Silliness! Here's a somewhat hacky patch which builds an additional
[sgt/puzzles] / galaxies.c
1 /*
2 * galaxies.c: implementation of 'Tentai Show' from Nikoli,
3 * also sometimes called 'Spiral Galaxies'.
4 *
5 * Notes:
6 *
7 * Grid is stored as size (2n-1), holding edges as well as spaces
8 * (and thus vertices too, at edge intersections).
9 *
10 * Any dot will thus be positioned at one of our grid points,
11 * which saves any faffing with half-of-a-square stuff.
12 *
13 * Edges have on/off state; obviously the actual edges of the
14 * board are fixed to on, and everything else starts as off.
15 *
16 * TTD:
17 * Cleverer solver
18 * Think about how to display remote groups of tiles?
19 *
20 * Bugs:
21 *
22 * Notable puzzle IDs:
23 *
24 * Nikoli's example [web site has wrong highlighting]
25 * (at http://www.nikoli.co.jp/en/puzzles/astronomical_show/):
26 * 5x5:eBbbMlaBbOEnf
27 *
28 * The 'spiral galaxies puzzles are NP-complete' paper
29 * (at http://www.stetson.edu/~efriedma/papers/spiral.pdf):
30 * 7x7:chpgdqqqoezdddki
31 *
32 * Puzzle competition pdf examples
33 * (at http://www.puzzleratings.org/Yurekli2006puz.pdf):
34 * 6x6:EDbaMucCohbrecEi
35 * 10x10:beFbufEEzowDlxldibMHezBQzCdcFzjlci
36 * 13x13:dCemIHFFkJajjgDfdbdBzdzEgjccoPOcztHjBczLDjczqktJjmpreivvNcggFi
37 *
38 */
39
40 #include <stdio.h>
41 #include <stdlib.h>
42 #include <string.h>
43 #include <assert.h>
44 #include <ctype.h>
45 #include <math.h>
46
47 #include "puzzles.h"
48
49 #ifdef DEBUGGING
50 #define solvep debug
51 #else
52 int solver_show_working;
53 #define solvep(x) do { if (solver_show_working) { printf x; } } while(0)
54 #endif
55
56 #ifdef STANDALONE_PICTURE_GENERATOR
57 /*
58 * Dirty hack to enable the generator to construct a game ID which
59 * solves to a specified black-and-white bitmap. We define a global
60 * variable here which gives the desired colour of each square, and
61 * we arrange that the grid generator never merges squares of
62 * different colours.
63 *
64 * The bitmap as stored here is a simple int array (at these sizes
65 * it isn't worth doing fiddly bit-packing). picture[y*w+x] is 1
66 * iff the pixel at (x,y) is intended to be black.
67 *
68 * (It might be nice to be able to specify some pixels as
69 * don't-care, to give the generator more leeway. But that might be
70 * fiddly.)
71 */
72 static int *picture;
73 #endif
74
75 enum {
76 COL_BACKGROUND,
77 COL_WHITEBG,
78 COL_BLACKBG,
79 COL_WHITEDOT,
80 COL_BLACKDOT,
81 COL_GRID,
82 COL_EDGE,
83 COL_ARROW,
84 NCOLOURS
85 };
86
87 #define DIFFLIST(A) \
88 A(NORMAL,Normal,n) \
89 A(UNREASONABLE,Unreasonable,u)
90
91 #define ENUM(upper,title,lower) DIFF_ ## upper,
92 #define TITLE(upper,title,lower) #title,
93 #define ENCODE(upper,title,lower) #lower
94 #define CONFIG(upper,title,lower) ":" #title
95 enum { DIFFLIST(ENUM)
96 DIFF_IMPOSSIBLE, DIFF_AMBIGUOUS, DIFF_UNFINISHED, DIFF_MAX };
97 static char const *const galaxies_diffnames[] = {
98 DIFFLIST(TITLE) "Impossible", "Ambiguous", "Unfinished" };
99 static char const galaxies_diffchars[] = DIFFLIST(ENCODE);
100 #define DIFFCONFIG DIFFLIST(CONFIG)
101
102 struct game_params {
103 /* X and Y is the area of the board as seen by
104 * the user, not the (2n+1) area the game uses. */
105 int w, h, diff;
106 };
107
108 enum { s_tile, s_edge, s_vertex };
109
110 #define F_DOT 1 /* there's a dot here */
111 #define F_EDGE_SET 2 /* the edge is set */
112 #define F_TILE_ASSOC 4 /* this tile is associated with a dot. */
113 #define F_DOT_BLACK 8 /* (ui only) dot is black. */
114 #define F_MARK 16 /* scratch flag */
115 #define F_REACHABLE 32
116 #define F_SCRATCH 64
117 #define F_MULTIPLE 128
118 #define F_DOT_HOLD 256
119 #define F_GOOD 512
120
121 typedef struct space {
122 int x, y; /* its position */
123 int type;
124 unsigned int flags;
125 int dotx, doty; /* if flags & F_TILE_ASSOC */
126 int nassoc; /* if flags & F_DOT */
127 } space;
128
129 #define INGRID(s,x,y) ((x) >= 0 && (y) >= 0 && \
130 (x) < (state)->sx && (y) < (state)->sy)
131 #define INUI(s,x,y) ((x) > 0 && (y) > 0 && \
132 (x) < ((state)->sx-1) && (y) < ((state)->sy-1))
133
134 #define GRID(s,g,x,y) ((s)->g[((y)*(s)->sx)+(x)])
135 #define SPACE(s,x,y) GRID(s,grid,x,y)
136
137 struct game_state {
138 int w, h; /* size from params */
139 int sx, sy; /* allocated size, (2x-1)*(2y-1) */
140 space *grid;
141 int completed, used_solve;
142 int ndots;
143 space **dots;
144
145 midend *me; /* to call supersede_game_desc */
146 int cdiff; /* difficulty of current puzzle (for status bar),
147 or -1 if stale. */
148 };
149
150 /* ----------------------------------------------------------
151 * Game parameters and presets
152 */
153
154 /* make up some sensible default sizes */
155
156 #define DEFAULT_PRESET 0
157
158 static const game_params galaxies_presets[] = {
159 { 7, 7, DIFF_NORMAL },
160 { 7, 7, DIFF_UNREASONABLE },
161 { 10, 10, DIFF_NORMAL },
162 { 15, 15, DIFF_NORMAL },
163 };
164
165 static int game_fetch_preset(int i, char **name, game_params **params)
166 {
167 game_params *ret;
168 char buf[80];
169
170 if (i < 0 || i >= lenof(galaxies_presets))
171 return FALSE;
172
173 ret = snew(game_params);
174 *ret = galaxies_presets[i]; /* structure copy */
175
176 sprintf(buf, "%dx%d %s", ret->w, ret->h,
177 galaxies_diffnames[ret->diff]);
178
179 if (name) *name = dupstr(buf);
180 *params = ret;
181 return TRUE;
182 }
183
184 static game_params *default_params(void)
185 {
186 game_params *ret;
187 game_fetch_preset(DEFAULT_PRESET, NULL, &ret);
188 return ret;
189 }
190
191 static void free_params(game_params *params)
192 {
193 sfree(params);
194 }
195
196 static game_params *dup_params(game_params *params)
197 {
198 game_params *ret = snew(game_params);
199 *ret = *params; /* structure copy */
200 return ret;
201 }
202
203 static void decode_params(game_params *params, char const *string)
204 {
205 params->h = params->w = atoi(string);
206 params->diff = DIFF_NORMAL;
207 while (*string && isdigit((unsigned char)*string)) string++;
208 if (*string == 'x') {
209 string++;
210 params->h = atoi(string);
211 while (*string && isdigit((unsigned char)*string)) string++;
212 }
213 if (*string == 'd') {
214 int i;
215 string++;
216 for (i = 0; i <= DIFF_UNREASONABLE; i++)
217 if (*string == galaxies_diffchars[i])
218 params->diff = i;
219 if (*string) string++;
220 }
221 }
222
223 static char *encode_params(game_params *params, int full)
224 {
225 char str[80];
226 sprintf(str, "%dx%d", params->w, params->h);
227 if (full)
228 sprintf(str + strlen(str), "d%c", galaxies_diffchars[params->diff]);
229 return dupstr(str);
230 }
231
232 static config_item *game_configure(game_params *params)
233 {
234 config_item *ret;
235 char buf[80];
236
237 ret = snewn(4, config_item);
238
239 ret[0].name = "Width";
240 ret[0].type = C_STRING;
241 sprintf(buf, "%d", params->w);
242 ret[0].sval = dupstr(buf);
243 ret[0].ival = 0;
244
245 ret[1].name = "Height";
246 ret[1].type = C_STRING;
247 sprintf(buf, "%d", params->h);
248 ret[1].sval = dupstr(buf);
249 ret[1].ival = 0;
250
251 ret[2].name = "Difficulty";
252 ret[2].type = C_CHOICES;
253 ret[2].sval = DIFFCONFIG;
254 ret[2].ival = params->diff;
255
256 ret[3].name = NULL;
257 ret[3].type = C_END;
258 ret[3].sval = NULL;
259 ret[3].ival = 0;
260
261 return ret;
262 }
263
264 static game_params *custom_params(config_item *cfg)
265 {
266 game_params *ret = snew(game_params);
267
268 ret->w = atoi(cfg[0].sval);
269 ret->h = atoi(cfg[1].sval);
270 ret->diff = cfg[2].ival;
271
272 return ret;
273 }
274
275 static char *validate_params(game_params *params, int full)
276 {
277 if (params->w < 3 || params->h < 3)
278 return "Width and height must both be at least 3";
279 /*
280 * This shouldn't be able to happen at all, since decode_params
281 * and custom_params will never generate anything that isn't
282 * within range.
283 */
284 assert(params->diff <= DIFF_UNREASONABLE);
285
286 return NULL;
287 }
288
289 /* ----------------------------------------------------------
290 * Game utility functions.
291 */
292
293 static void add_dot(space *space) {
294 assert(!(space->flags & F_DOT));
295 space->flags |= F_DOT;
296 space->nassoc = 0;
297 }
298
299 static void remove_dot(space *space) {
300 assert(space->flags & F_DOT);
301 space->flags &= ~F_DOT;
302 }
303
304 static void remove_assoc(game_state *state, space *tile) {
305 if (tile->flags & F_TILE_ASSOC) {
306 SPACE(state, tile->dotx, tile->doty).nassoc--;
307 tile->flags &= ~F_TILE_ASSOC;
308 tile->dotx = -1;
309 tile->doty = -1;
310 }
311 }
312
313 static void add_assoc(game_state *state, space *tile, space *dot) {
314 remove_assoc(state, tile);
315
316 #ifdef STANDALONE_PICTURE_GENERATOR
317 if (picture)
318 assert(!picture[(tile->y/2) * state->w + (tile->x/2)] ==
319 !(dot->flags & F_DOT_BLACK));
320 #endif
321 tile->flags |= F_TILE_ASSOC;
322 tile->dotx = dot->x;
323 tile->doty = dot->y;
324 dot->nassoc++;
325 /*debug(("add_assoc sp %d %d --> dot %d,%d, new nassoc %d.\n",
326 tile->x, tile->y, dot->x, dot->y, dot->nassoc));*/
327 }
328
329 static struct space *sp2dot(game_state *state, int x, int y)
330 {
331 struct space *sp = &SPACE(state, x, y);
332 if (!(sp->flags & F_TILE_ASSOC)) return NULL;
333 return &SPACE(state, sp->dotx, sp->doty);
334 }
335
336 #define IS_VERTICAL_EDGE(x) ((x % 2) == 0)
337
338 static char *game_text_format(game_state *state)
339 {
340 int maxlen = (state->sx+1)*state->sy, x, y;
341 char *ret, *p;
342 space *sp;
343
344 ret = snewn(maxlen+1, char);
345 p = ret;
346
347 for (y = 0; y < state->sy; y++) {
348 for (x = 0; x < state->sx; x++) {
349 sp = &SPACE(state, x, y);
350 if (sp->flags & F_DOT)
351 *p++ = 'o';
352 else if (sp->flags & (F_REACHABLE|F_MULTIPLE|F_MARK))
353 *p++ = (sp->flags & F_MULTIPLE) ? 'M' :
354 (sp->flags & F_REACHABLE) ? 'R' : 'X';
355 else {
356 switch (sp->type) {
357 case s_tile:
358 if (sp->flags & F_TILE_ASSOC) {
359 space *dot = sp2dot(state, sp->x, sp->y);
360 if (dot->flags & F_DOT)
361 *p++ = (dot->flags & F_DOT_BLACK) ? 'B' : 'W';
362 else
363 *p++ = '?'; /* association with not-a-dot. */
364 } else
365 *p++ = ' ';
366 break;
367
368 case s_vertex:
369 *p++ = '+';
370 break;
371
372 case s_edge:
373 if (sp->flags & F_EDGE_SET)
374 *p++ = (IS_VERTICAL_EDGE(x)) ? '|' : '-';
375 else
376 *p++ = ' ';
377 break;
378
379 default:
380 assert(!"shouldn't get here!");
381 }
382 }
383 }
384 *p++ = '\n';
385 }
386
387 assert(p - ret == maxlen);
388 *p = '\0';
389
390 return ret;
391 }
392
393 static void dbg_state(game_state *state)
394 {
395 #ifdef DEBUGGING
396 char *temp = game_text_format(state);
397 debug(("%s\n", temp));
398 sfree(temp);
399 #endif
400 }
401
402 /* Space-enumeration callbacks should all return 1 for 'progress made',
403 * -1 for 'impossible', and 0 otherwise. */
404 typedef int (*space_cb)(game_state *state, space *sp, void *ctx);
405
406 #define IMPOSSIBLE_QUITS 1
407
408 static int foreach_sub(game_state *state, space_cb cb, unsigned int f,
409 void *ctx, int startx, int starty)
410 {
411 int x, y, progress = 0, impossible = 0, ret;
412 space *sp;
413
414 for (y = starty; y < state->sy; y += 2) {
415 sp = &SPACE(state, startx, y);
416 for (x = startx; x < state->sx; x += 2) {
417 ret = cb(state, sp, ctx);
418 if (ret == -1) {
419 if (f & IMPOSSIBLE_QUITS) return -1;
420 impossible = -1;
421 } else if (ret == 1) {
422 progress = 1;
423 }
424 sp += 2;
425 }
426 }
427 return impossible ? -1 : progress;
428 }
429
430 static int foreach_tile(game_state *state, space_cb cb, unsigned int f,
431 void *ctx)
432 {
433 return foreach_sub(state, cb, f, ctx, 1, 1);
434 }
435
436 static int foreach_edge(game_state *state, space_cb cb, unsigned int f,
437 void *ctx)
438 {
439 int ret1, ret2;
440
441 ret1 = foreach_sub(state, cb, f, ctx, 0, 1);
442 ret2 = foreach_sub(state, cb, f, ctx, 1, 0);
443
444 if (ret1 == -1 || ret2 == -1) return -1;
445 return (ret1 || ret2) ? 1 : 0;
446 }
447
448 #if 0
449 static int foreach_vertex(game_state *state, space_cb cb, unsigned int f,
450 void *ctx)
451 {
452 return foreach_sub(state, cb, f, ctx, 0, 0);
453 }
454 #endif
455
456 #if 0
457 static int is_same_assoc(game_state *state,
458 int x1, int y1, int x2, int y2)
459 {
460 struct space *s1, *s2;
461
462 if (!INGRID(state, x1, y1) || !INGRID(state, x2, y2))
463 return 0;
464
465 s1 = &SPACE(state, x1, y1);
466 s2 = &SPACE(state, x2, y2);
467 assert(s1->type == s_tile && s2->type == s_tile);
468 if ((s1->flags & F_TILE_ASSOC) && (s2->flags & F_TILE_ASSOC) &&
469 s1->dotx == s2->dotx && s1->doty == s2->doty)
470 return 1;
471 return 0; /* 0 if not same or not both associated. */
472 }
473 #endif
474
475 #if 0
476 static int edges_into_vertex(game_state *state,
477 int x, int y)
478 {
479 int dx, dy, nx, ny, count = 0;
480
481 assert(SPACE(state, x, y).type == s_vertex);
482 for (dx = -1; dx <= 1; dx++) {
483 for (dy = -1; dy <= 1; dy++) {
484 if (dx != 0 && dy != 0) continue;
485 if (dx == 0 && dy == 0) continue;
486
487 nx = x+dx; ny = y+dy;
488 if (!INGRID(state, nx, ny)) continue;
489 assert(SPACE(state, nx, ny).type == s_edge);
490 if (SPACE(state, nx, ny).flags & F_EDGE_SET)
491 count++;
492 }
493 }
494 return count;
495 }
496 #endif
497
498 static struct space *space_opposite_dot(struct game_state *state,
499 struct space *sp, struct space *dot)
500 {
501 int dx, dy, tx, ty;
502 space *sp2;
503
504 dx = sp->x - dot->x;
505 dy = sp->y - dot->y;
506 tx = dot->x - dx;
507 ty = dot->y - dy;
508 if (!INGRID(state, tx, ty)) return NULL;
509
510 sp2 = &SPACE(state, tx, ty);
511 assert(sp2->type == sp->type);
512 return sp2;
513 }
514
515 static struct space *tile_opposite(struct game_state *state, struct space *sp)
516 {
517 struct space *dot;
518
519 assert(sp->flags & F_TILE_ASSOC);
520 dot = &SPACE(state, sp->dotx, sp->doty);
521 return space_opposite_dot(state, sp, dot);
522 }
523
524 static int dotfortile(game_state *state, space *tile, space *dot)
525 {
526 space *tile_opp = space_opposite_dot(state, tile, dot);
527
528 if (!tile_opp) return 0; /* opposite would be off grid */
529 if (tile_opp->flags & F_TILE_ASSOC &&
530 (tile_opp->dotx != dot->x || tile_opp->doty != dot->y))
531 return 0; /* opposite already associated with diff. dot */
532 return 1;
533 }
534
535 static void adjacencies(struct game_state *state, struct space *sp,
536 struct space **a1s, struct space **a2s)
