Introduced a new function in every game which formats a game_state
[sgt/puzzles] / net.c
1 /*
2 * net.c: Net game.
3 */
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <string.h>
8 #include <assert.h>
9 #include <ctype.h>
10 #include <math.h>
11
12 #include "puzzles.h"
13 #include "tree234.h"
14
15 #define PI 3.141592653589793238462643383279502884197169399
16
17 #define MATMUL(xr,yr,m,x,y) do { \
18 float rx, ry, xx = (x), yy = (y), *mat = (m); \
19 rx = mat[0] * xx + mat[2] * yy; \
20 ry = mat[1] * xx + mat[3] * yy; \
21 (xr) = rx; (yr) = ry; \
22 } while (0)
23
24 /* Direction and other bitfields */
25 #define R 0x01
26 #define U 0x02
27 #define L 0x04
28 #define D 0x08
29 #define LOCKED 0x10
30 #define ACTIVE 0x20
31 /* Corner flags go in the barriers array */
32 #define RU 0x10
33 #define UL 0x20
34 #define LD 0x40
35 #define DR 0x80
36
37 /* Rotations: Anticlockwise, Clockwise, Flip, general rotate */
38 #define A(x) ( (((x) & 0x07) << 1) | (((x) & 0x08) >> 3) )
39 #define C(x) ( (((x) & 0x0E) >> 1) | (((x) & 0x01) << 3) )
40 #define F(x) ( (((x) & 0x0C) >> 2) | (((x) & 0x03) << 2) )
41 #define ROT(x, n) ( ((n)&3) == 0 ? (x) : \
42 ((n)&3) == 1 ? A(x) : \
43 ((n)&3) == 2 ? F(x) : C(x) )
44
45 /* X and Y displacements */
46 #define X(x) ( (x) == R ? +1 : (x) == L ? -1 : 0 )
47 #define Y(x) ( (x) == D ? +1 : (x) == U ? -1 : 0 )
48
49 /* Bit count */
50 #define COUNT(x) ( (((x) & 0x08) >> 3) + (((x) & 0x04) >> 2) + \
51 (((x) & 0x02) >> 1) + ((x) & 0x01) )
52
53 #define TILE_SIZE 32
54 #define TILE_BORDER 1
55 #define WINDOW_OFFSET 16
56
57 #define ROTATE_TIME 0.13F
58 #define FLASH_FRAME 0.07F
59
60 enum {
61 COL_BACKGROUND,
62 COL_LOCKED,
63 COL_BORDER,
64 COL_WIRE,
65 COL_ENDPOINT,
66 COL_POWERED,
67 COL_BARRIER,
68 NCOLOURS
69 };
70
71 struct game_params {
72 int width;
73 int height;
74 int wrapping;
75 float barrier_probability;
76 };
77
78 struct game_state {
79 int width, height, cx, cy, wrapping, completed, last_rotate_dir;
80 unsigned char *tiles;
81 unsigned char *barriers;
82 };
83
84 #define OFFSET(x2,y2,x1,y1,dir,state) \
85 ( (x2) = ((x1) + (state)->width + X((dir))) % (state)->width, \
86 (y2) = ((y1) + (state)->height + Y((dir))) % (state)->height)
87
88 #define index(state, a, x, y) ( a[(y) * (state)->width + (x)] )
89 #define tile(state, x, y) index(state, (state)->tiles, x, y)
90 #define barrier(state, x, y) index(state, (state)->barriers, x, y)
91
92 struct xyd {
93 int x, y, direction;
94 };
95
96 static int xyd_cmp(void *av, void *bv) {
97 struct xyd *a = (struct xyd *)av;
98 struct xyd *b = (struct xyd *)bv;
99 if (a->x < b->x)
100 return -1;
101 if (a->x > b->x)
102 return +1;
103 if (a->y < b->y)
104 return -1;
105 if (a->y > b->y)
106 return +1;
107 if (a->direction < b->direction)
108 return -1;
109 if (a->direction > b->direction)
110 return +1;
111 return 0;
112 };
113
114 static struct xyd *new_xyd(int x, int y, int direction)
115 {
116 struct xyd *xyd = snew(struct xyd);
117 xyd->x = x;
118 xyd->y = y;
119 xyd->direction = direction;
120 return xyd;
121 }
122
123 /* ----------------------------------------------------------------------
124 * Manage game parameters.
125 */
126 static game_params *default_params(void)
127 {
128 game_params *ret = snew(game_params);
129
130 ret->width = 5;
131 ret->height = 5;
132 ret->wrapping = FALSE;
133 ret->barrier_probability = 0.0;
134
135 return ret;
136 }
137
138 static int game_fetch_preset(int i, char **name, game_params **params)
139 {
140 game_params *ret;
141 char str[80];
142 static const struct { int x, y, wrap; } values[] = {
143 {5, 5, FALSE},
144 {7, 7, FALSE},
145 {9, 9, FALSE},
146 {11, 11, FALSE},
147 {13, 11, FALSE},
148 {5, 5, TRUE},
149 {7, 7, TRUE},
150 {9, 9, TRUE},
151 {11, 11, TRUE},
152 {13, 11, TRUE},
153 };
154
155 if (i < 0 || i >= lenof(values))
156 return FALSE;
157
158 ret = snew(game_params);
159 ret->width = values[i].x;
160 ret->height = values[i].y;
161 ret->wrapping = values[i].wrap;
162 ret->barrier_probability = 0.0;
163
164 sprintf(str, "%dx%d%s", ret->width, ret->height,
165 ret->wrapping ? " wrapping" : "");
166
167 *name = dupstr(str);
168 *params = ret;
169 return TRUE;
170 }
171
172 static void free_params(game_params *params)
173 {
174 sfree(params);
175 }
176
177 static game_params *dup_params(game_params *params)
178 {
179 game_params *ret = snew(game_params);
180 *ret = *params; /* structure copy */
181 return ret;
182 }
183
184 static game_params *decode_params(char const *string)
185 {
186 game_params *ret = default_params();
187 char const *p = string;
188
189 ret->width = atoi(p);
190 while (*p && isdigit(*p)) p++;
191 if (*p == 'x') {
192 p++;
193 ret->height = atoi(p);
194 while (*p && isdigit(*p)) p++;
195 if ( (ret->wrapping = (*p == 'w')) != 0 )
196 p++;
197 if (*p == 'b')
198 ret->barrier_probability = atof(p+1);
199 } else {
200 ret->height = ret->width;
201 }
202
203 return ret;
204 }
205
206 static char *encode_params(game_params *params)
207 {
208 char ret[400];
209 int len;
210
211 len = sprintf(ret, "%dx%d", params->width, params->height);
212 if (params->wrapping)
213 ret[len++] = 'w';
214 if (params->barrier_probability)
215 len += sprintf(ret+len, "b%g", params->barrier_probability);
216 assert(len < lenof(ret));
217 ret[len] = '\0';
218
219 return dupstr(ret);
220 }
221
222 static config_item *game_configure(game_params *params)
223 {
224 config_item *ret;
225 char buf[80];
226
227 ret = snewn(5, config_item);
228
229 ret[0].name = "Width";
230 ret[0].type = C_STRING;
231 sprintf(buf, "%d", params->width);
232 ret[0].sval = dupstr(buf);
233 ret[0].ival = 0;
234
235 ret[1].name = "Height";
236 ret[1].type = C_STRING;
237 sprintf(buf, "%d", params->height);
238 ret[1].sval = dupstr(buf);
239 ret[1].ival = 0;
240
241 ret[2].name = "Walls wrap around";
242 ret[2].type = C_BOOLEAN;
243 ret[2].sval = NULL;
244 ret[2].ival = params->wrapping;
245
246 ret[3].name = "Barrier probability";
247 ret[3].type = C_STRING;
248 sprintf(buf, "%g", params->barrier_probability);
249 ret[3].sval = dupstr(buf);
250 ret[3].ival = 0;
251
252 ret[4].name = NULL;
253 ret[4].type = C_END;
254 ret[4].sval = NULL;
255 ret[4].ival = 0;
256
257 return ret;
