(sstate->solver_status == SOLVER_INCOMPLETE);
2590
2591 if (satclues == clues && shortest_chainlen == edgecount) {
2592 sstate->solver_status = SOLVER_SOLVED;
2593 /* This discovery clearly counts as progress, even if we haven't
2594 * just added any lines or anything */
2595 progress = TRUE;
2596 goto finished_loop_deductionsing;
2597 }
2598
2599 /*
2600 * Now go through looking for LINE_UNKNOWN edges which
2601 * connect two dots that are already in the same
2602 * equivalence class. If we find one, test to see if the
2603 * loop it would create is a solution.
2604 */
2605 for (i = 0; i < g->num_edges; i++) {
2606 grid_edge *e = g->edges + i;
2607 int d1 = e->dot1 - g->dots;
2608 int d2 = e->dot2 - g->dots;
2609 int eqclass, val;
2610 if (state->lines[i] != LINE_UNKNOWN)
2611 continue;
2612
2613 eqclass = dsf_canonify(sstate->dotdsf, d1);
2614 if (eqclass != dsf_canonify(sstate->dotdsf, d2))
2615 continue;
2616
2617 val = LINE_NO; /* loop is bad until proven otherwise */
2618
2619 /*
2620 * This edge would form a loop. Next
2621 * question: how long would the loop be?
2622 * Would it equal the total number of edges
2623 * (plus the one we'd be adding if we added
2624 * it)?
2625 */
2626 if (sstate->looplen[eqclass] == edgecount + 1) {
2627 int sm1_nearby;
2628
2629 /*
2630 * This edge would form a loop which
2631 * took in all the edges in the entire
2632 * grid. So now we need to work out
2633 * whether it would be a valid solution
2634 * to the puzzle, which means we have to
2635 * check if it satisfies all the clues.
2636 * This means that every clue must be
2637 * either satisfied or satisfied-minus-
2638 * 1, and also that the number of
2639 * satisfied-minus-1 clues must be at
2640 * most two and they must lie on either
2641 * side of this edge.
2642 */
2643 sm1_nearby = 0;
2644 if (e->face1) {
2645 int f = e->face1 - g->faces;
2646 int c = state->clues[f];
2647 if (c >= 0 && sstate->face_yes_count[f] == c - 1)
2648 sm1_nearby++;
2649 }
2650 if (e->face2) {
2651 int f = e->face2 - g->faces;
2652 int c = state->clues[f];
2653 if (c >= 0 && sstate->face_yes_count[f] == c - 1)
2654 sm1_nearby++;
2655 }
2656 if (sm1clues == sm1_nearby &&
2657 sm1clues + satclues == clues) {
2658 val = LINE_YES; /* loop is good! */
2659 }
2660 }
2661
2662 /*
2663 * Right. Now we know that adding this edge
2664 * would form a loop, and we know whether
2665 * that loop would be a viable solution or
2666 * not.
2667 *
2668 * If adding this edge produces a solution,
2669 * then we know we've found _a_ solution but
2670 * we don't know that it's _the_ solution -
2671 * if it were provably the solution then
2672 * we'd have deduced this edge some time ago
2673 * without the need to do loop detection. So
2674 * in this state we return SOLVER_AMBIGUOUS,
2675 * which has the effect that hitting Solve
2676 * on a user-provided puzzle will fill in a
2677 * solution but using the solver to
2678 * construct new puzzles won't consider this
2679 * a reasonable deduction for the user to
2680 * make.