537 {
538 int dxs[4] = {-1, 1, 0, 0}, dys[4] = {0, 0, -1, 1};
539 int n, x, y;
540
541 /* this function needs optimising. */
542
543 for (n = 0; n < 4; n++) {
544 x = sp->x+dxs[n];
545 y = sp->y+dys[n];
546
547 if (INGRID(state, x, y)) {
548 a1s[n] = &SPACE(state, x, y);
549
550 x += dxs[n]; y += dys[n];
551
552 if (INGRID(state, x, y))
553 a2s[n] = &SPACE(state, x, y);
554 else
555 a2s[n] = NULL;
556 } else {
557 a1s[n] = a2s[n] = NULL;
558 }
559 }
560 }
561
562 static int outline_tile_fordot(game_state *state, space *tile, int mark)
563 {
564 struct space *tadj[4], *eadj[4];
565 int i, didsth = 0, edge, same;
566
567 assert(tile->type == s_tile);
568 adjacencies(state, tile, eadj, tadj);
569 for (i = 0; i < 4; i++) {
570 if (!eadj[i]) continue;
571
572 edge = (eadj[i]->flags & F_EDGE_SET) ? 1 : 0;
573 if (tadj[i]) {
574 if (!(tile->flags & F_TILE_ASSOC))
575 same = (tadj[i]->flags & F_TILE_ASSOC) ? 0 : 1;
576 else
577 same = ((tadj[i]->flags & F_TILE_ASSOC) &&
578 tile->dotx == tadj[i]->dotx &&
579 tile->doty == tadj[i]->doty) ? 1 : 0;
580 } else
581 same = 0;
582
583 if (!edge && !same) {
584 if (mark) eadj[i]->flags |= F_EDGE_SET;
585 didsth = 1;
586 } else if (edge && same) {
587 if (mark) eadj[i]->flags &= ~F_EDGE_SET;
588 didsth = 1;
589 }
590 }
591 return didsth;
592 }
593
594 static void tiles_from_edge(struct game_state *state,
595 struct space *sp, struct space **ts)
596 {
597 int xs[2], ys[2];
598
599 if (IS_VERTICAL_EDGE(sp->x)) {
600 xs[0] = sp->x-1; ys[0] = sp->y;
601 xs[1] = sp->x+1; ys[1] = sp->y;
602 } else {
603 xs[0] = sp->x; ys[0] = sp->y-1;
604 xs[1] = sp->x; ys[1] = sp->y+1;
605 }
606 ts[0] = INGRID(state, xs[0], ys[0]) ? &SPACE(state, xs[0], ys[0]) : NULL;
607 ts[1] = INGRID(state, xs[1], ys[1]) ? &SPACE(state, xs[1], ys[1]) : NULL;
608 }
609
610 /* Check all tiles are associated with something, and all shapes
611 * are the correct symmetry (i.e. all tiles have a matching tile
612 * the opposite direction from the dot) */
613 static int cccb_assoc(game_state *state, space *tile, void *unused)
614 {
615 assert(tile->type == s_tile);
616
617 if (!(tile->flags & F_TILE_ASSOC)) return -1;
618 return 0;
619 }
620
621 struct dgs_ctx {
622 space *dot;
623 int ndots;
624 };
625
626 static int dgs_cb_check(game_state *state, space *tile, void *vctx)
627 {
628 struct dgs_ctx *ctx = (struct dgs_ctx *)vctx;
629 space *opp;
630
631 if (!(tile->flags & F_TILE_ASSOC)) return 0;
632 if (tile->dotx != ctx->dot->x ||
633 tile->doty != ctx->dot->y) return 0;
634
635 ctx->ndots += 1;
636
637 /* Check this tile has an opposite associated with same dot. */
638 opp = tile_opposite(state, tile);
639 if (!opp || !(opp->flags & F_TILE_ASSOC)) return -1;
640 if (opp->dotx != tile->dotx || opp->doty != tile->doty) return -1;
641
642 /* Check its edges are correct */
643 if (outline_tile_fordot(state, tile, 0) == 1)
644 return -1; /* there was some fixing required, we're wrong. */
645
646 return 0;
647 }
648
649 static int dot_good_shape(game_state *state, space *dot, int mark)
650 {
651 struct dgs_ctx ctx;
652
653 ctx.dot = dot;
654 ctx.ndots = 0;
655
656 if (mark) dot->flags &= ~F_GOOD;
657
658 if (foreach_tile(state, dgs_cb_check, 0, &ctx) == -1)
659 return 0;
660 if (ctx.ndots == 0) return 0; /* no dots assoc. with tile. */
661
662 if (mark) {
663 debug(("marking dot %d,%d good tile.\n", dot->x, dot->y));
664 dot->flags |= F_GOOD;
665 }
666 return 1;
667 }
668
669 static int check_complete(game_state *state, int mark_errors)
670 {
671 int i, complete = 1;
672
673 /* Are all tiles associated? */
674 if (foreach_tile(state, cccb_assoc, 0, NULL) == -1)
675 complete = 0;
676
677 /* Check all dots are associated, and their tiles are well-formed. */
678 for (i = 0; i < state->ndots; i++) {
679 if (!dot_good_shape(state, state->dots[i], mark_errors))
680 complete = 0;
681 }
682
683 /*if (complete == 1) printf("Complete!\n");*/
684 return complete;
685 }
686
687 /* Returns a move string for use by 'solve'; if you don't want the
688 * initial 'S;' use ret[2]. */
689 static char *diff_game(game_state *src, game_state *dest, int issolve)
690 {
691 int movelen = 0, movesize = 256, x, y, len;
692 char *move = snewn(movesize, char), buf[80], *sep = "";
693 char achar = issolve ? 'a' : 'A';
694 space *sps, *spd;
695
696 assert(src->sx == dest->sx && src->sy == dest->sy);
697
698 if (issolve) {
699 move[movelen++] = 'S';
700 sep = ";";
701 }
702 move[movelen] = '\0';
703 for (x = 0; x < src->sx; x++) {
704 for (y = 0; y < src->sy; y++) {
705 sps = &SPACE(src, x, y);
706 spd = &SPACE(dest, x, y);
707
708 assert(sps->type == spd->type);
709
710 len = 0;
711 if (sps->type == s_tile) {
712 if ((sps->flags & F_TILE_ASSOC) &&
713 (spd->flags & F_TILE_ASSOC)) {
714 if (sps->dotx != spd->dotx ||
715 sps->doty != spd->doty)
716 /* Both associated; change association, if different */
717 len = sprintf(buf, "%s%c%d,%d,%d,%d", sep,
718 (int)achar, x, y, spd->dotx, spd->doty);
719 } else if (sps->flags & F_TILE_ASSOC)
720 /* Only src associated; remove. */
721 len = sprintf(buf, "%sU%d,%d", sep, x, y);
722 else if (spd->flags & F_TILE_ASSOC)
723 /* Only dest associated; add. */
724 len = sprintf(buf, "%s%c%d,%d,%d,%d", sep,
725 (int)achar, x, y, spd->dotx, spd->doty);
726 } else if (sps->type == s_edge) {
727 if ((sps->flags & F_EDGE_SET) != (spd->flags & F_EDGE_SET))
728 /* edge flags are different; flip them. */
729 len = sprintf(buf, "%sE%d,%d", sep, x, y);
730 }
731 if (len) {
732 if (movelen + len >= movesize) {
733 movesize = movelen + len + 256;
734 move = sresize(move, movesize, char);
735 }
736 strcpy(move + movelen, buf);
737 movelen += len;
738 sep = ";";
739 }
740 }
741 }
742 debug(("diff_game src then dest:\n"));
743 dbg_state(src);
744 dbg_state(dest);
745 debug(("diff string %s\n", move));
746 return move;
747 }
748
749 /* Returns 1 if a dot here would not be too close to any other dots
750 * (and would avoid other game furniture). */
751 static int dot_is_possible(game_state *state, space *sp, int allow_assoc)
752 {
753 int bx = 0, by = 0, dx, dy;
754 space *adj;
755 #ifdef STANDALONE_PICTURE_GENERATOR
756 int col = -1;
757 #endif
758
759 switch (sp->type) {
760 case s_tile:
761 bx = by = 1; break;
762 case s_edge:
763 if (IS_VERTICAL_EDGE(sp->x)) {
764 bx = 2; by = 1;
765 } else {
766 bx = 1; by = 2;
767 }
768 break;
769 case s_vertex:
770 bx = by = 2; break;
771 }
772
773 for (dx = -bx; dx <= bx; dx++) {
774 for (dy = -by; dy <= by; dy++) {
775 if (!INGRID(state, sp->x+dx, sp->y+dy)) continue;
776
777 adj = &SPACE(state, sp->x+dx, sp->y+dy);
778
779 #ifdef STANDALONE_PICTURE_GENERATOR
780 /*
781 * Check that all the squares we're looking at have the
782 * same colour.
783 */
784 if (picture) {
785 if (adj->type == s_tile) {
786 int c = picture[(adj->y / 2) * state->w + (adj->x / 2)];
787 if (col < 0)
788 col = c;
789 if (c != col)
790 return 0; /* colour mismatch */
791 }
792 }
793 #endif
794
795 if (!allow_assoc && (adj->flags & F_TILE_ASSOC))
796 return 0;
797
798 if (dx != 0 || dy != 0) {
799 /* Other than our own square, no dots nearby. */
800 if (adj->flags & (F_DOT))
801 return 0;
802 }
803
804 /* We don't want edges within our rectangle
805 * (but don't care about edges on the edge) */
806 if (abs(dx) < bx && abs(dy) < by &&
807 adj->flags & F_EDGE_SET)
808 return 0;
809 }
810 }
811 return 1;
812 }
813
814 /* ----------------------------------------------------------
815 * Game generation, structure creation, and descriptions.
816 */
817
818 static game_state *blank_game(int w, int h)
819 {
820 game_state *state = snew(game_state);
821 int x, y;
822
823 state->w = w;
824 state->h = h;
825
826 state->sx = (w*2)+1;
827 state->sy = (h*2)+1;
828 state->grid = snewn(state->sx * state->sy, struct space);
829 state->completed = state->used_solve = 0;
830
831 for (x = 0; x < state->sx; x++) {
832 for (y = 0; y < state->sy; y++) {
833 struct space *sp = &SPACE(state, x, y);
834 memset(sp, 0, sizeof(struct space));
835 sp->x = x;
836 sp->y = y;
837 if ((x % 2) == 0 && (y % 2) == 0)
838 sp->type = s_vertex;
839 else if ((x % 2) == 0 || (y % 2) == 0) {
840 sp->type = s_edge;
841 if (x == 0 || y == 0 || x == state->sx-1 || y == state->sy-1)
842 sp->flags |= F_EDGE_SET;
843 } else
844 sp->type = s_tile;
845 }
846 }
847
848 state->ndots = 0;
849 state->dots = NULL;
850
851 state->me = NULL; /* filled in by new_game. */
852 state->cdiff = -1;
853
854 return state;
855 }
856
857 static void game_update_dots(game_state *state)
858 {
859 int i, n, sz = state->sx * state->sy;
860
861 if (state->dots) sfree(state->dots);
862 state->ndots = 0;
863
864 for (i = 0; i < sz; i++) {
865 if (state->grid[i].flags & F_DOT) state->ndots++;
866 }
867 state->dots = snewn(state->ndots, space *);
868 n = 0;
869 for (i = 0; i < sz; i++) {
870 if (state->grid[i].flags & F_DOT)
871 state->dots[n++] = &state->grid[i];
872 }
873 }
874
875 static void clear_game(game_state *state, int cleardots)
876 {
877 int x, y;
878
879 /* don't erase edge flags around outline! */
880 for (x = 1; x < state->sx-1; x++) {
881 for (y = 1; y < state->sy-1; y++) {
882 if (cleardots)
883 SPACE(state, x, y).flags = 0;
884 else
885 SPACE(state, x, y).flags &= (F_DOT|F_DOT_BLACK);
886 }
887 }
888 if (cleardots) game_update_dots(state);
889 }
890
891 static game_state *dup_game(game_state *state)
892 {
893 game_state *ret = blank_game(state->w, state->h);
894
895 ret->completed = state->completed;
896 ret->used_solve = state->used_solve;
897
898 memcpy(ret->grid, state->grid,
899 ret->sx*ret->sy*sizeof(struct space));
900
901 game_update_dots(ret);
902
903 ret->me = state->me;
904 ret->cdiff = state->cdiff;
905
906 return ret;
907 }
908
909 static void free_game(game_state *state)
910 {
911 if (state->dots) sfree(state->dots);
912 sfree(state->grid);
913 sfree(state);
914 }
915
916 /* Game description is a sequence of letters representing the number
917 * of spaces (a = 0, y = 24) before the next dot; a-y for a white dot,
918 * and A-Y for a black dot. 'z' is 25 spaces (and no dot).
919 *
920 * I know it's a bitch to generate by hand, so we provide
921 * an edit mode.
922 */
923
924 static char *encode_game(game_state *state)
925 {
926 char *desc, *p;
927 int run, x, y, area;
928 unsigned int f;
929
930 area = (state->sx-2) * (state->sy-2);
931
932 desc = snewn(area, char);
933 p = desc;
934 run = 0;
935 for (y = 1; y < state->sy-1; y++) {
936 for (x = 1; x < state->sx-1; x++) {
937 f = SPACE(state, x, y).flags;
938
939 /* a/A is 0 spaces between, b/B is 1 space, ...
940 * y/Y is 24 spaces, za/zA is 25 spaces, ...
941 * It's easier to count from 0 because we then
942 * don't have to special-case the top left-hand corner
943 * (which could be a dot with 0 spaces before it). */
944 if (!(f & F_DOT))
945 run++;
946 else {
947 while (run > 24) {
948 *p++ = 'z';
949 run -= 25;
950 }
951 *p++ = ((f & F_DOT_BLACK) ? 'A' : 'a') + run;
952 run = 0;
953 }
954 }
955 }
956 assert(p - desc < area);
957 *p++ = '\0';
958 desc = sresize(desc, p - desc, char);
959
960 return desc;
961 }
962
963 struct movedot {
964 int op;
965 space *olddot, *newdot;
966 };
967
968 enum { MD_CHECK, MD_MOVE };
969
970 static int movedot_cb(game_state *state, space *tile, void *vctx)
971 {
972 struct movedot *md = (struct movedot *)vctx;
973 space *newopp = NULL;
974
975 assert(tile->type == s_tile);
976 assert(md->olddot && md->newdot);
977
978 if (!(tile->flags & F_TILE_ASSOC)) return 0;
979 if (tile->dotx != md->olddot->x || tile->doty != md->olddot->y)
980 return 0;
981
982 newopp = space_opposite_dot(state, tile, md->newdot);
983
984 switch (md->op) {
985 case MD_CHECK:
986 /* If the tile is associated with the old dot, check its
987 * opposite wrt the _new_ dot is empty or same assoc. */
988 if (!newopp) return -1; /* no new opposite */
989 if (newopp->flags & F_TILE_ASSOC) {
990 if (newopp->dotx != md->olddot->x ||
991 newopp->doty != md->olddot->y)
992 return -1; /* associated, but wrong dot. */
993 }
994 #ifdef STANDALONE_PICTURE_GENERATOR
995 if (picture) {
996 /*
997 * Reject if either tile and the dot don't match in colour.
998 */
999 if (!(picture[(tile->y/2) * state->w + (tile->x/2)]) ^
1000 !(md->newdot->flags & F_DOT_BLACK))
1001 return -1;
1002 if (!(picture[(newopp->y/2) * state->w + (newopp->x/2)]) ^
1003 !(md->newdot->flags & F_DOT_BLACK))
1004 return -1;
1005 }
1006 #endif
1007 break;
1008
1009 case MD_MOVE:
1010 /* Move dot associations: anything that was associated
1011 * with the old dot, and its opposite wrt the new dot,
1012 * become associated with the new dot. */
1013 assert(newopp);
1014 debug(("Associating %d,%d and %d,%d with new dot %d,%d.\n",
1015 tile->x, tile->y, newopp->x, newopp->y,
1016 md->newdot->x, md->newdot->y));
1017 add_assoc(state, tile, md->newdot);
1018 add_assoc(state, newopp, md->newdot);
1019 return 1; /* we did something! */
1020 }
1021 return 0;
1022 }
1023
1024 /* For the given dot, first see if we could expand it into all the given
1025 * extra spaces (by checking for empty spaces on the far side), and then
1026 * see if we can move the dot to shift the CoG to include the new spaces.
1027 */
1028 static int dot_expand_or_move(game_state *state, space *dot,
1029 space **toadd, int nadd)
1030 {
1031 space *tileopp;
1032 int i, ret, nnew, cx, cy;
1033 struct movedot md;
1034
1035 debug(("dot_expand_or_move: %d tiles for dot %d,%d\n",
1036 nadd, dot->x, dot->y));
1037 for (i = 0; i < nadd; i++)
1038 debug(("dot_expand_or_move: dot %d,%d\n",
1039 toadd[i]->x, toadd[i]->y));
1040 assert(dot->flags & F_DOT);
1041
1042 #ifdef STANDALONE_PICTURE_GENERATOR
1043 if (picture) {
1044 /*
1045 * Reject the expansion totally if any of the new tiles are
1046 * the wrong colour.
1047 */
1048 for (i = 0; i < nadd; i++) {
1049 if (!(picture[(toadd[i]->y/2) * state->w + (toadd[i]->x/2)]) ^
1050 !(dot->flags & F_DOT_BLACK))
1051 return 0;
1052 }
1053 }
1054 #endif
1055
1056 /* First off, could we just expand the current dot's tile to cover
1057 * the space(s) passed in and their opposites? */
1058 for (i = 0; i < nadd; i++) {
1059 tileopp = space_opposite_dot(state, toadd[i], dot);
1060 if (!tileopp) goto noexpand;
1061 if (tileopp->flags & F_TILE_ASSOC) goto noexpand;
1062 #ifdef STANDALONE_PICTURE_GENERATOR
1063 if (picture) {
1064 /*
1065 * The opposite tiles have to be the right colour as well.
