Don't create an undo-chain entry for a move with no effect.
[sgt/puzzles] / filling.c
1 /* -*- tab-width: 8; indent-tabs-mode: t -*-
2 * filling.c: An implementation of the Nikoli game fillomino.
3 * Copyright (C) 2007 Jonas Kölker. See LICENSE for the license.
4 */
5
6 /* TODO:
7 *
8 * - use a typedef instead of int for numbers on the board
9 * + replace int with something else (signed char?)
10 * - the type should be signed (I use -board[i] temporarily)
11 * - problems are small (<= 9?): type can be char?
12 *
13 * - make a somewhat more clever solver
14 *
15 * - make the solver do recursion/backtracking.
16 * + This is for user-submitted puzzles, not for puzzle
17 * generation (on the other hand, never say never).
18 *
19 * - prove that only w=h=2 needs a special case
20 *
21 * - solo-like pencil marks?
22 *
23 * - speed up generation of puzzles of size >= 11x11
24 *
25 * - Allow square contents > 9?
26 * + I could use letters for digits (solo does this), but
27 * letters don't have numeric significance (normal people hate
28 * base36), which is relevant here (much more than in solo).
29 * + How much information is needed to solve? Does one need to
30 * know the algorithm by which the largest number is set?
31 *
32 * - eliminate puzzle instances with done chunks (1's in particular)?
33 * + that's what the qsort call is all about.
34 * + the 1's don't bother me that much.
35 * + but this takes a LONG time (not always possible)?
36 * - this may be affected by solver (lack of) quality.
37 * - weed them out by construction instead of post-cons check
38 * + but that interleaves make_board and new_game_desc: you
39 * have to alternate between changing the board and
40 * changing the hint set (instead of just creating the
41 * board once, then changing the hint set once -> done).
42 *
43 * - use binary search when discovering the minimal sovable point
44 * + profile to show a need (but when the solver gets slower...)
45 * + avg 0.1s per 9x9, which _is_ human-patience noticable.
46 */
47
48 #include <assert.h>
49 #include <ctype.h>
50 #include <errno.h>
51 #include <math.h>
52 #include <stdio.h>
53 #include <stdlib.h>
54 #include <string.h>
55
56 #include "puzzles.h"
57
58 struct game_params {
59 int w, h;
60 };
61
62 struct shared_state {
63 struct game_params params;
64 int *clues;
65 int refcnt;
66 };
67
68 struct game_state {
69 int *board;
70 struct shared_state *shared;
71 int completed, cheated;
72 };
73
74 static const struct game_params defaults[3] = {{5, 5}, {7, 7}, {9, 9}};
75
76 static game_params *default_params(void)
77 {
78 game_params *ret = snew(game_params);
79
80 *ret = defaults[1]; /* struct copy */
81
82 return ret;
83 }
84
85 static int game_fetch_preset(int i, char **name, game_params **params)
86 {
87 char buf[64];
88
89 if (i < 0 || i >= lenof(defaults)) return FALSE;
90 *params = snew(game_params);
91 **params = defaults[i]; /* struct copy */
92 sprintf(buf, "%dx%d", defaults[i].w, defaults[i].h);
93 *name = dupstr(buf);
94
95 return TRUE;
96 }
97
98 static void free_params(game_params *params)
99 {
100 sfree(params);
101 }
102
103 static game_params *dup_params(game_params *params)
104 {
105 game_params *ret = snew(game_params);
106 *ret = *params; /* struct copy */
107 return ret;
108 }
109
110 static void decode_params(game_params *ret, char const *string)
111 {
112 ret->w = ret->h = atoi(string);
113 while (*string && isdigit((unsigned char) *string)) ++string;
114 if (*string == 'x') ret->h = atoi(++string);
115 }
116
117 static char *encode_params(game_params *params, int full)
118 {
119 char buf[64];
120 sprintf(buf, "%dx%d", params->w, params->h);
121 return dupstr(buf);
122 }
123
124 static config_item *game_configure(game_params *params)
125 {
126 config_item *ret;
127 char buf[64];
128
129 ret = snewn(3, config_item);
130
131 ret[0].name = "Width";
132 ret[0].type = C_STRING;
133 sprintf(buf, "%d", params->w);
134 ret[0].sval = dupstr(buf);
135 ret[0].ival = 0;
136
137 ret[1].name = "Height";
138 ret[1].type = C_STRING;
139 sprintf(buf, "%d", params->h);
140 ret[1].sval = dupstr(buf);
141 ret[1].ival = 0;
142
143 ret[2].name = NULL;
144 ret[2].type = C_END;
145 ret[2].sval = NULL;
146 ret[2].ival = 0;
147
148 return ret;
149 }
150
151 static game_params *custom_params(config_item *cfg)
152 {
153 game_params *ret = snew(game_params);
154
155 ret->w = atoi(cfg[0].sval);
156 ret->h = atoi(cfg[1].sval);
157
158 return ret;
159 }
160
161 static char *validate_params(game_params *params, int full)
162 {
163 if (params->w < 1) return "Width must be at least one";
164 if (params->h < 1) return "Height must be at least one";
165
166 return NULL;
167 }
168
169 /*****************************************************************************
170 * STRINGIFICATION OF GAME STATE *
171 *****************************************************************************/
172
173 #define EMPTY 0
174
175 /* Example of plaintext rendering:
176 * +---+---+---+---+---+---+---+
177 * | 6 | | | 2 | | | 2 |
178 * +---+---+---+---+---+---+---+
179 * | | 3 | | 6 | | 3 | |
180 * +---+---+---+---+---+---+---+
181 * | 3 | | | | | | 1 |
182 * +---+---+---+---+---+---+---+
183 * | | 2 | 3 | | 4 | 2 | |
184 * +---+---+---+---+---+---+---+
185 * | 2 | | | | | | 3 |
186 * +---+---+---+---+---+---+---+