2681 */
2682 progress = solver_set_line(sstate, i, val);
2683 assert(progress == TRUE);
2684 if (val == LINE_YES) {
2685 sstate->solver_status = SOLVER_AMBIGUOUS;
2686 goto finished_loop_deductionsing;
2687 }
2688 }
2689
2690 finished_loop_deductionsing:
2691 return progress ? DIFF_EASY : DIFF_MAX;
2692 }
2693
2694 /* This will return a dynamically allocated solver_state containing the (more)
2695 * solved grid */
2696 static solver_state *solve_game_rec(const solver_state *sstate_start,
2697 int diff)
2698 {
2699 solver_state *sstate, *sstate_saved;
2700 int solver_progress;
2701 game_state *state;
2702
2703 /* Indicates which solver we should call next. This is a sensible starting
2704 * point */
2705 int current_solver = DIFF_EASY, next_solver;
2706 sstate = dup_solver_state(sstate_start);
2707
2708 /* Cache the values of some variables for readability */
2709 state = sstate->state;
2710
2711 sstate_saved = NULL;
2712
2713 solver_progress = FALSE;
2714
2715 check_caches(sstate);
2716
2717 do {
2718 if (sstate->solver_status == SOLVER_MISTAKE)
2719 return sstate;
2720
2721 next_solver = solver_fns[current_solver](sstate);
2722
2723 if (next_solver == DIFF_MAX) {
2724 if (current_solver < diff && current_solver + 1 < DIFF_MAX) {
2725 /* Try next beefier solver */
2726 next_solver = current_solver + 1;
2727 } else {
2728 next_solver = loop_deductions(sstate);
2729 }
2730 }
2731
2732 if (sstate->solver_status == SOLVER_SOLVED ||
2733 sstate->solver_status == SOLVER_AMBIGUOUS) {
2734 /* fprintf(stderr, "Solver completed\n"); */
2735 break;
2736 }
2737
2738 /* Once we've looped over all permitted solvers then the loop
2739 * deductions without making any progress, we'll exit this while loop */
2740 current_solver = next_solver;
2741 } while (current_solver < DIFF_MAX);
2742
2743 if (sstate->solver_status == SOLVER_SOLVED ||
2744 sstate->solver_status == SOLVER_AMBIGUOUS) {
2745 /* s/LINE_UNKNOWN/LINE_NO/g */
2746 array_setall(sstate->state->lines, LINE_UNKNOWN, LINE_NO,
2747 sstate->state->game_grid->num_edges);
2748 return sstate;
2749 }
2750
2751 return sstate;
2752 }
2753
2754 static char *solve_game(game_state *state, game_state *currstate,
2755 char *aux, char **error)
2756 {
2757 char *soln = NULL;
2758 solver_state *sstate, *new_sstate;
2759
2760 sstate = new_solver_state(state, DIFF_MAX);
2761 new_sstate = solve_game_rec(sstate, DIFF_MAX);
2762
2763 if (new_sstate->solver_status == SOLVER_SOLVED) {
2764 soln = encode_solve_move(new_sstate->state);
2765 } else if (new_sstate->solver_status == SOLVER_AMBIGUOUS) {
2766 soln = encode_solve_move(new_sstate->state);
2767 /**error = "Solver found ambiguous solutions"; */
2768 } else {
2769 soln = encode_solve_move(new_sstate->state);
2770 /**error = "Solver failed"; */
2771 }
2772
2773 free_solver_state(new_sstate);
2774 free_solver_state(sstate);
2775
2776 return soln;
2777 }
2778
2779 /* ----------------------------------------------------------------------
2780 * Drawing and mouse-handling
2781 */
2782
2783 static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
2784 int x, int y, int button)
2785 {
2786 grid *g = state->game_grid;
2787 grid_edge *e;
2788 int i;
2789 char *ret, buf[80];
2790 char button_char = ' ';
2791 enum line_state old_state;
2792
2793 button &= ~MOD_MASK;
2794
2795 /* Convert mouse-click (x,y) to grid coordinates */
2796 x -= BORDER(ds->tilesize);
2797 y -= BORDER(ds->tilesize);
2798 x = x * g->tilesize / ds->tilesize;
2799 y = y * g->tilesize / ds->tilesize;
2800 x += g->lowest_x;
2801 y += g->lowest_y;
2802