1066 */
1067 if (!(picture[(tileopp->y/2) * state->w + (tileopp->x/2)]) ^
1068 !(dot->flags & F_DOT_BLACK))
1069 goto noexpand;
1070 }
1071 #endif
1072 }
1073 /* OK, all spaces have valid empty opposites: associate spaces and
1074 * opposites with our dot. */
1075 for (i = 0; i < nadd; i++) {
1076 tileopp = space_opposite_dot(state, toadd[i], dot);
1077 add_assoc(state, toadd[i], dot);
1078 add_assoc(state, tileopp, dot);
1079 debug(("Added associations %d,%d and %d,%d --> %d,%d\n",
1080 toadd[i]->x, toadd[i]->y,
1081 tileopp->x, tileopp->y,
1082 dot->x, dot->y));
1083 dbg_state(state);
1084 }
1085 return 1;
1086
1087 noexpand:
1088 /* Otherwise, try to move dot so as to encompass given spaces: */
1089 /* first, calculate the 'centre of gravity' of the new dot. */
1090 nnew = dot->nassoc + nadd; /* number of tiles assoc. with new dot. */
1091 cx = dot->x * dot->nassoc;
1092 cy = dot->y * dot->nassoc;
1093 for (i = 0; i < nadd; i++) {
1094 cx += toadd[i]->x;
1095 cy += toadd[i]->y;
1096 }
1097 /* If the CoG isn't a whole number, it's not possible. */
1098 if ((cx % nnew) != 0 || (cy % nnew) != 0) {
1099 debug(("Unable to move dot %d,%d, CoG not whole number.\n",
1100 dot->x, dot->y));
1101 return 0;
1102 }
1103 cx /= nnew; cy /= nnew;
1104
1105 /* Check whether all spaces in the old tile would have a good
1106 * opposite wrt the new dot. */
1107 md.olddot = dot;
1108 md.newdot = &SPACE(state, cx, cy);
1109 md.op = MD_CHECK;
1110 ret = foreach_tile(state, movedot_cb, IMPOSSIBLE_QUITS, &md);
1111 if (ret == -1) {
1112 debug(("Unable to move dot %d,%d, new dot not symmetrical.\n",
1113 dot->x, dot->y));
1114 return 0;
1115 }
1116 /* Also check whether all spaces we're adding would have a good
1117 * opposite wrt the new dot. */
1118 for (i = 0; i < nadd; i++) {
1119 tileopp = space_opposite_dot(state, toadd[i], md.newdot);
1120 if (tileopp && (tileopp->flags & F_TILE_ASSOC) &&
1121 (tileopp->dotx != dot->x || tileopp->doty != dot->y)) {
1122 tileopp = NULL;
1123 }
1124 if (!tileopp) {
1125 debug(("Unable to move dot %d,%d, new dot not symmetrical.\n",
1126 dot->x, dot->y));
1127 return 0;
1128 }
1129 #ifdef STANDALONE_PICTURE_GENERATOR
1130 if (picture) {
1131 if (!(picture[(tileopp->y/2) * state->w + (tileopp->x/2)]) ^
1132 !(dot->flags & F_DOT_BLACK))
1133 return 0;
1134 }
1135 #endif
1136 }
1137
1138 /* If we've got here, we're ok. First, associate all of 'toadd'
1139 * with the _old_ dot (so they'll get fixed up, with their opposites,
1140 * in the next step). */
1141 for (i = 0; i < nadd; i++) {
1142 debug(("Associating to-add %d,%d with old dot %d,%d.\n",
1143 toadd[i]->x, toadd[i]->y, dot->x, dot->y));
1144 add_assoc(state, toadd[i], dot);
1145 }
1146
1147 /* Finally, move the dot and fix up all the old associations. */
1148 debug(("Moving dot at %d,%d to %d,%d\n",
1149 dot->x, dot->y, md.newdot->x, md.newdot->y));
1150 {
1151 #ifdef STANDALONE_PICTURE_GENERATOR
1152 int f = dot->flags & F_DOT_BLACK;
1153 #endif
1154 remove_dot(dot);
1155 add_dot(md.newdot);
1156 #ifdef STANDALONE_PICTURE_GENERATOR
1157 md.newdot->flags |= f;
1158 #endif
1159 }
1160
1161 md.op = MD_MOVE;
1162 ret = foreach_tile(state, movedot_cb, 0, &md);
1163 assert(ret == 1);
1164 dbg_state(state);
1165
1166 return 1;
1167 }
1168
1169 /* Hard-code to a max. of 2x2 squares, for speed (less malloc) */
1170 #define MAX_TOADD 4
1171 #define MAX_OUTSIDE 8
1172
1173 #define MAX_TILE_PERC 20
1174
1175 static int generate_try_block(game_state *state, random_state *rs,
1176 int x1, int y1, int x2, int y2)
1177 {
1178 int x, y, nadd = 0, nout = 0, i, maxsz;
1179 space *sp, *toadd[MAX_TOADD], *outside[MAX_OUTSIDE], *dot;
1180
1181 if (!INGRID(state, x1, y1) || !INGRID(state, x2, y2)) return 0;
1182
1183 /* We limit the maximum size of tiles to be ~2*sqrt(area); so,
1184 * a 5x5 grid shouldn't have anything >10 tiles, a 20x20 grid
1185 * nothing >40 tiles. */
1186 maxsz = (int)sqrt((double)(state->w * state->h)) * 2;
1187 debug(("generate_try_block, maxsz %d\n", maxsz));
1188
1189 /* Make a static list of the spaces; if any space is already
1190 * associated then quit immediately. */
1191 for (x = x1; x <= x2; x += 2) {
1192 for (y = y1; y <= y2; y += 2) {
1193 assert(nadd < MAX_TOADD);
1194 sp = &SPACE(state, x, y);
1195 assert(sp->type == s_tile);
1196 if (sp->flags & F_TILE_ASSOC) return 0;
1197 toadd[nadd++] = sp;
1198 }
1199 }
1200
1201 /* Make a list of the spaces outside of our block, and shuffle it. */
1202 #define OUTSIDE(x, y) do { \
1203 if (INGRID(state, (x), (y))) { \
1204 assert(nout < MAX_OUTSIDE); \
1205 outside[nout++] = &SPACE(state, (x), (y)); \
1206 } \
1207 } while(0)
1208 for (x = x1; x <= x2; x += 2) {
1209 OUTSIDE(x, y1-2);
1210 OUTSIDE(x, y2+2);
1211 }
1212 for (y = y1; y <= y2; y += 2) {
1213 OUTSIDE(x1-2, y);
1214 OUTSIDE(x2+2, y);
1215 }
1216 shuffle(outside, nout, sizeof(space *), rs);
1217
1218 for (i = 0; i < nout; i++) {
1219 if (!(outside[i]->flags & F_TILE_ASSOC)) continue;
1220 dot = &SPACE(state, outside[i]->dotx, outside[i]->doty);
1221 if (dot->nassoc >= maxsz) {
1222 debug(("Not adding to dot %d,%d, large enough (%d) already.\n",
1223 dot->x, dot->y, dot->nassoc));
1224 continue;
1225 }
1226 if (dot_expand_or_move(state, dot, toadd, nadd)) return 1;
1227 }
1228 return 0;
1229 }
1230
1231 #ifdef STANDALONE_SOLVER
1232 int maxtries;
1233 #define MAXTRIES maxtries
1234 #else
1235 #define MAXTRIES 50
1236 #endif
1237
1238 static int solver_obvious_dot(game_state *state,space *dot);
1239
1240 #define GP_DOTS 1
1241
1242 static void generate_pass(game_state *state, random_state *rs, int *scratch,
1243 int perc, unsigned int flags)
1244 {
1245 int sz = state->sx*state->sy, nspc, i, ret;
1246
1247 shuffle(scratch, sz, sizeof(int), rs);
1248
1249 /* This bug took me a, er, little while to track down. On PalmOS,
1250 * which has 16-bit signed ints, puzzles over about 9x9 started
1251 * failing to generate because the nspc calculation would start
1252 * to overflow, causing the dots not to be filled in properly. */
1253 nspc = (int)(((long)perc * (long)sz) / 100L);
1254 debug(("generate_pass: %d%% (%d of %dx%d) squares, flags 0x%x\n",
1255 perc, nspc, state->sx, state->sy, flags));
1256
1257 for (i = 0; i < nspc; i++) {
1258 space *sp = &state->grid[scratch[i]];
1259 int x1 = sp->x, y1 = sp->y, x2 = sp->x, y2 = sp->y;
1260
1261 if (sp->type == s_edge) {
1262 if (IS_VERTICAL_EDGE(sp->x)) {
1263 x1--; x2++;
1264 } else {
1265 y1--; y2++;
1266 }
1267 }
1268 if (sp->type != s_vertex) {
1269 /* heuristic; expanding from vertices tends to generate lots of
1270 * too-big regions of tiles. */
1271 if (generate_try_block(state, rs, x1, y1, x2, y2))
1272 continue; /* we expanded successfully. */
1273 }
1274
1275 if (!(flags & GP_DOTS)) continue;
1276
1277 if ((sp->type == s_edge) && (i % 2)) {
1278 debug(("Omitting edge %d,%d as half-of.\n", sp->x, sp->y));
1279 continue;
1280 }
1281
1282 /* If we've got here we might want to put a dot down. Check
1283 * if we can, and add one if so. */
1284 if (dot_is_possible(state, sp, 0)) {
1285 add_dot(sp);
1286 #ifdef STANDALONE_PICTURE_GENERATOR
1287 if (picture) {
1288 if (picture[(sp->y/2) * state->w + (sp->x/2)])
1289 sp->flags |= F_DOT_BLACK;
1290 }
1291 #endif
1292 ret = solver_obvious_dot(state, sp);
1293 assert(ret != -1);
1294 debug(("Added dot (and obvious associations) at %d,%d\n",
1295 sp->x, sp->y));
1296 dbg_state(state);
1297 }
1298 }
1299 dbg_state(state);
1300 }
1301
1302 static int solver_state(game_state *state, int maxdiff);
1303
1304 static char *new_game_desc(game_params *params, random_state *rs,
1305 char **aux, int interactive)
1306 {
1307 game_state *state = blank_game(params->w, params->h), *copy;
1308 char *desc;
1309 int *scratch, sz = state->sx*state->sy, i;
1310 int diff, ntries = 0;
1311
1312 /* Random list of squares to try and process, one-by-one. */
1313 scratch = snewn(sz, int);
1314 for (i = 0; i < sz; i++) scratch[i] = i;
1315
1316 generate:
1317 clear_game(state, 1);
1318 ntries++;
1319
1320 /* generate_pass(state, rs, scratch, 10, GP_DOTS); */
1321 /* generate_pass(state, rs, scratch, 100, 0); */
1322 generate_pass(state, rs, scratch, 100, GP_DOTS);
1323
1324 game_update_dots(state);
1325
1326 #ifdef DEBUGGING
1327 {
1328 char *tmp = encode_game(state);
1329 debug(("new_game_desc state %dx%d:%s\n", params->w, params->h, tmp));
1330 sfree(tmp);
1331 }
1332 #endif
1333
1334 for (i = 0; i < state->sx*state->sy; i++)
1335 if (state->grid[i].type == s_tile)
1336 outline_tile_fordot(state, &state->grid[i], TRUE);
1337 assert(check_complete(state, FALSE));
1338
1339 copy = dup_game(state);
1340 clear_game(copy, 0);
1341 dbg_state(copy);
1342 diff = solver_state(copy, params->diff);
1343 free_game(copy);
1344
1345 assert(diff != DIFF_IMPOSSIBLE);
1346 if (diff != params->diff) {
1347 /*
1348 * We'll grudgingly accept a too-easy puzzle, but we must
1349 * _not_ permit a too-hard one (one which the solver
1350 * couldn't handle at all).
1351 */
1352 if (diff > params->diff ||
1353 ntries < MAXTRIES) goto generate;
1354 }
1355
1356 #ifdef STANDALONE_PICTURE_GENERATOR
1357 /*
1358 * Postprocessing pass to prevent excessive numbers of adjacent
1359 * singletons. Iterate over all edges in random shuffled order;
1360 * for each edge that separates two regions, investigate
1361 * whether removing that edge and merging the regions would
1362 * still yield a valid and soluble puzzle. (The two regions
1363 * must also be the same colour, of course.) If so, do it.
1364 *
1365 * This postprocessing pass is slow (due to repeated solver
1366 * invocations), and seems to be unnecessary during normal
1367 * unconstrained game generation. However, when generating a
1368 * game under colour constraints, excessive singletons seem to
1369 * turn up more often, so it's worth doing this.
1370 */
1371 {
1372 int *posns, nposns;
1373 int i, j, newdiff;
1374 game_state *copy2;
1375
1376 nposns = params->w * (params->h+1) + params->h * (params->w+1);
1377 posns = snewn(nposns, int);
1378 for (i = j = 0; i < state->sx*state->sy; i++)
1379 if (state->grid[i].type == s_edge)
1380 posns[j++] = i;
1381 assert(j == nposns);
1382
1383 shuffle(posns, nposns, sizeof(*posns), rs);
1384
1385 for (i = 0; i < nposns; i++) {
1386 int x, y, x0, y0, x1, y1, cx, cy, cn, cx0, cy0, cx1, cy1, tx, ty;
1387 space *s0, *s1, *ts, *d0, *d1, *dn;
1388 int ok;
1389
1390 /* Coordinates of edge space */
1391 x = posns[i] % state->sx;
1392 y = posns[i] / state->sx;
1393
1394 /* Coordinates of square spaces on either side of edge */
1395 x0 = ((x+1) & ~1) - 1; /* round down to next odd number */
1396 y0 = ((y+1) & ~1) - 1;
1397 x1 = 2*x-x0; /* and reflect about x to get x1 */
1398 y1 = 2*y-y0;
1399
1400 if (!INGRID(state, x0, y0) || !INGRID(state, x1, y1))
1401 continue; /* outermost edge of grid */
1402 s0 = &SPACE(state, x0, y0);
1403 s1 = &SPACE(state, x1, y1);
1404 assert(s0->type == s_tile && s1->type == s_tile);
1405
1406 if (s0->dotx == s1->dotx && s0->doty == s1->doty)
1407 continue; /* tiles _already_ owned by same dot */
1408
1409 d0 = &SPACE(state, s0->dotx, s0->doty);
1410 d1 = &SPACE(state, s1->dotx, s1->doty);
1411
1412 if ((d0->flags ^ d1->flags) & F_DOT_BLACK)
1413 continue; /* different colours: cannot merge */
1414
1415 /*
1416 * Work out where the centre of gravity of the new
1417 * region would be.
1418 */
1419 cx = d0->nassoc * d0->x + d1->nassoc * d1->x;
1420 cy = d0->nassoc * d0->y + d1->nassoc * d1->y;
1421 cn = d0->nassoc + d1->nassoc;
1422 if (cx % cn || cy % cn)
1423 continue; /* CoG not at integer coordinates */
1424 cx /= cn;
1425 cy /= cn;
1426 assert(INUI(state, cx, cy));
1427
1428 /*
1429 * Ensure that the CoG would actually be _in_ the new
1430 * region, by verifying that all its surrounding tiles
1431 * belong to one or other of our two dots.
1432 */
1433 cx0 = ((cx+1) & ~1) - 1; /* round down to next odd number */
1434 cy0 = ((cy+1) & ~1) - 1;
1435 cx1 = 2*cx-cx0; /* and reflect about cx to get cx1 */
1436 cy1 = 2*cy-cy0;
1437 ok = TRUE;
1438 for (ty = cy0; ty <= cy1; ty += 2)
1439 for (tx = cx0; tx <= cx1; tx += 2) {
1440 ts = &SPACE(state, tx, ty);
1441 assert(ts->type == s_tile);
1442 if ((ts->dotx != d0->x || ts->doty != d0->y) &&
1443 (ts->dotx != d1->x || ts->doty != d1->y))
1444 ok = FALSE;
1445 }
1446 if (!ok)
1447 continue;
1448
1449 /*
1450 * Verify that for every tile in either source region,
1451 * that tile's image in the new CoG is also in one of
1452 * the two source regions.
1453 */
1454 for (ty = 1; ty < state->sy; ty += 2) {
1455 for (tx = 1; tx < state->sx; tx += 2) {
1456 int tx1, ty1;
1457
1458 ts = &SPACE(state, tx, ty);
1459 assert(ts->type == s_tile);
1460 if ((ts->dotx != d0->x || ts->doty != d0->y) &&
1461 (ts->dotx != d1->x || ts->doty != d1->y))
1462 continue; /* not part of these tiles anyway */
1463 tx1 = 2*cx-tx;
1464 ty1 = 2*cy-ty;
1465 if (!INGRID(state, tx1, ty1)) {
1466 ok = FALSE;
1467 break;
1468 }
1469 ts = &SPACE(state, cx+cx-tx, cy+cy-ty);
1470 if ((ts->dotx != d0->x || ts->doty != d0->y) &&
1471 (ts->dotx != d1->x || ts->doty != d1->y)) {
1472 ok = FALSE;
1473 break;
1474 }
1475 }
1476 if (!ok)
1477 break;
1478 }
1479 if (!ok)
1480 continue;
1481
1482 /*
1483 * Now we're clear to attempt the merge. We take a copy
1484 * of the game state first, so we can revert it easily
1485 * if the resulting puzzle turns out to have become
1486 * insoluble.