187 * | | 5 | | 1 | | 4 | |
188 * +---+---+---+---+---+---+---+
189 * | 4 | | | 3 | | | 3 |
190 * +---+---+---+---+---+---+---+
191 *
192 * This puzzle instance is taken from the nikoli website
193 * Encoded (unsolved and solved), the strings are these:
194 * 7x7:6002002030603030000010230420200000305010404003003
195 * 7x7:6662232336663232331311235422255544325413434443313
196 */
197 static char *board_to_string(int *board, int w, int h) {
198 const int sz = w * h;
199 const int chw = (4*w + 2); /* +2 for trailing '+' and '\n' */
200 const int chh = (2*h + 1); /* +1: n fence segments, n+1 posts */
201 const int chlen = chw * chh;
202 char *repr = snewn(chlen + 1, char);
203 int i;
204
205 assert(board);
206
207 /* build the first line ("^(\+---){n}\+$") */
208 for (i = 0; i < w; ++i) {
209 repr[4*i + 0] = '+';
210 repr[4*i + 1] = '-';
211 repr[4*i + 2] = '-';
212 repr[4*i + 3] = '-';
213 }
214 repr[4*i + 0] = '+';
215 repr[4*i + 1] = '\n';
216
217 /* ... and copy it onto the odd-numbered lines */
218 for (i = 0; i < h; ++i) memcpy(repr + (2*i + 2) * chw, repr, chw);
219
220 /* build the second line ("^(\|\t){n}\|$") */
221 for (i = 0; i < w; ++i) {
222 repr[chw + 4*i + 0] = '|';
223 repr[chw + 4*i + 1] = ' ';
224 repr[chw + 4*i + 2] = ' ';
225 repr[chw + 4*i + 3] = ' ';
226 }
227 repr[chw + 4*i + 0] = '|';
228 repr[chw + 4*i + 1] = '\n';
229
230 /* ... and copy it onto the even-numbered lines */
231 for (i = 1; i < h; ++i) memcpy(repr + (2*i + 1) * chw, repr + chw, chw);
232
233 /* fill in the numbers */
234 for (i = 0; i < sz; ++i) {
235 const int x = i % w;
236 const int y = i / w;
237 if (board[i] == EMPTY) continue;
238 repr[chw*(2*y + 1) + (4*x + 2)] = board[i] + '0';
239 }
240
241 repr[chlen] = '\0';
242 return repr;
243 }
244
245 static char *game_text_format(game_state *state)
246 {
247 const int w = state->shared->params.w;
248 const int h = state->shared->params.h;
249 return board_to_string(state->board, w, h);
250 }
251
252 /*****************************************************************************
253 * GAME GENERATION AND SOLVER *
254 *****************************************************************************/
255
256 static const int dx[4] = {-1, 1, 0, 0};
257 static const int dy[4] = {0, 0, -1, 1};
258
259 /*
260 static void print_board(int *board, int w, int h) {
261 char *repr = board_to_string(board, w, h);
262 fputs(repr, stdout);
263 free(repr);
264 }
265 */
266
267 #define SENTINEL sz
268
269 /* determines whether a board (in dsf form) is valid. If possible,
270 * return a conflicting pair in *a and *b and a non-*b neighbour of *a
271 * in *c. If not possible, leave them unmodified. */
272 static void
273 validate_board(int *dsf, int w, int h, int *sq, int *a, int *b, int *c) {
274 const int sz = w * h;
275 int i;
276 assert(*a == SENTINEL);
277 assert(*b == SENTINEL);
278 assert(*c == SENTINEL);
279 for (i = 0; i < sz && *a == sz; ++i) {
280 const int aa = dsf_canonify(dsf, sq[i]);
281 int cc = sz;
282 int j;
283 for (j = 0; j < 4; ++j) {
284 const int x = (sq[i] % w) + dx[j];
285 const int y = (sq[i] / w) + dy[j];
286 int bb;
287 if (x < 0 || x >= w || y < 0 || y >= h) continue;
288 bb = dsf_canonify(dsf, w*y + x);
289 if (aa == bb) continue;
290 else if (dsf_size(dsf, aa) == dsf_size(dsf, bb)) {
291 *a = aa;
292 *b = bb;
293 *c = cc;
294 } else if (cc == sz) *c = cc = bb;
295 }
296 }
297 }
298
299 static game_state *new_game(midend *, game_params *, char *);
300 static void free_game(game_state *);
301
302 /* generate a random valid board; uses validate_board. */
303 void make_board(int *board, int w, int h, random_state *rs) {
304 int *dsf;
305
306 const unsigned int sz = w * h;
307
308 /* w=h=2 is a special case which requires a number > max(w, h) */
309 /* TODO prove that this is the case ONLY for w=h=2. */
310 const int maxsize = min(max(max(w, h), 3), 9);
311
312 /* Note that if 1 in {w, h} then it's impossible to have a region
313 * of size > w*h, so the special case only affects w=h=2. */
314
315 int nboards = 0;
316
317 int i;
318
319 assert(w >= 1);
320 assert(h >= 1);
321
322 assert(board);
323
324 dsf = snew_dsf(sz); /* implicit dsf_init */
325
326 /* I abuse the board variable: when generating the puzzle, it
327 * contains a shuffled list of numbers {0, ..., nsq-1}. */
328 for (i = 0; i < sz; ++i) board[i] = i;
329
330 while (1) {
331 ++nboards;
332 shuffle(board, sz, sizeof (int), rs);
333 /* while the board can in principle be fixed */
334 while (1) {
335 int a = SENTINEL;
336 int b = SENTINEL;
337 int c = SENTINEL;
338 validate_board(dsf, w, h, board, &a, &b, &c);
339 if (a == SENTINEL /* meaning the board is valid */) {
340 int i;
341 for (i = 0; i < sz; ++i) board[i] = dsf_size(dsf, i);
342 sfree(dsf);
343 /* printf("returning board number %d\n", nboards); */
344 return;
345 } else {
346 /* try to repair the invalid board */
347 a = dsf_canonify(dsf, a);
348 assert(a != dsf_canonify(dsf, b));
349 if (c != sz) assert(a != dsf_canonify(dsf, c));
350 dsf_merge(dsf, a, c == sz? b: c);
351 /* if repair impossible; make a new board */
352 if (dsf_size(dsf, a) > maxsize) break;
353 }
354 }
355 dsf_init(dsf, sz); /* re-init the dsf */
356 }
357 assert(FALSE); /* unreachable */
358 }
359
360 static int rhofree(int *hop, int start) {
361 int turtle = start, rabbit = hop[start];
