Another uninitialised-variable fix, this one pointing out a real bug.
[sgt/puzzles] / bridges.c
1 /*
2 * bridges.c: Implementation of the Nikoli game 'Bridges'.
3 *
4 * Things still to do:
5 *
6 * - The solver's algorithmic design is not really ideal. It makes
7 * use of the same data representation as gameplay uses, which
8 * often looks like a tempting reuse of code but isn't always a
9 * good idea. In this case, it's unpleasant that each edge of the
10 * graph ends up represented as multiple squares on a grid, with
11 * flags indicating when edges and non-edges cross; that's useful
12 * when the result can be directly translated into positions of
13 * graphics on the display, but in purely internal work it makes
14 * even simple manipulations during solving more painful than they
15 * should be, and complex ones have no choice but to modify the
16 * data structures temporarily, test things, and put them back. I
17 * envisage a complete solver rewrite along the following lines:
18 * + We have a collection of vertices (islands) and edges
19 * (potential bridge locations, i.e. pairs of horizontal or
20 * vertical islands with no other island in between).
21 * + Each edge has an associated list of edges that cross it, and
22 * hence with which it is mutually exclusive.
23 * + For each edge, we track the min and max number of bridges we
24 * currently think possible.
25 * + For each vertex, we track the number of _liberties_ it has,
26 * i.e. its clue number minus the min bridge count for each edge
27 * out of it.
28 * + We also maintain a dsf that identifies sets of vertices which
29 * are connected components of the puzzle so far, and for each
30 * equivalence class we track the total number of liberties for
31 * that component. (The dsf mechanism will also already track
32 * the size of each component, i.e. number of islands.)
33 * + So incrementing the min for an edge requires processing along
34 * the lines of:
35 * - set the max for all edges crossing that one to zero
36 * - decrement the liberty count for the vertex at each end,
37 * and also for each vertex's equivalence class (NB they may
38 * be the same class)
39 * - unify the two equivalence classes if they're not already,
40 * and if so, set the liberty count for the new class to be
41 * the sum of the previous two.
42 * + Decrementing the max is much easier, however.
43 * + With this data structure the really fiddly stuff in stage3()
44 * becomes more or less trivial, because it's now a quick job to
45 * find out whether an island would form an isolated subgraph if
46 * connected to a given subset of its neighbours:
47 * - identify the connected components containing the test
48 * vertex and its putative new neighbours (but be careful not
49 * to count a component more than once if two or more of the
50 * vertices involved are already in the same one)
51 * - find the sum of those components' liberty counts, and also
52 * the total number of islands involved
53 * - if the total liberty count of the connected components is
54 * exactly equal to twice the number of edges we'd be adding
55 * (of course each edge destroys two liberties, one at each
56 * end) then these components would become a subgraph with
57 * zero liberties if connected together.
58 * - therefore, if that subgraph also contains fewer than the
59 * total number of islands, it's disallowed.
60 * - As mentioned in stage3(), once we've identified such a
61 * disallowed pattern, we have two choices for what to do
62 * with it: if the candidate set of neighbours has size 1 we
63 * can reduce the max for the edge to that one neighbour,
64 * whereas if its complement has size 1 we can increase the
65 * min for the edge to the _omitted_ neighbour.
66 *
67 * - write a recursive solver?
68 */
69
70 #include <stdio.h>
71 #include <stdlib.h>
72 #include <string.h>
73 #include <assert.h>
74 #include <ctype.h>
75 #include <math.h>
76
77 #include "puzzles.h"
78
79 /* Turn this on for hints about which lines are considered possibilities. */
80 #undef DRAW_GRID
81 #undef DRAW_DSF
82
83 /* --- structures for params, state, etc. --- */
84
85 #define MAX_BRIDGES 4
86
87 #define PREFERRED_TILE_SIZE 24
88 #define TILE_SIZE (ds->tilesize)
89 #define BORDER (TILE_SIZE / 2)
90
91 #define COORD(x) ( (x) * TILE_SIZE + BORDER )
92 #define FROMCOORD(x) ( ((x) - BORDER + TILE_SIZE) / TILE_SIZE - 1 )
93
94 #define FLASH_TIME 0.50F
95
96 enum {
97 COL_BACKGROUND,
98 COL_FOREGROUND,
99 COL_HIGHLIGHT, COL_LOWLIGHT,
100 COL_SELECTED, COL_MARK,
101 COL_HINT, COL_GRID,
102 COL_WARNING,
103 COL_CURSOR,
104 NCOLOURS
105 };
106
107 struct game_params {
108 int w, h, maxb;
109 int islands, expansion; /* %age of island squares, %age chance of expansion */
110 int allowloops, difficulty;
111 };
112
113 /* general flags used by all structs */
114 #define G_ISLAND 0x0001
115 #define G_LINEV 0x0002 /* contains a vert. line */
116 #define G_LINEH 0x0004 /* contains a horiz. line (mutex with LINEV) */
117 #define G_LINE (G_LINEV|G_LINEH)
118 #define G_MARKV 0x0008
119 #define G_MARKH 0x0010
120 #define G_MARK (G_MARKV|G_MARKH)
121 #define G_NOLINEV 0x0020
122 #define G_NOLINEH 0x0040
123 #define G_NOLINE (G_NOLINEV|G_NOLINEH)
124
125 /* flags used by the drawstate */
126 #define G_ISSEL 0x0080
127 #define G_REDRAW 0x0100
128 #define G_FLASH 0x0200
129 #define G_WARN 0x0400
130 #define G_CURSOR 0x0800
131
132 /* flags used by the solver etc. */
133 #define G_SWEEP 0x1000
134
135 #define G_FLAGSH (G_LINEH|G_MARKH|G_NOLINEH)
136 #define G_FLAGSV (G_LINEV|G_MARKV|G_NOLINEV)
137
138 typedef unsigned int grid_type; /* change me later if we invent > 16 bits of flags. */
139
140 struct solver_state {
141 int *dsf, *comptspaces;
142 int *tmpdsf, *tmpcompspaces;
143 int refcount;
144 };
145
146 /* state->gridi is an optimisation; it stores the pointer to the island
147 * structs indexed by (x,y). It's not strictly necessary (we could use
148 * find234 instead), but Purify showed that board generation (mostly the solver)
149 * was spending 60% of its time in find234. */
150
151 struct surrounds { /* cloned from lightup.c */
152 struct { int x, y, dx, dy, off; } points[4];
153 int npoints, nislands;
154 };
155
156 struct island {
157 game_state *state;
158 int x, y, count;
159 struct surrounds adj;
160 };
161
162 struct game_state {
163 int w, h, completed, solved, allowloops, maxb;
164 grid_type *grid, *scratch;
165 struct island *islands;
166 int n_islands, n_islands_alloc;
167 game_params params; /* used by the aux solver. */
168 #define N_WH_ARRAYS 5
169 char *wha, *possv, *possh, *lines, *maxv, *maxh;
170 struct island **gridi;
171 struct solver_state *solver; /* refcounted */
172 };
173
174 #define GRIDSZ(s) ((s)->w * (s)->h * sizeof(grid_type))
175
176 #define INGRID(s,x,y) ((x) >= 0 && (x) < (s)->w && (y) >= 0 && (y) < (s)->h)
177
178 #define DINDEX(x,y) ((y)*state->w + (x))
179
180 #define INDEX(s,g,x,y) ((s)->g[(y)*((s)->w) + (x)])
181 #define IDX(s,g,i) ((s)->g[(i)])
182 #define GRID(s,x,y) INDEX(s,grid,x,y)
183 #define SCRATCH(s,x,y) INDEX(s,scratch,x,y)
184 #define POSSIBLES(s,dx,x,y) ((dx) ? (INDEX(s,possh,x,y)) : (INDEX(s,possv,x,y)))
185 #define MAXIMUM(s,dx,x,y) ((dx) ? (INDEX(s,maxh,x,y)) : (INDEX(s,maxv,x,y)))
186
187 #define GRIDCOUNT(s,x,y,f) ((GRID(s,x,y) & (f)) ? (INDEX(s,lines,x,y)) : 0)
188
189 #define WITHIN2(x,min,max) (((x) < (min)) ? 0 : (((x) > (max)) ? 0 : 1))
190 #define WITHIN(x,min,max) ((min) > (max) ? \
191 WITHIN2(x,max,min) : WITHIN2(x,min,max))
192
193 /* --- island struct and tree support functions --- */
194
195 #define ISLAND_ORTH(is,j,f,df) \
196 (is->f + (is->adj.points[(j)].off*is->adj.points[(j)].df))
197
198 #define ISLAND_ORTHX(is,j) ISLAND_ORTH(is,j,x,dx)
199 #define ISLAND_ORTHY(is,j) ISLAND_ORTH(is,j,y,dy)
200
201 static void fixup_islands_for_realloc(game_state *state)
202 {
203 int i;
204
205 for (i = 0; i < state->w*state->h; i++) state->gridi[i] = NULL;
206 for (i = 0; i < state->n_islands; i++) {
207 struct island *is = &state->islands[i];
208 is->state = state;
209 INDEX(state, gridi, is->x, is->y) = is;
210 }
211 }
212
213 static int game_can_format_as_text_now(game_params *params)
214 {
215 return TRUE;
216 }
217
218 static char *game_text_format(game_state *state)
219 {
220 int x, y, len, nl;
221 char *ret, *p;
222 struct island *is;
223 grid_type grid;
224
225 len = (state->h) * (state->w+1) + 1;
226 ret = snewn(len, char);
227 p = ret;
228
229 for (y = 0; y < state->h; y++) {
230 for (x = 0; x < state->w; x++) {
231 grid = GRID(state,x,y);
232 nl = INDEX(state,lines,x,y);
233 is = INDEX(state, gridi, x, y);
234 if (is) {
235 *p++ = '0' + is->count;
236 } else if (grid & G_LINEV) {
237 *p++ = (nl > 1) ? '"' : (nl == 1) ? '|' : '!'; /* gaah, want a double-bar. */
238 } else if (grid & G_LINEH) {
239 *p++ = (nl > 1) ? '=' : (nl == 1) ? '-' : '~';
240 } else {
241 *p++ = '.';
242 }
243 }
244 *p++ = '\n';
245 }
246 *p++ = '\0';
247
248 assert(p - ret == len);
249 return ret;
250 }
251
252 static void debug_state(game_state *state)
253 {
254 char *textversion = game_text_format(state);
255 debug(("%s", textversion));
256 sfree(textversion);
257 }
258
259 /*static void debug_possibles(game_state *state)
260 {
261 int x, y;
262 debug(("possh followed by possv\n"));
263 for (y = 0; y < state->h; y++) {
264 for (x = 0; x < state->w; x++) {
265 debug(("%d", POSSIBLES(state, 1, x, y)));
266 }
267 debug((" "));
268 for (x = 0; x < state->w; x++) {
269 debug(("%d", POSSIBLES(state, 0, x, y)));
270 }
271 debug(("\n"));
272 }
273 debug(("\n"));
274 for (y = 0; y < state->h; y++) {
275 for (x = 0; x < state->w; x++) {
276 debug(("%d", MAXIMUM(state, 1, x, y)));