1487 */
1488 copy2 = dup_game(state);
1489
1490 remove_dot(d0);
1491 remove_dot(d1);
1492 dn = &SPACE(state, cx, cy);
1493 add_dot(dn);
1494 dn->flags |= (d0->flags & F_DOT_BLACK);
1495 for (ty = 1; ty < state->sy; ty += 2) {
1496 for (tx = 1; tx < state->sx; tx += 2) {
1497 ts = &SPACE(state, tx, ty);
1498 assert(ts->type == s_tile);
1499 if ((ts->dotx != d0->x || ts->doty != d0->y) &&
1500 (ts->dotx != d1->x || ts->doty != d1->y))
1501 continue; /* not part of these tiles anyway */
1502 add_assoc(state, ts, dn);
1503 }
1504 }
1505
1506 copy = dup_game(state);
1507 clear_game(copy, 0);
1508 dbg_state(copy);
1509 newdiff = solver_state(copy, params->diff);
1510 free_game(copy);
1511 if (diff == newdiff) {
1512 /* Still just as soluble. Let the merge stand. */
1513 free_game(copy2);
1514 } else {
1515 /* Became insoluble. Revert. */
1516 free_game(state);
1517 state = copy2;
1518 }
1519 }
1520 }
1521 #endif
1522
1523 desc = encode_game(state);
1524 #ifndef STANDALONE_SOLVER
1525 debug(("new_game_desc generated: \n"));
1526 dbg_state(state);
1527 #endif
1528
1529 free_game(state);
1530 sfree(scratch);
1531
1532 return desc;
1533 }
1534
1535 static int solver_obvious(game_state *state);
1536
1537 static int dots_too_close(game_state *state)
1538 {
1539 /* Quick-and-dirty check, using half the solver:
1540 * solver_obvious will only fail if the dots are
1541 * too close together, so dot-proximity associations
1542 * overlap. */
1543 game_state *tmp = dup_game(state);
1544 int ret = solver_obvious(tmp);
1545 free_game(tmp);
1546 return (ret == -1) ? 1 : 0;
1547 }
1548
1549 static game_state *load_game(game_params *params, char *desc,
1550 char **why_r)
1551 {
1552 game_state *state = blank_game(params->w, params->h);
1553 char *why = NULL;
1554 int i, x, y, n;
1555 unsigned int df;
1556
1557 i = 0;
1558 while (*desc) {
1559 n = *desc++;
1560 if (n == 'z') {
1561 i += 25;
1562 continue;
1563 }
1564 if (n >= 'a' && n <= 'y') {
1565 i += n - 'a';
1566 df = 0;
1567 } else if (n >= 'A' && n <= 'Y') {
1568 i += n - 'A';
1569 df = F_DOT_BLACK;
1570 } else {
1571 why = "Invalid characters in game description"; goto fail;
1572 }
1573 /* if we got here we incremented i and have a dot to add. */
1574 y = (i / (state->sx-2)) + 1;
1575 x = (i % (state->sx-2)) + 1;
1576 if (!INUI(state, x, y)) {
1577 why = "Too much data to fit in grid"; goto fail;
1578 }
1579 add_dot(&SPACE(state, x, y));
1580 SPACE(state, x, y).flags |= df;
1581 i++;
1582 }
1583 game_update_dots(state);
1584
1585 if (dots_too_close(state)) {
1586 why = "Dots too close together"; goto fail;
1587 }
1588
1589 return state;
1590
1591 fail:
1592 free_game(state);
1593 if (why_r) *why_r = why;
1594 return NULL;
1595 }
1596
1597 static char *validate_desc(game_params *params, char *desc)
1598 {
1599 char *why = NULL;
1600 game_state *dummy = load_game(params, desc, &why);
1601 if (dummy) {
1602 free_game(dummy);
1603 assert(!why);
1604 } else
1605 assert(why);
1606 return why;
1607 }
1608
1609 static game_state *new_game(midend *me, game_params *params, char *desc)
1610 {
1611 game_state *state = load_game(params, desc, NULL);
1612 if (!state) {
1613 assert("Unable to load ?validated game.");
1614 return NULL;
1615 }
1616 #ifdef EDITOR
1617 state->me = me;
1618 #endif
1619 return state;
1620 }
1621
1622 /* ----------------------------------------------------------
1623 * Solver and all its little wizards.
1624 */
1625
1626 int solver_recurse_depth;
1627
1628 typedef struct solver_ctx {
1629 game_state *state;
1630 int sz; /* state->sx * state->sy */
1631 space **scratch; /* size sz */
1632
1633 } solver_ctx;
1634
1635 static solver_ctx *new_solver(game_state *state)
1636 {
1637 solver_ctx *sctx = snew(solver_ctx);
1638 sctx->state = state;
1639 sctx->sz = state->sx*state->sy;
1640 sctx->scratch = snewn(sctx->sz, space *);
1641 return sctx;
1642 }
1643
1644 static void free_solver(solver_ctx *sctx)
1645 {
1646 sfree(sctx->scratch);
1647 sfree(sctx);
1648 }
1649
1650 /* Solver ideas so far:
1651 *
1652 * For any empty space, work out how many dots it could associate
1653 * with:
1654 * it needs line-of-sight
1655 * it needs an empty space on the far side
1656 * any adjacent lines need corresponding line possibilities.
1657 */
1658
1659 /* The solver_ctx should keep a list of dot positions, for quicker looping.
1660 *
1661 * Solver techniques, in order of difficulty:
1662 * obvious adjacency to dots
1663 * transferring tiles to opposite side
1664 * transferring lines to opposite side
1665 * one possible dot for a given tile based on opposite availability
1666 * tile with 3 definite edges next to an associated tile must associate
1667 with same dot.
1668 *
1669 * one possible dot for a given tile based on line-of-sight
1670 */
1671
1672 static int solver_add_assoc(game_state *state, space *tile, int dx, int dy,
1673 const char *why)
1674 {
1675 space *dot, *tile_opp;
1676
1677 dot = &SPACE(state, dx, dy);
1678 tile_opp = space_opposite_dot(state, tile, dot);
1679
1680 assert(tile->type == s_tile);
1681 if (tile->flags & F_TILE_ASSOC) {
1682 if ((tile->dotx != dx) || (tile->doty != dy)) {
1683 solvep(("%*sSet %d,%d --> %d,%d (%s) impossible; "
1684 "already --> %d,%d.\n",
1685 solver_recurse_depth*4, "",
1686 tile->x, tile->y, dx, dy, why,
1687 tile->dotx, tile->doty));
1688 return -1;
1689 }
1690 return 0; /* no-op */
1691 }
1692 if (!tile_opp) {
1693 solvep(("%*s%d,%d --> %d,%d impossible, no opposite tile.\n",
1694 solver_recurse_depth*4, "", tile->x, tile->y, dx, dy));
1695 return -1;
1696 }
1697 if (tile_opp->flags & F_TILE_ASSOC &&
1698 (tile_opp->dotx != dx || tile_opp->doty != dy)) {
1699 solvep(("%*sSet %d,%d --> %d,%d (%s) impossible; "
1700 "opposite already --> %d,%d.\n",
1701 solver_recurse_depth*4, "",
1702 tile->x, tile->y, dx, dy, why,
1703 tile_opp->dotx, tile_opp->doty));
1704 return -1;
1705 }
1706
1707 add_assoc(state, tile, dot);
1708 add_assoc(state, tile_opp, dot);
1709 solvep(("%*sSetting %d,%d --> %d,%d (%s).\n",
1710 solver_recurse_depth*4, "",
1711 tile->x, tile->y,dx, dy, why));
1712 solvep(("%*sSetting %d,%d --> %d,%d (%s, opposite).\n",
1713 solver_recurse_depth*4, "",
1714 tile_opp->x, tile_opp->y, dx, dy, why));
1715 return 1;
1716 }
1717
1718 static int solver_obvious_dot(game_state *state, space *dot)
1719 {
1720 int dx, dy, ret, didsth = 0;
1721 space *tile;
1722
1723 debug(("%*ssolver_obvious_dot for %d,%d.\n",
1724 solver_recurse_depth*4, "", dot->x, dot->y));
1725
1726 assert(dot->flags & F_DOT);
1727 for (dx = -1; dx <= 1; dx++) {
1728 for (dy = -1; dy <= 1; dy++) {
1729 if (!INGRID(state, dot->x+dx, dot->y+dy)) continue;
1730
1731 tile = &SPACE(state, dot->x+dx, dot->y+dy);
1732 if (tile->type == s_tile) {
1733 ret = solver_add_assoc(state, tile, dot->x, dot->y,
1734 "next to dot");
1735 if (ret < 0) return -1;
1736 if (ret > 0) didsth = 1;
1737 }
1738 }
1739 }
1740 return didsth;
1741 }
1742
1743 static int solver_obvious(game_state *state)
1744 {
1745 int i, didsth = 0, ret;
1746
1747 debug(("%*ssolver_obvious.\n", solver_recurse_depth*4, ""));
1748
1749 for (i = 0; i < state->ndots; i++) {
1750 ret = solver_obvious_dot(state, state->dots[i]);
1751 if (ret < 0) return -1;
1752 if (ret > 0) didsth = 1;
1753 }
1754 return didsth;
1755 }
1756
1757 static int solver_lines_opposite_cb(game_state *state, space *edge, void *ctx)
1758 {
1759 int didsth = 0, n, dx, dy;
1760 space *tiles[2], *tile_opp, *edge_opp;
1761
1762 assert(edge->type == s_edge);
1763
1764 tiles_from_edge(state, edge, tiles);
1765
1766 /* if tiles[0] && tiles[1] && they're both associated
1767 * and they're both associated with different dots,
1768 * ensure the line is set. */
1769 if (!(edge->flags & F_EDGE_SET) &&
1770 tiles[0] && tiles[1] &&
1771 (tiles[0]->flags & F_TILE_ASSOC) &&
1772 (tiles[1]->flags & F_TILE_ASSOC) &&
1773 (tiles[0]->dotx != tiles[1]->dotx ||
1774 tiles[0]->doty != tiles[1]->doty)) {
1775 /* No edge, but the two adjacent tiles are both
1776 * associated with different dots; add the edge. */
1777 solvep(("%*sSetting edge %d,%d - tiles different dots.\n",
1778 solver_recurse_depth*4, "", edge->x, edge->y));
1779 edge->flags |= F_EDGE_SET;
1780 didsth = 1;
1781 }
1782
1783 if (!(edge->flags & F_EDGE_SET)) return didsth;
1784 for (n = 0; n < 2; n++) {
1785 if (!tiles[n]) continue;
1786 assert(tiles[n]->type == s_tile);
1787 if (!(tiles[n]->flags & F_TILE_ASSOC)) continue;
1788
1789 tile_opp = tile_opposite(state, tiles[n]);
1790 if (!tile_opp) {
1791 solvep(("%*simpossible: edge %d,%d has assoc. tile %d,%d"
1792 " with no opposite.\n",
1793 solver_recurse_depth*4, "",
1794 edge->x, edge->y, tiles[n]->x, tiles[n]->y));
1795 /* edge of tile has no opposite edge (off grid?);
1796 * this is impossible. */
1797 return -1;
1798 }
1799
1800 dx = tiles[n]->x - edge->x;
1801 dy = tiles[n]->y - edge->y;
1802 assert(INGRID(state, tile_opp->x+dx, tile_opp->y+dy));
1803 edge_opp = &SPACE(state, tile_opp->x+dx, tile_opp->y+dy);
1804 if (!(edge_opp->flags & F_EDGE_SET)) {
1805 solvep(("%*sSetting edge %d,%d as opposite %d,%d\n",
1806 solver_recurse_depth*4, "",
1807 tile_opp->x-dx, tile_opp->y-dy, edge->x, edge->y));
1808 edge_opp->flags |= F_EDGE_SET;
1809 didsth = 1;
1810 }
1811 }
1812 return didsth;
1813 }
1814
1815 static int solver_spaces_oneposs_cb(game_state *state, space *tile, void *ctx)
1816 {
1817 int n, eset, ret;
1818 struct space *edgeadj[4], *tileadj[4];
1819 int dotx, doty;
1820
1821 assert(tile->type == s_tile);
1822 if (tile->flags & F_TILE_ASSOC) return 0;
1823
1824 adjacencies(state, tile, edgeadj, tileadj);
1825
1826 /* Empty tile. If each edge is either set, or associated with
1827 * the same dot, we must also associate with dot. */
1828 eset = 0; dotx = -1; doty = -1;
1829 for (n = 0; n < 4; n++) {
1830 assert(edgeadj[n]);
1831 assert(edgeadj[n]->type == s_edge);
1832 if (edgeadj[n]->flags & F_EDGE_SET) {
1833 eset++;
1834 } else {
1835 assert(tileadj[n]);
1836 assert(tileadj[n]->type == s_tile);
1837
1838 /* If an adjacent tile is empty we can't make any deductions.*/
1839 if (!(tileadj[n]->flags & F_TILE_ASSOC))
1840 return 0;
1841
1842 /* If an adjacent tile is assoc. with a different dot
1843 * we can't make any deductions. */
1844 if (dotx != -1 && doty != -1 &&
1845 (tileadj[n]->dotx != dotx ||
1846 tileadj[n]->doty != doty))
1847 return 0;
1848
1849 dotx = tileadj[n]->dotx;
1850 doty = tileadj[n]->doty;
1851 }
1852 }
1853 if (eset == 4) {
1854 solvep(("%*simpossible: empty tile %d,%d has 4 edges\n",
1855 solver_recurse_depth*4, "",
1856 tile->x, tile->y));
1857 return -1;
1858 }
1859 assert(dotx != -1 && doty != -1);
1860
1861 ret = solver_add_assoc(state, tile, dotx, doty, "rest are edges");
1862 if (ret == -1) return -1;
1863 assert(ret != 0); /* really should have done something. */
1864
1865 return 1;
1866 }
1867
1868 /* Improved algorithm for tracking line-of-sight from dots, and not spaces.
1869 *
1870 * The solver_ctx already stores a list of dots: the algorithm proceeds by
1871 * expanding outwards from each dot in turn, expanding first to the boundary
1872 * of its currently-connected tile and then to all empty tiles that could see
1873 * it. Empty tiles will be flagged with a 'can see dot <x,y>' sticker.
1874 *
1875 * Expansion will happen by (symmetrically opposite) pairs of squares; if
1876 * a square hasn't an opposite number there's no point trying to expand through
1877 * it. Empty tiles will therefore also be tagged in pairs.
1878 *
1879 * If an empty tile already has a 'can see dot <x,y>' tag from a previous dot,
1880 * it (and its partner) gets untagged (or, rather, a 'can see two dots' tag)
1881 * because we're looking for single-dot possibilities.
1882 *
1883 * Once we've gone through all the dots, any which still have a 'can see dot'
1884 * tag get associated with that dot (because it must have been the only one);
1885 * any without any tag (i.e. that could see _no_ dots) cause an impossibility
1886 * marked.
1887 *
1888 * The expansion will happen each time with a stored list of (space *) pairs,
1889 * rather than a mark-and-sweep idea; that's horrifically inefficient.
1890 *
1891 * expansion algorithm:
1892 *
1893 * * allocate list of (space *) the size of s->sx*s->sy.
1894 * * allocate second grid for (flags, dotx, doty) size of sx*sy.
1895 *
1896 * clear second grid (flags = 0, all dotx and doty = 0)
1897 * flags: F_REACHABLE, F_MULTIPLE
1898 *
1899 *
1900 * * for each dot, start with one pair of tiles that are associated with it --
1901 * * vertex --> (dx+1, dy+1), (dx-1, dy-1)
1902 * * edge --> (adj1, adj2)
1903 * * tile --> (tile, tile) ???
1904 * * mark that pair of tiles with F_MARK, clear all other F_MARKs.
1905 * * add two tiles to start of list.
1906 *
1907 * set start = 0, end = next = 2
1908 *
1909 * from (start to end-1, step 2) {
1910 * * we have two tiles (t1, t2), opposites wrt our dot.
1911 * * for each (at1) sensible adjacent tile to t1 (i.e. not past an edge):
1912 * * work out at2 as the opposite to at1
1913 * * assert at1 and at2 have the same F_MARK values.
1914 * * if at1 & F_MARK ignore it (we've been there on a previous sweep)
1915 * * if either are associated with a different dot
1916 * * mark both with F_MARK (so we ignore them later)
1917 * * otherwise (assoc. with our dot, or empty):
1918 * * mark both with F_MARK
1919 * * add their space * values to the end of the list, set next += 2.
1920 * }
1921 *
1922 * if (end == next)
1923 * * we didn't add any new squares; exit the loop.
1924 * else
1925 * * set start = next+1, end = next. go round again
1926 *
1927 * We've finished expanding from the dot. Now, for each square we have
1928 * in our list (--> each square with F_MARK):
1929 * * if the tile is empty:
1930 * * if F_REACHABLE was already set
1931 * * set F_MULTIPLE
1932 * * otherwise
1933 * * set F_REACHABLE, set dotx and doty to our dot.
1934 *
1935 * Then, continue the whole thing for each dot in turn.
1936 *
1937 * Once we've done for each dot, go through the entire grid looking for
1938 * empty tiles: for each empty tile:
1939 * if F_REACHABLE and not F_MULTIPLE, set that dot (and its double)
1940 * if !F_REACHABLE, return as impossible.