258 }
259
260 static game_params *custom_params(config_item *cfg)
261 {
262 game_params *ret = snew(game_params);
263
264 ret->width = atoi(cfg[0].sval);
265 ret->height = atoi(cfg[1].sval);
266 ret->wrapping = cfg[2].ival;
267 ret->barrier_probability = (float)atof(cfg[3].sval);
268
269 return ret;
270 }
271
272 static char *validate_params(game_params *params)
273 {
274 if (params->width <= 0 && params->height <= 0)
275 return "Width and height must both be greater than zero";
276 if (params->width <= 0)
277 return "Width must be greater than zero";
278 if (params->height <= 0)
279 return "Height must be greater than zero";
280 if (params->width <= 1 && params->height <= 1)
281 return "At least one of width and height must be greater than one";
282 if (params->barrier_probability < 0)
283 return "Barrier probability may not be negative";
284 if (params->barrier_probability > 1)
285 return "Barrier probability may not be greater than 1";
286 return NULL;
287 }
288
289 /* ----------------------------------------------------------------------
290 * Randomly select a new game seed.
291 */
292
293 static char *new_game_seed(game_params *params, random_state *rs)
294 {
295 /*
296 * The full description of a Net game is far too large to
297 * encode directly in the seed, so by default we'll have to go
298 * for the simple approach of providing a random-number seed.
299 *
300 * (This does not restrict me from _later on_ inventing a seed
301 * string syntax which can never be generated by this code -
302 * for example, strings beginning with a letter - allowing me
303 * to type in a precise game, and have new_game detect it and
304 * understand it and do something completely different.)
305 */
306 char buf[40];
307 sprintf(buf, "%lu", random_bits(rs, 32));
308 return dupstr(buf);
309 }
310
311 static char *validate_seed(game_params *params, char *seed)
312 {
313 /*
314 * Since any string at all will suffice to seed the RNG, there
315 * is no validation required.
316 */
317 return NULL;
318 }
319
320 /* ----------------------------------------------------------------------
321 * Construct an initial game state, given a seed and parameters.
322 */
323
324 static game_state *new_game(game_params *params, char *seed)
325 {
326 random_state *rs;
327 game_state *state;
328 tree234 *possibilities, *barriers;
329 int w, h, x, y, nbarriers;
330
331 assert(params->width > 0 && params->height > 0);
332 assert(params->width > 1 || params->height > 1);
333
334 /*
335 * Create a blank game state.
336 */
337 state = snew(game_state);
338 w = state->width = params->width;
339 h = state->height = params->height;
340 state->cx = state->width / 2;
341 state->cy = state->height / 2;
342 state->wrapping = params->wrapping;
343 state->last_rotate_dir = 0;
344 state->completed = FALSE;
345 state->tiles = snewn(state->width * state->height, unsigned char);
346 memset(state->tiles, 0, state->width * state->height);
347 state->barriers = snewn(state->width * state->height, unsigned char);
348 memset(state->barriers, 0, state->width * state->height);
349
350 /*
351 * Set up border barriers if this is a non-wrapping game.
352 */
353 if (!state->wrapping) {
354 for (x = 0; x < state->width; x++) {
355 barrier(state, x, 0) |= U;
356 barrier(state, x, state->height-1) |= D;
357 }
358 for (y = 0; y < state->height; y++) {
359 barrier(state, 0, y) |= L;
360 barrier(state, state->width-1, y) |= R;
361 }
362 }
363
364 /*
365 * Seed the internal random number generator.
366 */
367 rs = random_init(seed, strlen(seed));
368
369 /*
370 * Construct the unshuffled grid.
371 *
372 * To do this, we simply start at the centre point, repeatedly
373 * choose a random possibility out of the available ways to
374 * extend a used square into an unused one, and do it. After
375 * extending the third line out of a square, we remove the
376 * fourth from the possibilities list to avoid any full-cross
377 * squares (which would make the game too easy because they
378 * only have one orientation).
379 *
380 * The slightly worrying thing is the avoidance of full-cross
381 * squares. Can this cause our unsophisticated construction
382 * algorithm to paint itself into a corner, by getting into a
383 * situation where there are some unreached squares and the
384 * only way to reach any of them is to extend a T-piece into a
385 * full cross?
386 *
387 * Answer: no it can't, and here's a proof.
388 *
389 * Any contiguous group of such unreachable squares must be
390 * surrounded on _all_ sides by T-pieces pointing away from the
391 * group. (If not, then there is a square which can be extended
392 * into one of the `unreachable' ones, and so it wasn't
393 * unreachable after all.) In particular, this implies that
394 * each contiguous group of unreachable squares must be
395 * rectangular in shape (any deviation from that yields a
396 * non-T-piece next to an `unreachable' square).
397 *
398 * So we have a rectangle of unreachable squares, with T-pieces
399 * forming a solid border around the rectangle. The corners of
400 * that border must be connected (since every tile connects all
401 * the lines arriving in it), and therefore the border must
402 * form a closed loop around the rectangle.
403 *
404 * But this can't have happened in the first place, since we
405 * _know_ we've avoided creating closed loops! Hence, no such
406 * situation can ever arise, and the naive grid construction
407 * algorithm will guaranteeably result in a complete grid
408 * containing no unreached squares, no full crosses _and_ no
409 * closed loops. []
410 */
411 possibilities = newtree234(xyd_cmp);
412
413 if (state->cx+1 < state->width)
414 add234(possibilities, new_xyd(state->cx, state->cy, R));
415 if (state->cy-1 >= 0)
416 add234(possibilities, new_xyd(state->cx, state->cy, U));
417 if (state->cx-1 >= 0)
418 add234(possibilities, new_xyd(state->cx, state->cy, L));
419 if (state->cy+1 < state->height)
420 add234(possibilities, new_xyd(state->cx, state->cy, D));
421
422 while (count234(possibilities) > 0) {
423 int i;
424 struct xyd *xyd;
425 int x1, y1, d1, x2, y2, d2, d;
426
427 /*
428 * Extract a randomly chosen possibility from the list.