277 }
278 debug((" "));
279 for (x = 0; x < state->w; x++) {
280 debug(("%d", MAXIMUM(state, 0, x, y)));
281 }
282 debug(("\n"));
283 }
284 debug(("\n"));
285 }*/
286
287 static void island_set_surrounds(struct island *is)
288 {
289 assert(INGRID(is->state,is->x,is->y));
290 is->adj.npoints = is->adj.nislands = 0;
291 #define ADDPOINT(cond,ddx,ddy) do {\
292 if (cond) { \
293 is->adj.points[is->adj.npoints].x = is->x+(ddx); \
294 is->adj.points[is->adj.npoints].y = is->y+(ddy); \
295 is->adj.points[is->adj.npoints].dx = (ddx); \
296 is->adj.points[is->adj.npoints].dy = (ddy); \
297 is->adj.points[is->adj.npoints].off = 0; \
298 is->adj.npoints++; \
299 } } while(0)
300 ADDPOINT(is->x > 0, -1, 0);
301 ADDPOINT(is->x < (is->state->w-1), +1, 0);
302 ADDPOINT(is->y > 0, 0, -1);
303 ADDPOINT(is->y < (is->state->h-1), 0, +1);
304 }
305
306 static void island_find_orthogonal(struct island *is)
307 {
308 /* fills in the rest of the 'surrounds' structure, assuming
309 * all other islands are now in place. */
310 int i, x, y, dx, dy, off;
311
312 is->adj.nislands = 0;
313 for (i = 0; i < is->adj.npoints; i++) {
314 dx = is->adj.points[i].dx;
315 dy = is->adj.points[i].dy;
316 x = is->x + dx;
317 y = is->y + dy;
318 off = 1;
319 is->adj.points[i].off = 0;
320 while (INGRID(is->state, x, y)) {
321 if (GRID(is->state, x, y) & G_ISLAND) {
322 is->adj.points[i].off = off;
323 is->adj.nislands++;
324 /*debug(("island (%d,%d) has orth is. %d*(%d,%d) away at (%d,%d).\n",
325 is->x, is->y, off, dx, dy,
326 ISLAND_ORTHX(is,i), ISLAND_ORTHY(is,i)));*/
327 goto foundisland;
328 }
329 off++; x += dx; y += dy;
330 }
331 foundisland:
332 ;
333 }
334 }
335
336 static int island_hasbridge(struct island *is, int direction)
337 {
338 int x = is->adj.points[direction].x;
339 int y = is->adj.points[direction].y;
340 grid_type gline = is->adj.points[direction].dx ? G_LINEH : G_LINEV;
341
342 if (GRID(is->state, x, y) & gline) return 1;
343 return 0;
344 }
345
346 static struct island *island_find_connection(struct island *is, int adjpt)
347 {
348 struct island *is_r;
349
350 assert(adjpt < is->adj.npoints);
351 if (!is->adj.points[adjpt].off) return NULL;
352 if (!island_hasbridge(is, adjpt)) return NULL;
353
354 is_r = INDEX(is->state, gridi,
355 ISLAND_ORTHX(is, adjpt), ISLAND_ORTHY(is, adjpt));
356 assert(is_r);
357
358 return is_r;
359 }
360
361 static struct island *island_add(game_state *state, int x, int y, int count)
362 {
363 struct island *is;
364 int realloced = 0;
365
366 assert(!(GRID(state,x,y) & G_ISLAND));
367 GRID(state,x,y) |= G_ISLAND;
368
369 state->n_islands++;
370 if (state->n_islands > state->n_islands_alloc) {
371 state->n_islands_alloc = state->n_islands * 2;
372 state->islands =
373 sresize(state->islands, state->n_islands_alloc, struct island);
374 realloced = 1;
375 }
376 is = &state->islands[state->n_islands-1];
377
378 memset(is, 0, sizeof(struct island));
379 is->state = state;
380 is->x = x;
381 is->y = y;
382 is->count = count;
383 island_set_surrounds(is);
384
385 if (realloced)
386 fixup_islands_for_realloc(state);
387 else
388 INDEX(state, gridi, x, y) = is;
389
390 return is;
391 }
392
393
394 /* n = -1 means 'flip NOLINE flags [and set line to 0].' */
395 static void island_join(struct island *i1, struct island *i2, int n, int is_max)
396 {
397 game_state *state = i1->state;
398 int s, e, x, y;
399
400 assert(i1->state == i2->state);
401 assert(n >= -1 && n <= i1->state->maxb);
402
403 if (i1->x == i2->x) {
404 x = i1->x;
405 if (i1->y < i2->y) {
406 s = i1->y+1; e = i2->y-1;
407 } else {
408 s = i2->y+1; e = i1->y-1;
409 }
410 for (y = s; y <= e; y++) {
411 if (is_max) {
412 INDEX(state,maxv,x,y) = n;
413 } else {
414 if (n < 0) {
415 GRID(state,x,y) ^= G_NOLINEV;
416 } else if (n == 0) {
417 GRID(state,x,y) &= ~G_LINEV;
418 } else {
419 GRID(state,x,y) |= G_LINEV;
420 INDEX(state,lines,x,y) = n;
421 }
422 }
423 }
424 } else if (i1->y == i2->y) {
425 y = i1->y;
426 if (i1->x < i2->x) {
427 s = i1->x+1; e = i2->x-1;
428 } else {
429 s = i2->x+1; e = i1->x-1;
430 }
431 for (x = s; x <= e; x++) {
432 if (is_max) {
433 INDEX(state,maxh,x,y) = n;
434 } else {
435 if (n < 0) {
436 GRID(state,x,y) ^= G_NOLINEH;
437 } else if (n == 0) {
438 GRID(state,x,y) &= ~G_LINEH;
439 } else {
440 GRID(state,x,y) |= G_LINEH;
441 INDEX(state,lines,x,y) = n;
442 }
443 }
444 }
445 } else {
446 assert(!"island_join: islands not orthogonal.");
447 }
448 }
449
450 /* Counts the number of bridges currently attached to the island. */
451 static int island_countbridges(struct island *is)
452 {
453 int i, c = 0;
454
455 for (i = 0; i < is->adj.npoints; i++) {
456 c += GRIDCOUNT(is->state,
457 is->adj.points[i].x, is->adj.points[i].y,
458 is->adj.points[i].dx ? G_LINEH : G_LINEV);
459 }
460 /*debug(("island count for (%d,%d) is %d.\n", is->x, is->y, c));*/
461 return c;
462 }
463
464 static int island_adjspace(struct island *is, int marks, int missing,
465 int direction)
466 {
467 int x, y, poss, curr, dx;
468 grid_type gline, mline;
469
470 x = is->adj.points[direction].x;
471 y = is->adj.points[direction].y;
472 dx = is->adj.points[direction].dx;
473 gline = dx ? G_LINEH : G_LINEV;
474
475 if (marks) {
476 mline = dx ? G_MARKH : G_MARKV;
477 if (GRID(is->state,x,y) & mline) return 0;
478 }
479 poss = POSSIBLES(is->state, dx, x, y);
480 poss = min(poss, missing);
481
482 curr = GRIDCOUNT(is->state, x, y, gline);
483 poss = min(poss, MAXIMUM(is->state, dx, x, y) - curr);
484
485 return poss;
486 }
487
488 /* Counts the number of bridge spaces left around the island;
489 * expects the possibles to be up-to-date. */
490 static int island_countspaces(struct island *is, int marks)
491 {
492 int i, c = 0, missing;
493
494 missing = is->count - island_countbridges(is);
495 if (missing < 0) return 0;
496
497 for (i = 0; i < is->adj.npoints; i++) {
498 c += island_adjspace(is, marks, missing, i);
499 }
500 return c;
501 }
502
503 static int island_isadj(struct island *is, int direction)
504 {
505 int x, y;
506 grid_type gline, mline;
507
508 x = is->adj.points[direction].x;
509 y = is->adj.points[direction].y;
510
511 mline = is->adj.points[direction].dx ? G_MARKH : G_MARKV;
512 gline = is->adj.points[direction].dx ? G_LINEH : G_LINEV;
513 if (GRID(is->state, x, y) & mline) {
514 /* If we're marked (i.e. the thing to attach to is complete)
515 * only count an adjacency if we're already attached. */
516 return GRIDCOUNT(is->state, x, y, gline);
517 } else {
518 /* If we're unmarked, count possible adjacency iff it's
519 * flagged as POSSIBLE. */
520 return POSSIBLES(is->state, is->adj.points[direction].dx, x, y);
521 }
522 return 0;
523 }
524
525 /* Counts the no. of possible adjacent islands (including islands
526 * we're already connected to). */
527 static int island_countadj(struct island *is)
528 {
529 int i, nadj = 0;
530
531 for (i = 0; i < is->adj.npoints; i++) {
532 if (island_isadj(is, i)) nadj++;
533 }
534 return nadj;
535 }
536
537 static void island_togglemark(struct island *is)
538 {
539 int i, j, x, y, o;
540 struct island *is_loop;
541
542 /* mark the island... */
543 GRID(is->state, is->x, is->y) ^= G_MARK;
544
545 /* ...remove all marks on non-island squares... */
546 for (x = 0; x < is->state->w; x++) {
547 for (y = 0; y < is->state->h; y++) {
548 if (!(GRID(is->state, x, y) & G_ISLAND))
549 GRID(is->state, x, y) &= ~G_MARK;
550 }
551 }
552
553 /* ...and add marks to squares around marked islands. */
554 for (i = 0; i < is->state->n_islands; i++) {
555 is_loop = &is->state->islands[i];
556 if (!(GRID(is_loop->state, is_loop->x, is_loop->y) & G_MARK))
557 continue;
558
559 for (j = 0; j < is_loop->adj.npoints; j++) {
560 /* if this direction takes us to another island, mark all
561 * squares between the two islands. */
562 if (!is_loop->adj.points[j].off) continue;
563 assert(is_loop->adj.points[j].off > 1);
564 for (o = 1; o < is_loop->adj.points[j].off; o++) {
565 GRID(is_loop->state,
566 is_loop->x + is_loop->adj.points[j].dx*o,
567 is_loop->y + is_loop->adj.points[j].dy*o) |=
568 is_loop->adj.points[j].dy ? G_MARKV : G_MARKH;
569 }
570 }
571 }
572 }
573
574 static int island_impossible(struct island *is, int strict)
575 {
576 int curr = island_countbridges(is), nspc = is->count - curr, nsurrspc;
577 int i, poss;
578 struct island *is_orth;
579
580 if (nspc < 0) {
581 debug(("island at (%d,%d) impossible because full.\n", is->x, is->y));
582 return 1; /* too many bridges */
583 } else if ((curr + island_countspaces(is, 0)) < is->count) {
584 debug(("island at (%d,%d) impossible because not enough spaces.\n", is->x, is->y));
585 return 1; /* impossible to create enough bridges */
586 } else if (strict && curr < is->count) {
587 debug(("island at (%d,%d) impossible because locked.\n", is->x, is->y));
588 return 1; /* not enough bridges and island is locked */
589 }
590
591 /* Count spaces in surrounding islands. */
592 nsurrspc = 0;
593 for (i = 0; i < is->adj.npoints; i++) {
594 int ifree, dx = is->adj.points[i].dx;
595
596 if (!is->adj.points[i].off) continue;
597 poss = POSSIBLES(is->state, dx,
598 is->adj.points[i].x, is->adj.points[i].y);
599 if (poss == 0) continue;
600 is_orth = INDEX(is->state, gridi,
601 ISLAND_ORTHX(is,i), ISLAND_ORTHY(is,i));
602 assert(is_orth);
603
604 ifree = is_orth->count - island_countbridges(is_orth);
605 if (ifree > 0) {
606 /*
607 * ifree is the number of bridges unfilled in the other
608 * island, which is clearly an upper bound on the number
609 * of extra bridges this island may run to it.
610 *
611 * Another upper bound is the number of bridges unfilled
612 * on the specific line between here and there. We must
613 * take the minimum of both.