1941 *
1942 */
1943
1944 /* Returns 1 if this tile is either already associated with this dot,
1945 * or blank. */
1946 static int solver_expand_checkdot(space *tile, space *dot)
1947 {
1948 if (!(tile->flags & F_TILE_ASSOC)) return 1;
1949 if (tile->dotx == dot->x && tile->doty == dot->y) return 1;
1950 return 0;
1951 }
1952
1953 static void solver_expand_fromdot(game_state *state, space *dot, solver_ctx *sctx)
1954 {
1955 int i, j, x, y, start, end, next;
1956 space *sp;
1957
1958 /* Clear the grid of the (space) flags we'll use. */
1959
1960 /* This is well optimised; analysis showed that:
1961 for (i = 0; i < sctx->sz; i++) state->grid[i].flags &= ~F_MARK;
1962 took up ~85% of the total function time! */
1963 for (y = 1; y < state->sy; y += 2) {
1964 sp = &SPACE(state, 1, y);
1965 for (x = 1; x < state->sx; x += 2, sp += 2)
1966 sp->flags &= ~F_MARK;
1967 }
1968
1969 /* Seed the list of marked squares with two that must be associated
1970 * with our dot (possibly the same space) */
1971 if (dot->type == s_tile) {
1972 sctx->scratch[0] = sctx->scratch[1] = dot;
1973 } else if (dot->type == s_edge) {
1974 tiles_from_edge(state, dot, sctx->scratch);
1975 } else if (dot->type == s_vertex) {
1976 /* pick two of the opposite ones arbitrarily. */
1977 sctx->scratch[0] = &SPACE(state, dot->x-1, dot->y-1);
1978 sctx->scratch[1] = &SPACE(state, dot->x+1, dot->y+1);
1979 }
1980 assert(sctx->scratch[0]->flags & F_TILE_ASSOC);
1981 assert(sctx->scratch[1]->flags & F_TILE_ASSOC);
1982
1983 sctx->scratch[0]->flags |= F_MARK;
1984 sctx->scratch[1]->flags |= F_MARK;
1985
1986 debug(("%*sexpand from dot %d,%d seeded with %d,%d and %d,%d.\n",
1987 solver_recurse_depth*4, "", dot->x, dot->y,
1988 sctx->scratch[0]->x, sctx->scratch[0]->y,
1989 sctx->scratch[1]->x, sctx->scratch[1]->y));
1990
1991 start = 0; end = 2; next = 2;
1992
1993 expand:
1994 debug(("%*sexpand: start %d, end %d, next %d\n",
1995 solver_recurse_depth*4, "", start, end, next));
1996 for (i = start; i < end; i += 2) {
1997 space *t1 = sctx->scratch[i]/*, *t2 = sctx->scratch[i+1]*/;
1998 space *edges[4], *tileadj[4], *tileadj2;
1999
2000 adjacencies(state, t1, edges, tileadj);
2001
2002 for (j = 0; j < 4; j++) {
2003 assert(edges[j]);
2004 if (edges[j]->flags & F_EDGE_SET) continue;
2005 assert(tileadj[j]);
2006
2007 if (tileadj[j]->flags & F_MARK) continue; /* seen before. */
2008
2009 /* We have a tile adjacent to t1; find its opposite. */
2010 tileadj2 = space_opposite_dot(state, tileadj[j], dot);
2011 if (!tileadj2) {
2012 debug(("%*sMarking %d,%d, no opposite.\n",
2013 solver_recurse_depth*4, "",
2014 tileadj[j]->x, tileadj[j]->y));
2015 tileadj[j]->flags |= F_MARK;
2016 continue; /* no opposite, so mark for next time. */
2017 }
2018 /* If the tile had an opposite we should have either seen both of
2019 * these, or neither of these, before. */
2020 assert(!(tileadj2->flags & F_MARK));
2021
2022 if (solver_expand_checkdot(tileadj[j], dot) &&
2023 solver_expand_checkdot(tileadj2, dot)) {
2024 /* Both tiles could associate with this dot; add them to
2025 * our list. */
2026 debug(("%*sAdding %d,%d and %d,%d to possibles list.\n",
2027 solver_recurse_depth*4, "",
2028 tileadj[j]->x, tileadj[j]->y, tileadj2->x, tileadj2->y));
2029 sctx->scratch[next++] = tileadj[j];
2030 sctx->scratch[next++] = tileadj2;
2031 }
2032 /* Either way, we've seen these tiles already so mark them. */
2033 debug(("%*sMarking %d,%d and %d,%d.\n",
2034 solver_recurse_depth*4, "",
2035 tileadj[j]->x, tileadj[j]->y, tileadj2->x, tileadj2->y));
2036 tileadj[j]->flags |= F_MARK;
2037 tileadj2->flags |= F_MARK;
2038 }
2039 }
2040 if (next > end) {
2041 /* We added more squares; go back and try again. */
2042 start = end; end = next; goto expand;
2043 }
2044
2045 /* We've expanded as far as we can go. Now we update the main flags
2046 * on all tiles we've expanded into -- if they were empty, we have
2047 * found possible associations for this dot. */
2048 for (i = 0; i < end; i++) {
2049 if (sctx->scratch[i]->flags & F_TILE_ASSOC) continue;
2050 if (sctx->scratch[i]->flags & F_REACHABLE) {
2051 /* This is (at least) the second dot this tile could
2052 * associate with. */
2053 debug(("%*sempty tile %d,%d could assoc. other dot %d,%d\n",
2054 solver_recurse_depth*4, "",
2055 sctx->scratch[i]->x, sctx->scratch[i]->y, dot->x, dot->y));
2056 sctx->scratch[i]->flags |= F_MULTIPLE;
2057 } else {
2058 /* This is the first (possibly only) dot. */
2059 debug(("%*sempty tile %d,%d could assoc. 1st dot %d,%d\n",
2060 solver_recurse_depth*4, "",
2061 sctx->scratch[i]->x, sctx->scratch[i]->y, dot->x, dot->y));
2062 sctx->scratch[i]->flags |= F_REACHABLE;
2063 sctx->scratch[i]->dotx = dot->x;
2064 sctx->scratch[i]->doty = dot->y;
2065 }
2066 }
2067 dbg_state(state);
2068 }
2069
2070 static int solver_expand_postcb(game_state *state, space *tile, void *ctx)
2071 {
2072 assert(tile->type == s_tile);
2073
2074 if (tile->flags & F_TILE_ASSOC) return 0;
2075
2076 if (!(tile->flags & F_REACHABLE)) {
2077 solvep(("%*simpossible: space (%d,%d) can reach no dots.\n",
2078 solver_recurse_depth*4, "", tile->x, tile->y));
2079 return -1;
2080 }
2081 if (tile->flags & F_MULTIPLE) return 0;
2082
2083 return solver_add_assoc(state, tile, tile->dotx, tile->doty,
2084 "single possible dot after expansion");
2085 }
2086
2087 static int solver_expand_dots(game_state *state, solver_ctx *sctx)
2088 {
2089 int i;
2090
2091 for (i = 0; i < sctx->sz; i++)
2092 state->grid[i].flags &= ~(F_REACHABLE|F_MULTIPLE);
2093
2094 for (i = 0; i < state->ndots; i++)
2095 solver_expand_fromdot(state, state->dots[i], sctx);
2096
2097 return foreach_tile(state, solver_expand_postcb, IMPOSSIBLE_QUITS, sctx);
2098 }
2099
2100 struct recurse_ctx {
2101 space *best;
2102 int bestn;
2103 };
2104
2105 static int solver_recurse_cb(game_state *state, space *tile, void *ctx)
2106 {
2107 struct recurse_ctx *rctx = (struct recurse_ctx *)ctx;
2108 int i, n = 0;
2109
2110 assert(tile->type == s_tile);
2111 if (tile->flags & F_TILE_ASSOC) return 0;
2112
2113 /* We're unassociated: count up all the dots we could associate with. */
2114 for (i = 0; i < state->ndots; i++) {
2115 if (dotfortile(state, tile, state->dots[i]))
2116 n++;
2117 }
2118 if (n > rctx->bestn) {
2119 rctx->bestn = n;
2120 rctx->best = tile;
2121 }
2122 return 0;
2123 }
2124
2125 static int solver_state(game_state *state, int maxdiff);
2126
2127 #define MAXRECURSE 5
2128
2129 static int solver_recurse(game_state *state, int maxdiff)
2130 {
2131 int diff = DIFF_IMPOSSIBLE, ret, n, gsz = state->sx * state->sy;
2132 space *ingrid, *outgrid = NULL, *bestopp;
2133 struct recurse_ctx rctx;
2134
2135 if (solver_recurse_depth >= MAXRECURSE) {
2136 solvep(("Limiting recursion to %d, returning.", MAXRECURSE));
2137 return DIFF_UNFINISHED;
2138 }
2139
2140 /* Work out the cell to recurse on; go through all unassociated tiles
2141 * and find which one has the most possible dots it could associate
2142 * with. */
2143 rctx.best = NULL;
2144 rctx.bestn = 0;
2145
2146 foreach_tile(state, solver_recurse_cb, 0, &rctx);
2147 if (rctx.bestn == 0) return DIFF_IMPOSSIBLE; /* or assert? */
2148 assert(rctx.best);
2149
2150 solvep(("%*sRecursing around %d,%d, with %d possible dots.\n",
2151 solver_recurse_depth*4, "",
2152 rctx.best->x, rctx.best->y, rctx.bestn));
2153
2154 #ifdef STANDALONE_SOLVER
2155 solver_recurse_depth++;
2156 #endif
2157
2158 ingrid = snewn(gsz, struct space);
2159 memcpy(ingrid, state->grid, gsz * sizeof(struct space));
2160
2161 for (n = 0; n < state->ndots; n++) {
2162 memcpy(state->grid, ingrid, gsz * sizeof(struct space));
2163
2164 if (!dotfortile(state, rctx.best, state->dots[n])) continue;
2165
2166 /* set cell (temporarily) pointing to that dot. */
2167 solver_add_assoc(state, rctx.best,
2168 state->dots[n]->x, state->dots[n]->y,
2169 "Attempting for recursion");
2170
2171 ret = solver_state(state, maxdiff);
2172
2173 if (diff == DIFF_IMPOSSIBLE && ret != DIFF_IMPOSSIBLE) {
2174 /* we found our first solved grid; copy it away. */
2175 assert(!outgrid);
2176 outgrid = snewn(gsz, struct space);
2177 memcpy(outgrid, state->grid, gsz * sizeof(struct space));
2178 }
2179 /* reset cell back to unassociated. */
2180 bestopp = tile_opposite(state, rctx.best);
2181 assert(bestopp && bestopp->flags & F_TILE_ASSOC);
2182
2183 remove_assoc(state, rctx.best);
2184 remove_assoc(state, bestopp);
2185
2186 if (ret == DIFF_AMBIGUOUS || ret == DIFF_UNFINISHED)
2187 diff = ret;
2188 else if (ret == DIFF_IMPOSSIBLE)
2189 /* no change */;
2190 else {
2191 /* precisely one solution */
2192 if (diff == DIFF_IMPOSSIBLE)
2193 diff = DIFF_UNREASONABLE;
2194 else
2195 diff = DIFF_AMBIGUOUS;
2196 }
2197 /* if we've found >1 solution, or ran out of recursion,
2198 * give up immediately. */
2199 if (diff == DIFF_AMBIGUOUS || diff == DIFF_UNFINISHED)
2200 break;
2201 }
2202
2203 #ifdef STANDALONE_SOLVER
2204 solver_recurse_depth--;
2205 #endif
2206
2207 if (outgrid) {
2208 /* we found (at least one) soln; copy it back to state */
2209 memcpy(state->grid, outgrid, gsz * sizeof(struct space));
2210 sfree(outgrid);
2211 }
2212 sfree(ingrid);
2213 return diff;
2214 }
2215
2216 static int solver_state(game_state *state, int maxdiff)
2217 {
2218 solver_ctx *sctx = new_solver(state);
2219 int ret, diff = DIFF_NORMAL;
2220
2221 #ifdef STANDALONE_PICTURE_GENERATOR
2222 /* hack, hack: set picture to NULL during solving so that add_assoc
2223 * won't complain when we attempt recursive guessing and guess wrong */
2224 int *savepic = picture;
2225 picture = NULL;
2226 #endif
2227
2228 ret = solver_obvious(state);
2229 if (ret < 0) {
2230 diff = DIFF_IMPOSSIBLE;
2231 goto got_result;
2232 }
2233
2234 #define CHECKRET(d) do { \
2235 if (ret < 0) { diff = DIFF_IMPOSSIBLE; goto got_result; } \
2236 if (ret > 0) { diff = max(diff, (d)); goto cont; } \
2237 } while(0)
2238
2239 while (1) {
2240 cont:
2241 ret = foreach_edge(state, solver_lines_opposite_cb,
2242 IMPOSSIBLE_QUITS, sctx);
2243 CHECKRET(DIFF_NORMAL);
2244
2245 ret = foreach_tile(state, solver_spaces_oneposs_cb,
2246 IMPOSSIBLE_QUITS, sctx);
2247 CHECKRET(DIFF_NORMAL);
2248
2249 ret = solver_expand_dots(state, sctx);
2250 CHECKRET(DIFF_NORMAL);
2251
2252 if (maxdiff <= DIFF_NORMAL)
2253 break;
2254
2255 /* harder still? */
2256
2257 /* if we reach here, we've made no deductions, so we terminate. */
2258 break;
2259 }
2260
2261 if (check_complete(state, 0)) goto got_result;
2262
2263 diff = (maxdiff >= DIFF_UNREASONABLE) ?
2264 solver_recurse(state, maxdiff) : DIFF_UNFINISHED;
2265
2266 got_result:
2267 free_solver(sctx);
2268 #ifndef STANDALONE_SOLVER
2269 debug(("solver_state ends:\n"));
2270 dbg_state(state);
2271 #endif
2272
2273 #ifdef STANDALONE_PICTURE_GENERATOR
2274 picture = savepic;
2275 #endif
2276
2277 return diff;
2278 }
2279
2280 #ifndef EDITOR
2281 static char *solve_game(game_state *state, game_state *currstate,
2282 char *aux, char **error)
2283 {
2284 game_state *tosolve;
2285 char *ret;
2286 int i;
2287 int diff;
2288
2289 tosolve = dup_game(currstate);
2290 diff = solver_state(tosolve, DIFF_UNREASONABLE);
2291 if (diff != DIFF_UNFINISHED && diff != DIFF_IMPOSSIBLE) {
2292 debug(("solve_game solved with current state.\n"));
2293 goto solved;
2294 }
2295 free_game(tosolve);
2296
2297 tosolve = dup_game(state);
2298 diff = solver_state(tosolve, DIFF_UNREASONABLE);
2299 if (diff != DIFF_UNFINISHED && diff != DIFF_IMPOSSIBLE) {
2300 debug(("solve_game solved with original state.\n"));
2301 goto solved;
2302 }
2303 free_game(tosolve);
2304
2305 return NULL;
2306
2307 solved:
2308 /*
2309 * Clear tile associations: the solution will only include the
2310 * edges.
2311 */
2312 for (i = 0; i < tosolve->sx*tosolve->sy; i++)
2313 tosolve->grid[i].flags &= ~F_TILE_ASSOC;
2314 ret = diff_game(currstate, tosolve, 1);
2315 free_game(tosolve);
2316 return ret;
2317 }
2318 #endif
2319
2320 /* ----------------------------------------------------------
2321 * User interface.
2322 */
2323
2324 struct game_ui {
2325 int dragging;
2326 int dx, dy; /* pixel coords of drag pos. */
2327 int dotx, doty; /* grid coords of dot we're dragging from. */
2328 int srcx, srcy; /* grid coords of drag start */
2329 };
2330
2331 static game_ui *new_ui(game_state *state)
2332 {
2333 game_ui *ui = snew(game_ui);
2334 ui->dragging = FALSE;
2335 return ui;
2336 }
2337
2338 static void free_ui(game_ui *ui)
2339 {
2340 sfree(ui);
2341 }
2342
2343 static char *encode_ui(game_ui *ui)
2344 {
2345 return NULL;
2346 }
2347
2348 static void decode_ui(game_ui *ui, char *encoding)
2349 {
2350 }
2351
2352 static void game_changed_state(game_ui *ui, game_state *oldstate,
2353 game_state *newstate)
2354 {
2355 }
2356
2357 #define FLASH_TIME 0.15F
2358
2359 #define PREFERRED_TILE_SIZE 32
2360 #define TILE_SIZE (ds->tilesize)
2361 #define DOT_SIZE (TILE_SIZE / 4)
2362 #define EDGE_THICKNESS (max(TILE_SIZE / 16, 2))
2363 #define BORDER TILE_SIZE
2364
2365 #define COORD(x) ( (x) * TILE_SIZE + BORDER )
2366 #define SCOORD(x) ( ((x) * TILE_SIZE)/2 + BORDER )
2367 #define FROMCOORD(x) ( ((x) - BORDER) / TILE_SIZE )
2368
2369 #define DRAW_WIDTH (BORDER * 2 + ds->w * TILE_SIZE)
2370 #define DRAW_HEIGHT (BORDER * 2 + ds->h * TILE_SIZE)
2371
2372 struct game_drawstate {
2373 int started;
2374 int w, h;
2375 int tilesize;
2376 unsigned long *grid;
2377 int *dx, *dy;
2378 blitter *bl;
2379
2380 int dragging, dragx, dragy;
2381
2382 int *colour_scratch;
2383 };
2384
2385 #define CORNER_TOLERANCE 0.15F
2386 #define CENTRE_TOLERANCE 0.15F
2387
2388 /*
2389 * Round FP coordinates to the centre of the nearest edge.
2390 */
2391 #ifndef EDITOR
2392 static void coord_round_to_edge(float x, float y, int *xr, int *yr)
2393 {
2394 float xs, ys, xv, yv, dx, dy;
2395
2396 /*
2397 * Find the nearest square-centre.
2398 */
2399 xs = (float)floor(x) + 0.5F;
2400 ys = (float)floor(y) + 0.5F;
2401
2402 /*
2403 * Find the nearest grid vertex.
2404 */
2405 xv = (float)floor(x + 0.5F);
2406 yv = (float)floor(y + 0.5F);
2407
2408 /*
2409 * Determine whether the horizontal or vertical edge from that
2410 * vertex alongside that square is closer to us, by comparing
2411 * distances from the square cente.