362 while (rabbit != turtle) { /* find a cycle */
363 turtle = hop[turtle];
364 rabbit = hop[hop[rabbit]];
365 }
366 do { /* check that start is in the cycle */
367 rabbit = hop[rabbit];
368 if (start == rabbit) return 1;
369 } while (rabbit != turtle);
370 return 0;
371 }
372
373 static void merge(int *dsf, int *connected, int a, int b) {
374 int c;
375 assert(dsf);
376 assert(connected);
377 assert(rhofree(connected, a));
378 assert(rhofree(connected, b));
379 a = dsf_canonify(dsf, a);
380 b = dsf_canonify(dsf, b);
381 if (a == b) return;
382 dsf_merge(dsf, a, b);
383 c = connected[a];
384 connected[a] = connected[b];
385 connected[b] = c;
386 assert(rhofree(connected, a));
387 assert(rhofree(connected, b));
388 }
389
390 static void *memdup(const void *ptr, size_t len, size_t esz) {
391 void *dup = smalloc(len * esz);
392 assert(ptr);
393 memcpy(dup, ptr, len * esz);
394 return dup;
395 }
396
397 static void expand(int *board, int *connected, int *dsf, int w, int h,
398 int dst, int src, int *empty, int *learn) {
399 int j;
400 assert(board);
401 assert(connected);
402 assert(dsf);
403 assert(empty);
404 assert(learn);
405 assert(board[dst] == EMPTY);
406 assert(board[src] != EMPTY);
407 board[dst] = board[src];
408 for (j = 0; j < 4; ++j) {
409 const int x = (dst % w) + dx[j];
410 const int y = (dst / w) + dy[j];
411 const int idx = w*y + x;
412 if (x < 0 || x >= w || y < 0 || y >= h) continue;
413 if (board[idx] != board[dst]) continue;
414 merge(dsf, connected, dst, idx);
415 }
416 /* printf("set board[%d] = board[%d], which is %d; size(%d) = %d\n", dst, src, board[src], src, dsf[dsf_canonify(dsf, src)] >> 2); */
417 --*empty;
418 *learn = TRUE;
419 }
420
421 static void flood(int *board, int w, int h, int i, int n) {
422 const int sz = w * h;
423 int k;
424
425 if (board[i] == EMPTY) board[i] = -SENTINEL;
426 else if (board[i] == n) board[i] = -board[i];
427 else return;
428
429 for (k = 0; k < 4; ++k) {
430 const int x = (i % w) + dx[k];
431 const int y = (i / w) + dy[k];
432 const int idx = w*y + x;
433 if (x < 0 || x >= w || y < 0 || y >= h) continue;
434 flood(board, w, h, idx, n);
435 }
436 }
437
438 static int count_and_clear(int *board, int sz) {
439 int count = -1;
440 int i;
441 for (i = 0; i < sz; ++i) {
442 if (board[i] >= 0) continue;
443 ++count;
444 if (board[i] == -SENTINEL) board[i] = EMPTY;
445 else board[i] = -board[i];
446 }
447 return count;
448 }
449
450 static int count(int *board, int w, int h, int i) {
451 flood(board, w, h, i, board[i]);
452 return count_and_clear(board, w * h);
453 }
454
455 static int expandsize(const int *board, int *dsf, int w, int h, int i, int n) {
456 int j;
457 int nhits = 0;
458 int hits[4];
459 int size = 1;
460 for (j = 0; j < 4; ++j) {
461 const int x = (i % w) + dx[j];
462 const int y = (i / w) + dy[j];
463 const int idx = w*y + x;
464 int root;
465 int m;
466 if (x < 0 || x >= w || y < 0 || y >= h) continue;
467 if (board[idx] != n) continue;
468 root = dsf_canonify(dsf, idx);
469 for (m = 0; m < nhits && root != hits[m]; ++m);
470 if (m < nhits) continue;
471 /* printf("\t (%d, %d) contributed %d to size\n", lx, ly, dsf[root] >> 2); */
472 size += dsf_size(dsf, root);
473 assert(dsf_size(dsf, root) >= 1);
474 hits[nhits++] = root;
475 }
476 return size;
477 }
478
479 /*
480 * +---+---+---+---+---+---+---+
481 * | 6 | | | 2 | | | 2 |
482 * +---+---+---+---+---+---+---+
483 * | | 3 | | 6 | | 3 | |
484 * +---+---+---+---+---+---+---+
485 * | 3 | | | | | | 1 |
486 * +---+---+---+---+---+---+---+
487 * | | 2 | 3 | | 4 | 2 | |
488 * +---+---+---+---+---+---+---+
489 * | 2 | | | | | | 3 |
490 * +---+---+---+---+---+---+---+
491 * | | 5 | | 1 | | 4 | |
492 * +---+---+---+---+---+---+---+
493 * | 4 | | | 3 | | | 3 |
494 * +---+---+---+---+---+---+---+
495 */
496
497 /* Solving techniques:
498 *
499 * CONNECTED COMPONENT FORCED EXPANSION (too big):
500 * When a CC can only be expanded in one direction, because all the
501 * other ones would make the CC too big.
502 * +---+---+---+---+---+
503 * | 2 | 2 | | 2 | _ |
504 * +---+---+---+---+---+
505 *
506 * CONNECTED COMPONENT FORCED EXPANSION (too small):
507 * When a CC must include a particular square, because otherwise there
508 * would not be enough room to complete it.
509 * +---+---+
510 * | 2 | _ |
511 * +---+---+
512 *
513 * DROPPING IN A ONE:
514 * When an empty square has no neighbouring empty squares and only a 1
515 * will go into the square (or other CCs would be too big).
516 * +---+---+---+
517 * | 2 | 2 | _ |
518 * +---+---+---+
519 *
520 * TODO: generalise DROPPING IN A ONE: find the size of the CC of
521 * empty squares and a list of all adjacent numbers. See if only one
522 * number in {1, ..., size} u {all adjacent numbers} is possible.
523 * Probably this is only effective for a CC size < n for some n (4?)
524 *
525 * TODO: backtracking.
526 */
527 #define EXPAND(a, b)\
528 expand(board, connected, dsf, w, h, a, b, &nempty, &learn)
529
530 static int solver(const int *orig, int w, int h, char **solution) {
531 const int sz = w * h;
532
533 int *board = memdup(orig, sz, sizeof (int));
534 int *dsf = snew_dsf(sz); /* eqv classes: connected components */
535 int *connected = snewn(sz, int); /* connected[n] := n.next; */
536 /* cyclic disjoint singly linked lists, same partitioning as dsf.