429 */
430 i = random_upto(rs, count234(possibilities));
431 xyd = delpos234(possibilities, i);
432 x1 = xyd->x;
433 y1 = xyd->y;
434 d1 = xyd->direction;
435 sfree(xyd);
436
437 OFFSET(x2, y2, x1, y1, d1, state);
438 d2 = F(d1);
439 #ifdef DEBUG
440 printf("picked (%d,%d,%c) <-> (%d,%d,%c)\n",
441 x1, y1, "0RU3L567D9abcdef"[d1], x2, y2, "0RU3L567D9abcdef"[d2]);
442 #endif
443
444 /*
445 * Make the connection. (We should be moving to an as yet
446 * unused tile.)
447 */
448 tile(state, x1, y1) |= d1;
449 assert(tile(state, x2, y2) == 0);
450 tile(state, x2, y2) |= d2;
451
452 /*
453 * If we have created a T-piece, remove its last
454 * possibility.
455 */
456 if (COUNT(tile(state, x1, y1)) == 3) {
457 struct xyd xyd1, *xydp;
458
459 xyd1.x = x1;
460 xyd1.y = y1;
461 xyd1.direction = 0x0F ^ tile(state, x1, y1);
462
463 xydp = find234(possibilities, &xyd1, NULL);
464
465 if (xydp) {
466 #ifdef DEBUG
467 printf("T-piece; removing (%d,%d,%c)\n",
468 xydp->x, xydp->y, "0RU3L567D9abcdef"[xydp->direction]);
469 #endif
470 del234(possibilities, xydp);
471 sfree(xydp);
472 }
473 }
474
475 /*
476 * Remove all other possibilities that were pointing at the
477 * tile we've just moved into.
478 */
479 for (d = 1; d < 0x10; d <<= 1) {
480 int x3, y3, d3;
481 struct xyd xyd1, *xydp;
482
483 OFFSET(x3, y3, x2, y2, d, state);
484 d3 = F(d);
485
486 xyd1.x = x3;
487 xyd1.y = y3;
488 xyd1.direction = d3;
489
490 xydp = find234(possibilities, &xyd1, NULL);
491
492 if (xydp) {
493 #ifdef DEBUG
494 printf("Loop avoidance; removing (%d,%d,%c)\n",
495 xydp->x, xydp->y, "0RU3L567D9abcdef"[xydp->direction]);
496 #endif
497 del234(possibilities, xydp);
498 sfree(xydp);
499 }
500 }
501
502 /*
503 * Add new possibilities to the list for moving _out_ of
504 * the tile we have just moved into.
505 */
506 for (d = 1; d < 0x10; d <<= 1) {
507 int x3, y3;
508
509 if (d == d2)
510 continue; /* we've got this one already */
511
512 if (!state->wrapping) {
513 if (d == U && y2 == 0)
514 continue;
515 if (d == D && y2 == state->height-1)
516 continue;
517 if (d == L && x2 == 0)
518 continue;
519 if (d == R && x2 == state->width-1)
520 continue;
521 }
522
523 OFFSET(x3, y3, x2, y2, d, state);
524
525 if (tile(state, x3, y3))
526 continue; /* this would create a loop */
527
528 #ifdef DEBUG
529 printf("New frontier; adding (%d,%d,%c)\n",
530 x2, y2, "0RU3L567D9abcdef"[d]);
531 #endif
532 add234(possibilities, new_xyd(x2, y2, d));
533 }
534 }
535 /* Having done that, we should have no possibilities remaining. */
536 assert(count234(possibilities) == 0);
537 freetree234(possibilities);
538
539 /*
540 * Now compute a list of the possible barrier locations.
541 */
542 barriers = newtree234(xyd_cmp);
543 for (y = 0; y < state->height; y++) {
544 for (x = 0; x < state->width; x++) {
545
546 if (!(tile(state, x, y) & R) &&
547 (state->wrapping || x < state->width-1))
548 add234(barriers, new_xyd(x, y, R));
549 if (!(tile(state, x, y) & D) &&
550 (state->wrapping || y < state->height-1))
551 add234(barriers, new_xyd(x, y, D));
552 }
553 }
554
555 /*
556 * Now shuffle the grid.
557 */
558 for (y = 0; y < state->height; y++) {
559 for (x = 0; x < state->width; x++) {
560 int orig = tile(state, x, y);
561 int rot = random_upto(rs, 4);
562 tile(state, x, y) = ROT(orig, rot);
563 }
564 }
565
566 /*
567 * And now choose barrier locations. (We carefully do this
568 * _after_ shuffling, so that changing the barrier rate in the
569 * params while keeping the game seed the same will give the
570 * same shuffled grid and _only_ change the barrier locations.
571 * Also the way we choose barrier locations, by repeatedly
572 * choosing one possibility from the list until we have enough,
573 * is designed to ensure that raising the barrier rate while
574 * keeping the seed the same will provide a superset of the
575 * previous barrier set - i.e. if you ask for 10 barriers, and
576 * then decide that's still too hard and ask for 20, you'll get
577 * the original 10 plus 10 more, rather than getting 20 new
578 * ones and the chance of remembering your first 10.)
579 */
580 nbarriers = (int)(params->barrier_probability * count234(barriers));
581 assert(nbarriers >= 0 && nbarriers <= count234(barriers));
582
583 while (nbarriers > 0) {
584 int i;
585 struct xyd *xyd;
586 int x1, y1, d1, x2, y2, d2;
587
588 /*
589 * Extract a randomly chosen barrier from the list.
590 */
591 i = random_upto(rs, count234(barriers));
592 xyd = delpos234(barriers, i);
593
594 assert(xyd != NULL);
595
596 x1 = xyd->x;
597 y1 = xyd->y;
598 d1 = xyd->direction;
599 sfree(xyd);
600
601 OFFSET(x2, y2, x1, y1, d1, state);
602 d2 = F(d1);
603
604 barrier(state, x1, y1) |= d1;
605 barrier(state, x2, y2) |= d2;
606
607 nbarriers--;
608 }
609
610 /*
611 * Clean up the rest of the barrier list.
612 */
613 {
614 struct xyd *xyd;
615
616 while ( (xyd = delpos234(barriers, 0)) != NULL)
617 sfree(xyd);
618
619 freetree234(barriers);
620 }
621
622 /*
623 * Set up the barrier corner flags, for drawing barriers
624 * prettily when they meet.