2412 */
2413 dx = (float)fabs(x - xs);
2414 dy = (float)fabs(y - ys);
2415 if (dx > dy) {
2416 /* Vertical edge: x-coord of corner,
2417 * y-coord of square centre. */
2418 *xr = 2 * (int)xv;
2419 *yr = 1 + 2 * (int)floor(ys);
2420 } else {
2421 /* Horizontal edge: x-coord of square centre,
2422 * y-coord of corner. */
2423 *xr = 1 + 2 * (int)floor(xs);
2424 *yr = 2 * (int)yv;
2425 }
2426 }
2427 #endif
2428
2429 #ifdef EDITOR
2430 static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
2431 int x, int y, int button)
2432 {
2433 char buf[80];
2434 int px, py;
2435 struct space *sp;
2436
2437 px = 2*FROMCOORD((float)x) + 0.5;
2438 py = 2*FROMCOORD((float)y) + 0.5;
2439
2440 state->cdiff = -1;
2441
2442 if (button == 'C' || button == 'c') return dupstr("C");
2443
2444 if (button == 'S' || button == 's') {
2445 char *ret;
2446 game_state *tmp = dup_game(state);
2447 state->cdiff = solver_state(tmp, DIFF_UNREASONABLE-1);
2448 ret = diff_game(state, tmp, 0);
2449 free_game(tmp);
2450 return ret;
2451 }
2452
2453 if (button == LEFT_BUTTON || button == RIGHT_BUTTON) {
2454 if (!INUI(state, px, py)) return NULL;
2455 sp = &SPACE(state, px, py);
2456 if (!dot_is_possible(state, sp, 1)) return NULL;
2457 sprintf(buf, "%c%d,%d",
2458 (char)((button == LEFT_BUTTON) ? 'D' : 'd'), px, py);
2459 return dupstr(buf);
2460 }
2461
2462 return NULL;
2463 }
2464 #else
2465 static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
2466 int x, int y, int button)
2467 {
2468 /* UI operations (play mode):
2469 *
2470 * Toggle edge (set/unset) (left-click on edge)
2471 * Associate space with dot (left-drag from dot)
2472 * Unassociate space (left-drag from space off grid)
2473 * Autofill lines around shape? (right-click?)
2474 *
2475 * (edit mode; will clear all lines/associations)
2476 *
2477 * Add or remove dot (left-click)
2478 */
2479 char buf[80];
2480 const char *sep;
2481 int px, py;
2482 struct space *sp, *dot;
2483
2484 if (button == 'H' || button == 'h') {
2485 char *ret;
2486 game_state *tmp = dup_game(state);
2487 solver_obvious(tmp);
2488 ret = diff_game(state, tmp, 0);
2489 free_game(tmp);
2490 return ret;
2491 }
2492
2493 if (button == LEFT_BUTTON) {
2494 coord_round_to_edge(FROMCOORD((float)x), FROMCOORD((float)y),
2495 &px, &py);
2496
2497 if (!INUI(state, px, py)) return NULL;
2498
2499 sp = &SPACE(state, px, py);
2500 assert(sp->type == s_edge);
2501 {
2502 sprintf(buf, "E%d,%d", px, py);
2503 return dupstr(buf);
2504 }
2505 } else if (button == RIGHT_BUTTON) {
2506 int px1, py1;
2507
2508 px = (int)(2*FROMCOORD((float)x) + 0.5);
2509 py = (int)(2*FROMCOORD((float)y) + 0.5);
2510
2511 dot = NULL;
2512
2513 /*
2514 * If there's a dot anywhere nearby, we pick up an arrow
2515 * pointing at that dot.
2516 */
2517 for (py1 = py-1; py1 <= py+1; py1++)
2518 for (px1 = px-1; px1 <= px+1; px1++) {
2519 if (px1 >= 0 && px1 < state->sx &&
2520 py1 >= 0 && py1 < state->sx &&
2521 x >= SCOORD(px1-1) && x < SCOORD(px1+1) &&
2522 y >= SCOORD(py1-1) && y < SCOORD(py1+1) &&
2523 SPACE(state, px1, py1).flags & F_DOT) {
2524 /*
2525 * Found a dot. Begin a drag from it.
2526 */
2527 dot = &SPACE(state, px1, py1);
2528 ui->srcx = px1;
2529 ui->srcy = py1;
2530 goto done; /* multi-level break */
2531 }
2532 }
2533
2534 /*
2535 * Otherwise, find the nearest _square_, and pick up the
2536 * same arrow as it's got on it, if any.
2537 */
2538 if (!dot) {
2539 px = 2*FROMCOORD(x+TILE_SIZE) - 1;
2540 py = 2*FROMCOORD(y+TILE_SIZE) - 1;
2541 if (px >= 0 && px < state->sx && py >= 0 && py < state->sx) {
2542 sp = &SPACE(state, px, py);
2543 if (sp->flags & F_TILE_ASSOC) {
2544 dot = &SPACE(state, sp->dotx, sp->doty);
2545 ui->srcx = px;
2546 ui->srcy = py;
2547 }
2548 }
2549 }
2550
2551 done:
2552 /*
2553 * Now, if we've managed to find a dot, begin a drag.
2554 */
2555 if (dot) {
2556 ui->dragging = TRUE;
2557 ui->dx = x;
2558 ui->dy = y;
2559 ui->dotx = dot->x;
2560 ui->doty = dot->y;
2561 return "";
2562 }
2563 } else if (button == RIGHT_DRAG && ui->dragging) {
2564 /* just move the drag coords. */
2565 ui->dx = x;
2566 ui->dy = y;
2567 return "";
2568 } else if (button == RIGHT_RELEASE && ui->dragging) {
2569 ui->dragging = FALSE;
2570
2571 /*
2572 * Drags are always targeted at a single square.
2573 */
2574 px = 2*FROMCOORD(x+TILE_SIZE) - 1;
2575 py = 2*FROMCOORD(y+TILE_SIZE) - 1;
2576
2577 /*
2578 * Dragging an arrow on to the same square it started from
2579 * is a null move; just update the ui and finish.
2580 */
2581 if (px == ui->srcx && py == ui->srcy)
2582 return "";
2583
2584 sep = "";
2585 buf[0] = '\0';
2586
2587 /*
2588 * Otherwise, we remove the arrow from its starting
2589 * square if we didn't start from a dot...
2590 */
2591 if ((ui->srcx != ui->dotx || ui->srcy != ui->doty) &&
2592 SPACE(state, ui->srcx, ui->srcy).flags & F_TILE_ASSOC) {
2593 sprintf(buf + strlen(buf), "%sU%d,%d", sep, ui->srcx, ui->srcy);
2594 sep = ";";
2595 }
2596
2597 /*
2598 * ... and if the square we're moving it _to_ is valid, we
2599 * add one there instead.
2600 */
2601 if (INUI(state, px, py)) {
2602 sp = &SPACE(state, px, py);
2603
2604 if (!(sp->flags & F_DOT) && !(sp->flags & F_TILE_ASSOC))
2605 sprintf(buf + strlen(buf), "%sA%d,%d,%d,%d",
2606 sep, px, py, ui->dotx, ui->doty);
2607 }
2608
2609 if (buf[0])
2610 return dupstr(buf);
2611 else
2612 return "";
2613 }
2614
2615 return NULL;
2616 }
2617 #endif
2618
2619 static int check_complete_in_play(game_state *state, int *dsf, int *colours)
2620 {
2621 int w = state->w, h = state->h;
2622 int x, y, i, ret;
2623
2624 int free_dsf;
2625 struct sqdata {
2626 int minx, miny, maxx, maxy;
2627 int cx, cy;
2628 int valid, colour;
2629 } *sqdata;
2630
2631 if (!dsf) {
2632 dsf = snew_dsf(w*h);
2633 free_dsf = TRUE;
2634 } else {
2635 dsf_init(dsf, w*h);
2636 free_dsf = FALSE;
2637 }
2638
2639 /*
2640 * During actual game play, completion checking is done on the
2641 * basis of the edges rather than the square associations. So
2642 * first we must go through the grid figuring out the connected
2643 * components into which the edges divide it.
2644 */
2645 for (y = 0; y < h; y++)
2646 for (x = 0; x < w; x++) {
2647 if (y+1 < h && !(SPACE(state, 2*x+1, 2*y+2).flags & F_EDGE_SET))
2648 dsf_merge(dsf, y*w+x, (y+1)*w+x);
2649 if (x+1 < w && !(SPACE(state, 2*x+2, 2*y+1).flags & F_EDGE_SET))
2650 dsf_merge(dsf, y*w+x, y*w+(x+1));
2651 }
2652
2653 /*
2654 * That gives us our connected components. Now, for each
2655 * component, decide whether it's _valid_. A valid component is
2656 * one which:
2657 *
2658 * - is 180-degree rotationally symmetric
2659 * - has a dot at its centre of symmetry
2660 * - has no other dots anywhere within it (including on its
2661 * boundary)
2662 * - contains no internal edges (i.e. edges separating two
2663 * squares which are both part of the component).
2664 */
2665
2666 /*
2667 * First, go through the grid finding the bounding box of each
2668 * component.
2669 */
2670 sqdata = snewn(w*h, struct sqdata);
2671 for (i = 0; i < w*h; i++) {
2672 sqdata[i].minx = w+1;
2673 sqdata[i].miny = h+1;
2674 sqdata[i].maxx = sqdata[i].maxy = -1;
2675 sqdata[i].valid = FALSE;
2676 }
2677 for (y = 0; y < h; y++)
2678 for (x = 0; x < w; x++) {
2679 i = dsf_canonify(dsf, y*w+x);
2680 if (sqdata[i].minx > x)
2681 sqdata[i].minx = x;
2682 if (sqdata[i].maxx < x)
2683 sqdata[i].maxx = x;
2684 if (sqdata[i].miny > y)
2685 sqdata[i].miny = y;
2686 if (sqdata[i].maxy < y)
2687 sqdata[i].maxy = y;
2688 sqdata[i].valid = TRUE;
2689 }
2690
2691 /*
2692 * Now we're in a position to loop over each actual component
2693 * and figure out where its centre of symmetry has to be if
2694 * it's anywhere.
2695 */
2696 for (i = 0; i < w*h; i++)
2697 if (sqdata[i].valid) {
2698 sqdata[i].cx = sqdata[i].minx + sqdata[i].maxx + 1;
2699 sqdata[i].cy = sqdata[i].miny + sqdata[i].maxy + 1;
2700 if (!(SPACE(state, sqdata[i].cx, sqdata[i].cy).flags & F_DOT))
2701 sqdata[i].valid = FALSE; /* no dot at centre of symmetry */
2702 if (SPACE(state, sqdata[i].cx, sqdata[i].cy).flags & F_DOT_BLACK)
2703 sqdata[i].colour = 2;
2704 else
2705 sqdata[i].colour = 1;
2706 }
2707
2708 /*
2709 * Now we loop over the whole grid again, this time finding
2710 * extraneous dots (any dot which wholly or partially overlaps
2711 * a square and is not at the centre of symmetry of that
2712 * square's component disqualifies the component from validity)
2713 * and extraneous edges (any edge separating two squares
2714 * belonging to the same component also disqualifies that
2715 * component).
2716 */
2717 for (y = 1; y < state->sy-1; y++)
2718 for (x = 1; x < state->sx-1; x++) {
2719 space *sp = &SPACE(state, x, y);
2720
2721 if (sp->flags & F_DOT) {
2722 /*
2723 * There's a dot here. Use it to disqualify any
2724 * component which deserves it.
2725 */
2726 int cx, cy;
2727 for (cy = (y-1) >> 1; cy <= y >> 1; cy++)
2728 for (cx = (x-1) >> 1; cx <= x >> 1; cx++) {
2729 i = dsf_canonify(dsf, cy*w+cx);
2730 if (x != sqdata[i].cx || y != sqdata[i].cy)
2731 sqdata[i].valid = FALSE;
2732 }
2733 }
2734
2735 if (sp->flags & F_EDGE_SET) {
2736 /*
2737 * There's an edge here. Use it to disqualify a
2738 * component if necessary.
2739 */
2740 int cx1 = (x-1) >> 1, cx2 = x >> 1;
2741 int cy1 = (y-1) >> 1, cy2 = y >> 1;
2742 assert((cx1==cx2) ^ (cy1==cy2));
2743 i = dsf_canonify(dsf, cy1*w+cx1);
2744 if (i == dsf_canonify(dsf, cy2*w+cx2))
2745 sqdata[i].valid = FALSE;
2746 }
2747 }
2748
2749 /*
2750 * And finally we test rotational symmetry: for each square in
2751 * the grid, find which component it's in, test that that
2752 * component also has a square in the symmetric position, and
2753 * disqualify it if it doesn't.
2754 */
2755 for (y = 0; y < h; y++)
2756 for (x = 0; x < w; x++) {
2757 int x2, y2;
2758
2759 i = dsf_canonify(dsf, y*w+x);
2760
2761 x2 = sqdata[i].cx - 1 - x;
2762 y2 = sqdata[i].cy - 1 - y;
2763 if (i != dsf_canonify(dsf, y2*w+x2))
2764 sqdata[i].valid = FALSE;
2765 }
2766
2767 /*
2768 * That's it. We now have all the connected components marked
2769 * as valid or not valid. So now we return a `colours' array if
2770 * we were asked for one, and also we return an overall
2771 * true/false value depending on whether _every_ square in the
2772 * grid is part of a valid component.
2773 */
2774 ret = TRUE;
2775 for (i = 0; i < w*h; i++) {
2776 int ci = dsf_canonify(dsf, i);
2777 int thisok = sqdata[ci].valid;
2778 if (colours)
2779 colours[i] = thisok ? sqdata[ci].colour : 0;
2780 ret = ret && thisok;
2781 }
2782
2783 sfree(sqdata);
2784 if (free_dsf)
2785 sfree(dsf);
2786
2787 return ret;
2788 }
2789
2790 static game_state *execute_move(game_state *state, char *move)
2791 {
2792 int x, y, ax, ay, n, dx, dy;
2793 game_state *ret = dup_game(state);
2794 struct space *sp, *dot;
2795
2796 debug(("%s\n", move));
2797
2798 while (*move) {
2799 char c = *move;
2800 if (c == 'E' || c == 'U' || c == 'M'
2801 #ifdef EDITOR
2802 || c == 'D' || c == 'd'
2803 #endif
2804 ) {
2805 move++;
2806 if (sscanf(move, "%d,%d%n", &x, &y, &n) != 2 ||
2807 !INUI(state, x, y))
2808 goto badmove;
2809
2810 sp = &SPACE(ret, x, y);
2811 #ifdef EDITOR
2812 if (c == 'D' || c == 'd') {
2813 unsigned int currf, newf, maskf;
2814
2815 if (!dot_is_possible(state, sp, 1)) goto badmove;
2816
2817 newf = F_DOT | (c == 'd' ? F_DOT_BLACK : 0);
2818 currf = GRID(ret, grid, x, y).flags;
2819 maskf = F_DOT | F_DOT_BLACK;
2820 /* if we clicked 'white dot':
2821 * white --> empty, empty --> white, black --> white.
2822 * if we clicker 'black dot':
2823 * black --> empty, empty --> black, white --> black.
2824 */
2825 if (currf & maskf) {
2826 sp->flags &= ~maskf;
2827 if ((currf & maskf) != newf)
2828 sp->flags |= newf;
2829 } else
2830 sp->flags |= newf;
2831 sp->nassoc = 0; /* edit-mode disallows associations. */
2832 game_update_dots(ret);
2833 } else
2834 #endif
2835 if (c == 'E') {
2836 if (sp->type != s_edge) goto badmove;
2837 sp->flags ^= F_EDGE_SET;
2838 } else if (c == 'U') {
2839 if (sp->type != s_tile || !(sp->flags & F_TILE_ASSOC))
2840 goto badmove;
2841 remove_assoc(ret, sp);
2842 } else if (c == 'M') {
2843 if (!(sp->flags & F_DOT)) goto badmove;
2844 sp->flags ^= F_DOT_HOLD;
2845 }
2846 move += n;
2847 } else if (c == 'A' || c == 'a') {
2848 move++;
2849 if (sscanf(move, "%d,%d,%d,%d%n", &x, &y, &ax, &ay, &n) != 4 ||
2850 x < 1 || y < 1 || x >= (state->sx-1) || y >= (state->sy-1) ||
2851 ax < 1 || ay < 1 || ax >= (state->sx-1) || ay >= (state->sy-1))
2852 goto badmove;
2853
2854 dot = &GRID(ret, grid, ax, ay);
2855 if (!(dot->flags & F_DOT))goto badmove;
2856 if (dot->flags & F_DOT_HOLD) goto badmove;
2857
2858 for (dx = -1; dx <= 1; dx++) {
2859 for (dy = -1; dy <= 1; dy++) {
2860 sp = &GRID(ret, grid, x+dx, y+dy);
2861 if (sp->type != s_tile) continue;
2862 if (sp->flags & F_TILE_ASSOC) {
2863 space *dot = &SPACE(state, sp->dotx, sp->doty);
2864 if (dot->flags & F_DOT_HOLD) continue;
2865 }
2866 add_assoc(state, sp, dot);
2867 }
2868 }
2869 move += n;
2870 #ifdef EDITOR
2871 } else if (c == 'C') {
2872 move++;
2873 clear_game(ret, 1);
2874 #endif
2875 } else if (c == 'S') {
2876 move++;
2877 ret->used_solve = 1;
2878 } else
2879 goto badmove;
2880
2881 if (*move == ';')
2882 move++;
2883 else if (*move)
2884 goto badmove;
2885 }
2886 if (check_complete_in_play(ret, NULL, NULL))
2887 ret->completed = 1;
2888 return ret;
2889
2890 badmove:
2891 free_game(ret);
2892 return NULL;
2893 }
2894
2895 /* ----------------------------------------------------------------------
2896 * Drawing routines.
2897 */
2898
2899 /* Lines will be much smaller size than squares; say, 1/8 the size?
2900 *
2901 * Need a 'top-left corner of location XxY' to take this into account;
2902 * alternaticaly, that could give the middle of that location, and the
2903 * drawing code would just know the expected dimensions.
2904 *
2905 * We also need something to take a click and work out what it was
2906 * we were interested in. Clicking on vertices is required because
2907 * we may want to drag from them, for example.