2803 e = grid_nearest_edge(g, x, y);
2804 if (e == NULL)
2805 return NULL;
2806
2807 i = e - g->edges;
2808
2809 /* I think it's only possible to play this game with mouse clicks, sorry */
2810 /* Maybe will add mouse drag support some time */
2811 old_state = state->lines[i];
2812
2813 switch (button) {
2814 case LEFT_BUTTON:
2815 switch (old_state) {
2816 case LINE_UNKNOWN:
2817 button_char = 'y';
2818 break;
2819 case LINE_YES:
2820 case LINE_NO:
2821 button_char = 'u';
2822 break;
2823 }
2824 break;
2825 case MIDDLE_BUTTON:
2826 button_char = 'u';
2827 break;
2828 case RIGHT_BUTTON:
2829 switch (old_state) {
2830 case LINE_UNKNOWN:
2831 button_char = 'n';
2832 break;
2833 case LINE_NO:
2834 case LINE_YES:
2835 button_char = 'u';
2836 break;
2837 }
2838 break;
2839 default:
2840 return NULL;
2841 }
2842
2843
2844 sprintf(buf, "%d%c", i, (int)button_char);
2845 ret = dupstr(buf);
2846
2847 return ret;
2848 }
2849
2850 static game_state *execute_move(game_state *state, char *move)
2851 {
2852 int i;
2853 game_state *newstate = dup_game(state);
2854 grid *g = state->game_grid;
2855
2856 if (move[0] == 'S') {
2857 move++;
2858 newstate->cheated = TRUE;
2859 }
2860
2861 while (*move) {
2862 i = atoi(move);
2863 move += strspn(move, "1234567890");
2864 switch (*(move++)) {
2865 case 'y':
2866 newstate->lines[i] = LINE_YES;
2867 break;
2868 case 'n':
2869 newstate->lines[i] = LINE_NO;
2870 break;
2871 case 'u':
2872 newstate->lines[i] = LINE_UNKNOWN;
2873 break;
2874 default:
2875 goto fail;
2876 }
2877 }
2878
2879 /*
2880 * Check for completion.
2881 */
2882 for (i = 0; i < g->num_edges; i++) {
2883 if (newstate->lines[i] == LINE_YES)
2884 break;
2885 }
2886 if (i < g->num_edges) {
2887 int looplen, count;
2888 grid_edge *start_edge = g->edges + i;
2889 grid_edge *e = start_edge;
2890 grid_dot *d = e->dot1;
2891 /*
2892 * We've found an edge i. Follow it round
2893 * to see if it's part of a loop.
2894 */
2895 looplen = 0;
2896 while (1) {
2897 int j;
2898 int order = dot_order(newstate, d - g->dots, LINE_YES);
2899 if (order != 2)
2900 goto completion_check_done;
2901
2902 /* Find other edge around this dot */
2903 for (j = 0; j < d->order; j++) {
2904 grid_edge *e2 = d->edges[j];
2905 if (e2 != e && newstate->lines[e2 - g->edges] == LINE_YES)
2906 break;
2907 }
2908 assert(j != d->order); /* dot_order guarantees success */
2909
2910 e = d->edges[j];
2911 d = (e->dot1 == d) ? e->dot2 : e->dot1;
2912 looplen++;
2913
2914 if (e == start_edge)
2915 break;
2916 }
2917
2918 /*
2919 * We've traced our way round a loop, and we know how many
2920 * line segments were involved. Count _all_ the line
2921 * segments in the grid, to see if the loop includes them
2922 * all.
2923 */
2924 count = 0;
2925 for (i = 0; i < g->num_edges; i++) {
2926 if (newstate->lines[i] == LINE_YES)
2927 count++;
2928 }
2929 assert(count >= looplen);
2930 if (count != looplen)
2931 goto completion_check_done;
2932
2933 /*
2934 * The grid contains one closed loop and nothing else.
2935 * Check that all the clues are satisfied.
2936 */
2937 for (i = 0; i < g->num_faces; i++) {
2938 int c = newstate->clues[i];
2939 if (c >= 0) {
2940 if (face_order(newstate, i, LINE_YES) != c) {
2941 goto completion_check_done;
2942 }
2943 }
2944 }
2945
2946 /*
2947 * Completed!
2948 */
2949 newstate->solved = TRUE;
2950 }
2951
2952 completion_check_done:
2953 return newstate;
2954
2955 fail:
2956 free_game(newstate);
2957 return NULL;
2958 }
2959
2960 /* ----------------------------------------------------------------------
2961 * Drawing routines.