625 */
626 for (y = 0; y < state->height; y++) {
627 for (x = 0; x < state->width; x++) {
628 int dir;
629
630 for (dir = 1; dir < 0x10; dir <<= 1) {
631 int dir2 = A(dir);
632 int x1, y1, x2, y2, x3, y3;
633 int corner = FALSE;
634
635 if (!(barrier(state, x, y) & dir))
636 continue;
637
638 if (barrier(state, x, y) & dir2)
639 corner = TRUE;
640
641 x1 = x + X(dir), y1 = y + Y(dir);
642 if (x1 >= 0 && x1 < state->width &&
643 y1 >= 0 && y1 < state->height &&
644 (barrier(state, x1, y1) & dir2))
645 corner = TRUE;
646
647 x2 = x + X(dir2), y2 = y + Y(dir2);
648 if (x2 >= 0 && x2 < state->width &&
649 y2 >= 0 && y2 < state->height &&
650 (barrier(state, x2, y2) & dir))
651 corner = TRUE;
652
653 if (corner) {
654 barrier(state, x, y) |= (dir << 4);
655 if (x1 >= 0 && x1 < state->width &&
656 y1 >= 0 && y1 < state->height)
657 barrier(state, x1, y1) |= (A(dir) << 4);
658 if (x2 >= 0 && x2 < state->width &&
659 y2 >= 0 && y2 < state->height)
660 barrier(state, x2, y2) |= (C(dir) << 4);
661 x3 = x + X(dir) + X(dir2), y3 = y + Y(dir) + Y(dir2);
662 if (x3 >= 0 && x3 < state->width &&
663 y3 >= 0 && y3 < state->height)
664 barrier(state, x3, y3) |= (F(dir) << 4);
665 }
666 }
667 }
668 }
669
670 random_free(rs);
671
672 return state;
673 }
674
675 static game_state *dup_game(game_state *state)
676 {
677 game_state *ret;
678
679 ret = snew(game_state);
680 ret->width = state->width;
681 ret->height = state->height;
682 ret->cx = state->cx;
683 ret->cy = state->cy;
684 ret->wrapping = state->wrapping;
685 ret->completed = state->completed;
686 ret->last_rotate_dir = state->last_rotate_dir;
687 ret->tiles = snewn(state->width * state->height, unsigned char);
688 memcpy(ret->tiles, state->tiles, state->width * state->height);
689 ret->barriers = snewn(state->width * state->height, unsigned char);
690 memcpy(ret->barriers, state->barriers, state->width * state->height);
691
692 return ret;
693 }
694
695 static void free_game(game_state *state)
696 {
697 sfree(state->tiles);
698 sfree(state->barriers);
699 sfree(state);
700 }
701
702 static char *game_text_format(game_state *state)
703 {
704 return NULL;
705 }
706
707 /* ----------------------------------------------------------------------
708 * Utility routine.
709 */
710
711 /*
712 * Compute which squares are reachable from the centre square, as a
713 * quick visual aid to determining how close the game is to
714 * completion. This is also a simple way to tell if the game _is_
715 * completed - just call this function and see whether every square
716 * is marked active.
717 */
718 static unsigned char *compute_active(game_state *state)
719 {
720 unsigned char *active;
721 tree234 *todo;
722 struct xyd *xyd;
723
724 active = snewn(state->width * state->height, unsigned char);
725 memset(active, 0, state->width * state->height);
726
727 /*
728 * We only store (x,y) pairs in todo, but it's easier to reuse
729 * xyd_cmp and just store direction 0 every time.
730 */
731 todo = newtree234(xyd_cmp);
732 index(state, active, state->cx, state->cy) = ACTIVE;
733 add234(todo, new_xyd(state->cx, state->cy, 0));
734
735 while ( (xyd = delpos234(todo, 0)) != NULL) {
736 int x1, y1, d1, x2, y2, d2;
737
738 x1 = xyd->x;
739 y1 = xyd->y;
740 sfree(xyd);
741
742 for (d1 = 1; d1 < 0x10; d1 <<= 1) {
743 OFFSET(x2, y2, x1, y1, d1, state);
744 d2 = F(d1);
745
746 /*
747 * If the next tile in this direction is connected to
748 * us, and there isn't a barrier in the way, and it
749 * isn't already marked active, then mark it active and
750 * add it to the to-examine list.
751 */
752 if ((tile(state, x1, y1) & d1) &&
753 (tile(state, x2, y2) & d2) &&
754 !(barrier(state, x1, y1) & d1) &&
755 !index(state, active, x2, y2)) {
756 index(state, active, x2, y2) = ACTIVE;
757 add234(todo, new_xyd(x2, y2, 0));
758 }
759 }
760 }
761 /* Now we expect the todo list to have shrunk to zero size. */
762 assert(count234(todo) == 0);
763 freetree234(todo);
764
765 return active;
766 }
767
768 struct game_ui {
769 int cur_x, cur_y;
770 int cur_visible;
771 random_state *rs; /* used for jumbling */
772 };
773
774 static game_ui *new_ui(game_state *state)
775 {
776 void *seed;
777 int seedsize;
778 game_ui *ui = snew(game_ui);
779 ui->cur_x = state->width / 2;
780 ui->cur_y = state->height / 2;
781 ui->cur_visible = FALSE;
782 get_random_seed(&seed, &seedsize);
783 ui->rs = random_init(seed, seedsize);
784 sfree(seed);
785
786 return ui;
787 }
788
789 static void free_ui(game_ui *ui)
790 {
791 random_free(ui->rs);
792 sfree(ui);
793 }
794
795 /* ----------------------------------------------------------------------
796 * Process a move.
797 */
798 static game_state *make_move(game_state *state, game_ui *ui,
799 int x, int y, int button)
800 {
801 game_state *ret, *nullret;
802 int tx, ty, orig;
803
804 nullret = NULL;
805
806 if (button == LEFT_BUTTON ||
807 button == MIDDLE_BUTTON ||
808 button == RIGHT_BUTTON) {
809
810 if (ui->cur_visible) {
811 ui->cur_visible = FALSE;
812 nullret = state;
813 }
814
815 /*
816 * The button must have been clicked on a valid tile.
817 */
818 x -= WINDOW_OFFSET + TILE_BORDER;
819 y -= WINDOW_OFFSET + TILE_BORDER;
820 if (x < 0 || y < 0)
821 return nullret;
822 tx = x / TILE_SIZE;
823 ty = y / TILE_SIZE;
824 if (tx >= state->width || ty >= state->height)
825 return nullret;
826 if (x % TILE_SIZE >= TILE_SIZE - TILE_BORDER ||
827 y % TILE_SIZE >= TILE_SIZE - TILE_BORDER)
828 return nullret;
829 } else if (button == CURSOR_UP || button == CURSOR_DOWN ||
830 button == CURSOR_RIGHT || button == CURSOR_LEFT) {
831 if (button == CURSOR_UP && ui->cur_y > 0)
832 ui->cur_y--;
833 else if (button == CURSOR_DOWN && ui->cur_y < state->height-1)
834 ui->cur_y++;
835 else if (button == CURSOR_LEFT && ui->cur_x > 0)
836 ui->cur_x--;
837 else if (button == CURSOR_RIGHT && ui->cur_x < state->width-1)
838 ui->cur_x++;
839 else
840 return nullret; /* no cursor movement */
841 ui->cur_visible = TRUE;
842 return state; /* UI activity has occurred */
843 } else if (button == 'a' || button == 's' || button == 'd' ||
844 button == 'A' || button == 'S' || button == 'D') {
845 tx = ui->cur_x;
846 ty = ui->cur_y;
847 if (button == 'a' || button == 'A')
848 button = LEFT_BUTTON;
849 else if (button == 's' || button == 'S')
850 button = MIDDLE_BUTTON;
851 else if (button == 'd' || button == 'D')
852 button = RIGHT_BUTTON;
853 ui->cur_visible = TRUE;
854 } else if (button == 'j' || button == 'J') {
855 /* XXX should we have some mouse control for this? */
856 button = 'J'; /* canonify */
857 tx = ty = -1; /* shut gcc up :( */
858 } else
859 return nullret;
860
861 /*
862 * The middle button locks or unlocks a tile. (A locked tile
863 * cannot be turned, and is visually marked as being locked.