2908 */
2909
2910 static void game_compute_size(game_params *params, int sz,
2911 int *x, int *y)
2912 {
2913 struct { int tilesize, w, h; } ads, *ds = &ads;
2914
2915 ds->tilesize = sz;
2916 ds->w = params->w;
2917 ds->h = params->h;
2918
2919 *x = DRAW_WIDTH;
2920 *y = DRAW_HEIGHT;
2921 }
2922
2923 static void game_set_size(drawing *dr, game_drawstate *ds,
2924 game_params *params, int sz)
2925 {
2926 ds->tilesize = sz;
2927
2928 assert(TILE_SIZE > 0);
2929
2930 assert(!ds->bl);
2931 ds->bl = blitter_new(dr, TILE_SIZE, TILE_SIZE);
2932 }
2933
2934 static float *game_colours(frontend *fe, int *ncolours)
2935 {
2936 float *ret = snewn(3 * NCOLOURS, float);
2937 int i;
2938
2939 /*
2940 * We call game_mkhighlight to ensure the background colour
2941 * isn't completely white. We don't actually use the high- and
2942 * lowlight colours it generates.
2943 */
2944 game_mkhighlight(fe, ret, COL_BACKGROUND, COL_WHITEBG, COL_BLACKBG);
2945
2946 for (i = 0; i < 3; i++) {
2947 /*
2948 * Currently, white dots and white-background squares are
2949 * both pure white.
2950 */
2951 ret[COL_WHITEDOT * 3 + i] = 1.0F;
2952 ret[COL_WHITEBG * 3 + i] = 1.0F;
2953
2954 /*
2955 * But black-background squares are a dark grey, whereas
2956 * black dots are really black.
2957 */
2958 ret[COL_BLACKDOT * 3 + i] = 0.0F;
2959 ret[COL_BLACKBG * 3 + i] = ret[COL_BACKGROUND * 3 + i] * 0.3F;
2960
2961 /*
2962 * In unfilled squares, we draw a faint gridwork.
2963 */
2964 ret[COL_GRID * 3 + i] = ret[COL_BACKGROUND * 3 + i] * 0.8F;
2965
2966 /*
2967 * Edges and arrows are filled in in pure black.
2968 */
2969 ret[COL_EDGE * 3 + i] = 0.0F;
2970 ret[COL_ARROW * 3 + i] = 0.0F;
2971 }
2972
2973 #ifdef EDITOR
2974 /* tinge the edit background to bluey */
2975 ret[COL_BACKGROUND * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] * 0.8F;
2976 ret[COL_BACKGROUND * 3 + 1] = ret[COL_BACKGROUND * 3 + 0] * 0.8F;
2977 ret[COL_BACKGROUND * 3 + 2] = ret[COL_BACKGROUND * 3 + 0] * 1.4F;
2978 if (ret[COL_BACKGROUND * 3 + 2] > 1.0F) ret[COL_BACKGROUND * 3 + 2] = 1.0F;
2979 #endif
2980
2981 *ncolours = NCOLOURS;
2982 return ret;
2983 }
2984
2985 static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
2986 {
2987 struct game_drawstate *ds = snew(struct game_drawstate);
2988 int i;
2989
2990 ds->started = 0;
2991 ds->w = state->w;
2992 ds->h = state->h;
2993
2994 ds->grid = snewn(ds->w*ds->h, unsigned long);
2995 for (i = 0; i < ds->w*ds->h; i++)
2996 ds->grid[i] = 0xFFFFFFFFUL;
2997 ds->dx = snewn(ds->w*ds->h, int);
2998 ds->dy = snewn(ds->w*ds->h, int);
2999
3000 ds->bl = NULL;
3001 ds->dragging = FALSE;
3002 ds->dragx = ds->dragy = 0;
3003
3004 ds->colour_scratch = snewn(ds->w * ds->h, int);
3005
3006 return ds;
3007 }
3008
3009 static void game_free_drawstate(drawing *dr, game_drawstate *ds)
3010 {
3011 sfree(ds->colour_scratch);
3012 if (ds->bl) blitter_free(dr, ds->bl);
3013 sfree(ds->dx);
3014 sfree(ds->dy);
3015 sfree(ds->grid);
3016 sfree(ds);
3017 }
3018
3019 #define DRAW_EDGE_L 0x0001
3020 #define DRAW_EDGE_R 0x0002
3021 #define DRAW_EDGE_U 0x0004
3022 #define DRAW_EDGE_D 0x0008
3023 #define DRAW_CORNER_UL 0x0010
3024 #define DRAW_CORNER_UR 0x0020
3025 #define DRAW_CORNER_DL 0x0040
3026 #define DRAW_CORNER_DR 0x0080
3027 #define DRAW_WHITE 0x0100
3028 #define DRAW_BLACK 0x0200
3029 #define DRAW_ARROW 0x0400
3030 #define DOT_SHIFT_C 11
3031 #define DOT_SHIFT_M 2
3032 #define DOT_WHITE 1UL
3033 #define DOT_BLACK 2UL
3034
3035 /*
3036 * Draw an arrow centred on (cx,cy), pointing in the direction
3037 * (ddx,ddy). (I.e. pointing at the point (cx+ddx, cy+ddy).
3038 */
3039 static void draw_arrow(drawing *dr, game_drawstate *ds,
3040 int cx, int cy, int ddx, int ddy)
3041 {
3042 float vlen = (float)sqrt(ddx*ddx+ddy*ddy);
3043 float xdx = ddx/vlen, xdy = ddy/vlen;
3044 float ydx = -xdy, ydy = xdx;
3045 int e1x = cx + (int)(xdx*TILE_SIZE/3), e1y = cy + (int)(xdy*TILE_SIZE/3);
3046 int e2x = cx - (int)(xdx*TILE_SIZE/3), e2y = cy - (int)(xdy*TILE_SIZE/3);
3047 int adx = (int)((ydx-xdx)*TILE_SIZE/8), ady = (int)((ydy-xdy)*TILE_SIZE/8);
3048 int adx2 = (int)((-ydx-xdx)*TILE_SIZE/8), ady2 = (int)((-ydy-xdy)*TILE_SIZE/8);
3049
3050 draw_line(dr, e1x, e1y, e2x, e2y, COL_ARROW);
3051 draw_line(dr, e1x, e1y, e1x+adx, e1y+ady, COL_ARROW);
3052 draw_line(dr, e1x, e1y, e1x+adx2, e1y+ady2, COL_ARROW);
3053 }
3054
3055 static void draw_square(drawing *dr, game_drawstate *ds, int x, int y,
3056 unsigned long flags, int ddx, int ddy)
3057 {
3058 int lx = COORD(x), ly = COORD(y);
3059 int dx, dy;
3060 int gridcol;
3061
3062 clip(dr, lx, ly, TILE_SIZE, TILE_SIZE);
3063
3064 /*
3065 * Draw the tile background.
3066 */
3067 draw_rect(dr, lx, ly, TILE_SIZE, TILE_SIZE,
3068 (flags & DRAW_WHITE ? COL_WHITEBG :
3069 flags & DRAW_BLACK ? COL_BLACKBG : COL_BACKGROUND));
3070
3071 /*
3072 * Draw the grid.
3073 */
3074 gridcol = (flags & DRAW_BLACK ? COL_BLACKDOT : COL_GRID);
3075 draw_rect(dr, lx, ly, 1, TILE_SIZE, gridcol);
3076 draw_rect(dr, lx, ly, TILE_SIZE, 1, gridcol);
3077
3078 /*
3079 * Draw the arrow.
3080 */
3081 if (flags & DRAW_ARROW)
3082 draw_arrow(dr, ds, lx + TILE_SIZE/2, ly + TILE_SIZE/2, ddx, ddy);
3083
3084 /*
3085 * Draw the edges.
3086 */
3087 if (flags & DRAW_EDGE_L)
3088 draw_rect(dr, lx, ly, EDGE_THICKNESS, TILE_SIZE, COL_EDGE);
3089 if (flags & DRAW_EDGE_R)
3090 draw_rect(dr, lx + TILE_SIZE - EDGE_THICKNESS + 1, ly,
3091 EDGE_THICKNESS - 1, TILE_SIZE, COL_EDGE);
3092 if (flags & DRAW_EDGE_U)
3093 draw_rect(dr, lx, ly, TILE_SIZE, EDGE_THICKNESS, COL_EDGE);
3094 if (flags & DRAW_EDGE_D)
3095 draw_rect(dr, lx, ly + TILE_SIZE - EDGE_THICKNESS + 1,
3096 TILE_SIZE, EDGE_THICKNESS - 1, COL_EDGE);
3097 if (flags & DRAW_CORNER_UL)
3098 draw_rect(dr, lx, ly, EDGE_THICKNESS, EDGE_THICKNESS, COL_EDGE);
3099 if (flags & DRAW_CORNER_UR)
3100 draw_rect(dr, lx + TILE_SIZE - EDGE_THICKNESS + 1, ly,
3101 EDGE_THICKNESS - 1, EDGE_THICKNESS, COL_EDGE);
3102 if (flags & DRAW_CORNER_DL)
3103 draw_rect(dr, lx, ly + TILE_SIZE - EDGE_THICKNESS + 1,
3104 EDGE_THICKNESS, EDGE_THICKNESS - 1, COL_EDGE);
3105 if (flags & DRAW_CORNER_DR)
3106 draw_rect(dr, lx + TILE_SIZE - EDGE_THICKNESS + 1,
3107 ly + TILE_SIZE - EDGE_THICKNESS + 1,
3108 EDGE_THICKNESS - 1, EDGE_THICKNESS - 1, COL_EDGE);
3109
3110 /*
3111 * Draw the dots.
3112 */
3113 for (dy = 0; dy < 3; dy++)
3114 for (dx = 0; dx < 3; dx++) {
3115 int dotval = (flags >> (DOT_SHIFT_C + DOT_SHIFT_M*(dy*3+dx)));
3116 dotval &= (1 << DOT_SHIFT_M)-1;
3117
3118 if (dotval)
3119 draw_circle(dr, lx+dx*TILE_SIZE/2, ly+dy*TILE_SIZE/2,
3120 DOT_SIZE,
3121 (dotval == 1 ? COL_WHITEDOT : COL_BLACKDOT),
3122 COL_BLACKDOT);
3123 }
3124
3125 unclip(dr);
3126 draw_update(dr, lx, ly, TILE_SIZE, TILE_SIZE);
3127 }
3128
3129 static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
3130 game_state *state, int dir, game_ui *ui,
3131 float animtime, float flashtime)
3132 {
3133 int w = ds->w, h = ds->h;
3134 int x, y, flashing = FALSE;
3135
3136 if (flashtime > 0) {
3137 int frame = (int)(flashtime / FLASH_TIME);
3138 flashing = (frame % 2 == 0);
3139 }
3140
3141 if (ds->dragging) {
3142 assert(ds->bl);
3143 blitter_load(dr, ds->bl, ds->dragx, ds->dragy);
3144 draw_update(dr, ds->dragx, ds->dragy, TILE_SIZE, TILE_SIZE);
3145 ds->dragging = FALSE;
3146 }
3147
3148 if (!ds->started) {
3149 draw_rect(dr, 0, 0, DRAW_WIDTH, DRAW_HEIGHT, COL_BACKGROUND);
3150 draw_rect(dr, BORDER - EDGE_THICKNESS + 1, BORDER - EDGE_THICKNESS + 1,
3151 w*TILE_SIZE + EDGE_THICKNESS*2 - 1,
3152 h*TILE_SIZE + EDGE_THICKNESS*2 - 1, COL_EDGE);
3153 draw_update(dr, 0, 0, DRAW_WIDTH, DRAW_HEIGHT);
3154 ds->started = TRUE;
3155 }
3156
3157 check_complete_in_play(state, NULL, ds->colour_scratch);
3158
3159 for (y = 0; y < h; y++)
3160 for (x = 0; x < w; x++) {
3161 unsigned long flags = 0;
3162 int ddx = 0, ddy = 0;
3163 space *sp;
3164 int dx, dy;
3165
3166 /*
3167 * Set up the flags for this square. Firstly, see if we
3168 * have edges.
3169 */
3170 if (SPACE(state, x*2, y*2+1).flags & F_EDGE_SET)
3171 flags |= DRAW_EDGE_L;
3172 if (SPACE(state, x*2+2, y*2+1).flags & F_EDGE_SET)
3173 flags |= DRAW_EDGE_R;
3174 if (SPACE(state, x*2+1, y*2).flags & F_EDGE_SET)
3175 flags |= DRAW_EDGE_U;
3176 if (SPACE(state, x*2+1, y*2+2).flags & F_EDGE_SET)
3177 flags |= DRAW_EDGE_D;
3178
3179 /*
3180 * Also, mark corners of neighbouring edges.
3181 */
3182 if ((x > 0 && SPACE(state, x*2-1, y*2).flags & F_EDGE_SET) ||
3183 (y > 0 && SPACE(state, x*2, y*2-1).flags & F_EDGE_SET))
3184 flags |= DRAW_CORNER_UL;
3185 if ((x+1 < w && SPACE(state, x*2+3, y*2).flags & F_EDGE_SET) ||
3186 (y > 0 && SPACE(state, x*2+2, y*2-1).flags & F_EDGE_SET))
3187 flags |= DRAW_CORNER_UR;
3188 if ((x > 0 && SPACE(state, x*2-1, y*2+2).flags & F_EDGE_SET) ||
3189 (y+1 < h && SPACE(state, x*2, y*2+3).flags & F_EDGE_SET))
3190 flags |= DRAW_CORNER_DL;
3191 if ((x+1 < w && SPACE(state, x*2+3, y*2+2).flags & F_EDGE_SET) ||
3192 (y+1 < h && SPACE(state, x*2+2, y*2+3).flags & F_EDGE_SET))
3193 flags |= DRAW_CORNER_DR;
3194
3195 /*
3196 * If this square is part of a valid region, paint it
3197 * that region's colour. Exception: if we're flashing,
3198 * everything goes briefly back to background colour.
3199 */
3200 sp = &SPACE(state, x*2+1, y*2+1);
3201 if (ds->colour_scratch[y*w+x] && !flashing) {
3202 flags |= (ds->colour_scratch[y*w+x] == 2 ?
3203 DRAW_BLACK : DRAW_WHITE);
3204 }
3205
3206 /*
3207 * If this square is associated with a dot but it isn't
3208 * part of a valid region, draw an arrow in it pointing
3209 * in the direction of that dot.
3210 *
3211 * Exception: if this is the source point of an active
3212 * drag, we don't draw the arrow.
3213 */
3214 if ((sp->flags & F_TILE_ASSOC) && !ds->colour_scratch[y*w+x]) {
3215 if (ui->dragging && ui->srcx == x*2+1 && ui->srcy == y*2+1) {
3216 /* don't do it */
3217 } else if (sp->doty != y*2+1 || sp->dotx != x*2+1) {
3218 flags |= DRAW_ARROW;
3219 ddy = sp->doty - (y*2+1);
3220 ddx = sp->dotx - (x*2+1);
3221 }
3222 }
3223
3224 /*
3225 * Now go through the nine possible places we could
3226 * have dots.
3227 */
3228 for (dy = 0; dy < 3; dy++)
3229 for (dx = 0; dx < 3; dx++) {
3230 sp = &SPACE(state, x*2+dx, y*2+dy);
3231 if (sp->flags & F_DOT) {
3232 unsigned long dotval = (sp->flags & F_DOT_BLACK ?
3233 DOT_BLACK : DOT_WHITE);
3234 flags |= dotval << (DOT_SHIFT_C +
3235 DOT_SHIFT_M*(dy*3+dx));
3236 }
3237 }
3238
3239 /*
3240 * Now we have everything we're going to need. Draw the
3241 * square.
3242 */
3243 if (ds->grid[y*w+x] != flags ||
3244 ds->dx[y*w+x] != ddx ||
3245 ds->dy[y*w+x] != ddy) {
3246 draw_square(dr, ds, x, y, flags, ddx, ddy);
3247 ds->grid[y*w+x] = flags;
3248 ds->dx[y*w+x] = ddx;
3249 ds->dy[y*w+x] = ddy;
3250 }
3251 }
3252
3253 if (ui->dragging) {
3254 ds->dragging = TRUE;
3255 ds->dragx = ui->dx - TILE_SIZE/2;
3256 ds->dragy = ui->dy - TILE_SIZE/2;
3257 blitter_save(dr, ds->bl, ds->dragx, ds->dragy);
3258 draw_arrow(dr, ds, ui->dx, ui->dy,
3259 SCOORD(ui->dotx) - ui->dx,
3260 SCOORD(ui->doty) - ui->dy);
3261 }
3262 #ifdef EDITOR
3263 {
3264 char buf[256];
3265 if (state->cdiff != -1)
3266 sprintf(buf, "Puzzle is %s.", galaxies_diffnames[state->cdiff]);
3267 else
3268 buf[0] = '\0';
3269 status_bar(dr, buf);
3270 }
3271 #endif
3272 }
3273
3274 static float game_anim_length(game_state *oldstate, game_state *newstate,
3275 int dir, game_ui *ui)
3276 {
3277 return 0.0F;
3278 }
3279
3280 static float game_flash_length(game_state *oldstate, game_state *newstate,
3281 int dir, game_ui *ui)
3282 {
3283 if ((!oldstate->completed && newstate->completed) &&
3284 !(newstate->used_solve))
3285 return 3 * FLASH_TIME;
3286 else
3287 return 0.0F;
3288 }
3289
3290 static int game_timing_state(game_state *state, game_ui *ui)
3291 {
3292 return TRUE;
3293 }
3294
3295 #ifndef EDITOR
3296 static void game_print_size(game_params *params, float *x, float *y)
3297 {
3298 int pw, ph;
3299
3300 /*
3301 * 8mm squares by default. (There isn't all that much detail
3302 * that needs to go in each square.)