2962 */
2963
2964 /* Convert from grid coordinates to screen coordinates */
2965 static void grid_to_screen(const game_drawstate *ds, const grid *g,
2966 int grid_x, int grid_y, int *x, int *y)
2967 {
2968 *x = grid_x - g->lowest_x;
2969 *y = grid_y - g->lowest_y;
2970 *x = *x * ds->tilesize / g->tilesize;
2971 *y = *y * ds->tilesize / g->tilesize;
2972 *x += BORDER(ds->tilesize);
2973 *y += BORDER(ds->tilesize);
2974 }
2975
2976 /* Returns (into x,y) position of centre of face for rendering the text clue.
2977 */
2978 static void face_text_pos(const game_drawstate *ds, const grid *g,
2979 const grid_face *f, int *x, int *y)
2980 {
2981 int i;
2982
2983 /* Simplest solution is the centroid. Might not work in some cases. */
2984
2985 /* Another algorithm to look into:
2986 * Find the midpoints of the sides, find the bounding-box,
2987 * then take the centre of that. */
2988
2989 /* Best solution probably involves incentres (inscribed circles) */
2990
2991 int sx = 0, sy = 0; /* sums */
2992 for (i = 0; i < f->order; i++) {
2993 grid_dot *d = f->dots[i];
2994 sx += d->x;
2995 sy += d->y;
2996 }
2997 sx /= f->order;
2998 sy /= f->order;
2999
3000 /* convert to screen coordinates */
3001 grid_to_screen(ds, g, sx, sy, x, y);
3002 }
3003
3004 static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
3005 game_state *state, int dir, game_ui *ui,
3006 float animtime, float flashtime)
3007 {
3008 grid *g = state->game_grid;
3009 int border = BORDER(ds->tilesize);
3010 int i, n;
3011 char c[2];
3012 int line_colour, flash_changed;
3013 int clue_mistake;
3014 int clue_satisfied;
3015
3016 if (!ds->started) {
3017 /*
3018 * The initial contents of the window are not guaranteed and
3019 * can vary with front ends. To be on the safe side, all games
3020 * should start by drawing a big background-colour rectangle
3021 * covering the whole window.
3022 */
3023 int grid_width = g->highest_x - g->lowest_x;
3024 int grid_height = g->highest_y - g->lowest_y;
3025 int w = grid_width * ds->tilesize / g->tilesize;
3026 int h = grid_height * ds->tilesize / g->tilesize;
3027 draw_rect(dr, 0, 0, w + 2 * border, h + 2 * border, COL_BACKGROUND);
3028
3029 /* Draw clues */
3030 for (i = 0; i < g->num_faces; i++) {
3031 grid_face *f;
3032 int x, y;
3033
3034 c[0] = CLUE2CHAR(state->clues[i]);
3035 c[1] = '\0';
3036 f = g->faces + i;
3037 face_text_pos(ds, g, f, &x, &y);
3038 draw_text(dr, x, y, FONT_VARIABLE, ds->tilesize/2,
3039 ALIGN_VCENTRE | ALIGN_HCENTRE, COL_FOREGROUND, c);
3040 }
3041 draw_update(dr, 0, 0, w + 2 * border, h + 2 * border);
3042 }
3043
3044 if (flashtime > 0 &&
3045 (flashtime <= FLASH_TIME/3 ||
3046 flashtime >= FLASH_TIME*2/3)) {
3047 flash_changed = !ds->flashing;
3048 ds->flashing = TRUE;
3049 } else {
3050 flash_changed = ds->flashing;
3051 ds->flashing = FALSE;
3052 }
3053
3054 /* Some platforms may perform anti-aliasing, which may prevent clean
3055 * repainting of lines when the colour is changed.
3056 * If a line needs to be over-drawn in a different colour, erase a
3057 * bounding-box around the line, then flag all nearby objects for redraw.