537 * The lists lets you iterate over a partition given any member */
538
539 int nempty = 0;
540
541 int learn;
542
543 int i;
544 for (i = 0; i < sz; i++) connected[i] = i;
545
546 for (i = 0; i < sz; ++i) {
547 int j;
548 if (board[i] == EMPTY) ++nempty;
549 else for (j = 0; j < 4; ++j) {
550 const int x = (i % w) + dx[j];
551 const int y = (i / w) + dy[j];
552 const int idx = w*y + x;
553 if (x < 0 || x >= w || y < 0 || y >= h) continue;
554 if (board[i] == board[idx]) merge(dsf, connected, i, idx);
555 }
556 }
557
558 /* puts("trying to solve this:");
559 print_board(board, w, h); */
560
561 /* TODO: refactor this code, it's too long */
562 do {
563 int i;
564 learn = FALSE;
565
566 /* for every connected component */
567 for (i = 0; i < sz; ++i) {
568 int exp = SENTINEL;
569 int j;
570
571 /* If the component consists of empty squares */
572 if (board[i] == EMPTY) {
573 int k;
574 int one = TRUE;
575 for (k = 0; k < 4; ++k) {
576 const int x = (i % w) + dx[k];
577 const int y = (i / w) + dy[k];
578 const int idx = w*y + x;
579 int n;
580 if (x < 0 || x >= w || y < 0 || y >= h) continue;
581 if (board[idx] == EMPTY) {
582 one = FALSE;
583 continue;
584 }
585 if (one &&
586 (board[idx] == 1 ||
587 (board[idx] >= expandsize(board, dsf, w, h,
588 i, board[idx]))))
589 one = FALSE;
590 assert(board[i] == EMPTY);
591 board[i] = -SENTINEL;
592 n = count(board, w, h, idx);
593 assert(board[i] == EMPTY);
594 if (n >= board[idx]) continue;
595 EXPAND(i, idx);
596 break;
597 }
598 if (k == 4 && one) {
599 assert(board[i] == EMPTY);
600 board[i] = 1;
601 assert(nempty);
602 --nempty;
603 learn = TRUE;
604 }
605 continue;
606 }
607 /* printf("expanding blob of (%d, %d)\n", i % w, i / w); */
608
609 j = dsf_canonify(dsf, i);
610
611 /* (but only for each connected component) */
612 if (i != j) continue;
613
614 /* (and not if it's already complete) */
615 if (dsf_size(dsf, j) == board[j]) continue;
616
617 /* for each square j _in_ the connected component */
618 do {
619 int k;
620 /* printf(" looking at (%d, %d)\n", j % w, j / w); */
621
622 /* for each neighbouring square (idx) */
623 for (k = 0; k < 4; ++k) {
624 const int x = (j % w) + dx[k];
625 const int y = (j / w) + dy[k];
626 const int idx = w*y + x;
627 int size;
628 /* int l;
629 int nhits = 0;
630 int hits[4]; */
631 if (x < 0 || x >= w || y < 0 || y >= h) continue;
632 if (board[idx] != EMPTY) continue;
633 if (exp == idx) continue;
634 /* printf("\ttrying to expand onto (%d, %d)\n", x, y); */
635
636 /* find out the would-be size of the new connected
637 * component if we actually expanded into idx */
638 /*
639 size = 1;
640 for (l = 0; l < 4; ++l) {
641 const int lx = x + dx[l];
642 const int ly = y + dy[l];
643 const int idxl = w*ly + lx;
644 int root;
645 int m;
646 if (lx < 0 || lx >= w || ly < 0 || ly >= h) continue;
647 if (board[idxl] != board[j]) continue;
648 root = dsf_canonify(dsf, idxl);
649 for (m = 0; m < nhits && root != hits[m]; ++m);
650 if (m != nhits) continue;
651 // printf("\t (%d, %d) contributed %d to size\n", lx, ly, dsf[root] >> 2);
652 size += dsf_size(dsf, root);
653 assert(dsf_size(dsf, root) >= 1);
654 hits[nhits++] = root;
655 }
656 */
657
658 size = expandsize(board, dsf, w, h, idx, board[j]);
659
660 /* ... and see if that size is too big, or if we
661 * have other expansion candidates. Otherwise
662 * remember the (so far) only candidate. */
663
664 /* printf("\tthat would give a size of %d\n", size); */
665 if (size > board[j]) continue;
666 /* printf("\tnow knowing %d expansions\n", nexpand + 1); */
667 if (exp != SENTINEL) goto next_i;
668 assert(exp != idx);
669 exp = idx;
670 }
671
672 j = connected[j]; /* next square in the same CC */
673 assert(board[i] == board[j]);
674 } while (j != i);
675 /* end: for each square j _in_ the connected component */
676
677 if (exp == SENTINEL) continue;
678 /* printf("expand b: %d -> %d\n", i, exp); */
679 EXPAND(exp, i);
680
681 next_i:
682 ;
683 }
684 /* end: for each connected component */
685 } while (learn && nempty);
686
687 /* puts("best guess:");
688 print_board(board, w, h); */
689
690 if (solution) {
691 int i;
692 assert(*solution == NULL);
693 *solution = snewn(sz + 2, char);
694 **solution = 's';
695 for (i = 0; i < sz; ++i) (*solution)[i + 1] = board[i] + '0';
696 (*solution)[sz + 1] = '\0';
697 /* We don't need the \0 for execute_move (the only user)
698 * I'm just being printf-friendly in case I wanna print */
699 }
700
701 sfree(dsf);
702 sfree(board);
703 sfree(connected);
704
705 return !nempty;
706 }
707
708 static int *make_dsf(int *dsf, int *board, const int w, const int h) {
709 const int sz = w * h;
710 int i;
711
712 if (!dsf)
713 dsf = snew_dsf(w * h);
714 else
715 dsf_init(dsf, w * h);
716
717 for (i = 0; i < sz; ++i) {
718 int j;
719 for (j = 0; j < 4; ++j) {
720 const int x = (i % w) + dx[j];
721 const int y = (i / w) + dy[j];
722 const int k = w*y + x;
723 if (x < 0 || x >= w || y < 0 || y >= h) continue;
724 if (board[i] == board[k]) dsf_merge(dsf, i, k);
725 }
726 }
727 return dsf;
728 }
729
730 /*
731 static int filled(int *board, int *randomize, int k, int n) {
732 int i;
733 if (board == NULL) return FALSE;
734 if (randomize == NULL) return FALSE;
735 if (k > n) return FALSE;
736 for (i = 0; i < k; ++i) if (board[randomize[i]] == 0) return FALSE;
737 for (; i < n; ++i) if (board[randomize[i]] != 0) return FALSE;
738 return TRUE;
739 }
740 */
741
742 static int *g_board;
743 static int compare(const void *pa, const void *pb) {
744 if (!g_board) return 0;
745 return g_board[*(const int *)pb] - g_board[*(const int *)pa];
746 }
747
748 static char *new_game_desc(game_params *params, random_state *rs,
749 char **aux, int interactive)
750 {
751 const int w = params->w;
752 const int h = params->h;
753 const int sz = w * h;
754 int *board = snewn(sz, int);
755 int *randomize = snewn(sz, int);
756 int *solver_board = snewn(sz, int);
757 char *game_description = snewn(sz + 1, char);
758 int i;
759
760 for (i = 0; i < sz; ++i) {
761 board[i] = EMPTY;
762 randomize[i] = i;
763 }
764
765 make_board(board, w, h, rs);
766 memcpy(solver_board, board, sz * sizeof (int));
767
768 g_board = board;
769 qsort(randomize, sz, sizeof (int), compare);
770
771 /* since more clues only helps and never hurts, one pass will do
772 * just fine: if we can remove clue n with k clues of index > n,
773 * we could have removed clue n with >= k clues of index > n.