614 */
615 int bmax = MAXIMUM(is->state, dx,
616 is->adj.points[i].x, is->adj.points[i].y);
617 int bcurr = GRIDCOUNT(is->state,
618 is->adj.points[i].x, is->adj.points[i].y,
619 dx ? G_LINEH : G_LINEV);
620 assert(bcurr <= bmax);
621 nsurrspc += min(ifree, bmax - bcurr);
622 }
623 }
624 if (nsurrspc < nspc) {
625 debug(("island at (%d,%d) impossible: surr. islands %d spc, need %d.\n",
626 is->x, is->y, nsurrspc, nspc));
627 return 1; /* not enough spaces around surrounding islands to fill this one. */
628 }
629
630 return 0;
631 }
632
633 /* --- Game parameter functions --- */
634
635 #define DEFAULT_PRESET 0
636
637 const struct game_params bridges_presets[] = {
638 { 7, 7, 2, 30, 10, 1, 0 },
639 { 7, 7, 2, 30, 10, 1, 1 },
640 { 7, 7, 2, 30, 10, 1, 2 },
641 { 10, 10, 2, 30, 10, 1, 0 },
642 { 10, 10, 2, 30, 10, 1, 1 },
643 { 10, 10, 2, 30, 10, 1, 2 },
644 { 15, 15, 2, 30, 10, 1, 0 },
645 { 15, 15, 2, 30, 10, 1, 1 },
646 { 15, 15, 2, 30, 10, 1, 2 },
647 };
648
649 static game_params *default_params(void)
650 {
651 game_params *ret = snew(game_params);
652 *ret = bridges_presets[DEFAULT_PRESET];
653
654 return ret;
655 }
656
657 static int game_fetch_preset(int i, char **name, game_params **params)
658 {
659 game_params *ret;
660 char buf[80];
661
662 if (i < 0 || i >= lenof(bridges_presets))
663 return FALSE;
664
665 ret = default_params();
666 *ret = bridges_presets[i];
667 *params = ret;
668
669 sprintf(buf, "%dx%d %s", ret->w, ret->h,
670 ret->difficulty == 0 ? "easy" :
671 ret->difficulty == 1 ? "medium" : "hard");
672 *name = dupstr(buf);
673
674 return TRUE;
675 }
676
677 static void free_params(game_params *params)
678 {
679 sfree(params);
680 }
681
682 static game_params *dup_params(game_params *params)
683 {
684 game_params *ret = snew(game_params);
685 *ret = *params; /* structure copy */
686 return ret;
687 }
688
689 #define EATNUM(x) do { \
690 (x) = atoi(string); \
691 while (*string && isdigit((unsigned char)*string)) string++; \
692 } while(0)
693
694 static void decode_params(game_params *params, char const *string)
695 {
696 EATNUM(params->w);
697 params->h = params->w;
698 if (*string == 'x') {
699 string++;
700 EATNUM(params->h);
701 }
702 if (*string == 'i') {
703 string++;
704 EATNUM(params->islands);
705 }
706 if (*string == 'e') {
707 string++;
708 EATNUM(params->expansion);
709 }
710 if (*string == 'm') {
711 string++;
712 EATNUM(params->maxb);
713 }
714 params->allowloops = 1;
715 if (*string == 'L') {
716 string++;
717 params->allowloops = 0;
718 }
719 if (*string == 'd') {
720 string++;
721 EATNUM(params->difficulty);
722 }
723 }
724
725 static char *encode_params(game_params *params, int full)
726 {
727 char buf[80];
728
729 if (full) {
730 sprintf(buf, "%dx%di%de%dm%d%sd%d",
731 params->w, params->h, params->islands, params->expansion,
732 params->maxb, params->allowloops ? "" : "L",
733 params->difficulty);
734 } else {
735 sprintf(buf, "%dx%dm%d%s", params->w, params->h,
736 params->maxb, params->allowloops ? "" : "L");
737 }
738 return dupstr(buf);
739 }
740
741 static config_item *game_configure(game_params *params)
742 {
743 config_item *ret;
744 char buf[80];
745
746 ret = snewn(8, config_item);
747
748 ret[0].name = "Width";
749 ret[0].type = C_STRING;
750 sprintf(buf, "%d", params->w);
751 ret[0].sval = dupstr(buf);
752 ret[0].ival = 0;
753
754 ret[1].name = "Height";
755 ret[1].type = C_STRING;
756 sprintf(buf, "%d", params->h);
757 ret[1].sval = dupstr(buf);
758 ret[1].ival = 0;
759
760 ret[2].name = "Difficulty";
761 ret[2].type = C_CHOICES;
762 ret[2].sval = ":Easy:Medium:Hard";
763 ret[2].ival = params->difficulty;
764
765 ret[3].name = "Allow loops";
766 ret[3].type = C_BOOLEAN;
767 ret[3].sval = NULL;
768 ret[3].ival = params->allowloops;
769
770 ret[4].name = "Max. bridges per direction";
771 ret[4].type = C_CHOICES;
772 ret[4].sval = ":1:2:3:4"; /* keep up-to-date with MAX_BRIDGES */
773 ret[4].ival = params->maxb - 1;
774
775 ret[5].name = "%age of island squares";
776 ret[5].type = C_CHOICES;
777 ret[5].sval = ":5%:10%:15%:20%:25%:30%";
778 ret[5].ival = (params->islands / 5)-1;
779
780 ret[6].name = "Expansion factor (%age)";
781 ret[6].type = C_CHOICES;
782 ret[6].sval = ":0%:10%:20%:30%:40%:50%:60%:70%:80%:90%:100%";
783 ret[6].ival = params->expansion / 10;
784
785 ret[7].name = NULL;
786 ret[7].type = C_END;
787 ret[7].sval = NULL;
788 ret[7].ival = 0;
789
790 return ret;
791 }
792
793 static game_params *custom_params(config_item *cfg)
794 {
795 game_params *ret = snew(game_params);
796
797 ret->w = atoi(cfg[0].sval);
798 ret->h = atoi(cfg[1].sval);
799 ret->difficulty = cfg[2].ival;
800 ret->allowloops = cfg[3].ival;
801 ret->maxb = cfg[4].ival + 1;
802 ret->islands = (cfg[5].ival + 1) * 5;
803 ret->expansion = cfg[6].ival * 10;
804
805 return ret;
806 }
807
808 static char *validate_params(game_params *params, int full)
809 {
810 if (params->w < 3 || params->h < 3)
811 return "Width and height must be at least 3";
812 if (params->maxb < 1 || params->maxb > MAX_BRIDGES)
813 return "Too many bridges.";
814 if (full) {
815 if (params->islands <= 0 || params->islands > 30)
816 return "%age of island squares must be between 1% and 30%";
817 if (params->expansion < 0 || params->expansion > 100)
818 return "Expansion factor must be between 0 and 100";
819 }
820 return NULL;
821 }
822
823 /* --- Game encoding and differences --- */
824
825 static char *encode_game(game_state *state)
826 {
827 char *ret, *p;
828 int wh = state->w*state->h, run, x, y;
829 struct island *is;
830
831 ret = snewn(wh + 1, char);
832 p = ret;
833 run = 0;
834 for (y = 0; y < state->h; y++) {
835 for (x = 0; x < state->w; x++) {
836 is = INDEX(state, gridi, x, y);
837 if (is) {
838 if (run) {
839 *p++ = ('a'-1) + run;
840 run = 0;
841 }
842 if (is->count < 10)
843 *p++ = '0' + is->count;
844 else
845 *p++ = 'A' + (is->count - 10);
846 } else {
847 if (run == 26) {
848 *p++ = ('a'-1) + run;
849 run = 0;
850 }
851 run++;
852 }
853 }
854 }
855 if (run) {
856 *p++ = ('a'-1) + run;
857 run = 0;
858 }
859 *p = '\0';
860 assert(p - ret <= wh);
861
862 return ret;
863 }
864
865 static char *game_state_diff(game_state *src, game_state *dest)
866 {
867 int movesize = 256, movelen = 0;
868 char *move = snewn(movesize, char), buf[80];
869 int i, d, x, y, len;
870 grid_type gline, nline;
871 struct island *is_s, *is_d, *is_orth;
872
873 #define APPEND do { \
874 if (movelen + len >= movesize) { \
875 movesize = movelen + len + 256; \
876 move = sresize(move, movesize, char); \
877 } \
878 strcpy(move + movelen, buf); \
879 movelen += len; \
880 } while(0)
881
882 move[movelen++] = 'S';
883 move[movelen] = '\0';
884
885 assert(src->n_islands == dest->n_islands);
886
887 for (i = 0; i < src->n_islands; i++) {
888 is_s = &src->islands[i];
889 is_d = &dest->islands[i];
890 assert(is_s->x == is_d->x);
891 assert(is_s->y == is_d->y);
892 assert(is_s->adj.npoints == is_d->adj.npoints); /* more paranoia */
893
894 for (d = 0; d < is_s->adj.npoints; d++) {
895 if (is_s->adj.points[d].dx == -1 ||
896 is_s->adj.points[d].dy == -1) continue;
897
898 x = is_s->adj.points[d].x;
899 y = is_s->adj.points[d].y;
900 gline = is_s->adj.points[d].dx ? G_LINEH : G_LINEV;
901 nline = is_s->adj.points[d].dx ? G_NOLINEH : G_NOLINEV;
902 is_orth = INDEX(dest, gridi,
903 ISLAND_ORTHX(is_d, d), ISLAND_ORTHY(is_d, d));
904
905 if (GRIDCOUNT(src, x, y, gline) != GRIDCOUNT(dest, x, y, gline)) {
906 assert(is_orth);
907 len = sprintf(buf, ";L%d,%d,%d,%d,%d",
908 is_s->x, is_s->y, is_orth->x, is_orth->y,
909 GRIDCOUNT(dest, x, y, gline));
910 APPEND;
911 }
912 if ((GRID(src,x,y) & nline) != (GRID(dest, x, y) & nline)) {
913 assert(is_orth);
914 len = sprintf(buf, ";N%d,%d,%d,%d",
915 is_s->x, is_s->y, is_orth->x, is_orth->y);
916 APPEND;
917 }
918 }
919 if ((GRID(src, is_s->x, is_s->y) & G_MARK) !=
920 (GRID(dest, is_d->x, is_d->y) & G_MARK)) {
921 len = sprintf(buf, ";M%d,%d", is_s->x, is_s->y);
922 APPEND;
923 }
924 }
925 return move;
926 }
927
928 /* --- Game setup and solving utilities --- */
929
930 /* This function is optimised; a Quantify showed that lots of grid-generation time
931 * (>50%) was spent in here. Hence the IDX() stuff. */
932
933 static void map_update_possibles(game_state *state)
934 {
935 int x, y, s, e, bl, i, np, maxb, w = state->w, idx;
936 struct island *is_s = NULL, *is_f = NULL;
937
938 /* Run down vertical stripes [un]setting possv... */
939 for (x = 0; x < state->w; x++) {
940 idx = x;
941 s = e = -1;
942 bl = 0;
943 maxb = state->params.maxb; /* placate optimiser */
944 /* Unset possible flags until we find an island. */
945 for (y = 0; y < state->h; y++) {
946 is_s = IDX(state, gridi, idx);
947 if (is_s) {
948 maxb = is_s->count;
949 break;
950 }
951
952 IDX(state, possv, idx) = 0;
953 idx += w;
954 }
955 for (; y < state->h; y++) {
956 maxb = min(maxb, IDX(state, maxv, idx));
957 is_f = IDX(state, gridi, idx);
958 if (is_f) {
959 assert(is_s);
960 np = min(maxb, is_f->count);
961
962 if (s != -1) {
963 for (i = s; i <= e; i++) {
964 INDEX(state, possv, x, i) = bl ? 0 : np;
965 }
966 }
967 s = y+1;
968 bl = 0;
969 is_s = is_f;
970 maxb = is_s->count;
971 } else {
972 e = y;
973 if (IDX(state,grid,idx) & (G_LINEH|G_NOLINEV)) bl = 1;
974 }
975 idx += w;
976 }
977 if (s != -1) {
978 for (i = s; i <= e; i++)
979 INDEX(state, possv, x, i) = 0;
980 }
981 }
982
983 /* ...and now do horizontal stripes [un]setting possh. */
984 /* can we lose this clone'n'hack? */
985 for (y = 0; y < state->h; y++) {
986 idx = y*w;
987 s = e = -1;
988 bl = 0;
989 maxb = state->params.maxb; /* placate optimiser */
990 for (x = 0; x < state->w; x++) {
991 is_s = IDX(state, gridi, idx);
992 if (is_s) {
993 maxb = is_s->count;
994 break;
995 }
996
997 IDX(state, possh, idx) = 0;
998 idx += 1;
999 }
1000 for (; x < state->w; x++) {
1001 maxb = min(maxb, IDX(state, maxh, idx));
1002 is_f = IDX(state, gridi, idx);
1003 if (is_f) {
1004 assert(is_s);
1005 np = min(maxb, is_f->count);
1006
1007 if (s != -1) {
1008 for (i = s; i <= e; i++) {
1009 INDEX(state, possh, i, y) = bl ? 0 : np;
1010 }
1011 }
1012 s = x+1;
1013 bl = 0;
1014 is_s = is_f;
1015 maxb = is_s->count;
1016 } else {
1017 e = x;
1018 if (IDX(state,grid,idx) & (G_LINEV|G_NOLINEH)) bl = 1;
1019 }
1020 idx += 1;
1021 }
1022 if (s != -1) {
1023 for (i = s; i <= e; i++)
1024 INDEX(state, possh, i, y) = 0;
1025 }
1026 }
1027 }
1028
1029 static void map_count(game_state *state)
1030 {
1031 int i, n, ax, ay;
1032 grid_type flag, grid;
1033 struct island *is;
1034
1035 for (i = 0; i < state->n_islands; i++) {
1036 is = &state->islands[i];
1037 is->count = 0;
1038 for (n = 0; n < is->adj.npoints; n++) {
1039 ax = is->adj.points[n].x;
1040 ay = is->adj.points[n].y;
1041 flag = (ax == is->x) ? G_LINEV : G_LINEH;
1042 grid = GRID(state,ax,ay);
1043 if (grid & flag) {
1044 is->count += INDEX(state,lines,ax,ay);
1045 }
1046 }
1047 }
1048 }
1049
1050 static void map_find_orthogonal(game_state *state)
1051 {
1052 int i;
1053
1054 for (i = 0; i < state->n_islands; i++) {
1055 island_find_orthogonal(&state->islands[i]);
1056 }
1057 }
1058
1059 static int grid_degree(game_state *state, int x, int y, int *nx_r, int *ny_r)
1060 {
1061 grid_type grid = SCRATCH(state, x, y), gline = grid & G_LINE;
1062 struct island *is;
1063 int x1, y1, x2, y2, c = 0, i, nx, ny;
1064
1065 nx = ny = -1; /* placate optimiser */
1066 is = INDEX(state, gridi, x, y);
1067 if (is) {
1068 for (i = 0; i < is->adj.npoints; i++) {
1069 gline = is->adj.points[i].dx ? G_LINEH : G_LINEV;
1070 if (SCRATCH(state,
1071 is->adj.points[i].x,
1072 is->adj.points[i].y) & gline) {
1073 nx = is->adj.points[i].x;
1074 ny = is->adj.points[i].y;
1075 c++;
1076 }
1077 }
1078 } else if (gline) {
1079 if (gline & G_LINEV) {
1080 x1 = x2 = x;
1081 y1 = y-1; y2 = y+1;
1082 } else {
1083 x1 = x-1; x2 = x+1;
1084 y1 = y2 = y;
1085 }
1086 /* Non-island squares with edges in should never be pointing off the
1087 * edge of the grid. */
1088 assert(INGRID(state, x1, y1));
1089 assert(INGRID(state, x2, y2));
1090 if (SCRATCH(state, x1, y1) & (gline | G_ISLAND)) {
1091 nx = x1; ny = y1; c++;
1092 }
1093 if (SCRATCH(state, x2, y2) & (gline | G_ISLAND)) {
1094 nx = x2; ny = y2; c++;
1095 }
1096 }
1097 if (c == 1) {
1098 assert(nx != -1 && ny != -1); /* paranoia */
1099 *nx_r = nx; *ny_r = ny;
1100 }
1101 return c;
1102 }
1103
1104 static int map_hasloops(game_state *state, int mark)
1105 {
1106 int x, y, ox, oy, nx = 0, ny = 0, loop = 0;
1107
1108 memcpy(state->scratch, state->grid, GRIDSZ(state));
1109
1110 /* This algorithm is actually broken; if there are two loops connected
1111 * by bridges this will also highlight bridges. The correct algorithm
1112 * uses a dsf and a two-pass edge-detection algorithm (see check_correct
1113 * in slant.c); this is BALGE for now, especially since disallow-loops
1114 * is not the default for this puzzle. If we want to fix this later then
1115 * copy the alg in slant.c to the empty statement in map_group. */
1116
1117 /* Remove all 1-degree edges. */
1118 for (y = 0; y < state->h; y++) {
1119 for (x = 0; x < state->w; x++) {
1120 ox = x; oy = y;
1121 while (grid_degree(state, ox, oy, &nx, &ny) == 1) {
1122 /*debug(("hasloops: removing 1-degree at (%d,%d).\n", ox, oy));*/
1123 SCRATCH(state, ox, oy) &= ~(G_LINE|G_ISLAND);
1124 ox = nx; oy = ny;
1125 }
1126 }
1127 }
1128 /* Mark any remaining edges as G_WARN, if required. */
1129 for (x = 0; x < state->w; x++) {
1130 for (y = 0; y < state->h; y++) {
1131 if (GRID(state,x,y) & G_ISLAND) continue;
1132
1133 if (SCRATCH(state, x, y) & G_LINE) {
1134 if (mark) {
1135 /*debug(("hasloops: marking loop square at (%d,%d).\n",
1136 x, y));*/
1137 GRID(state,x,y) |= G_WARN;
1138 loop = 1;
1139 } else
1140 return 1; /* short-cut as soon as we find one */
1141 } else {
1142 if (mark)
1143 GRID(state,x,y) &= ~G_WARN;
1144 }
1145 }
1146 }
1147 return loop;
1148 }
1149
1150 static void map_group(game_state *state)
1151 {
1152 int i, wh = state->w*state->h, d1, d2;
1153 int x, y, x2, y2;
1154 int *dsf = state->solver->dsf;
1155 struct island *is, *is_join;
1156
1157 /* Initialise dsf. */
1158 dsf_init(dsf, wh);
1159
1160 /* For each island, find connected islands right or down
1161 * and merge the dsf for the island squares as well as the
1162 * bridge squares. */
1163 for (x = 0; x < state->w; x++) {
1164 for (y = 0; y < state->h; y++) {
1165 GRID(state,x,y) &= ~(G_SWEEP|G_WARN); /* for group_full. */
1166
1167 is = INDEX(state, gridi, x, y);
1168 if (!is) continue;
1169 d1 = DINDEX(x,y);
1170 for (i = 0; i < is->adj.npoints; i++) {
1171 /* only want right/down */
1172 if (is->adj.points[i].dx == -1 ||
1173 is->adj.points[i].dy == -1) continue;
1174
1175 is_join = island_find_connection(is, i);
1176 if (!is_join) continue;
1177
1178 d2 = DINDEX(is_join->x, is_join->y);
1179 if (dsf_canonify(dsf,d1) == dsf_canonify(dsf,d2)) {
1180 ; /* we have a loop. See comment in map_hasloops. */
1181 /* However, we still want to merge all squares joining
1182 * this side-that-makes-a-loop. */
1183 }
1184 /* merge all squares between island 1 and island 2. */
1185 for (x2 = x; x2 <= is_join->x; x2++) {
1186 for (y2 = y; y2 <= is_join->y; y2++) {
1187 d2 = DINDEX(x2,y2);
1188 if (d1 != d2) dsf_merge(dsf,d1,d2);
1189 }
1190 }
1191 }
1192 }
1193 }
1194 }
1195
1196 static int map_group_check(game_state *state, int canon, int warn,
1197 int *nislands_r)
1198 {
1199 int *dsf = state->solver->dsf, nislands = 0;
1200 int x, y, i, allfull = 1;
1201 struct island *is;
1202
1203 for (i = 0; i < state->n_islands; i++) {
1204 is = &state->islands[i];
1205 if (dsf_canonify(dsf, DINDEX(is->x,is->y)) != canon) continue;
1206
1207 GRID(state, is->x, is->y) |= G_SWEEP;
1208 nislands++;
1209 if (island_countbridges(is) != is->count)
1210 allfull = 0;
1211 }
1212 if (warn && allfull && nislands != state->n_islands) {
1213 /* we're full and this island group isn't the whole set.