864 * This is a convenience for the player, so that once they are
865 * sure which way round a tile goes, they can lock it and thus
866 * avoid forgetting later on that they'd already done that one;
867 * and the locking also prevents them turning the tile by
868 * accident. If they change their mind, another middle click
869 * unlocks it.)
870 */
871 if (button == MIDDLE_BUTTON) {
872
873 ret = dup_game(state);
874 tile(ret, tx, ty) ^= LOCKED;
875 ret->last_rotate_dir = 0;
876 return ret;
877
878 } else if (button == LEFT_BUTTON || button == RIGHT_BUTTON) {
879
880 /*
881 * The left and right buttons have no effect if clicked on a
882 * locked tile.
883 */
884 if (tile(state, tx, ty) & LOCKED)
885 return nullret;
886
887 /*
888 * Otherwise, turn the tile one way or the other. Left button
889 * turns anticlockwise; right button turns clockwise.
890 */
891 ret = dup_game(state);
892 orig = tile(ret, tx, ty);
893 if (button == LEFT_BUTTON) {
894 tile(ret, tx, ty) = A(orig);
895 ret->last_rotate_dir = +1;
896 } else {
897 tile(ret, tx, ty) = C(orig);
898 ret->last_rotate_dir = -1;
899 }
900
901 } else if (button == 'J') {
902
903 /*
904 * Jumble all unlocked tiles to random orientations.
905 */
906 int jx, jy;
907 ret = dup_game(state);
908 for (jy = 0; jy < ret->height; jy++) {
909 for (jx = 0; jx < ret->width; jx++) {
910 if (!(tile(ret, jx, jy) & LOCKED)) {
911 int rot = random_upto(ui->rs, 4);
912 orig = tile(ret, jx, jy);
913 tile(ret, jx, jy) = ROT(orig, rot);
914 }
915 }
916 }
917 ret->last_rotate_dir = 0; /* suppress animation */
918
919 } else assert(0);
920
921 /*
922 * Check whether the game has been completed.
923 */
924 {
925 unsigned char *active = compute_active(ret);
926 int x1, y1;
927 int complete = TRUE;
928
929 for (x1 = 0; x1 < ret->width; x1++)
930 for (y1 = 0; y1 < ret->height; y1++)
931 if (!index(ret, active, x1, y1)) {
932 complete = FALSE;
933 goto break_label; /* break out of two loops at once */
934 }
935 break_label:
936
937 sfree(active);
938
939 if (complete)
940 ret->completed = TRUE;
941 }
942
943 return ret;
944 }
945
946 /* ----------------------------------------------------------------------
947 * Routines for drawing the game position on the screen.
948 */
949
950 struct game_drawstate {
951 int started;
952 int width, height;
953 unsigned char *visible;
954 };
955
956 static game_drawstate *game_new_drawstate(game_state *state)
957 {
958 game_drawstate *ds = snew(game_drawstate);
959
960 ds->started = FALSE;
961 ds->width = state->width;
962 ds->height = state->height;
963 ds->visible = snewn(state->width * state->height, unsigned char);
964 memset(ds->visible, 0xFF, state->width * state->height);
965
966 return ds;
967 }
968
969 static void game_free_drawstate(game_drawstate *ds)
970 {
971 sfree(ds->visible);
972 sfree(ds);
973 }
974
975 static void game_size(game_params *params, int *x, int *y)
976 {
977 *x = WINDOW_OFFSET * 2 + TILE_SIZE * params->width + TILE_BORDER;
978 *y = WINDOW_OFFSET * 2 + TILE_SIZE * params->height + TILE_BORDER;
979 }
980
981 static float *game_colours(frontend *fe, game_state *state, int *ncolours)
982 {
983 float *ret;
984
985 ret = snewn(NCOLOURS * 3, float);
986 *ncolours = NCOLOURS;
987
988 /*
989 * Basic background colour is whatever the front end thinks is
990 * a sensible default.
991 */
992 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
993
994 /*
995 * Wires are black.
996 */
997 ret[COL_WIRE * 3 + 0] = 0.0F;
998 ret[COL_WIRE * 3 + 1] = 0.0F;
999 ret[COL_WIRE * 3 + 2] = 0.0F;
1000
1001 /*
1002 * Powered wires and powered endpoints are cyan.
1003 */
1004 ret[COL_POWERED * 3 + 0] = 0.0F;
1005 ret[COL_POWERED * 3 + 1] = 1.0F;
1006 ret[COL_POWERED * 3 + 2] = 1.0F;
1007
1008 /*
1009 * Barriers are red.
1010 */
1011 ret[COL_BARRIER * 3 + 0] = 1.0F;
1012 ret[COL_BARRIER * 3 + 1] = 0.0F;
1013 ret[COL_BARRIER * 3 + 2] = 0.0F;
1014
1015 /*
1016 * Unpowered endpoints are blue.
1017 */
1018 ret[COL_ENDPOINT * 3 + 0] = 0.0F;
1019 ret[COL_ENDPOINT * 3 + 1] = 0.0F;
1020 ret[COL_ENDPOINT * 3 + 2] = 1.0F;
1021
1022 /*
1023 * Tile borders are a darker grey than the background.
1024 */
1025 ret[COL_BORDER * 3 + 0] = 0.5F * ret[COL_BACKGROUND * 3 + 0];
1026 ret[COL_BORDER * 3 + 1] = 0.5F * ret[COL_BACKGROUND * 3 + 1];
1027 ret[COL_BORDER * 3 + 2] = 0.5F * ret[COL_BACKGROUND * 3 + 2];
1028
1029 /*
1030 * Locked tiles are a grey in between those two.