3058 */
3059 if (ds->started) {
3060 const char redraw_flag = 1<<7;
3061 for (i = 0; i < g->num_edges; i++) {
3062 /* If we're changing state, AND
3063 * the previous state was a coloured line */
3064 if ((state->lines[i] != (ds->lines[i] & ~redraw_flag)) &&
3065 ((ds->lines[i] & ~redraw_flag) != LINE_NO)) {
3066 grid_edge *e = g->edges + i;
3067 int x1 = e->dot1->x;
3068 int y1 = e->dot1->y;
3069 int x2 = e->dot2->x;
3070 int y2 = e->dot2->y;
3071 int xmin, xmax, ymin, ymax;
3072 int j;
3073 grid_to_screen(ds, g, x1, y1, &x1, &y1);
3074 grid_to_screen(ds, g, x2, y2, &x2, &y2);
3075 /* Allow extra margin for dots, and thickness of lines */
3076 xmin = min(x1, x2) - 2;
3077 xmax = max(x1, x2) + 2;
3078 ymin = min(y1, y2) - 2;
3079 ymax = max(y1, y2) + 2;
3080 /* For testing, I find it helpful to change COL_BACKGROUND
3081 * to COL_SATISFIED here. */
3082 draw_rect(dr, xmin, ymin, xmax - xmin + 1, ymax - ymin + 1,
3083 COL_BACKGROUND);
3084 draw_update(dr, xmin, ymin, xmax - xmin + 1, ymax - ymin + 1);
3085
3086 /* Mark nearby lines for redraw */
3087 for (j = 0; j < e->dot1->order; j++)
3088 ds->lines[e->dot1->edges[j] - g->edges] |= redraw_flag;
3089 for (j = 0; j < e->dot2->order; j++)
3090 ds->lines[e->dot2->edges[j] - g->edges] |= redraw_flag;
3091 /* Mark nearby clues for redraw. Use a value that is
3092 * neither TRUE nor FALSE for this. */
3093 if (e->face1)
3094 ds->clue_error[e->face1 - g->faces] = 2;
3095 if (e->face2)
3096 ds->clue_error[e->face2 - g->faces] = 2;
3097 }
3098 }
3099 }
3100
3101 /* Redraw clue colours if necessary */
3102 for (i = 0; i < g->num_faces; i++) {
3103 grid_face *f = g->faces + i;
3104 int sides = f->order;
3105 int j;
3106 n = state->clues[i];
3107 if (n < 0)
3108 continue;
3109
3110 c[0] = CLUE2CHAR(n);
3111 c[1] = '\0';
3112
3113 clue_mistake = (face_order(state, i, LINE_YES) > n ||
3114 face_order(state, i, LINE_NO ) > (sides-n));
3115
3116 clue_satisfied = (face_order(state, i, LINE_YES) == n &&
3117 face_order(state, i, LINE_NO ) == (sides-n));
3118
3119 if (clue_mistake != ds->clue_error[i]
3120 || clue_satisfied != ds->clue_satisfied[i]) {
3121 int x, y;
3122 face_text_pos(ds, g, f, &x, &y);
3123 /* There seems to be a certain amount of trial-and-error
3124 * involved in working out the correct bounding-box for
3125 * the text. */
3126 draw_rect(dr, x - ds->tilesize/4 - 1, y - ds->tilesize/4 - 3,
3127 ds->tilesize/2 + 2, ds->tilesize/2 + 5,
3128 COL_BACKGROUND);
3129 draw_text(dr, x, y,
3130 FONT_VARIABLE, ds->tilesize/2,
3131 ALIGN_VCENTRE | ALIGN_HCENTRE,
3132 clue_mistake ? COL_MISTAKE :
3133 clue_satisfied ? COL_SATISFIED : COL_FOREGROUND, c);
3134 draw_update(dr, x - ds->tilesize/4 - 1, y - ds->tilesize/4 - 3,
3135 ds->tilesize/2 + 2, ds->tilesize/2 + 5);
3136
3137 ds->clue_error[i] = clue_mistake;
3138 ds->clue_satisfied[i] = clue_satisfied;
3139
3140 /* Sometimes, the bounding-box encroaches into the surrounding
3141 * lines (particularly if the window is resized fairly small).