1214 * Mark all squares with this dsf canon as ERR. */
1215 for (x = 0; x < state->w; x++) {
1216 for (y = 0; y < state->h; y++) {
1217 if (dsf_canonify(dsf, DINDEX(x,y)) == canon) {
1218 GRID(state,x,y) |= G_WARN;
1219 }
1220 }
1221 }
1222
1223 }
1224 if (nislands_r) *nislands_r = nislands;
1225 return allfull;
1226 }
1227
1228 static int map_group_full(game_state *state, int *ngroups_r)
1229 {
1230 int *dsf = state->solver->dsf, ngroups = 0;
1231 int i, anyfull = 0;
1232 struct island *is;
1233
1234 /* NB this assumes map_group (or sth else) has cleared G_SWEEP. */
1235
1236 for (i = 0; i < state->n_islands; i++) {
1237 is = &state->islands[i];
1238 if (GRID(state,is->x,is->y) & G_SWEEP) continue;
1239
1240 ngroups++;
1241 if (map_group_check(state, dsf_canonify(dsf, DINDEX(is->x,is->y)),
1242 1, NULL))
1243 anyfull = 1;
1244 }
1245
1246 *ngroups_r = ngroups;
1247 return anyfull;
1248 }
1249
1250 static int map_check(game_state *state)
1251 {
1252 int ngroups;
1253
1254 /* Check for loops, if necessary. */
1255 if (!state->allowloops) {
1256 if (map_hasloops(state, 1))
1257 return 0;
1258 }
1259
1260 /* Place islands into island groups and check for early
1261 * satisfied-groups. */
1262 map_group(state); /* clears WARN and SWEEP */
1263 if (map_group_full(state, &ngroups)) {
1264 if (ngroups == 1) return 1;
1265 }
1266 return 0;
1267 }
1268
1269 static void map_clear(game_state *state)
1270 {
1271 int x, y;
1272
1273 for (x = 0; x < state->w; x++) {
1274 for (y = 0; y < state->h; y++) {
1275 /* clear most flags; might want to be slightly more careful here. */
1276 GRID(state,x,y) &= G_ISLAND;
1277 }
1278 }
1279 }
1280
1281 static void solve_join(struct island *is, int direction, int n, int is_max)
1282 {
1283 struct island *is_orth;
1284 int d1, d2, *dsf = is->state->solver->dsf;
1285 game_state *state = is->state; /* for DINDEX */
1286
1287 is_orth = INDEX(is->state, gridi,
1288 ISLAND_ORTHX(is, direction),
1289 ISLAND_ORTHY(is, direction));
1290 assert(is_orth);
1291 /*debug(("...joining (%d,%d) to (%d,%d) with %d bridge(s).\n",
1292 is->x, is->y, is_orth->x, is_orth->y, n));*/
1293 island_join(is, is_orth, n, is_max);
1294
1295 if (n > 0 && !is_max) {
1296 d1 = DINDEX(is->x, is->y);
1297 d2 = DINDEX(is_orth->x, is_orth->y);
1298 if (dsf_canonify(dsf, d1) != dsf_canonify(dsf, d2))
1299 dsf_merge(dsf, d1, d2);
1300 }
1301 }
1302
1303 static int solve_fillone(struct island *is)
1304 {
1305 int i, nadded = 0;
1306
1307 debug(("solve_fillone for island (%d,%d).\n", is->x, is->y));
1308
1309 for (i = 0; i < is->adj.npoints; i++) {
1310 if (island_isadj(is, i)) {
1311 if (island_hasbridge(is, i)) {
1312 /* already attached; do nothing. */;
1313 } else {
1314 solve_join(is, i, 1, 0);
1315 nadded++;
1316 }
1317 }
1318 }
1319 return nadded;
1320 }
1321
1322 static int solve_fill(struct island *is)
1323 {
1324 /* for each unmarked adjacent, make sure we convert every possible bridge
1325 * to a real one, and then work out the possibles afresh. */
1326 int i, nnew, ncurr, nadded = 0, missing;
1327
1328 debug(("solve_fill for island (%d,%d).\n", is->x, is->y));
1329
1330 missing = is->count - island_countbridges(is);
1331 if (missing < 0) return 0;
1332
1333 /* very like island_countspaces. */
1334 for (i = 0; i < is->adj.npoints; i++) {
1335 nnew = island_adjspace(is, 1, missing, i);
1336 if (nnew) {
1337 ncurr = GRIDCOUNT(is->state,
1338 is->adj.points[i].x, is->adj.points[i].y,
1339 is->adj.points[i].dx ? G_LINEH : G_LINEV);
1340
1341 solve_join(is, i, nnew + ncurr, 0);
1342 nadded += nnew;
1343 }
1344 }
1345 return nadded;
1346 }
1347
1348 static int solve_island_stage1(struct island *is, int *didsth_r)
1349 {
1350 int bridges = island_countbridges(is);
1351 int nspaces = island_countspaces(is, 1);
1352 int nadj = island_countadj(is);
1353 int didsth = 0;
1354
1355 assert(didsth_r);
1356
1357 /*debug(("island at (%d,%d) filled %d/%d (%d spc) nadj %d\n",
1358 is->x, is->y, bridges, is->count, nspaces, nadj));*/
1359 if (bridges > is->count) {
1360 /* We only ever add bridges when we're sure they fit, or that's
1361 * the only place they can go. If we've added bridges such that
1362 * another island has become wrong, the puzzle must not have had
1363 * a solution. */
1364 debug(("...island at (%d,%d) is overpopulated!\n", is->x, is->y));
1365 return 0;
1366 } else if (bridges == is->count) {
1367 /* This island is full. Make sure it's marked (and update
1368 * possibles if we did). */
1369 if (!(GRID(is->state, is->x, is->y) & G_MARK)) {
1370 debug(("...marking island (%d,%d) as full.\n", is->x, is->y));
1371 island_togglemark(is);
1372 didsth = 1;
1373 }
1374 } else if (GRID(is->state, is->x, is->y) & G_MARK) {
1375 debug(("...island (%d,%d) is marked but unfinished!\n",
1376 is->x, is->y));
1377 return 0; /* island has been marked unfinished; no solution from here. */
1378 } else {
1379 /* This is the interesting bit; we try and fill in more information
1380 * about this island. */
1381 if (is->count == bridges + nspaces) {
1382 if (solve_fill(is) > 0) didsth = 1;
1383 } else if (is->count > ((nadj-1) * is->state->maxb)) {
1384 /* must have at least one bridge in each possible direction. */
1385 if (solve_fillone(is) > 0) didsth = 1;
1386 }
1387 }
1388 if (didsth) {
1389 map_update_possibles(is->state);
1390 *didsth_r = 1;
1391 }
1392 return 1;
1393 }
1394
1395 /* returns non-zero if a new line here would cause a loop. */
1396 static int solve_island_checkloop(struct island *is, int direction)
1397 {
1398 struct island *is_orth;
1399 int *dsf = is->state->solver->dsf, d1, d2;
1400 game_state *state = is->state;
1401
1402 if (is->state->allowloops) return 0; /* don't care anyway */
1403 if (island_hasbridge(is, direction)) return 0; /* already has a bridge */
1404 if (island_isadj(is, direction) == 0) return 0; /* no adj island */
1405
1406 is_orth = INDEX(is->state, gridi,
1407 ISLAND_ORTHX(is,direction),
1408 ISLAND_ORTHY(is,direction));
1409 if (!is_orth) return 0;
1410
1411 d1 = DINDEX(is->x, is->y);
1412 d2 = DINDEX(is_orth->x, is_orth->y);
1413 if (dsf_canonify(dsf, d1) == dsf_canonify(dsf, d2)) {
1414 /* two islands are connected already; don't join them. */
1415 return 1;
1416 }
1417 return 0;
1418 }
1419
1420 static int solve_island_stage2(struct island *is, int *didsth_r)
1421 {
1422 int added = 0, removed = 0, navail = 0, nadj, i;
1423
1424 assert(didsth_r);
1425
1426 for (i = 0; i < is->adj.npoints; i++) {
1427 if (solve_island_checkloop(is, i)) {
1428 debug(("removing possible loop at (%d,%d) direction %d.\n",
1429 is->x, is->y, i));
1430 solve_join(is, i, -1, 0);
1431 map_update_possibles(is->state);
1432 removed = 1;
1433 } else {
1434 navail += island_isadj(is, i);
1435 /*debug(("stage2: navail for (%d,%d) direction (%d,%d) is %d.\n",
1436 is->x, is->y,
1437 is->adj.points[i].dx, is->adj.points[i].dy,
1438 island_isadj(is, i)));*/
1439 }
1440 }
1441
1442 /*debug(("island at (%d,%d) navail %d: checking...\n", is->x, is->y, navail));*/
1443
1444 for (i = 0; i < is->adj.npoints; i++) {
1445 if (!island_hasbridge(is, i)) {
1446 nadj = island_isadj(is, i);
1447 if (nadj > 0 && (navail - nadj) < is->count) {
1448 /* we couldn't now complete the island without at
1449 * least one bridge here; put it in. */
1450 /*debug(("nadj %d, navail %d, is->count %d.\n",
1451 nadj, navail, is->count));*/
1452 debug(("island at (%d,%d) direction (%d,%d) must have 1 bridge\n",
1453 is->x, is->y,
1454 is->adj.points[i].dx, is->adj.points[i].dy));
1455 solve_join(is, i, 1, 0);
1456 added = 1;
1457 /*debug_state(is->state);
1458 debug_possibles(is->state);*/
1459 }
1460 }
1461 }
1462 if (added) map_update_possibles(is->state);
1463 if (added || removed) *didsth_r = 1;
1464 return 1;
1465 }
1466
1467 static int solve_island_subgroup(struct island *is, int direction)
1468 {
1469 struct island *is_join;
1470 int nislands, *dsf = is->state->solver->dsf;
1471 game_state *state = is->state;
1472
1473 debug(("..checking subgroups.\n"));
1474
1475 /* if is isn't full, return 0. */
1476 if (island_countbridges(is) < is->count) {
1477 debug(("...orig island (%d,%d) not full.\n", is->x, is->y));
1478 return 0;
1479 }
1480
1481 if (direction >= 0) {
1482 is_join = INDEX(state, gridi,
1483 ISLAND_ORTHX(is, direction),
1484 ISLAND_ORTHY(is, direction));
1485 assert(is_join);
1486
1487 /* if is_join isn't full, return 0. */
1488 if (island_countbridges(is_join) < is_join->count) {
1489 debug(("...dest island (%d,%d) not full.\n",
1490 is_join->x, is_join->y));
1491 return 0;
1492 }
1493 }
1494
1495 /* Check group membership for is->dsf; if it's full return 1. */
1496 if (map_group_check(state, dsf_canonify(dsf, DINDEX(is->x,is->y)),
1497 0, &nislands)) {
1498 if (nislands < state->n_islands) {
1499 /* we have a full subgroup that isn't the whole set.