1031 */
1032 ret[COL_LOCKED * 3 + 0] = 0.75F * ret[COL_BACKGROUND * 3 + 0];
1033 ret[COL_LOCKED * 3 + 1] = 0.75F * ret[COL_BACKGROUND * 3 + 1];
1034 ret[COL_LOCKED * 3 + 2] = 0.75F * ret[COL_BACKGROUND * 3 + 2];
1035
1036 return ret;
1037 }
1038
1039 static void draw_thick_line(frontend *fe, int x1, int y1, int x2, int y2,
1040 int colour)
1041 {
1042 draw_line(fe, x1-1, y1, x2-1, y2, COL_WIRE);
1043 draw_line(fe, x1+1, y1, x2+1, y2, COL_WIRE);
1044 draw_line(fe, x1, y1-1, x2, y2-1, COL_WIRE);
1045 draw_line(fe, x1, y1+1, x2, y2+1, COL_WIRE);
1046 draw_line(fe, x1, y1, x2, y2, colour);
1047 }
1048
1049 static void draw_rect_coords(frontend *fe, int x1, int y1, int x2, int y2,
1050 int colour)
1051 {
1052 int mx = (x1 < x2 ? x1 : x2);
1053 int my = (y1 < y2 ? y1 : y2);
1054 int dx = (x2 + x1 - 2*mx + 1);
1055 int dy = (y2 + y1 - 2*my + 1);
1056
1057 draw_rect(fe, mx, my, dx, dy, colour);
1058 }
1059
1060 static void draw_barrier_corner(frontend *fe, int x, int y, int dir, int phase)
1061 {
1062 int bx = WINDOW_OFFSET + TILE_SIZE * x;
1063 int by = WINDOW_OFFSET + TILE_SIZE * y;
1064 int x1, y1, dx, dy, dir2;
1065
1066 dir >>= 4;
1067
1068 dir2 = A(dir);
1069 dx = X(dir) + X(dir2);
1070 dy = Y(dir) + Y(dir2);
1071 x1 = (dx > 0 ? TILE_SIZE+TILE_BORDER-1 : 0);
1072 y1 = (dy > 0 ? TILE_SIZE+TILE_BORDER-1 : 0);
1073
1074 if (phase == 0) {
1075 draw_rect_coords(fe, bx+x1, by+y1,
1076 bx+x1-TILE_BORDER*dx, by+y1-(TILE_BORDER-1)*dy,
1077 COL_WIRE);
1078 draw_rect_coords(fe, bx+x1, by+y1,
1079 bx+x1-(TILE_BORDER-1)*dx, by+y1-TILE_BORDER*dy,
1080 COL_WIRE);
1081 } else {
1082 draw_rect_coords(fe, bx+x1, by+y1,
1083 bx+x1-(TILE_BORDER-1)*dx, by+y1-(TILE_BORDER-1)*dy,
1084 COL_BARRIER);
1085 }
1086 }
1087
1088 static void draw_barrier(frontend *fe, int x, int y, int dir, int phase)
1089 {
1090 int bx = WINDOW_OFFSET + TILE_SIZE * x;
1091 int by = WINDOW_OFFSET + TILE_SIZE * y;
1092 int x1, y1, w, h;
1093
1094 x1 = (X(dir) > 0 ? TILE_SIZE : X(dir) == 0 ? TILE_BORDER : 0);
1095 y1 = (Y(dir) > 0 ? TILE_SIZE : Y(dir) == 0 ? TILE_BORDER : 0);
1096 w = (X(dir) ? TILE_BORDER : TILE_SIZE - TILE_BORDER);
1097 h = (Y(dir) ? TILE_BORDER : TILE_SIZE - TILE_BORDER);
1098
1099 if (phase == 0) {
1100 draw_rect(fe, bx+x1-X(dir), by+y1-Y(dir), w, h, COL_WIRE);
1101 } else {
1102 draw_rect(fe, bx+x1, by+y1, w, h, COL_BARRIER);
1103 }
1104 }
1105
1106 static void draw_tile(frontend *fe, game_state *state, int x, int y, int tile,
1107 float angle, int cursor)
1108 {
1109 int bx = WINDOW_OFFSET + TILE_SIZE * x;
1110 int by = WINDOW_OFFSET + TILE_SIZE * y;
1111 float matrix[4];
1112 float cx, cy, ex, ey, tx, ty;
1113 int dir, col, phase;
1114
1115 /*
1116 * When we draw a single tile, we must draw everything up to
1117 * and including the borders around the tile. This means that
1118 * if the neighbouring tiles have connections to those borders,
1119 * we must draw those connections on the borders themselves.
1120 *
1121 * This would be terribly fiddly if we ever had to draw a tile
1122 * while its neighbour was in mid-rotate, because we'd have to
1123 * arrange to _know_ that the neighbour was being rotated and
1124 * hence had an anomalous effect on the redraw of this tile.
1125 * Fortunately, the drawing algorithm avoids ever calling us in
1126 * this circumstance: we're either drawing lots of straight
1127 * tiles at game start or after a move is complete, or we're
1128 * repeatedly drawing only the rotating tile. So no problem.
1129 */
1130
1131 /*
1132 * So. First blank the tile out completely: draw a big
1133 * rectangle in border colour, and a smaller rectangle in
1134 * background colour to fill it in.
1135 */
1136 draw_rect(fe, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER,
1137 COL_BORDER);
1138 draw_rect(fe, bx+TILE_BORDER, by+TILE_BORDER,
1139 TILE_SIZE-TILE_BORDER, TILE_SIZE-TILE_BORDER,
1140 tile & LOCKED ? COL_LOCKED : COL_BACKGROUND);
1141
1142 /*
1143 * Draw an inset outline rectangle as a cursor, in whichever of
1144 * COL_LOCKED and COL_BACKGROUND we aren't currently drawing
1145 * in.
1146 */
1147 if (cursor) {
1148 draw_line(fe, bx+TILE_SIZE/8, by+TILE_SIZE/8,
1149 bx+TILE_SIZE/8, by+TILE_SIZE-TILE_SIZE/8,
1150 tile & LOCKED ? COL_BACKGROUND : COL_LOCKED);
1151 draw_line(fe, bx+TILE_SIZE/8, by+TILE_SIZE/8,
1152 bx+TILE_SIZE-TILE_SIZE/8, by+TILE_SIZE/8,
1153 tile & LOCKED ? COL_BACKGROUND : COL_LOCKED);
1154 draw_line(fe, bx+TILE_SIZE-TILE_SIZE/8, by+TILE_SIZE/8,
1155 bx+TILE_SIZE-TILE_SIZE/8, by+TILE_SIZE-TILE_SIZE/8,
1156 tile & LOCKED ? COL_BACKGROUND : COL_LOCKED);
1157 draw_line(fe, bx+TILE_SIZE/8, by+TILE_SIZE-TILE_SIZE/8,
1158 bx+TILE_SIZE-TILE_SIZE/8, by+TILE_SIZE-TILE_SIZE/8,
1159 tile & LOCKED ? COL_BACKGROUND : COL_LOCKED);
1160 }
1161
1162 /*
1163 * Set up the rotation matrix.
1164 */
1165 matrix[0] = (float)cos(angle * PI / 180.0);
1166 matrix[1] = (float)-sin(angle * PI / 180.0);
1167 matrix[2] = (float)sin(angle * PI / 180.0);
1168 matrix[3] = (float)cos(angle * PI / 180.0);
1169
1170 /*
1171 * Draw the wires.