3142 * So redraw them. */
3143 for (j = 0; j < f->order; j++)
3144 ds->lines[f->edges[j] - g->edges] = -1;
3145 }
3146 }
3147
3148 /* I've also had a request to colour lines red if they make a non-solution
3149 * loop, or if more than two lines go into any point. I think that would
3150 * be good some time. */
3151
3152 /* Lines */
3153 for (i = 0; i < g->num_edges; i++) {
3154 grid_edge *e = g->edges + i;
3155 int x1, x2, y1, y2;
3156 int xmin, ymin, xmax, ymax;
3157 int need_draw = (state->lines[i] != ds->lines[i]) ? TRUE : FALSE;
3158 if (flash_changed && (state->lines[i] == LINE_YES))
3159 need_draw = TRUE;
3160 if (!ds->started)
3161 need_draw = TRUE; /* draw everything at the start */
3162 ds->lines[i] = state->lines[i];
3163 if (!need_draw)
3164 continue;
3165 if (state->lines[i] == LINE_UNKNOWN)
3166 line_colour = COL_LINEUNKNOWN;
3167 else if (state->lines[i] == LINE_NO)
3168 line_colour = COL_BACKGROUND;
3169 else if (ds->flashing)
3170 line_colour = COL_HIGHLIGHT;
3171 else
3172 line_colour = COL_FOREGROUND;
3173
3174 /* Convert from grid to screen coordinates */
3175 grid_to_screen(ds, g, e->dot1->x, e->dot1->y, &x1, &y1);
3176 grid_to_screen(ds, g, e->dot2->x, e->dot2->y, &x2, &y2);
3177
3178 xmin = min(x1, x2);
3179 xmax = max(x1, x2);
3180 ymin = min(y1, y2);
3181 ymax = max(y1, y2);
3182
3183 if (line_colour != COL_BACKGROUND) {
3184 /* (dx, dy) points roughly from (x1, y1) to (x2, y2).
3185 * The line is then "fattened" in a (roughly) perpendicular
3186 * direction to create a thin rectangle. */
3187 int dx = (x1 > x2) ? -1 : ((x1 < x2) ? 1 : 0);
3188 int dy = (y1 > y2) ? -1 : ((y1 < y2) ? 1 : 0);
3189 int points[] = {
3190 x1 + dy, y1 - dx,
3191 x1 - dy, y1 + dx,
3192 x2 - dy, y2 + dx,
3193 x2 + dy, y2 - dx
3194 };
3195 draw_polygon(dr, points, 4, line_colour, line_colour);
3196 }
3197 if (ds->started) {
3198 /* Draw dots at ends of the line */
3199 draw_circle(dr, x1, y1, 2, COL_FOREGROUND, COL_FOREGROUND);
3200 draw_circle(dr, x2, y2, 2, COL_FOREGROUND, COL_FOREGROUND);
3201 }
3202 draw_update(dr, xmin-2, ymin-2, xmax - xmin + 4, ymax - ymin + 4);
3203 }
3204
3205 /* Draw dots */
3206 if (!ds->started) {
3207 for (i = 0; i < g->num_dots; i++) {
3208 grid_dot *d = g->dots + i;
3209 int x, y;
3210 grid_to_screen(ds, g, d->x, d->y, &x, &y);
3211 draw_circle(dr, x, y, 2, COL_FOREGROUND, COL_FOREGROUND);
3212 }
3213 }
3214 ds->started = TRUE;
3215 }
3216
3217 static float game_flash_length(game_state *oldstate, game_state *newstate,
3218 int dir, game_ui *ui)
3219 {
3220 if (!oldstate->solved && newstate->solved &&
3221 !oldstate->cheated && !newstate->cheated) {
3222 return FLASH_TIME;
3223 }
3224
3225 return 0.0F;
3226 }
3227
3228 static void game_print_size(game_params *params, float *x, float *y)
3229 {
3230 int pw, ph;
3231
3232 /*
3233 * I'll use 7mm "squares" by default.
3234 */
3235 game_compute_size(params, 700, &pw, &ph);
3236 *x = pw / 100.0F;
3237 *y = ph / 100.0F;
3238 }
3239
3240 static void game_print(drawing *dr, game_state *state, int tilesize)
3241 {
3242 int ink = print_mono_colour(dr, 0);
3243 int i;
3244 game_drawstate ads, *ds = &ads;
3245 grid *g = state->game_grid;
3246
3247 game_set_size(dr, ds, NULL, tilesize);
3248
3249 for (i = 0; i < g->num_dots; i++) {
3250 int x, y;
3251 grid_to_screen(ds, g, g->dots[i].x, g->dots[i].y, &x, &y);
3252 draw_circle(dr, x, y, ds->tilesize / 15, ink, ink);
3253 }
3254
3255 /*
3256 * Clues.