774 * So an additional pass wouldn't do anything [use induction]. */
775 for (i = 0; i < sz; ++i) {
776 solver_board[randomize[i]] = EMPTY;
777 if (!solver(solver_board, w, h, NULL))
778 solver_board[randomize[i]] = board[randomize[i]];
779 }
780
781 for (i = 0; i < sz; ++i) {
782 assert(solver_board[i] >= 0);
783 assert(solver_board[i] < 10);
784 game_description[i] = solver_board[i] + '0';
785 }
786 game_description[sz] = '\0';
787
788 /*
789 solver(solver_board, w, h, aux);
790 print_board(solver_board, w, h);
791 */
792
793 sfree(randomize);
794 sfree(solver_board);
795 sfree(board);
796
797 return game_description;
798 }
799
800 static char *validate_desc(game_params *params, char *desc)
801 {
802 int i;
803 const int sz = params->w * params->h;
804 const char m = '0' + max(max(params->w, params->h), 3);
805
806 /* printf("desc = '%s'; sz = %d\n", desc, sz); */
807
808 for (i = 0; desc[i] && i < sz; ++i)
809 if (!isdigit((unsigned char) *desc))
810 return "non-digit in string";
811 else if (desc[i] > m)
812 return "too large digit in string";
813 if (desc[i]) return "string too long";
814 else if (i < sz) return "string too short";
815 return NULL;
816 }
817
818 static game_state *new_game(midend *me, game_params *params, char *desc)
819 {
820 game_state *state = snew(game_state);
821 int sz = params->w * params->h;
822 int i;
823
824 state->cheated = state->completed = FALSE;
825 state->shared = snew(struct shared_state);
826 state->shared->refcnt = 1;
827 state->shared->params = *params; /* struct copy */
828 state->shared->clues = snewn(sz, int);
829 for (i = 0; i < sz; ++i) state->shared->clues[i] = desc[i] - '0';
830 state->board = memdup(state->shared->clues, sz, sizeof (int));
831
832 return state;
833 }
834
835 static game_state *dup_game(game_state *state)
836 {
837 const int sz = state->shared->params.w * state->shared->params.h;
838 game_state *ret = snew(game_state);
839
840 ret->board = memdup(state->board, sz, sizeof (int));
841 ret->shared = state->shared;
842 ret->cheated = state->cheated;
843 ret->completed = state->completed;
844 ++ret->shared->refcnt;
845
846 return ret;
847 }
848
849 static void free_game(game_state *state)
850 {
851 assert(state);
852 sfree(state->board);
853 if (--state->shared->refcnt == 0) {
854 sfree(state->shared->clues);
855 sfree(state->shared);
856 }
857 sfree(state);
858 }
859
860 static char *solve_game(game_state *state, game_state *currstate,
861 char *aux, char **error)
862 {
863 if (aux == NULL) {
864 const int w = state->shared->params.w;
865 const int h = state->shared->params.h;
866 if (!solver(state->board, w, h, &aux))
867 *error = "Sorry, I couldn't find a solution";
868 }
869 return aux;
870 }
871
872 /*****************************************************************************
873 * USER INTERFACE STATE AND ACTION *
874 *****************************************************************************/
875
876 struct game_ui {
877 int x, y; /* highlighted square, or (-1, -1) if none */
878 };
879
880 static game_ui *new_ui(game_state *state)
881 {
882 game_ui *ui = snew(game_ui);
883
884 ui->x = ui->y = -1;
885
886 return ui;
887 }
888
889 static void free_ui(game_ui *ui)
890 {
891 sfree(ui);
892 }
893
894 static char *encode_ui(game_ui *ui)
895 {
896 return NULL;
897 }
898
899 static void decode_ui(game_ui *ui, char *encoding)
900 {
901 }
902
903 static void game_changed_state(game_ui *ui, game_state *oldstate,
904 game_state *newstate)
905 {
906 }
907
908 #define PREFERRED_TILE_SIZE 32
909 #define TILE_SIZE (ds->tilesize)
910 #define BORDER (TILE_SIZE / 2)
911 #define BORDER_WIDTH (TILE_SIZE / 32)
912
913 struct game_drawstate {
914 struct game_params params;
915 int tilesize;
916 int started;
917 int *v, *flags;
918 int *dsf_scratch, *border_scratch;
919 };
920
921 static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
922 int x, int y, int button)
923 {
924 const int w = state->shared->params.w;
925 const int h = state->shared->params.h;
926
927 const int tx = (x + TILE_SIZE - BORDER) / TILE_SIZE - 1;
928 const int ty = (y + TILE_SIZE - BORDER) / TILE_SIZE - 1;
929
930 assert(ui);
931 assert(ds);
932
933 button &= ~MOD_MASK;
934
935 if (tx >= 0 && tx < w && ty >= 0 && ty < h) {
936 if (button == LEFT_BUTTON) {
937 if ((tx == ui->x && ty == ui->y) || state->shared->clues[w*ty+tx])
938 ui->x = ui->y = -1;
939 else ui->x = tx, ui->y = ty;
940 return ""; /* redraw */
941 }
942 }
943
944 assert((ui->x == -1) == (ui->y == -1));
945 if (ui->x == -1) return NULL;
946 assert(state->shared->clues[w*ui->y + ui->x] == 0);
947
948 switch (button) {
949 case ' ':
950 case '\r':
951 case '\n':
952 case '\b':
953 case '\177':
954 button = 0;
955 break;
956 default:
957 if (!isdigit(button)) return NULL;
958 button -= '0';
959 if (button > (w == 2 && h == 2? 3: max(w, h))) return NULL;
960 }
961
962 {
963 const int i = w*ui->y + ui->x;
964 char buf[64];
965 ui->x = ui->y = -1;
966 if (state->board[i] == button) {
967 return ""; /* no change - just update ui */
968 } else {
969 sprintf(buf, "%d_%d", i, button);
970 return dupstr(buf);
971 }
972 }
973 }
974
975 static game_state *execute_move(game_state *state, char *move)
976 {
977 game_state *new_state;
978
979 if (*move == 's') {
980 const int sz = state->shared->params.w * state->shared->params.h;
981 int i = 0;
982 new_state = dup_game(state);
983 for (++move; i < sz; ++i) new_state->board[i] = move[i] - '0';
984 new_state->cheated = TRUE;
985 } else {
986 char *endptr;
987 const int i = strtol(move, &endptr, errno = 0);
988 int value;
989 if (errno == ERANGE) return NULL;
990 if (endptr == move) return NULL;
991 if (*endptr != '_') return NULL;
992 move = endptr + 1;
993 value = strtol(move, &endptr, 0);
994 if (endptr == move) return NULL;
995 if (*endptr != '\0') return NULL;
996 new_state = dup_game(state);
997 new_state->board[i] = value;
998 }
999
1000 /*
1001 * Check for completion.