1500 * This isn't allowed. */
1501 debug(("island at (%d,%d) makes full subgroup, disallowing.\n",
1502 is->x, is->y));
1503 return 1;
1504 } else {
1505 debug(("...has finished puzzle.\n"));
1506 }
1507 }
1508 return 0;
1509 }
1510
1511 static int solve_island_impossible(game_state *state)
1512 {
1513 struct island *is;
1514 int i;
1515
1516 /* If any islands are impossible, return 1. */
1517 for (i = 0; i < state->n_islands; i++) {
1518 is = &state->islands[i];
1519 if (island_impossible(is, 0)) {
1520 debug(("island at (%d,%d) has become impossible, disallowing.\n",
1521 is->x, is->y));
1522 return 1;
1523 }
1524 }
1525 return 0;
1526 }
1527
1528 /* Bear in mind that this function is really rather inefficient. */
1529 static int solve_island_stage3(struct island *is, int *didsth_r)
1530 {
1531 int i, n, x, y, missing, spc, curr, maxb, didsth = 0;
1532 int wh = is->state->w * is->state->h;
1533 struct solver_state *ss = is->state->solver;
1534
1535 assert(didsth_r);
1536
1537 missing = is->count - island_countbridges(is);
1538 if (missing <= 0) return 1;
1539
1540 for (i = 0; i < is->adj.npoints; i++) {
1541 /* We only do right- or down-pointing bridges. */
1542 if (is->adj.points[i].dx == -1 ||
1543 is->adj.points[i].dy == -1) continue;
1544
1545 x = is->adj.points[i].x;
1546 y = is->adj.points[i].y;
1547 spc = island_adjspace(is, 1, missing, i);
1548 if (spc == 0) continue;
1549
1550 curr = GRIDCOUNT(is->state, x, y,
1551 is->adj.points[i].dx ? G_LINEH : G_LINEV);
1552 debug(("island at (%d,%d) s3, trying %d - %d bridges.\n",
1553 is->x, is->y, curr+1, curr+spc));
1554
1555 /* Now we know that this island could have more bridges,
1556 * to bring the total from curr+1 to curr+spc. */
1557 maxb = -1;
1558 /* We have to squirrel the dsf away and restore it afterwards;
1559 * it is additive only, and can't be removed from. */
1560 memcpy(ss->tmpdsf, ss->dsf, wh*sizeof(int));
1561 for (n = curr+1; n <= curr+spc; n++) {
1562 solve_join(is, i, n, 0);
1563 map_update_possibles(is->state);
1564
1565 if (solve_island_subgroup(is, i) ||
1566 solve_island_impossible(is->state)) {
1567 maxb = n-1;
1568 debug(("island at (%d,%d) d(%d,%d) new max of %d bridges:\n",
1569 is->x, is->y,
1570 is->adj.points[i].dx, is->adj.points[i].dy,
1571 maxb));
1572 break;
1573 }
1574 }
1575 solve_join(is, i, curr, 0); /* put back to before. */
1576 memcpy(ss->dsf, ss->tmpdsf, wh*sizeof(int));
1577
1578 if (maxb != -1) {
1579 /*debug_state(is->state);*/
1580 if (maxb == 0) {
1581 debug(("...adding NOLINE.\n"));
1582 solve_join(is, i, -1, 0); /* we can't have any bridges here. */
1583 } else {
1584 debug(("...setting maximum\n"));
1585 solve_join(is, i, maxb, 1);
1586 }
1587 didsth = 1;
1588 }
1589 map_update_possibles(is->state);
1590 }
1591
1592 for (i = 0; i < is->adj.npoints; i++) {
1593 /*
1594 * Now check to see if any currently empty direction must have
1595 * at least one bridge in order to avoid forming an isolated
1596 * subgraph. This differs from the check above in that it
1597 * considers multiple target islands. For example:
1598 *
1599 * 2 2 4
1600 * 1 3 2
1601 * 3
1602 * 4
1603 *
1604 * The example on the left can be handled by the above loop:
1605 * it will observe that connecting the central 2 twice to the
1606 * left would form an isolated subgraph, and hence it will
1607 * restrict that 2 to at most one bridge in that direction.
1608 * But the example on the right won't be handled by that loop,
1609 * because the deduction requires us to imagine connecting the
1610 * 3 to _both_ the 1 and 2 at once to form an isolated
1611 * subgraph.
1612 *
1613 * This pass is necessary _as well_ as the above one, because
1614 * neither can do the other's job. In the left one,
1615 * restricting the direction which _would_ cause trouble can
1616 * be done even if it's not yet clear which of the remaining
1617 * directions has to have a compensatory bridge; whereas the
1618 * pass below that can handle the right-hand example does need
1619 * to know what direction to point the necessary bridge in.
1620 *
1621 * Neither pass can handle the most general case, in which we
1622 * observe that an arbitrary subset of an island's neighbours
1623 * would form an isolated subgraph with it if it connected
1624 * maximally to them, and hence that at least one bridge must
1625 * point to some neighbour outside that subset but we don't
1626 * know which neighbour. To handle that, we'd have to have a
1627 * richer data format for the solver, which could cope with
1628 * recording the idea that at least one of two edges must have
1629 * a bridge.
1630 */
1631 int got = 0;
1632 int before[4];
1633 int j;
1634
1635 spc = island_adjspace(is, 1, missing, i);
1636 if (spc == 0) continue;
1637
1638 for (j = 0; j < is->adj.npoints; j++)
1639 before[j] = GRIDCOUNT(is->state,
1640 is->adj.points[j].x,
1641 is->adj.points[j].y,
1642 is->adj.points[j].dx ? G_LINEH : G_LINEV);
1643 if (before[i] != 0) continue; /* this idea is pointless otherwise */
1644
1645 memcpy(ss->tmpdsf, ss->dsf, wh*sizeof(int));
1646
1647 for (j = 0; j < is->adj.npoints; j++) {
1648 spc = island_adjspace(is, 1, missing, j);
1649 if (spc == 0) continue;
1650 if (j == i) continue;
1651 solve_join(is, j, before[j] + spc, 0);
1652 }
1653 map_update_possibles(is->state);
1654
1655 if (solve_island_subgroup(is, -1))
1656 got = 1;
1657
1658 for (j = 0; j < is->adj.npoints; j++)
1659 solve_join(is, j, before[j], 0);
1660 memcpy(ss->dsf, ss->tmpdsf, wh*sizeof(int));
1661
1662 if (got) {
1663 debug(("island at (%d,%d) must connect in direction (%d,%d) to"
1664 " avoid full subgroup.\n",
1665 is->x, is->y, is->adj.points[i].dx, is->adj.points[i].dy));
1666 solve_join(is, i, 1, 0);
1667 didsth = 1;
1668 }
1669
1670 map_update_possibles(is->state);
1671 }
1672
1673 if (didsth) *didsth_r = didsth;
1674 return 1;
1675 }
1676
1677 #define CONTINUE_IF_FULL do { \
1678 if (GRID(state, is->x, is->y) & G_MARK) { \
1679 /* island full, don't try fixing it */ \
1680 continue; \
1681 } } while(0)
1682
1683 static int solve_sub(game_state *state, int difficulty, int depth)
1684 {
1685 struct island *is;
1686 int i, didsth;
1687
1688 while (1) {
1689 didsth = 0;
1690
1691 /* First island iteration: things we can work out by looking at
1692 * properties of the island as a whole. */
1693 for (i = 0; i < state->n_islands; i++) {
1694 is = &state->islands[i];
1695 if (!solve_island_stage1(is, &didsth)) return 0;
1696 }
1697 if (didsth) continue;
1698 else if (difficulty < 1) break;
1699
1700 /* Second island iteration: thing we can work out by looking at
1701 * properties of individual island connections. */
1702 for (i = 0; i < state->n_islands; i++) {
1703 is = &state->islands[i];
1704 CONTINUE_IF_FULL;
1705 if (!solve_island_stage2(is, &didsth)) return 0;
1706 }
1707 if (didsth) continue;
1708 else if (difficulty < 2) break;
1709
1710 /* Third island iteration: things we can only work out by looking
1711 * at groups of islands. */
1712 for (i = 0; i < state->n_islands; i++) {
1713 is = &state->islands[i];
1714 if (!solve_island_stage3(is, &didsth)) return 0;
1715 }
1716 if (didsth) continue;
1717 else if (difficulty < 3) break;
1718
1719 /* If we can be bothered, write a recursive solver to finish here. */
1720 break;
1721 }
1722 if (map_check(state)) return 1; /* solved it */
1723 return 0;
1724 }
1725
1726 static void solve_for_hint(game_state *state)
1727 {
1728 map_group(state);
1729 solve_sub(state, 10, 0);
1730 }
1731
1732 static int solve_from_scratch(game_state *state, int difficulty)
1733 {
1734 map_clear(state);
1735 map_group(state);
1736 map_update_possibles(state);
1737 return solve_sub(state, difficulty, 0);
1738 }
1739
1740 /* --- New game functions --- */
1741
1742 static game_state *new_state(game_params *params)
1743 {
1744 game_state *ret = snew(game_state);
1745 int wh = params->w * params->h, i;
1746
1747 ret->w = params->w;
1748 ret->h = params->h;
1749 ret->allowloops = params->allowloops;
1750 ret->maxb = params->maxb;
1751 ret->params = *params;
1752
1753 ret->grid = snewn(wh, grid_type);
1754 memset(ret->grid, 0, GRIDSZ(ret));
1755 ret->scratch = snewn(wh, grid_type);
1756 memset(ret->scratch, 0, GRIDSZ(ret));
1757
1758 ret->wha = snewn(wh*N_WH_ARRAYS, char);
1759 memset(ret->wha, 0, wh*N_WH_ARRAYS*sizeof(char));
1760
1761 ret->possv = ret->wha;
1762 ret->possh = ret->wha + wh;
1763 ret->lines = ret->wha + wh*2;
1764 ret->maxv = ret->wha + wh*3;
1765 ret->maxh = ret->wha + wh*4;
1766
1767 memset(ret->maxv, ret->maxb, wh*sizeof(char));
1768 memset(ret->maxh, ret->maxb, wh*sizeof(char));
1769
1770 ret->islands = NULL;
1771 ret->n_islands = 0;
1772 ret->n_islands_alloc = 0;
1773
1774 ret->gridi = snewn(wh, struct island *);
1775 for (i = 0; i < wh; i++) ret->gridi[i] = NULL;
1776
1777 ret->solved = ret->completed = 0;
1778
1779 ret->solver = snew(struct solver_state);
1780 ret->solver->dsf = snew_dsf(wh);
1781 ret->solver->tmpdsf = snewn(wh, int);
1782
1783 ret->solver->refcount = 1;
1784
1785 return ret;
1786 }
1787
1788 static game_state *dup_game(game_state *state)
1789 {
1790 game_state *ret = snew(game_state);
1791 int wh = state->w*state->h;
1792
1793 ret->w = state->w;
1794 ret->h = state->h;
1795 ret->allowloops = state->allowloops;
1796 ret->maxb = state->maxb;
1797 ret->params = state->params;
1798
1799 ret->grid = snewn(wh, grid_type);
1800 memcpy(ret->grid, state->grid, GRIDSZ(ret));
1801 ret->scratch = snewn(wh, grid_type);
1802 memcpy(ret->scratch, state->scratch, GRIDSZ(ret));
1803
1804 ret->wha = snewn(wh*N_WH_ARRAYS, char);
1805 memcpy(ret->wha, state->wha, wh*N_WH_ARRAYS*sizeof(char));
1806
1807 ret->possv = ret->wha;
1808 ret->possh = ret->wha + wh;
1809 ret->lines = ret->wha + wh*2;
1810 ret->maxv = ret->wha + wh*3;
1811 ret->maxh = ret->wha + wh*4;
1812
1813 ret->islands = snewn(state->n_islands, struct island);
1814 memcpy(ret->islands, state->islands, state->n_islands * sizeof(struct island));
1815 ret->n_islands = ret->n_islands_alloc = state->n_islands;
1816
1817 ret->gridi = snewn(wh, struct island *);
1818 fixup_islands_for_realloc(ret);