1172 */
1173 cx = cy = TILE_BORDER + (TILE_SIZE-TILE_BORDER) / 2.0F - 0.5F;
1174 col = (tile & ACTIVE ? COL_POWERED : COL_WIRE);
1175 for (dir = 1; dir < 0x10; dir <<= 1) {
1176 if (tile & dir) {
1177 ex = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * X(dir);
1178 ey = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * Y(dir);
1179 MATMUL(tx, ty, matrix, ex, ey);
1180 draw_thick_line(fe, bx+(int)cx, by+(int)cy,
1181 bx+(int)(cx+tx), by+(int)(cy+ty),
1182 COL_WIRE);
1183 }
1184 }
1185 for (dir = 1; dir < 0x10; dir <<= 1) {
1186 if (tile & dir) {
1187 ex = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * X(dir);
1188 ey = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * Y(dir);
1189 MATMUL(tx, ty, matrix, ex, ey);
1190 draw_line(fe, bx+(int)cx, by+(int)cy,
1191 bx+(int)(cx+tx), by+(int)(cy+ty), col);
1192 }
1193 }
1194
1195 /*
1196 * Draw the box in the middle. We do this in blue if the tile
1197 * is an unpowered endpoint, in cyan if the tile is a powered
1198 * endpoint, in black if the tile is the centrepiece, and
1199 * otherwise not at all.
1200 */
1201 col = -1;
1202 if (x == state->cx && y == state->cy)
1203 col = COL_WIRE;
1204 else if (COUNT(tile) == 1) {
1205 col = (tile & ACTIVE ? COL_POWERED : COL_ENDPOINT);
1206 }
1207 if (col >= 0) {
1208 int i, points[8];
1209
1210 points[0] = +1; points[1] = +1;
1211 points[2] = +1; points[3] = -1;
1212 points[4] = -1; points[5] = -1;
1213 points[6] = -1; points[7] = +1;
1214
1215 for (i = 0; i < 8; i += 2) {
1216 ex = (TILE_SIZE * 0.24F) * points[i];
1217 ey = (TILE_SIZE * 0.24F) * points[i+1];
1218 MATMUL(tx, ty, matrix, ex, ey);
1219 points[i] = bx+(int)(cx+tx);
1220 points[i+1] = by+(int)(cy+ty);
1221 }
1222
1223 draw_polygon(fe, points, 4, TRUE, col);
1224 draw_polygon(fe, points, 4, FALSE, COL_WIRE);
1225 }
1226
1227 /*
1228 * Draw the points on the border if other tiles are connected
1229 * to us.
1230 */
1231 for (dir = 1; dir < 0x10; dir <<= 1) {
1232 int dx, dy, px, py, lx, ly, vx, vy, ox, oy;
1233
1234 dx = X(dir);
1235 dy = Y(dir);
1236
1237 ox = x + dx;
1238 oy = y + dy;
1239
1240 if (ox < 0 || ox >= state->width || oy < 0 || oy >= state->height)
1241 continue;
1242
1243 if (!(tile(state, ox, oy) & F(dir)))
1244 continue;
1245
1246 px = bx + (int)(dx>0 ? TILE_SIZE + TILE_BORDER - 1 : dx<0 ? 0 : cx);
1247 py = by + (int)(dy>0 ? TILE_SIZE + TILE_BORDER - 1 : dy<0 ? 0 : cy);
1248 lx = dx * (TILE_BORDER-1);
1249 ly = dy * (TILE_BORDER-1);
1250 vx = (dy ? 1 : 0);
1251 vy = (dx ? 1 : 0);
1252
1253 if (angle == 0.0 && (tile & dir)) {
1254 /*
1255 * If we are fully connected to the other tile, we must
1256 * draw right across the tile border. (We can use our
1257 * own ACTIVE state to determine what colour to do this
1258 * in: if we are fully connected to the other tile then
1259 * the two ACTIVE states will be the same.)
1260 */
1261 draw_rect_coords(fe, px-vx, py-vy, px+lx+vx, py+ly+vy, COL_WIRE);
1262 draw_rect_coords(fe, px, py, px+lx, py+ly,
1263 (tile & ACTIVE) ? COL_POWERED : COL_WIRE);
1264 } else {
1265 /*
1266 * The other tile extends into our border, but isn't
1267 * actually connected to us. Just draw a single black
1268 * dot.
1269 */
1270 draw_rect_coords(fe, px, py, px, py, COL_WIRE);
1271 }
1272 }
1273
1274 /*
1275 * Draw barrier corners, and then barriers.
1276 */
1277 for (phase = 0; phase < 2; phase++) {
1278 for (dir = 1; dir < 0x10; dir <<= 1)
1279 if (barrier(state, x, y) & (dir << 4))
1280 draw_barrier_corner(fe, x, y, dir << 4, phase);
1281 for (dir = 1; dir < 0x10; dir <<= 1)
1282 if (barrier(state, x, y) & dir)
1283 draw_barrier(fe, x, y, dir, phase);
1284 }
1285
1286 draw_update(fe, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER);
1287 }
1288
1289 static void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate,
1290 game_state *state, int dir, game_ui *ui, float t, float ft)
1291 {
1292 int x, y, tx, ty, frame, last_rotate_dir;
1293 unsigned char *active;
1294 float angle = 0.0;
1295
1296 /*
1297 * Clear the screen and draw the exterior barrier lines if this
1298 * is our first call.
1299 */
1300 if (!ds->started) {
1301 int phase;
1302
1303 ds->started = TRUE;
1304
1305 draw_rect(fe, 0, 0,
1306 WINDOW_OFFSET * 2 + TILE_SIZE * state->width + TILE_BORDER,
1307 WINDOW_OFFSET * 2 + TILE_SIZE * state->height + TILE_BORDER,
1308 COL_BACKGROUND);
1309 draw_update(fe, 0, 0,
1310 WINDOW_OFFSET*2 + TILE_SIZE*state->width + TILE_BORDER,
1311 WINDOW_OFFSET*2 + TILE_SIZE*state->height + TILE_BORDER);
1312
1313 for (phase = 0; phase < 2; phase++) {
1314
1315 for (x = 0; x < ds->width; x++) {
1316 if (barrier(state, x, 0) & UL)
1317 draw_barrier_corner(fe, x, -1, LD, phase);
1318 if (barrier(state, x, 0) & RU)
1319 draw_barrier_corner(fe, x, -1, DR, phase);
1320 if (barrier(state, x, 0) & U)
1321 draw_barrier(fe, x, -1, D, phase);
1322 if (barrier(state, x, ds->height-1) & DR)
1323 draw_barrier_corner(fe, x, ds->height, RU, phase);
1324 if (barrier(state, x, ds->height-1) & LD)
1325 draw_barrier_corner(fe, x, ds->height, UL, phase);
1326 if (barrier(state, x, ds->height-1) & D)
1327 draw_barrier(fe, x, ds->height, U, phase);
1328 }
1329
1330 for (y = 0; y < ds->height; y++) {
1331 if (barrier(state, 0, y) & UL)
1332 draw_barrier_corner(fe, -1, y, RU, phase);
1333 if (barrier(state, 0, y) & LD)
1334 draw_barrier_corner(fe, -1, y, DR, phase);
1335 if (barrier(state, 0, y) & L)
1336 draw_barrier(fe, -1, y, R, phase);
1337 if (barrier(state, ds->width-1, y) & RU)
1338 draw_barrier_corner(fe, ds->width, y, UL, phase);
1339 if (barrier(state, ds->width-1, y) & DR)
1340 draw_barrier_corner(fe, ds->width, y, LD, phase);
1341 if (barrier(state, ds->width-1, y) & R)
1342 draw_barrier(fe, ds->width, y, L, phase);
1343 }
1344 }
1345 }
1346
1347 tx = ty = -1;
1348 last_rotate_dir = dir==-1 ? oldstate->last_rotate_dir :
1349 state->last_rotate_dir;
1350 if (oldstate && (t < ROTATE_TIME) && last_rotate_dir) {
1351 /*
1352 * We're animating a single tile rotation. Find the turning tile,
1353 * if any.