1002 */
1003 if (!new_state->completed) {
1004 const int w = new_state->shared->params.w;
1005 const int h = new_state->shared->params.h;
1006 const int sz = w * h;
1007 int *dsf = make_dsf(NULL, new_state->board, w, h);
1008 int i;
1009 for (i = 0; i < sz && new_state->board[i] == dsf_size(dsf, i); ++i);
1010 sfree(dsf);
1011 if (i == sz)
1012 new_state->completed = TRUE;
1013 }
1014
1015 return new_state;
1016 }
1017
1018 /* ----------------------------------------------------------------------
1019 * Drawing routines.
1020 */
1021
1022 #define FLASH_TIME 0.4F
1023
1024 #define COL_CLUE COL_GRID
1025 enum {
1026 COL_BACKGROUND,
1027 COL_GRID,
1028 COL_HIGHLIGHT,
1029 COL_CORRECT,
1030 COL_ERROR,
1031 COL_USER,
1032 NCOLOURS
1033 };
1034
1035 static void game_compute_size(game_params *params, int tilesize,
1036 int *x, int *y)
1037 {
1038 *x = (params->w + 1) * tilesize;
1039 *y = (params->h + 1) * tilesize;
1040 }
1041
1042 static void game_set_size(drawing *dr, game_drawstate *ds,
1043 game_params *params, int tilesize)
1044 {
1045 ds->tilesize = tilesize;
1046 }
1047
1048 static float *game_colours(frontend *fe, int *ncolours)
1049 {
1050 float *ret = snewn(3 * NCOLOURS, float);
1051
1052 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
1053
1054 ret[COL_GRID * 3 + 0] = 0.0F;
1055 ret[COL_GRID * 3 + 1] = 0.0F;
1056 ret[COL_GRID * 3 + 2] = 0.0F;
1057
1058 ret[COL_HIGHLIGHT * 3 + 0] = 0.85F * ret[COL_BACKGROUND * 3 + 0];
1059 ret[COL_HIGHLIGHT * 3 + 1] = 0.85F * ret[COL_BACKGROUND * 3 + 1];
1060 ret[COL_HIGHLIGHT * 3 + 2] = 0.85F * ret[COL_BACKGROUND * 3 + 2];
1061
1062 ret[COL_CORRECT * 3 + 0] = 0.9F * ret[COL_BACKGROUND * 3 + 0];
1063 ret[COL_CORRECT * 3 + 1] = 0.9F * ret[COL_BACKGROUND * 3 + 1];
1064 ret[COL_CORRECT * 3 + 2] = 0.9F * ret[COL_BACKGROUND * 3 + 2];
1065
1066 ret[COL_ERROR * 3 + 0] = 1.0F;
1067 ret[COL_ERROR * 3 + 1] = 0.85F * ret[COL_BACKGROUND * 3 + 1];
1068 ret[COL_ERROR * 3 + 2] = 0.85F * ret[COL_BACKGROUND * 3 + 2];
1069
1070 ret[COL_USER * 3 + 0] = 0.0F;
1071 ret[COL_USER * 3 + 1] = 0.6F * ret[COL_BACKGROUND * 3 + 1];
1072 ret[COL_USER * 3 + 2] = 0.0F;
1073
1074 *ncolours = NCOLOURS;
1075 return ret;
1076 }
1077
1078 static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
1079 {
1080 struct game_drawstate *ds = snew(struct game_drawstate);
1081 int i;
1082
1083 ds->tilesize = PREFERRED_TILE_SIZE;
1084 ds->started = 0;
1085 ds->params = state->shared->params;
1086 ds->v = snewn(ds->params.w * ds->params.h, int);
1087 ds->flags = snewn(ds->params.w * ds->params.h, int);
1088 for (i = 0; i < ds->params.w * ds->params.h; i++)
1089 ds->v[i] = ds->flags[i] = -1;
1090 ds->border_scratch = snewn(ds->params.w * ds->params.h, int);
1091 ds->dsf_scratch = NULL;
1092
1093 return ds;
1094 }
1095
1096 static void game_free_drawstate(drawing *dr, game_drawstate *ds)
1097 {
1098 sfree(ds->v);
1099 sfree(ds->flags);
1100 sfree(ds->border_scratch);
1101 sfree(ds->dsf_scratch);
1102 sfree(ds);
1103 }
1104
1105 #define BORDER_U 0x001
1106 #define BORDER_D 0x002
1107 #define BORDER_L 0x004
1108 #define BORDER_R 0x008
1109 #define BORDER_UR 0x010
1110 #define BORDER_DR 0x020
1111 #define BORDER_UL 0x040
1112 #define BORDER_DL 0x080
1113 #define CURSOR_BG 0x100
1114 #define CORRECT_BG 0x200
1115 #define ERROR_BG 0x400
1116 #define USER_COL 0x800
1117
1118 static void draw_square(drawing *dr, game_drawstate *ds, int x, int y,
1119 int n, int flags)
1120 {
1121 assert(dr);
1122 assert(ds);
1123
1124 /*
1125 * Clear the square.
1126 */
1127 draw_rect(dr,
1128 BORDER + x*TILE_SIZE + 1,
1129 BORDER + y*TILE_SIZE + 1,
1130 TILE_SIZE - 1,
1131 TILE_SIZE - 1,
1132 (flags & CURSOR_BG ? COL_HIGHLIGHT :
1133 flags & ERROR_BG ? COL_ERROR :
1134 flags & CORRECT_BG ? COL_CORRECT : COL_BACKGROUND));
1135
1136 /*
1137 * Draw the number.
1138 */
1139 if (n) {
1140 char buf[2];
1141 buf[0] = n + '0';
1142 buf[1] = '\0';
1143 draw_text(dr,
1144 (x + 1) * TILE_SIZE,
1145 (y + 1) * TILE_SIZE,
1146 FONT_VARIABLE,
1147 TILE_SIZE / 2,
1148 ALIGN_VCENTRE | ALIGN_HCENTRE,
1149 flags & USER_COL ? COL_USER : COL_CLUE,
1150 buf);
1151 }
1152
1153 /*
1154 * Draw bold lines around the borders.