1819
1820 ret->solved = state->solved;
1821 ret->completed = state->completed;
1822
1823 ret->solver = state->solver;
1824 ret->solver->refcount++;
1825
1826 return ret;
1827 }
1828
1829 static void free_game(game_state *state)
1830 {
1831 if (--state->solver->refcount <= 0) {
1832 sfree(state->solver->dsf);
1833 sfree(state->solver->tmpdsf);
1834 sfree(state->solver);
1835 }
1836
1837 sfree(state->islands);
1838 sfree(state->gridi);
1839
1840 sfree(state->wha);
1841
1842 sfree(state->scratch);
1843 sfree(state->grid);
1844 sfree(state);
1845 }
1846
1847 #define MAX_NEWISLAND_TRIES 50
1848 #define MIN_SENSIBLE_ISLANDS 3
1849
1850 #define ORDER(a,b) do { if (a < b) { int tmp=a; int a=b; int b=tmp; } } while(0)
1851
1852 static char *new_game_desc(game_params *params, random_state *rs,
1853 char **aux, int interactive)
1854 {
1855 game_state *tobuild = NULL;
1856 int i, j, wh = params->w * params->h, x, y, dx, dy;
1857 int minx, miny, maxx, maxy, joinx, joiny, newx, newy, diffx, diffy;
1858 int ni_req = max((params->islands * wh) / 100, MIN_SENSIBLE_ISLANDS), ni_curr, ni_bad;
1859 struct island *is, *is2;
1860 char *ret;
1861 unsigned int echeck;
1862
1863 /* pick a first island position randomly. */
1864 generate:
1865 if (tobuild) free_game(tobuild);
1866 tobuild = new_state(params);
1867
1868 x = random_upto(rs, params->w);
1869 y = random_upto(rs, params->h);
1870 island_add(tobuild, x, y, 0);
1871 ni_curr = 1;
1872 ni_bad = 0;
1873 debug(("Created initial island at (%d,%d).\n", x, y));
1874
1875 while (ni_curr < ni_req) {
1876 /* Pick a random island to try and extend from. */
1877 i = random_upto(rs, tobuild->n_islands);
1878 is = &tobuild->islands[i];
1879
1880 /* Pick a random direction to extend in. */
1881 j = random_upto(rs, is->adj.npoints);
1882 dx = is->adj.points[j].x - is->x;
1883 dy = is->adj.points[j].y - is->y;
1884
1885 /* Find out limits of where we could put a new island. */
1886 joinx = joiny = -1;
1887 minx = is->x + 2*dx; miny = is->y + 2*dy; /* closest is 2 units away. */
1888 x = is->x+dx; y = is->y+dy;
1889 if (GRID(tobuild,x,y) & (G_LINEV|G_LINEH)) {
1890 /* already a line next to the island, continue. */
1891 goto bad;
1892 }
1893 while (1) {
1894 if (x < 0 || x >= params->w || y < 0 || y >= params->h) {
1895 /* got past the edge; put a possible at the island
1896 * and exit. */
1897 maxx = x-dx; maxy = y-dy;
1898 goto foundmax;
1899 }
1900 if (GRID(tobuild,x,y) & G_ISLAND) {
1901 /* could join up to an existing island... */
1902 joinx = x; joiny = y;
1903 /* ... or make a new one 2 spaces away. */
1904 maxx = x - 2*dx; maxy = y - 2*dy;
1905 goto foundmax;
1906 } else if (GRID(tobuild,x,y) & (G_LINEV|G_LINEH)) {
1907 /* could make a new one 1 space away from the line. */
1908 maxx = x - dx; maxy = y - dy;
1909 goto foundmax;
1910 }
1911 x += dx; y += dy;
1912 }
1913
1914 foundmax:
1915 debug(("Island at (%d,%d) with d(%d,%d) has new positions "
1916 "(%d,%d) -> (%d,%d), join (%d,%d).\n",
1917 is->x, is->y, dx, dy, minx, miny, maxx, maxy, joinx, joiny));
1918 /* Now we know where we could either put a new island
1919 * (between min and max), or (if loops are allowed) could join on
1920 * to an existing island (at join). */
1921 if (params->allowloops && joinx != -1 && joiny != -1) {
1922 if (random_upto(rs, 100) < (unsigned long)params->expansion) {
1923 is2 = INDEX(tobuild, gridi, joinx, joiny);
1924 debug(("Joining island at (%d,%d) to (%d,%d).\n",
1925 is->x, is->y, is2->x, is2->y));
1926 goto join;
1927 }
1928 }
1929 diffx = (maxx - minx) * dx;
1930 diffy = (maxy - miny) * dy;
1931 if (diffx < 0 || diffy < 0) goto bad;
1932 if (random_upto(rs,100) < (unsigned long)params->expansion) {
1933 newx = maxx; newy = maxy;
1934 debug(("Creating new island at (%d,%d) (expanded).\n", newx, newy));
1935 } else {
1936 newx = minx + random_upto(rs,diffx+1)*dx;
1937 newy = miny + random_upto(rs,diffy+1)*dy;
1938 debug(("Creating new island at (%d,%d).\n", newx, newy));
1939 }
1940 /* check we're not next to island in the other orthogonal direction. */
1941 if ((INGRID(tobuild,newx+dy,newy+dx) && (GRID(tobuild,newx+dy,newy+dx) & G_ISLAND)) ||
1942 (INGRID(tobuild,newx-dy,newy-dx) && (GRID(tobuild,newx-dy,newy-dx) & G_ISLAND))) {
1943 debug(("New location is adjacent to island, skipping.\n"));
1944 goto bad;
1945 }
1946 is2 = island_add(tobuild, newx, newy, 0);
1947 /* Must get is again at this point; the array might have
1948 * been realloced by island_add... */
1949 is = &tobuild->islands[i]; /* ...but order will not change. */
1950
1951 ni_curr++; ni_bad = 0;
1952 join:
1953 island_join(is, is2, random_upto(rs, tobuild->maxb)+1, 0);
1954 debug_state(tobuild);
1955 continue;
1956
1957 bad:
1958 ni_bad++;
1959 if (ni_bad > MAX_NEWISLAND_TRIES) {
1960 debug(("Unable to create any new islands after %d tries; "
1961 "created %d [%d%%] (instead of %d [%d%%] requested).\n",
1962 MAX_NEWISLAND_TRIES,
1963 ni_curr, ni_curr * 100 / wh,
1964 ni_req, ni_req * 100 / wh));
1965 goto generated;
1966 }
1967 }
1968
1969 generated:
1970 if (ni_curr == 1) {
1971 debug(("Only generated one island (!), retrying.\n"));
1972 goto generate;
1973 }
1974 /* Check we have at least one island on each extremity of the grid. */
1975 echeck = 0;
1976 for (x = 0; x < params->w; x++) {
1977 if (INDEX(tobuild, gridi, x, 0)) echeck |= 1;
1978 if (INDEX(tobuild, gridi, x, params->h-1)) echeck |= 2;
1979 }
1980 for (y = 0; y < params->h; y++) {
1981 if (INDEX(tobuild, gridi, 0, y)) echeck |= 4;
1982 if (INDEX(tobuild, gridi, params->w-1, y)) echeck |= 8;
1983 }
1984 if (echeck != 15) {
1985 debug(("Generated grid doesn't fill to sides, retrying.\n"));
1986 goto generate;
1987 }
1988
1989 map_count(tobuild);
1990 map_find_orthogonal(tobuild);
1991
1992 if (params->difficulty > 0) {
1993 if ((ni_curr > MIN_SENSIBLE_ISLANDS) &&
1994 (solve_from_scratch(tobuild, params->difficulty-1) > 0)) {
1995 debug(("Grid is solvable at difficulty %d (too easy); retrying.\n",
1996 params->difficulty-1));
1997 goto generate;
1998 }
1999 }
2000
2001 if (solve_from_scratch(tobuild, params->difficulty) == 0) {
2002 debug(("Grid not solvable at difficulty %d, (too hard); retrying.\n",
2003 params->difficulty));
2004 goto generate;
2005 }
2006
2007 /* ... tobuild is now solved. We rely on this making the diff for aux. */
2008 debug_state(tobuild);
2009 ret = encode_game(tobuild);
2010 {
2011 game_state *clean = dup_game(tobuild);
2012 map_clear(clean);
2013 map_update_possibles(clean);
2014 *aux = game_state_diff(clean, tobuild);
2015 free_game(clean);
2016 }
2017 free_game(tobuild);
2018
2019 return ret;
2020 }
2021
2022 static char *validate_desc(game_params *params, char *desc)
2023 {
2024 int i, wh = params->w * params->h;
2025
2026 for (i = 0; i < wh; i++) {
2027 if (*desc >= '1' && *desc <= '9')
2028 /* OK */;
2029 else if (*desc >= 'a' && *desc <= 'z')
2030 i += *desc - 'a'; /* plus the i++ */
2031 else if (*desc >= 'A' && *desc <= 'G')
2032 /* OK */;
2033 else if (*desc == 'V' || *desc == 'W' ||
2034 *desc == 'X' || *desc == 'Y' ||
2035 *desc == 'H' || *desc == 'I' ||
2036 *desc == 'J' || *desc == 'K')
2037 /* OK */;
2038 else if (!*desc)
2039 return "Game description shorter than expected";
2040 else
2041 return "Game description containers unexpected character";
2042 desc++;
2043 }
2044 if (*desc || i > wh)
2045 return "Game description longer than expected";
2046
2047 return NULL;
2048 }
2049
2050 static game_state *new_game_sub(game_params *params, char *desc)
2051 {
2052 game_state *state = new_state(params);
2053 int x, y, run = 0;
2054
2055 debug(("new_game[_sub]: desc = '%s'.\n", desc));
2056
2057 for (y = 0; y < params->h; y++) {
2058 for (x = 0; x < params->w; x++) {
2059 char c = '\0';
2060
2061 if (run == 0) {
2062 c = *desc++;
2063 assert(c != 'S');
2064 if (c >= 'a' && c <= 'z')
2065 run = c - 'a' + 1;
2066 }
2067
2068 if (run > 0) {
2069 c = 'S';
2070 run--;
2071 }
2072
2073 switch (c) {
2074 case '1': case '2': case '3': case '4':
2075 case '5': case '6': case '7': case '8': case '9':
2076 island_add(state, x, y, (c - '0'));
2077 break;
2078
2079 case 'A': case 'B': case 'C': case 'D':
2080 case 'E': case 'F': case 'G':
2081 island_add(state, x, y, (c - 'A') + 10);
2082 break;
2083
2084 case 'S':
2085 /* empty square */
2086 break;
2087
2088 default:
2089 assert(!"Malformed desc.");
2090 break;
2091 }
2092 }
2093 }
2094 if (*desc) assert(!"Over-long desc.");
2095
2096 map_find_orthogonal(state);
2097 map_update_possibles(state);
2098
2099 return state;
2100 }
2101
2102 static game_state *new_game(midend *me, game_params *params, char *desc)
2103 {
2104 return new_game_sub(params, desc);
2105 }
2106
2107 struct game_ui {
2108 int dragx_src, dragy_src; /* source; -1 means no drag */
2109 int dragx_dst, dragy_dst; /* src's closest orth island. */
2110 grid_type todraw;
2111 int dragging, drag_is_noline, nlines;
2112
2113 int cur_x, cur_y, cur_visible; /* cursor position */
2114 int show_hints;
2115 };
2116
2117 static char *ui_cancel_drag(game_ui *ui)
2118 {
2119 ui->dragx_src = ui->dragy_src = -1;
2120 ui->dragx_dst = ui->dragy_dst = -1;
2121 ui->dragging = 0;
2122 return "";
2123 }
2124
2125 static game_ui *new_ui(game_state *state)
2126 {
2127 game_ui *ui = snew(game_ui);
2128 ui_cancel_drag(ui);
2129 ui->cur_x = state->islands[0].x;
2130 ui->cur_y = state->islands[0].y;
2131 ui->cur_visible = 0;
2132 ui->show_hints = 0;
2133 return ui;
2134 }
2135
2136 static void free_ui(game_ui *ui)
2137 {
2138 sfree(ui);
2139 }
2140
2141 static char *encode_ui(game_ui *ui)
2142 {
2143 return NULL;
2144 }
2145
2146 static void decode_ui(game_ui *ui, char *encoding)
2147 {
2148 }
2149
2150 static void game_changed_state(game_ui *ui, game_state *oldstate,
2151 game_state *newstate)
2152 {
2153 }
2154
2155 struct game_drawstate {
2156 int tilesize;
2157 int w, h;
2158 grid_type *grid;
2159 int *lv, *lh;
2160 int started, dragging;
2161 int show_hints;
2162 };
2163
2164 static char *update_drag_dst(game_state *state, game_ui *ui, game_drawstate *ds,
2165 int nx, int ny)
2166 {