3257 */
3258 for (i = 0; i < g->num_faces; i++) {
3259 grid_face *f = g->faces + i;
3260 int clue = state->clues[i];
3261 if (clue >= 0) {
3262 char c[2];
3263 int x, y;
3264 c[0] = CLUE2CHAR(clue);
3265 c[1] = '\0';
3266 face_text_pos(ds, g, f, &x, &y);
3267 draw_text(dr, x, y,
3268 FONT_VARIABLE, ds->tilesize / 2,
3269 ALIGN_VCENTRE | ALIGN_HCENTRE, ink, c);
3270 }
3271 }
3272
3273 /*
3274 * Lines.
3275 */
3276 for (i = 0; i < g->num_edges; i++) {
3277 int thickness = (state->lines[i] == LINE_YES) ? 30 : 150;
3278 grid_edge *e = g->edges + i;
3279 int x1, y1, x2, y2;
3280 grid_to_screen(ds, g, e->dot1->x, e->dot1->y, &x1, &y1);
3281 grid_to_screen(ds, g, e->dot2->x, e->dot2->y, &x2, &y2);
3282 if (state->lines[i] == LINE_YES)
3283 {
3284 /* (dx, dy) points from (x1, y1) to (x2, y2).
3285 * The line is then "fattened" in a perpendicular
3286 * direction to create a thin rectangle. */
3287 double d = sqrt(SQ((double)x1 - x2) + SQ((double)y1 - y2));
3288 double dx = (x2 - x1) / d;
3289 double dy = (y2 - y1) / d;
3290 int points[8];
3291
3292 dx = (dx * ds->tilesize) / thickness;
3293 dy = (dy * ds->tilesize) / thickness;
3294 points[0] = x1 + dy;
3295 points[1] = y1 - dx;
3296 points[2] = x1 - dy;
3297 points[3] = y1 + dx;
3298 points[4] = x2 - dy;
3299 points[5] = y2 + dx;
3300 points[6] = x2 + dy;
3301 points[7] = y2 - dx;
3302 draw_polygon(dr, points, 4, ink, ink);
3303 }
3304 else
3305 {
3306 /* Draw a dotted line */
3307 int divisions = 6;
3308 int j;
3309 for (j = 1; j < divisions; j++) {
3310 /* Weighted average */
3311 int x = (x1 * (divisions -j) + x2 * j) / divisions;
3312 int y = (y1 * (divisions -j) + y2 * j) / divisions;
3313 draw_circle(dr, x, y, ds->tilesize / thickness, ink, ink);
3314 }
3315 }
3316 }
3317 }
3318
3319 #ifdef COMBINED
3320 #define thegame loopy
3321 #endif
3322
3323 const struct game thegame = {
3324 "Loopy", "games.loopy", "loopy",
3325 default_params,
3326 game_fetch_preset,
3327 decode_params,
3328 encode_params,
3329 free_params,
3330 dup_params,
3331 TRUE, game_configure, custom_params,
3332 validate_params,
3333 new_game_desc,
3334 validate_desc,
3335 new_game,
3336 dup_game,
3337 free_game,
3338 1, solve_game,
3339 TRUE, game_can_format_as_text_now, game_text_format,
3340 new_ui,
3341 free_ui,
3342 encode_ui,
3343 decode_ui,
3344 game_changed_state,
3345 interpret_move,
3346 execute_move,
3347 PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
3348 game_colours,
3349 game_new_drawstate,
3350 game_free_drawstate,
3351 game_redraw,
3352 game_anim_length,
3353 game_flash_length,
3354 TRUE, FALSE, game_print_size, game_print,
3355 FALSE /* wants_statusbar */,
3356 FALSE, game_timing_state,
3357 0, /* mouse_priorities */
3358 };