1155 */
1156 if (flags & BORDER_L)
1157 draw_rect(dr,
1158 BORDER + x*TILE_SIZE + 1,
1159 BORDER + y*TILE_SIZE + 1,
1160 BORDER_WIDTH,
1161 TILE_SIZE - 1,
1162 COL_GRID);
1163 if (flags & BORDER_U)
1164 draw_rect(dr,
1165 BORDER + x*TILE_SIZE + 1,
1166 BORDER + y*TILE_SIZE + 1,
1167 TILE_SIZE - 1,
1168 BORDER_WIDTH,
1169 COL_GRID);
1170 if (flags & BORDER_R)
1171 draw_rect(dr,
1172 BORDER + (x+1)*TILE_SIZE - BORDER_WIDTH,
1173 BORDER + y*TILE_SIZE + 1,
1174 BORDER_WIDTH,
1175 TILE_SIZE - 1,
1176 COL_GRID);
1177 if (flags & BORDER_D)
1178 draw_rect(dr,
1179 BORDER + x*TILE_SIZE + 1,
1180 BORDER + (y+1)*TILE_SIZE - BORDER_WIDTH,
1181 TILE_SIZE - 1,
1182 BORDER_WIDTH,
1183 COL_GRID);
1184 if (flags & BORDER_UL)
1185 draw_rect(dr,
1186 BORDER + x*TILE_SIZE + 1,
1187 BORDER + y*TILE_SIZE + 1,
1188 BORDER_WIDTH,
1189 BORDER_WIDTH,
1190 COL_GRID);
1191 if (flags & BORDER_UR)
1192 draw_rect(dr,
1193 BORDER + (x+1)*TILE_SIZE - BORDER_WIDTH,
1194 BORDER + y*TILE_SIZE + 1,
1195 BORDER_WIDTH,
1196 BORDER_WIDTH,
1197 COL_GRID);
1198 if (flags & BORDER_DL)
1199 draw_rect(dr,
1200 BORDER + x*TILE_SIZE + 1,
1201 BORDER + (y+1)*TILE_SIZE - BORDER_WIDTH,
1202 BORDER_WIDTH,
1203 BORDER_WIDTH,
1204 COL_GRID);
1205 if (flags & BORDER_DR)
1206 draw_rect(dr,
1207 BORDER + (x+1)*TILE_SIZE - BORDER_WIDTH,
1208 BORDER + (y+1)*TILE_SIZE - BORDER_WIDTH,
1209 BORDER_WIDTH,
1210 BORDER_WIDTH,
1211 COL_GRID);
1212
1213 draw_update(dr,
1214 BORDER + x*TILE_SIZE - 1,
1215 BORDER + y*TILE_SIZE - 1,
1216 TILE_SIZE + 3,
1217 TILE_SIZE + 3);
1218 }
1219
1220 static void draw_grid(drawing *dr, game_drawstate *ds, game_state *state,
1221 game_ui *ui, int flashy, int borders, int shading)
1222 {
1223 const int w = state->shared->params.w;
1224 const int h = state->shared->params.h;
1225 int x;
1226 int y;
1227
1228 /*
1229 * Build a dsf for the board in its current state, to use for
1230 * highlights and hints.
1231 */
1232 ds->dsf_scratch = make_dsf(ds->dsf_scratch, state->board, w, h);
1233
1234 /*
1235 * Work out where we're putting borders between the cells.
1236 */
1237 for (y = 0; y < w*h; y++)
1238 ds->border_scratch[y] = 0;
1239
1240 for (y = 0; y < h; y++)
1241 for (x = 0; x < w; x++) {
1242 int dx, dy;
1243 int v1, s1, v2, s2;
1244
1245 for (dx = 0; dx <= 1; dx++) {
1246 int border = FALSE;
1247
1248 dy = 1 - dx;
1249
1250 if (x+dx >= w || y+dy >= h)
1251 continue;
1252
1253 v1 = state->board[y*w+x];
1254 v2 = state->board[(y+dy)*w+(x+dx)];
1255 s1 = dsf_size(ds->dsf_scratch, y*w+x);
1256 s2 = dsf_size(ds->dsf_scratch, (y+dy)*w+(x+dx));
1257
1258 /*
1259 * We only ever draw a border between two cells if
1260 * they don't have the same contents.
1261 */
1262 if (v1 != v2) {
1263 /*
1264 * But in that situation, we don't always draw
1265 * a border. We do if the two cells both
1266 * contain actual numbers...
1267 */
1268 if (v1 && v2)
1269 border = TRUE;
1270
1271 /*
1272 * ... or if at least one of them is a
1273 * completed or overfull omino.
1274 */
1275 if (v1 && s1 >= v1)
1276 border = TRUE;
1277 if (v2 && s2 >= v2)
1278 border = TRUE;
1279 }
1280
1281 if (border)
1282 ds->border_scratch[y*w+x] |= (dx ? 1 : 2);
1283 }
1284 }
1285
1286 /*
1287 * Actually do the drawing.
1288 */
1289 for (y = 0; y < h; ++y)
1290 for (x = 0; x < w; ++x) {
1291 /*
1292 * Determine what we need to draw in this square.
1293 */
1294 int v = state->board[y*w+x];
1295 int flags = 0;
1296
1297 if (flashy || !shading) {
1298 /* clear all background flags */
1299 } else if (x == ui->x && y == ui->y) {
1300 flags |= CURSOR_BG;
1301 } else if (v) {
1302 int size = dsf_size(ds->dsf_scratch, y*w+x);
1303 if (size == v)
1304 flags |= CORRECT_BG;
1305 else if (size > v)
1306 flags |= ERROR_BG;
1307 }
1308
1309 /*
1310 * Borders at the very edges of the grid are
1311 * independent of the `borders' flag.
1312 */
1313 if (x == 0)
1314 flags |= BORDER_L;
1315 if (y == 0)
1316 flags |= BORDER_U;
1317 if (x == w-1)
1318 flags |= BORDER_R;
1319 if (y == h-1)
1320 flags |= BORDER_D;
1321
1322 if (borders) {
1323 if (x == 0 || (ds->border_scratch[y*w+(x-1)] & 1))
1324 flags |= BORDER_L;
1325 if (y == 0 || (ds->border_scratch[(y-1)*w+x] & 2))
1326 flags |= BORDER_U;
1327 if (x == w-1 || (ds->border_scratch[y*w+x] & 1))
1328 flags |= BORDER_R;
1329 if (y == h-1 || (ds->border_scratch[y*w+x] & 2))
1330 flags |= BORDER_D;
1331
1332 if (y > 0 && x > 0 && (ds->border_scratch[(y-1)*w+(x-1)]))
1333 flags |= BORDER_UL;
1334 if (y > 0 && x < w-1 &&
1335 ((ds->border_scratch[(y-1)*w+x] & 1) ||
1336 (ds->border_scratch[(y-1)*w+(x+1)] & 2)))
1337 flags |= BORDER_UR;
1338 if (y < h-1 && x > 0 &&
1339 ((ds->border_scratch[y*w+(x-1)] & 2) ||
1340 (ds->border_scratch[(y+1)*w+(x-1)] & 1)))
1341 flags |= BORDER_DL;
1342 if (y < h-1 && x < w-1 &&
1343 ((ds->border_scratch[y*w+(x+1)] & 2) ||
1344 (ds->border_scratch[(y+1)*w+x] & 1)))
1345 flags |= BORDER_DR;
1346 }
1347
1348 if (!state->shared->clues[y*w+x])
1349 flags |= USER_COL;
1350
1351 if (ds->v[y*w+x] != v || ds->flags[y*w+x] != flags) {
1352 draw_square(dr, ds, x, y, v, flags);
1353 ds->v[y*w+x] = v;
1354 ds->flags[y*w+x] = flags;
1355 }
1356 }
1357 }
1358
1359 static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
1360 game_state *state, int dir, game_ui *ui,
1361 float animtime, float flashtime)
1362 {
1363 const int w = state->shared->params.w;
1364 const int h = state->shared->params.h;
1365
1366 const int flashy =
1367 flashtime > 0 &&
1368 (flashtime <= FLASH_TIME/3 || flashtime >= FLASH_TIME*2/3);
1369
1370 if (!ds->started) {
1371 /*
1372 * The initial contents of the window are not guaranteed and
1373 * can vary with front ends. To be on the safe side, all games
1374 * should start by drawing a big background-colour rectangle
1375 * covering the whole window.