2167 int ox, oy, dx, dy, i, currl, maxb;
2168 struct island *is;
2169 grid_type gtype, ntype, mtype, curr;
2170
2171 if (ui->dragx_src == -1 || ui->dragy_src == -1) return NULL;
2172
2173 ui->dragx_dst = -1;
2174 ui->dragy_dst = -1;
2175
2176 /* work out which of the four directions we're closest to... */
2177 ox = COORD(ui->dragx_src) + TILE_SIZE/2;
2178 oy = COORD(ui->dragy_src) + TILE_SIZE/2;
2179
2180 if (abs(nx-ox) < abs(ny-oy)) {
2181 dx = 0;
2182 dy = (ny-oy) < 0 ? -1 : 1;
2183 gtype = G_LINEV; ntype = G_NOLINEV; mtype = G_MARKV;
2184 maxb = INDEX(state, maxv, ui->dragx_src+dx, ui->dragy_src+dy);
2185 } else {
2186 dy = 0;
2187 dx = (nx-ox) < 0 ? -1 : 1;
2188 gtype = G_LINEH; ntype = G_NOLINEH; mtype = G_MARKH;
2189 maxb = INDEX(state, maxh, ui->dragx_src+dx, ui->dragy_src+dy);
2190 }
2191 if (ui->drag_is_noline) {
2192 ui->todraw = ntype;
2193 } else {
2194 curr = GRID(state, ui->dragx_src+dx, ui->dragy_src+dy);
2195 currl = INDEX(state, lines, ui->dragx_src+dx, ui->dragy_src+dy);
2196
2197 if (curr & gtype) {
2198 if (currl == maxb) {
2199 ui->todraw = 0;
2200 ui->nlines = 0;
2201 } else {
2202 ui->todraw = gtype;
2203 ui->nlines = currl + 1;
2204 }
2205 } else {
2206 ui->todraw = gtype;
2207 ui->nlines = 1;
2208 }
2209 }
2210
2211 /* ... and see if there's an island off in that direction. */
2212 is = INDEX(state, gridi, ui->dragx_src, ui->dragy_src);
2213 for (i = 0; i < is->adj.npoints; i++) {
2214 if (is->adj.points[i].off == 0) continue;
2215 curr = GRID(state, is->x+dx, is->y+dy);
2216 if (curr & mtype) continue; /* don't allow changes to marked lines. */
2217 if (ui->drag_is_noline) {
2218 if (curr & gtype) continue; /* no no-line where already a line */
2219 } else {
2220 if (POSSIBLES(state, dx, is->x+dx, is->y+dy) == 0) continue; /* no line if !possible. */
2221 if (curr & ntype) continue; /* can't have a bridge where there's a no-line. */
2222 }
2223
2224 if (is->adj.points[i].dx == dx &&
2225 is->adj.points[i].dy == dy) {
2226 ui->dragx_dst = ISLAND_ORTHX(is,i);
2227 ui->dragy_dst = ISLAND_ORTHY(is,i);
2228 }
2229 }
2230 /*debug(("update_drag src (%d,%d) d(%d,%d) dst (%d,%d)\n",
2231 ui->dragx_src, ui->dragy_src, dx, dy,
2232 ui->dragx_dst, ui->dragy_dst));*/
2233 return "";
2234 }
2235
2236 static char *finish_drag(game_state *state, game_ui *ui)
2237 {
2238 char buf[80];
2239
2240 if (ui->dragx_src == -1 || ui->dragy_src == -1)
2241 return NULL;
2242 if (ui->dragx_dst == -1 || ui->dragy_dst == -1)
2243 return ui_cancel_drag(ui);
2244
2245 if (ui->drag_is_noline) {
2246 sprintf(buf, "N%d,%d,%d,%d",
2247 ui->dragx_src, ui->dragy_src,
2248 ui->dragx_dst, ui->dragy_dst);
2249 } else {
2250 sprintf(buf, "L%d,%d,%d,%d,%d",
2251 ui->dragx_src, ui->dragy_src,
2252 ui->dragx_dst, ui->dragy_dst, ui->nlines);
2253 }
2254
2255 ui_cancel_drag(ui);
2256
2257 return dupstr(buf);
2258 }
2259
2260 static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
2261 int x, int y, int button)
2262 {
2263 int gx = FROMCOORD(x), gy = FROMCOORD(y);
2264 char buf[80], *ret;
2265 grid_type ggrid = INGRID(state,gx,gy) ? GRID(state,gx,gy) : 0;
2266
2267 if (button == LEFT_BUTTON || button == RIGHT_BUTTON) {
2268 if (!INGRID(state, gx, gy)) return NULL;
2269 ui->cur_visible = 0;
2270 if ((ggrid & G_ISLAND) && !(ggrid & G_MARK)) {
2271 ui->dragx_src = gx;
2272 ui->dragy_src = gy;
2273 return "";
2274 } else
2275 return ui_cancel_drag(ui);
2276 } else if (button == LEFT_DRAG || button == RIGHT_DRAG) {
2277 if (gx != ui->dragx_src || gy != ui->dragy_src) {
2278 ui->dragging = 1;
2279 ui->drag_is_noline = (button == RIGHT_DRAG) ? 1 : 0;
2280 return update_drag_dst(state, ui, ds, x, y);
2281 } else {
2282 /* cancel a drag when we go back to the starting point */
2283 ui->dragx_dst = -1;
2284 ui->dragy_dst = -1;
2285 return "";
2286 }
2287 } else if (button == LEFT_RELEASE || button == RIGHT_RELEASE) {
2288 if (ui->dragging) {
2289 return finish_drag(state, ui);
2290 } else {
2291 ui_cancel_drag(ui);
2292 if (!INGRID(state, gx, gy)) return NULL;
2293 if (!(GRID(state, gx, gy) & G_ISLAND)) return NULL;
2294 sprintf(buf, "M%d,%d", gx, gy);
2295 return dupstr(buf);
2296 }
2297 } else if (button == 'h' || button == 'H') {
2298 game_state *solved = dup_game(state);
2299 solve_for_hint(solved);
2300 ret = game_state_diff(state, solved);
2301 free_game(solved);
2302 return ret;
2303 } else if (IS_CURSOR_MOVE(button)) {
2304 ui->cur_visible = 1;
2305 if (ui->dragging) {
2306 int nx = ui->cur_x, ny = ui->cur_y;
2307
2308 move_cursor(button, &nx, &ny, state->w, state->h, 0);
2309 update_drag_dst(state, ui, ds,
2310 COORD(nx)+TILE_SIZE/2,
2311 COORD(ny)+TILE_SIZE/2);
2312 return finish_drag(state, ui);
2313 } else {
2314 int dx = (button == CURSOR_RIGHT) ? +1 : (button == CURSOR_LEFT) ? -1 : 0;
2315 int dy = (button == CURSOR_DOWN) ? +1 : (button == CURSOR_UP) ? -1 : 0;
2316 int dorthx = 1 - abs(dx), dorthy = 1 - abs(dy);
2317 int dir, orth, nx = x, ny = y;
2318
2319 /* 'orthorder' is a tweak to ensure that if you press RIGHT and
2320 * happen to move upwards, when you press LEFT you then tend
2321 * downwards (rather than upwards again). */
2322 int orthorder = (button == CURSOR_LEFT || button == CURSOR_UP) ? 1 : -1;
2323
2324 /* This attempts to find an island in the direction you're
2325 * asking for, broadly speaking. If you ask to go right, for
2326 * example, it'll look for islands to the right and slightly
2327 * above or below your current horiz. position, allowing
2328 * further above/below the further away it searches. */
2329
2330 assert(GRID(state, ui->cur_x, ui->cur_y) & G_ISLAND);
2331 /* currently this is depth-first (so orthogonally-adjacent
2332 * islands across the other side of the grid will be moved to
2333 * before closer islands slightly offset). Swap the order of
2334 * these two loops to change to breadth-first search. */
2335 for (orth = 0; ; orth++) {
2336 int oingrid = 0;
2337 for (dir = 1; ; dir++) {
2338 int dingrid = 0;
2339
2340 if (orth > dir) continue; /* only search in cone outwards. */
2341
2342 nx = ui->cur_x + dir*dx + orth*dorthx*orthorder;
2343 ny = ui->cur_y + dir*dy + orth*dorthy*orthorder;
2344 if (INGRID(state, nx, ny)) {
2345 dingrid = oingrid = 1;
2346 if (GRID(state, nx, ny) & G_ISLAND) goto found;
2347 }
2348
2349 nx = ui->cur_x + dir*dx - orth*dorthx*orthorder;
2350 ny = ui->cur_y + dir*dy - orth*dorthy*orthorder;
2351 if (INGRID(state, nx, ny)) {
2352 dingrid = oingrid = 1;
2353 if (GRID(state, nx, ny) & G_ISLAND) goto found;
2354 }
2355
2356 if (!dingrid) break;
2357 }
2358 if (!oingrid) return "";
2359 }
2360 /* not reached */
2361
2362 found:
2363 ui->cur_x = nx;
2364 ui->cur_y = ny;
2365 return "";
2366 }
2367 } else if (IS_CURSOR_SELECT(button)) {
2368 if (!ui->cur_visible) {
2369 ui->cur_visible = 1;
2370 return "";
2371 }
2372 if (ui->dragging) {
2373 ui_cancel_drag(ui);
2374 if (ui->dragx_dst == -1 && ui->dragy_dst == -1) {
2375 sprintf(buf, "M%d,%d", ui->cur_x, ui->cur_y);
2376 return dupstr(buf);
2377 } else
2378 return "";
2379 } else {
2380 grid_type v = GRID(state, ui->cur_x, ui->cur_y);
2381 if (v & G_ISLAND) {
2382 ui->dragging = 1;
2383 ui->dragx_src = ui->cur_x;
2384 ui->dragy_src = ui->cur_y;
2385 ui->dragx_dst = ui->dragy_dst = -1;
2386 ui->drag_is_noline = (button == CURSOR_SELECT2) ? 1 : 0;
2387 return "";
2388 }
2389 }
2390 } else if (button == 'g' || button == 'G') {
2391 ui->show_hints = 1 - ui->show_hints;
2392 return "";
2393 }
2394
2395 return NULL;
2396 }
2397
2398 static game_state *execute_move(game_state *state, char *move)
2399 {
2400 game_state *ret = dup_game(state);
2401 int x1, y1, x2, y2, nl, n;
2402 struct island *is1, *is2;
2403 char c;
2404
2405 debug(("execute_move: %s\n", move));
2406
2407 if (!*move) goto badmove;
2408 while (*move) {
2409 c = *move++;
2410 if (c == 'S') {
2411 ret->solved = TRUE;
2412 n = 0;
2413 } else if (c == 'L') {
2414 if (sscanf(move, "%d,%d,%d,%d,%d%n",
2415 &x1, &y1, &x2, &y2, &nl, &n) != 5)
2416 goto badmove;
2417 if (!INGRID(ret, x1, y1) || !INGRID(ret, x2, y2))
2418 goto badmove;
2419 is1 = INDEX(ret, gridi, x1, y1);
2420 is2 = INDEX(ret, gridi, x2, y2);
2421 if (!is1 || !is2) goto badmove;
2422 if (nl < 0 || nl > state->maxb) goto badmove;
2423 island_join(is1, is2, nl, 0);
2424 } else if (c == 'N') {
2425 if (sscanf(move, "%d,%d,%d,%d%n",
2426 &x1, &y1, &x2, &y2, &n) != 4)
2427 goto badmove;
2428 if (!INGRID(ret, x1, y1) || !INGRID(ret, x2, y2))
2429 goto badmove;
2430 is1 = INDEX(ret, gridi, x1, y1);
2431 is2 = INDEX(ret, gridi, x2, y2);
2432 if (!is1 || !is2) goto badmove;
2433 island_join(is1, is2, -1, 0);
2434 } else if (c == 'M') {
2435 if (sscanf(move, "%d,%d%n",
2436 &x1, &y1, &n) != 2)
2437 goto badmove;
2438 if (!INGRID(ret, x1, y1))
2439 goto badmove;
2440 is1 = INDEX(ret, gridi, x1, y1);
2441 if (!is1) goto badmove;
2442 island_togglemark(is1);
2443 } else
2444 goto badmove;
2445
2446 move += n;
2447 if (*move == ';')
2448 move++;
2449 else if (*move) goto badmove;
2450 }
2451
2452 map_update_possibles(ret);
2453 if (map_check(ret)) {
2454 debug(("Game completed.\n"));
2455 ret->completed = 1;
2456 }
2457 return ret;
2458
2459 badmove:
2460 debug(("%s: unrecognised move.\n", move));
2461 free_game(ret);
2462 return NULL;
2463 }
2464
2465 static char *solve_game(game_state *state, game_state *currstate,
2466 char *aux, char **error)
2467 {
2468 char *ret;
2469 game_state *solved;
2470
2471 if (aux) {
2472 debug(("solve_game: aux = %s\n", aux));
2473 solved = execute_move(state, aux);
2474 if (!solved) {
2475 *error = "Generated aux string is not a valid move (!).";
2476 return NULL;
2477 }
2478 } else {
2479 solved = dup_game(state);
2480 /* solve with max strength... */
2481 if (solve_from_scratch(solved, 10) == 0) {
2482 free_game(solved);
2483 *error = "Game does not have a (non-recursive) solution.";
2484 return NULL;
2485 }
2486 }
2487 ret = game_state_diff(currstate, solved);
2488 free_game(solved);
2489 debug(("solve_game: ret = %s\n", ret));
2490 return ret;
2491 }
2492
2493 /* ----------------------------------------------------------------------
2494 * Drawing routines.