1354 */
1355 for (x = 0; x < oldstate->width; x++)
1356 for (y = 0; y < oldstate->height; y++)
1357 if ((tile(oldstate, x, y) ^ tile(state, x, y)) & 0xF) {
1358 tx = x, ty = y;
1359 goto break_label; /* leave both loops at once */
1360 }
1361 break_label:
1362
1363 if (tx >= 0) {
1364 angle = last_rotate_dir * dir * 90.0F * (t / ROTATE_TIME);
1365 state = oldstate;
1366 }
1367 }
1368
1369 frame = -1;
1370 if (ft > 0) {
1371 /*
1372 * We're animating a completion flash. Find which frame
1373 * we're at.
1374 */
1375 frame = (int)(ft / FLASH_FRAME);
1376 }
1377
1378 /*
1379 * Draw any tile which differs from the way it was last drawn.
1380 */
1381 active = compute_active(state);
1382
1383 for (x = 0; x < ds->width; x++)
1384 for (y = 0; y < ds->height; y++) {
1385 unsigned char c = tile(state, x, y) | index(state, active, x, y);
1386
1387 /*
1388 * In a completion flash, we adjust the LOCKED bit
1389 * depending on our distance from the centre point and
1390 * the frame number.
1391 */
1392 if (frame >= 0) {
1393 int xdist, ydist, dist;
1394 xdist = (x < state->cx ? state->cx - x : x - state->cx);
1395 ydist = (y < state->cy ? state->cy - y : y - state->cy);
1396 dist = (xdist > ydist ? xdist : ydist);
1397
1398 if (frame >= dist && frame < dist+4) {
1399 int lock = (frame - dist) & 1;
1400 lock = lock ? LOCKED : 0;
1401 c = (c &~ LOCKED) | lock;
1402 }
1403 }
1404
1405 if (index(state, ds->visible, x, y) != c ||
1406 index(state, ds->visible, x, y) == 0xFF ||
1407 (x == tx && y == ty) ||
1408 (ui->cur_visible && x == ui->cur_x && y == ui->cur_y)) {
1409 draw_tile(fe, state, x, y, c,
1410 (x == tx && y == ty ? angle : 0.0F),
1411 (ui->cur_visible && x == ui->cur_x && y == ui->cur_y));
1412 if ((x == tx && y == ty) ||
1413 (ui->cur_visible && x == ui->cur_x && y == ui->cur_y))
1414 index(state, ds->visible, x, y) = 0xFF;
1415 else
1416 index(state, ds->visible, x, y) = c;
1417 }
1418 }
1419
1420 /*
1421 * Update the status bar.
1422 */
1423 {
1424 char statusbuf[256];
1425 int i, n, a;
1426
1427 n = state->width * state->height;
1428 for (i = a = 0; i < n; i++)
1429 if (active[i])
1430 a++;
1431
1432 sprintf(statusbuf, "%sActive: %d/%d",
1433 (state->completed ? "COMPLETED! " : ""), a, n);
1434
1435 status_bar(fe, statusbuf);
1436 }
1437
1438 sfree(active);
1439 }
1440
1441 static float game_anim_length(game_state *oldstate,
1442 game_state *newstate, int dir)
1443 {
1444 int x, y, last_rotate_dir;
1445
1446 /*
1447 * Don't animate if last_rotate_dir is zero.
1448 */
1449 last_rotate_dir = dir==-1 ? oldstate->last_rotate_dir :
1450 newstate->last_rotate_dir;
1451 if (last_rotate_dir) {
1452
1453 /*
1454 * If there's a tile which has been rotated, allow time to
1455 * animate its rotation.
1456 */
1457 for (x = 0; x < oldstate->width; x++)
1458 for (y = 0; y < oldstate->height; y++)
1459 if ((tile(oldstate, x, y) ^ tile(newstate, x, y)) & 0xF) {
1460 return ROTATE_TIME;
1461 }
1462
1463 }
1464
1465 return 0.0F;
1466 }
1467
1468 static float game_flash_length(game_state *oldstate,
1469 game_state *newstate, int dir)
1470 {
1471 /*
1472 * If the game has just been completed, we display a completion
1473 * flash.
1474 */
1475 if (!oldstate->completed && newstate->completed) {
1476 int size;
1477 size = 0;
1478 if (size < newstate->cx+1)
1479 size = newstate->cx+1;
1480 if (size < newstate->cy+1)
1481 size = newstate->cy+1;
1482 if (size < newstate->width - newstate->cx)
1483 size = newstate->width - newstate->cx;
1484 if (size < newstate->height - newstate->cy)
1485 size = newstate->height - newstate->cy;
1486 return FLASH_FRAME * (size+4);
1487 }
1488
1489 return 0.0F;
1490 }
1491
1492 static int game_wants_statusbar(void)
1493 {
1494 return TRUE;
1495 }
1496
1497 #ifdef COMBINED
1498 #define thegame net
1499 #endif
1500
1501 const struct game thegame = {
1502 "Net", "games.net",
1503 default_params,
1504 game_fetch_preset,
1505 decode_params,
1506 encode_params,
1507 free_params,
1508 dup_params,
1509 TRUE, game_configure, custom_params,
1510 validate_params,
1511 new_game_seed,
1512 validate_seed,
1513 new_game,
1514 dup_game,
1515 free_game,
1516 FALSE, game_text_format,
1517 new_ui,
1518 free_ui,
1519 make_move,
1520 game_size,
1521 game_colours,
1522 game_new_drawstate,
1523 game_free_drawstate,
1524 game_redraw,
1525 game_anim_length,
1526 game_flash_length,
1527 game_wants_statusbar,
1528 };