1376 */
1377 draw_rect(dr, 0, 0, 10*ds->tilesize, 10*ds->tilesize, COL_BACKGROUND);
1378
1379 /*
1380 * Smaller black rectangle which is the main grid.
1381 */
1382 draw_rect(dr, BORDER - BORDER_WIDTH, BORDER - BORDER_WIDTH,
1383 w*TILE_SIZE + 2*BORDER_WIDTH + 1,
1384 h*TILE_SIZE + 2*BORDER_WIDTH + 1,
1385 COL_GRID);
1386
1387 ds->started = TRUE;
1388 }
1389
1390 draw_grid(dr, ds, state, ui, flashy, TRUE, TRUE);
1391 }
1392
1393 static float game_anim_length(game_state *oldstate, game_state *newstate,
1394 int dir, game_ui *ui)
1395 {
1396 return 0.0F;
1397 }
1398
1399 static float game_flash_length(game_state *oldstate, game_state *newstate,
1400 int dir, game_ui *ui)
1401 {
1402 assert(oldstate);
1403 assert(newstate);
1404 assert(newstate->shared);
1405 assert(oldstate->shared == newstate->shared);
1406 if (!oldstate->completed && newstate->completed &&
1407 !oldstate->cheated && !newstate->cheated)
1408 return FLASH_TIME;
1409 return 0.0F;
1410 }
1411
1412 static int game_timing_state(game_state *state, game_ui *ui)
1413 {
1414 return TRUE;
1415 }
1416
1417 static void game_print_size(game_params *params, float *x, float *y)
1418 {
1419 int pw, ph;
1420
1421 /*
1422 * I'll use 6mm squares by default.
1423 */
1424 game_compute_size(params, 600, &pw, &ph);
1425 *x = pw / 100.0;
1426 *y = ph / 100.0;
1427 }
1428
1429 static void game_print(drawing *dr, game_state *state, int tilesize)
1430 {
1431 const int w = state->shared->params.w;
1432 const int h = state->shared->params.h;
1433 int c, i, borders;
1434
1435 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
1436 game_drawstate *ds = game_new_drawstate(dr, state);
1437 game_set_size(dr, ds, NULL, tilesize);
1438
1439 c = print_mono_colour(dr, 1); assert(c == COL_BACKGROUND);
1440 c = print_mono_colour(dr, 0); assert(c == COL_GRID);
1441 c = print_mono_colour(dr, 1); assert(c == COL_HIGHLIGHT);
1442 c = print_mono_colour(dr, 1); assert(c == COL_CORRECT);
1443 c = print_mono_colour(dr, 1); assert(c == COL_ERROR);
1444 c = print_mono_colour(dr, 0); assert(c == COL_USER);
1445
1446 /*
1447 * Border.
1448 */
1449 draw_rect(dr, BORDER - BORDER_WIDTH, BORDER - BORDER_WIDTH,
1450 w*TILE_SIZE + 2*BORDER_WIDTH + 1,
1451 h*TILE_SIZE + 2*BORDER_WIDTH + 1,
1452 COL_GRID);
1453
1454 /*
1455 * We'll draw borders between the ominoes iff the grid is not
1456 * pristine. So scan it to see if it is.
1457 */
1458 borders = FALSE;
1459 for (i = 0; i < w*h; i++)
1460 if (state->board[i] && !state->shared->clues[i])
1461 borders = TRUE;
1462
1463 /*
1464 * Draw grid.
1465 */
1466 draw_grid(dr, ds, state, NULL, FALSE, borders, FALSE);
1467
1468 /*
1469 * Clean up.
1470 */
1471 game_free_drawstate(dr, ds);
1472 }
1473
1474 #ifdef COMBINED
1475 #define thegame filling
1476 #endif
1477
1478 const struct game thegame = {
1479 "Filling", "games.filling", "filling",
1480 default_params,
1481 game_fetch_preset,
1482 decode_params,
1483 encode_params,
1484 free_params,
1485 dup_params,
1486 TRUE, game_configure, custom_params,
1487 validate_params,
1488 new_game_desc,
1489 validate_desc,
1490 new_game,
1491 dup_game,
1492 free_game,
1493 TRUE, solve_game,
1494 TRUE, game_text_format,
1495 new_ui,
1496 free_ui,
1497 encode_ui,
1498 decode_ui,
1499 game_changed_state,
1500 interpret_move,
1501 execute_move,
1502 PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
1503 game_colours,
1504 game_new_drawstate,
1505 game_free_drawstate,
1506 game_redraw,
1507 game_anim_length,
1508 game_flash_length,
1509 TRUE, FALSE, game_print_size, game_print,
1510 FALSE, /* wants_statusbar */
1511 FALSE, game_timing_state,
1512 0, /* flags */
1513 };
1514
1515 #ifdef STANDALONE_SOLVER /* solver? hah! */
1516
1517 int main(int argc, char **argv) {
1518 while (*++argv) {
1519 game_params *params;
1520 game_state *state;
1521 char *par;
1522 char *desc;
1523
1524 for (par = desc = *argv; *desc != '\0' && *desc != ':'; ++desc);
1525 if (*desc == '\0') {
1526 fprintf(stderr, "bad puzzle id: %s", par);
1527 continue;
1528 }
1529
1530 *desc++ = '\0';
1531
1532 params = snew(game_params);
1533 decode_params(params, par);
1534 state = new_game(NULL, params, desc);
1535 if (solver(state->board, params->w, params->h, NULL))
1536 printf("%s:%s: solvable\n", par, desc);
1537 else
1538 printf("%s:%s: not solvable\n", par, desc);
1539 }
1540 return 0;
1541 }
1542
1543 #endif