3303 */
3304 game_compute_size(params, 800, &pw, &ph);
3305 *x = pw / 100.0F;
3306 *y = ph / 100.0F;
3307 }
3308
3309 static void game_print(drawing *dr, game_state *state, int sz)
3310 {
3311 int w = state->w, h = state->h;
3312 int white, black, blackish;
3313 int x, y, i, j;
3314 int *colours, *dsf;
3315 int *coords = NULL;
3316 int ncoords = 0, coordsize = 0;
3317
3318 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
3319 game_drawstate ads, *ds = &ads;
3320 ds->tilesize = sz;
3321
3322 white = print_grey_colour(dr, HATCH_CLEAR, 1.0F);
3323 black = print_grey_colour(dr, HATCH_SOLID, 0.0F);
3324 blackish = print_grey_colour(dr, HATCH_X, 0.5F);
3325
3326 /*
3327 * Get the completion information.
3328 */
3329 dsf = snewn(w * h, int);
3330 colours = snewn(w * h, int);
3331 check_complete_in_play(state, dsf, colours);
3332
3333 /*
3334 * Draw the grid.
3335 */
3336 print_line_width(dr, TILE_SIZE / 64);
3337 for (x = 1; x < w; x++)
3338 draw_line(dr, COORD(x), COORD(0), COORD(x), COORD(h), black);
3339 for (y = 1; y < h; y++)
3340 draw_line(dr, COORD(0), COORD(y), COORD(w), COORD(y), black);
3341
3342 /*
3343 * Shade the completed regions. Just in case any particular
3344 * printing platform deals badly with adjacent
3345 * similarly-hatched regions, we'll fill each one as a single
3346 * polygon.
3347 */
3348 for (i = 0; i < w*h; i++) {
3349 j = dsf_canonify(dsf, i);
3350 if (colours[j] != 0) {
3351 int dx, dy, t;
3352
3353 /*
3354 * This is the first square we've run into belonging to
3355 * this polyomino, which means an edge of the polyomino
3356 * is certain to be to our left. (After we finish
3357 * tracing round it, we'll set the colours[] entry to
3358 * zero to prevent accidentally doing it again.)
3359 */
3360
3361 x = i % w;
3362 y = i / w;
3363 dx = -1;
3364 dy = 0;
3365 ncoords = 0;
3366 while (1) {
3367 /*
3368 * We are currently sitting on square (x,y), which
3369 * we know to be in our polyomino, and we also know
3370 * that (x+dx,y+dy) is not. The way I visualise
3371 * this is that we're standing to the right of a
3372 * boundary line, stretching our left arm out to
3373 * point to the exterior square on the far side.
3374 */
3375
3376 /*
3377 * First, check if we've gone round the entire
3378 * polyomino.
3379 */
3380 if (ncoords > 0 &&
3381 (x == i%w && y == i/w && dx == -1 && dy == 0))
3382 break;
3383
3384 /*
3385 * Add to our coordinate list the coordinate
3386 * backwards and to the left of where we are.
3387 */
3388 if (ncoords + 2 > coordsize) {
3389 coordsize = (ncoords * 3 / 2) + 64;
3390 coords = sresize(coords, coordsize, int);
3391 }
3392 coords[ncoords++] = COORD((2*x+1 + dx + dy) / 2);
3393 coords[ncoords++] = COORD((2*y+1 + dy - dx) / 2);
3394
3395 /*
3396 * Follow the edge round. If the square directly in
3397 * front of us is not part of the polyomino, we
3398 * turn right; if it is and so is the square in
3399 * front of (x+dx,y+dy), we turn left; otherwise we
3400 * go straight on.
3401 */
3402 if (x-dy < 0 || x-dy >= w || y+dx < 0 || y+dx >= h ||
3403 dsf_canonify(dsf, (y+dx)*w+(x-dy)) != j) {
3404 /* Turn right. */
3405 t = dx;
3406 dx = -dy;
3407 dy = t;
3408 } else if (x+dx-dy >= 0 && x+dx-dy < w &&
3409 y+dy+dx >= 0 && y+dy+dx < h &&
3410 dsf_canonify(dsf, (y+dy+dx)*w+(x+dx-dy)) == j) {
3411 /* Turn left. */
3412 x += dx;
3413 y += dy;
3414 t = dx;
3415 dx = dy;
3416 dy = -t;
3417 x -= dx;
3418 y -= dy;
3419 } else {
3420 /* Straight on. */
3421 x -= dy;
3422 y += dx;
3423 }
3424 }
3425
3426 /*
3427 * Now we have our polygon complete, so fill it.
3428 */
3429 draw_polygon(dr, coords, ncoords/2,
3430 colours[j] == 2 ? blackish : -1, black);
3431
3432 /*
3433 * And mark this polyomino as done.
3434 */
3435 colours[j] = 0;
3436 }
3437 }
3438
3439 /*
3440 * Draw the edges.
3441 */
3442 for (y = 0; y <= h; y++)
3443 for (x = 0; x <= w; x++) {
3444 if (x < w && SPACE(state, x*2+1, y*2).flags & F_EDGE_SET)
3445 draw_rect(dr, COORD(x)-EDGE_THICKNESS, COORD(y)-EDGE_THICKNESS,
3446 EDGE_THICKNESS * 2 + TILE_SIZE, EDGE_THICKNESS * 2,
3447 black);
3448 if (y < h && SPACE(state, x*2, y*2+1).flags & F_EDGE_SET)
3449 draw_rect(dr, COORD(x)-EDGE_THICKNESS, COORD(y)-EDGE_THICKNESS,
3450 EDGE_THICKNESS * 2, EDGE_THICKNESS * 2 + TILE_SIZE,
3451 black);
3452 }
3453
3454 /*
3455 * Draw the dots.
3456 */
3457 for (y = 0; y <= 2*h; y++)
3458 for (x = 0; x <= 2*w; x++)
3459 if (SPACE(state, x, y).flags & F_DOT) {
3460 draw_circle(dr, (int)COORD(x/2.0), (int)COORD(y/2.0), DOT_SIZE,
3461 (SPACE(state, x, y).flags & F_DOT_BLACK ?
3462 black : white), black);
3463 }
3464
3465 sfree(dsf);
3466 sfree(colours);
3467 sfree(coords);
3468 }
3469 #endif
3470
3471 #ifdef COMBINED
3472 #define thegame galaxies
3473 #endif
3474
3475 const struct game thegame = {
3476 "Galaxies", "games.galaxies", "galaxies",
3477 default_params,
3478 game_fetch_preset,
3479 decode_params,
3480 encode_params,
3481 free_params,
3482 dup_params,
3483 TRUE, game_configure, custom_params,
3484 validate_params,
3485 new_game_desc,
3486 validate_desc,
3487 new_game,
3488 dup_game,
3489 free_game,
3490 #ifdef EDITOR
3491 FALSE, NULL,
3492 #else
3493 TRUE, solve_game,
3494 #endif
3495 TRUE, game_text_format,
3496 new_ui,
3497 free_ui,
3498 encode_ui,
3499 decode_ui,
3500 game_changed_state,
3501 interpret_move,
3502 execute_move,
3503 PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
3504 game_colours,
3505 game_new_drawstate,
3506 game_free_drawstate,
3507 game_redraw,
3508 game_anim_length,
3509 game_flash_length,
3510 #ifdef EDITOR
3511 FALSE, FALSE, NULL, NULL,
3512 TRUE, /* wants_statusbar */
3513 #else
3514 TRUE, FALSE, game_print_size, game_print,
3515 FALSE, /* wants_statusbar */
3516 #endif
3517 FALSE, game_timing_state,
3518 REQUIRE_RBUTTON, /* flags */
3519 };
3520
3521 #ifdef STANDALONE_SOLVER
3522
3523 const char *quis;
3524
3525 #include <time.h>
3526
3527 static void usage_exit(const char *msg)
3528 {
3529 if (msg)
3530 fprintf(stderr, "%s: %s\n", quis, msg);
3531 fprintf(stderr, "Usage: %s [--seed SEED] --soak <params> | [game_id [game_id ...]]\n", quis);
3532 exit(1);
3533 }
3534
3535 static void dump_state(game_state *state)
3536 {
3537 char *temp = game_text_format(state);
3538 printf("%s\n", temp);
3539 sfree(temp);
3540 }
3541
3542 static int gen(game_params *p, random_state *rs, int debug)
3543 {
3544 char *desc;
3545 int diff;
3546 game_state *state;
3547
3548 #ifndef DEBUGGING
3549 solver_show_working = debug;
3550 #endif
3551 printf("Generating a %dx%d %s puzzle.\n",
3552 p->w, p->h, galaxies_diffnames[p->diff]);
3553
3554 desc = new_game_desc(p, rs, NULL, 0);
3555 state = new_game(NULL, p, desc);
3556 dump_state(state);
3557
3558 diff = solver_state(state, DIFF_UNREASONABLE);
3559 printf("Generated %s game %dx%d:%s\n",
3560 galaxies_diffnames[diff], p->w, p->h, desc);
3561 dump_state(state);
3562
3563 free_game(state);
3564 sfree(desc);
3565
3566 return diff;
3567 }
3568
3569 static void soak(game_params *p, random_state *rs)
3570 {
3571 time_t tt_start, tt_now, tt_last;
3572 char *desc;
3573 game_state *st;
3574 int diff, n = 0, i, diffs[DIFF_MAX], ndots = 0, nspaces = 0;
3575
3576 #ifndef DEBUGGING
3577 solver_show_working = 0;
3578 #endif
3579 tt_start = tt_now = time(NULL);
3580 for (i = 0; i < DIFF_MAX; i++) diffs[i] = 0;
3581 maxtries = 1;
3582
3583 printf("Soak-generating a %dx%d grid, max. diff %s.\n",
3584 p->w, p->h, galaxies_diffnames[p->diff]);
3585 printf(" [");
3586 for (i = 0; i < DIFF_MAX; i++)
3587 printf("%s%s", (i == 0) ? "" : ", ", galaxies_diffnames[i]);
3588 printf("]\n");
3589
3590 while (1) {
3591 desc = new_game_desc(p, rs, NULL, 0);
3592 st = new_game(NULL, p, desc);
3593 diff = solver_state(st, p->diff);
3594 nspaces += st->w*st->h;
3595 for (i = 0; i < st->sx*st->sy; i++)
3596 if (st->grid[i].flags & F_DOT) ndots++;
3597 free_game(st);
3598 sfree(desc);
3599
3600 diffs[diff]++;
3601 n++;
3602 tt_last = time(NULL);
3603 if (tt_last > tt_now) {
3604 tt_now = tt_last;
3605 printf("%d total, %3.1f/s, [",
3606 n, (double)n / ((double)tt_now - tt_start));
3607 for (i = 0; i < DIFF_MAX; i++)
3608 printf("%s%.1f%%", (i == 0) ? "" : ", ",
3609 100.0 * ((double)diffs[i] / (double)n));
3610 printf("], %.1f%% dots\n",
3611 100.0 * ((double)ndots / (double)nspaces));
3612 }
3613 }
3614 }
3615
3616 int main(int argc, char **argv)
3617 {
3618 game_params *p;
3619 char *id = NULL, *desc, *err;
3620 game_state *s;
3621 int diff, do_soak = 0, verbose = 0;
3622 random_state *rs;
3623 time_t seed = time(NULL);
3624
3625 quis = argv[0];
3626 while (--argc > 0) {
3627 char *p = *++argv;
3628 if (!strcmp(p, "-v")) {
3629 verbose = 1;
3630 } else if (!strcmp(p, "--seed")) {
3631 if (argc == 0) usage_exit("--seed needs an argument");
3632 seed = (time_t)atoi(*++argv);
3633 argc--;
3634 } else if (!strcmp(p, "--soak")) {
3635 do_soak = 1;
3636 } else if (*p == '-') {
3637 usage_exit("unrecognised option");
3638 } else {
3639 id = p;
3640 }
3641 }
3642
3643 maxtries = 50;
3644
3645 p = default_params();
3646 rs = random_new((void*)&seed, sizeof(time_t));
3647
3648 if (do_soak) {
3649 if (!id) usage_exit("need one argument for --soak");
3650 decode_params(p, *argv);
3651 soak(p, rs);
3652 return 0;
3653 }
3654
3655 if (!id) {
3656 while (1) {
3657 p->w = random_upto(rs, 15) + 3;
3658 p->h = random_upto(rs, 15) + 3;
3659 p->diff = random_upto(rs, DIFF_UNREASONABLE);
3660 diff = gen(p, rs, 0);
3661 }
3662 return 0;
3663 }
3664
3665 desc = strchr(id, ':');
3666 if (!desc) {
3667 decode_params(p, id);
3668 gen(p, rs, verbose);
3669 } else {
3670 #ifndef DEBUGGING
3671 solver_show_working = 1;
3672 #endif
3673 *desc++ = '\0';
3674 decode_params(p, id);
3675 err = validate_desc(p, desc);
3676 if (err) {
3677 fprintf(stderr, "%s: %s\n", argv[0], err);
3678 exit(1);
3679 }
3680 s = new_game(NULL, p, desc);
3681 diff = solver_state(s, DIFF_UNREASONABLE);
3682 dump_state(s);
3683 printf("Puzzle is %s.\n", galaxies_diffnames[diff]);
3684 free_game(s);
3685 }
3686
3687 free_params(p);
3688
3689 return 0;
3690 }
3691
3692 #endif
3693
3694 #ifdef STANDALONE_PICTURE_GENERATOR
3695
3696 /*
3697 * Main program for the standalone picture generator. To use it,
3698 * simply provide it with an XBM-format bitmap file (note XBM, not
3699 * XPM) on standard input, and it will output a game ID in return.
3700 * For example:
3701 *
3702 * $ ./galaxiespicture < badly-drawn-cat.xbm
3703 * 11x11:eloMBLzFeEzLNMWifhaWYdDbixCymBbBMLoDdewGg
3704 *
3705 * If you want a puzzle with a non-standard difficulty level, pass
3706 * a partial parameters string as a command-line argument (e.g.
3707 * `./galaxiespicture du < foo.xbm', where `du' is the same suffix
3708 * which if it appeared in a random-seed game ID would set the
3709 * difficulty level to Unreasonable). However, be aware that if the
3710 * generator fails to produce an adequately difficult puzzle too
3711 * many times then it will give up and return an easier one (just
3712 * as it does during normal GUI play). To be sure you really have
3713 * the difficulty you asked for, use galaxiessolver to
3714 * double-check.
3715 *
3716 * (Perhaps I ought to include an option to make this standalone
3717 * generator carry on looping until it really does get the right
3718 * difficulty. Hmmm.)
3719 */
3720
3721 #include <time.h>
3722
3723 int main(int argc, char **argv)
3724 {
3725 game_params *par;
3726 char *params, *desc;
3727 random_state *rs;
3728 time_t seed = time(NULL);
3729 char buf[4096];
3730 int i;
3731 int x, y;
3732
3733 par = default_params();
3734 if (argc > 1)
3735 decode_params(par, argv[1]); /* get difficulty */
3736 par->w = par->h = -1;
3737
3738 /*
3739 * Now read an XBM file from standard input. This is simple and
3740 * hacky and will do very little error detection, so don't feed
3741 * it bogus data.
3742 */
3743 picture = NULL;
3744 x = y = 0;
3745 while (fgets(buf, sizeof(buf), stdin)) {
3746 buf[strcspn(buf, "\r\n")] = '\0';
3747 if (!strncmp(buf, "#define", 7)) {
3748 /*
3749 * Lines starting `#define' give the width and height.
3750 */
3751 char *num = buf + strlen(buf);
3752 char *symend;
3753
3754 while (num > buf && isdigit((unsigned char)num[-1]))
3755 num--;
3756 symend = num;
3757 while (symend > buf && isspace((unsigned char)symend[-1]))
3758 symend--;
3759
3760 if (symend-5 >= buf && !strncmp(symend-5, "width", 5))
3761 par->w = atoi(num);
3762 else if (symend-6 >= buf && !strncmp(symend-6, "height", 6))
3763 par->h = atoi(num);
3764 } else {
3765 /*
3766 * Otherwise, break the string up into words and take
3767 * any word of the form `0x' plus hex digits to be a
3768 * byte.
3769 */
3770 char *p, *wordstart;
3771
3772 if (!picture) {
3773 if (par->w < 0 || par->h < 0) {
3774 printf("failed to read width and height\n");
3775 return 1;
3776 }
3777 picture = snewn(par->w * par->h, int);
3778 for (i = 0; i < par->w * par->h; i++)
3779 picture[i] = -1;
3780 }
3781
3782 p = buf;
3783 while (*p) {
3784 while (*p && (*p == ',' || isspace((unsigned char)*p)))
3785 p++;
3786 wordstart = p;
3787 while (*p && !(*p == ',' || *p == '}' ||
3788 isspace((unsigned char)*p)))
3789 p++;
3790 if (*p)
3791 *p++ = '\0';
3792
3793 if (wordstart[0] == '0' &&
3794 (wordstart[1] == 'x' || wordstart[1] == 'X') &&
3795 !wordstart[2 + strspn(wordstart+2,
3796 "0123456789abcdefABCDEF")]) {
3797 unsigned long byte = strtoul(wordstart+2, NULL, 16);
3798 for (i = 0; i < 8; i++) {
3799 int bit = (byte >> i) & 1;
3800 if (y < par->h && x < par->w)
3801 picture[y * par->w + x] = bit;
3802 x++;
3803 }
3804
3805 if (x >= par->w) {
3806 x = 0;
3807 y++;
3808 }
3809 }
3810 }
3811 }
3812 }
3813
3814 for (i = 0; i < par->w * par->h; i++)
3815 if (picture[i] < 0) {
3816 fprintf(stderr, "failed to read enough bitmap data\n");
3817 return 1;
3818 }
3819
3820 rs = random_new((void*)&seed, sizeof(time_t));
3821
3822 desc = new_game_desc(par, rs, NULL, FALSE);
3823 params = encode_params(par, FALSE);
3824 printf("%s:%s\n", params, desc);
3825
3826 sfree(desc);
3827 sfree(params);
3828 free_params(par);
3829 random_free(rs);
3830
3831 return 0;
3832 }
3833
3834 #endif
3835
3836 /* vim: set shiftwidth=4 tabstop=8: */