2495 */
2496
2497 static void game_compute_size(game_params *params, int tilesize,
2498 int *x, int *y)
2499 {
2500 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
2501 struct { int tilesize; } ads, *ds = &ads;
2502 ads.tilesize = tilesize;
2503
2504 *x = TILE_SIZE * params->w + 2 * BORDER;
2505 *y = TILE_SIZE * params->h + 2 * BORDER;
2506 }
2507
2508 static void game_set_size(drawing *dr, game_drawstate *ds,
2509 game_params *params, int tilesize)
2510 {
2511 ds->tilesize = tilesize;
2512 }
2513
2514 static float *game_colours(frontend *fe, int *ncolours)
2515 {
2516 float *ret = snewn(3 * NCOLOURS, float);
2517 int i;
2518
2519 game_mkhighlight(fe, ret, COL_BACKGROUND, COL_HIGHLIGHT, COL_LOWLIGHT);
2520
2521 for (i = 0; i < 3; i++) {
2522 ret[COL_FOREGROUND * 3 + i] = 0.0F;
2523 ret[COL_HINT * 3 + i] = ret[COL_LOWLIGHT * 3 + i];
2524 ret[COL_GRID * 3 + i] =
2525 (ret[COL_HINT * 3 + i] + ret[COL_BACKGROUND * 3 + i]) * 0.5F;
2526 ret[COL_MARK * 3 + i] = ret[COL_HIGHLIGHT * 3 + i];
2527 }
2528 ret[COL_WARNING * 3 + 0] = 1.0F;
2529 ret[COL_WARNING * 3 + 1] = 0.25F;
2530 ret[COL_WARNING * 3 + 2] = 0.25F;
2531
2532 ret[COL_SELECTED * 3 + 0] = 0.25F;
2533 ret[COL_SELECTED * 3 + 1] = 1.00F;
2534 ret[COL_SELECTED * 3 + 2] = 0.25F;
2535
2536 ret[COL_CURSOR * 3 + 0] = min(ret[COL_BACKGROUND * 3 + 0] * 1.4F, 1.0F);
2537 ret[COL_CURSOR * 3 + 1] = ret[COL_BACKGROUND * 3 + 1] * 0.8F;
2538 ret[COL_CURSOR * 3 + 2] = ret[COL_BACKGROUND * 3 + 2] * 0.8F;
2539
2540 *ncolours = NCOLOURS;
2541 return ret;
2542 }
2543
2544 static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
2545 {
2546 struct game_drawstate *ds = snew(struct game_drawstate);
2547 int wh = state->w*state->h;
2548
2549 ds->tilesize = 0;
2550 ds->w = state->w;
2551 ds->h = state->h;
2552 ds->started = 0;
2553 ds->grid = snewn(wh, grid_type);
2554 memset(ds->grid, -1, wh*sizeof(grid_type));
2555 ds->lv = snewn(wh, int);
2556 ds->lh = snewn(wh, int);
2557 memset(ds->lv, 0, wh*sizeof(int));
2558 memset(ds->lh, 0, wh*sizeof(int));
2559 ds->show_hints = 0;
2560
2561 return ds;
2562 }
2563
2564 static void game_free_drawstate(drawing *dr, game_drawstate *ds)
2565 {
2566 sfree(ds->lv);
2567 sfree(ds->lh);
2568 sfree(ds->grid);
2569 sfree(ds);
2570 }
2571
2572 #define LINE_WIDTH (TILE_SIZE/8)
2573 #define TS8(x) (((x)*TILE_SIZE)/8)
2574
2575 #define OFFSET(thing) ((TILE_SIZE/2) - ((thing)/2))
2576
2577 static void lines_vert(drawing *dr, game_drawstate *ds,
2578 int ox, int oy, int lv, int col, grid_type v)
2579 {
2580 int lw = LINE_WIDTH, gw = LINE_WIDTH, bw, i, loff;
2581 while ((bw = lw * lv + gw * (lv+1)) > TILE_SIZE)
2582 gw--;
2583 loff = OFFSET(bw);
2584 if (v & G_MARKV)
2585 draw_rect(dr, ox + loff, oy, bw, TILE_SIZE, COL_MARK);
2586 for (i = 0; i < lv; i++, loff += lw + gw)
2587 draw_rect(dr, ox + loff + gw, oy, lw, TILE_SIZE, col);
2588 }
2589
2590 static void lines_horiz(drawing *dr, game_drawstate *ds,
2591 int ox, int oy, int lh, int col, grid_type v)
2592 {
2593 int lw = LINE_WIDTH, gw = LINE_WIDTH, bw, i, loff;
2594 while ((bw = lw * lh + gw * (lh+1)) > TILE_SIZE)
2595 gw--;
2596 loff = OFFSET(bw);
2597 if (v & G_MARKH)
2598 draw_rect(dr, ox, oy + loff, TILE_SIZE, bw, COL_MARK);
2599 for (i = 0; i < lh; i++, loff += lw + gw)
2600 draw_rect(dr, ox, oy + loff + gw, TILE_SIZE, lw, col);
2601 }
2602
2603 static void line_cross(drawing *dr, game_drawstate *ds,
2604 int ox, int oy, int col, grid_type v)
2605 {
2606 int off = TS8(2);
2607 draw_line(dr, ox, oy, ox+off, oy+off, col);
2608 draw_line(dr, ox+off, oy, ox, oy+off, col);
2609 }
2610
2611 static int between_island(game_state *state, int sx, int sy, int dx, int dy)
2612 {
2613 int x = sx - dx, y = sy - dy;
2614
2615 while (INGRID(state, x, y)) {
2616 if (GRID(state, x, y) & G_ISLAND) goto found;
2617 x -= dx; y -= dy;
2618 }
2619 return 0;
2620 found:
2621 x = sx + dx, y = sy + dy;
2622 while (INGRID(state, x, y)) {
2623 if (GRID(state, x, y) & G_ISLAND) return 1;
2624 x += dx; y += dy;
2625 }
2626 return 0;
2627 }
2628
2629 static void lines_lvlh(game_state *state, game_ui *ui, int x, int y, grid_type v,
2630 int *lv_r, int *lh_r)
2631 {
2632 int lh = 0, lv = 0;
2633
2634 if (v & G_LINEV) lv = INDEX(state,lines,x,y);
2635 if (v & G_LINEH) lh = INDEX(state,lines,x,y);
2636
2637 if (ui->show_hints) {
2638 if (between_island(state, x, y, 0, 1) && !lv) lv = 1;
2639 if (between_island(state, x, y, 1, 0) && !lh) lh = 1;
2640 }
2641 /*debug(("lvlh: (%d,%d) v 0x%x lv %d lh %d.\n", x, y, v, lv, lh));*/
2642 *lv_r = lv; *lh_r = lh;
2643 }
2644
2645 static void dsf_debug_draw(drawing *dr,
2646 game_state *state, game_drawstate *ds,
2647 int x, int y)
2648 {
2649 #ifdef DRAW_DSF
2650 int ts = TILE_SIZE/2;
2651 int ox = COORD(x) + ts/2, oy = COORD(y) + ts/2;
2652 char str[32];
2653
2654 sprintf(str, "%d", dsf_canonify(state->solver->dsf, DINDEX(x,y)));
2655 draw_text(dr, ox, oy, FONT_VARIABLE, ts,
2656 ALIGN_VCENTRE | ALIGN_HCENTRE, COL_WARNING, str);
2657 #endif
2658 }
2659
2660 static void lines_redraw(drawing *dr,
2661 game_state *state, game_drawstate *ds, game_ui *ui,
2662 int x, int y, grid_type v, int lv, int lh)
2663 {
2664 int ox = COORD(x), oy = COORD(y);
2665 int vcol = (v & G_FLASH) ? COL_HIGHLIGHT :
2666 (v & G_WARN) ? COL_WARNING : COL_FOREGROUND, hcol = vcol;
2667 grid_type todraw = v & G_NOLINE;
2668
2669 if (v & G_ISSEL) {
2670 if (ui->todraw & G_FLAGSH) hcol = COL_SELECTED;
2671 if (ui->todraw & G_FLAGSV) vcol = COL_SELECTED;
2672 todraw |= ui->todraw;
2673 }
2674
2675 draw_rect(dr, ox, oy, TILE_SIZE, TILE_SIZE, COL_BACKGROUND);
2676 /*if (v & G_CURSOR)
2677 draw_rect(dr, ox+TILE_SIZE/4, oy+TILE_SIZE/4,
2678 TILE_SIZE/2, TILE_SIZE/2, COL_CURSOR);*/
2679
2680
2681 if (ui->show_hints) {
2682 if (between_island(state, x, y, 0, 1) && !(v & G_LINEV))
2683 vcol = COL_HINT;
2684 if (between_island(state, x, y, 1, 0) && !(v & G_LINEH))
2685 hcol = COL_HINT;
2686 }
2687 #ifdef DRAW_GRID
2688 draw_rect_outline(dr, ox, oy, TILE_SIZE, TILE_SIZE, COL_GRID);
2689 #endif
2690
2691 if (todraw & G_NOLINEV) {
2692 line_cross(dr, ds, ox + TS8(3), oy + TS8(1), vcol, todraw);
2693 line_cross(dr, ds, ox + TS8(3), oy + TS8(5), vcol, todraw);
2694 }
2695 if (todraw & G_NOLINEH) {
2696 line_cross(dr, ds, ox + TS8(1), oy + TS8(3), hcol, todraw);
2697 line_cross(dr, ds, ox + TS8(5), oy + TS8(3), hcol, todraw);
2698 }
2699 /* if we're drawing a real line and a hint, make sure we draw the real
2700 * line on top. */
2701 if (lv && vcol == COL_HINT) lines_vert(dr, ds, ox, oy, lv, vcol, v);
2702 if (lh) lines_horiz(dr, ds, ox, oy, lh, hcol, v);
2703 if (lv && vcol != COL_HINT) lines_vert(dr, ds, ox, oy, lv, vcol, v);
2704
2705 dsf_debug_draw(dr, state, ds, x, y);
2706 draw_update(dr, ox, oy, TILE_SIZE, TILE_SIZE);
2707 }
2708
2709 #define ISLAND_RADIUS ((TILE_SIZE*12)/20)
2710 #define ISLAND_NUMSIZE(is) \
2711 (((is)->count < 10) ? (TILE_SIZE*7)/10 : (TILE_SIZE*5)/10)
2712
2713 static void island_redraw(drawing *dr,
2714 game_state *state, game_drawstate *ds,
2715 struct island *is, grid_type v)
2716 {
2717 /* These overlap the edges of their squares, which is why they're drawn later.
2718 * We know they can't overlap each other because they're not allowed within 2
2719 * squares of each other. */
2720 int half = TILE_SIZE/2;
2721 int ox = COORD(is->x) + half, oy = COORD(is->y) + half;
2722 int orad = ISLAND_RADIUS, irad = orad - LINE_WIDTH;
2723 int updatesz = orad*2+1;
2724 int tcol = (v & G_FLASH) ? COL_HIGHLIGHT :
2725 (v & G_WARN) ? COL_WARNING : COL_FOREGROUND;
2726 int col = (v & G_ISSEL) ? COL_SELECTED : tcol;
2727 int bg = (v & G_CURSOR) ? COL_CURSOR :
2728 (v & G_MARK) ? COL_MARK : COL_BACKGROUND;
2729 char str[32];
2730
2731 #ifdef DRAW_GRID
2732 draw_rect_outline(dr, COORD(is->x), COORD(is->y),
2733 TILE_SIZE, TILE_SIZE, COL_GRID);
2734 #endif
2735
2736 /* draw a thick circle */
2737 draw_circle(dr, ox, oy, orad, col, col);
2738 draw_circle(dr, ox, oy, irad, bg, bg);
2739
2740 sprintf(str, "%d", is->count);
2741 draw_text(dr, ox, oy, FONT_VARIABLE, ISLAND_NUMSIZE(is),
2742 ALIGN_VCENTRE | ALIGN_HCENTRE, tcol, str);
2743
2744 dsf_debug_draw(dr, state, ds, is->x, is->y);
2745 draw_update(dr, ox - orad, oy - orad, updatesz, updatesz);
2746 }
2747
2748 static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
2749 game_state *state, int dir, game_ui *ui,
2750 float animtime, float flashtime)
2751 {
2752 int x, y, force = 0, i, j, redraw, lv, lh;
2753 grid_type v, dsv, flash = 0;
2754 struct island *is, *is_drag_src = NULL, *is_drag_dst = NULL;
2755
2756 if (flashtime) {
2757 int f = (int)(flashtime * 5 / FLASH_TIME);
2758 if (f == 1 || f == 3) flash = G_FLASH;
2759 }
2760
2761 /* Clear screen, if required. */
2762 if (!ds->started) {
2763 draw_rect(dr, 0, 0,
2764 TILE_SIZE * ds->w + 2 * BORDER,
2765 TILE_SIZE * ds->h + 2 * BORDER, COL_BACKGROUND);
2766 #ifdef DRAW_GRID
2767 draw_rect_outline(dr,
2768 COORD(0)-1, COORD(0)-1,
2769 TILE_SIZE * ds->w + 2, TILE_SIZE * ds->h + 2,
2770 COL_GRID);
2771 #endif
2772 draw_update(dr, 0, 0,
2773 TILE_SIZE * ds->w + 2 * BORDER,
2774 TILE_SIZE * ds->h + 2 * BORDER);
2775 ds->started = 1;
2776 force = 1;
2777 }
2778
2779 if (ui->dragx_src != -1 && ui->dragy_src != -1) {
2780 ds->dragging = 1;
2781 is_drag_src = INDEX(state, gridi, ui->dragx_src, ui->dragy_src);
2782 assert(is_drag_src);
2783 if (ui->dragx_dst != -1 && ui->dragy_dst != -1) {
2784 is_drag_dst = INDEX(state, gridi, ui->dragx_dst, ui->dragy_dst);
2785 assert(is_drag_dst);
2786 }
2787 } else
2788 ds->dragging = 0;
2789
2790 if (ui->show_hints != ds->show_hints) {
2791 force = 1;
2792 ds->show_hints = ui->show_hints;
2793 }
2794
2795 /* Draw all lines (and hints, if we want), but *not* islands. */
2796 for (x = 0; x < ds->w; x++) {
2797 for (y = 0; y < ds->h; y++) {
2798 v = GRID(state, x, y) | flash;
2799 dsv = GRID(ds,x,y) & ~G_REDRAW;
2800
2801 if (v & G_ISLAND) continue;
2802
2803 if (is_drag_dst) {
2804 if (WITHIN(x,is_drag_src->x, is_drag_dst->x) &&
2805 WITHIN(y,is_drag_src->y, is_drag_dst->y))
2806 v |= G_ISSEL;
2807 }
2808 lines_lvlh(state, ui, x, y, v, &lv, &lh);
2809
2810 /*if (ui->cur_visible && ui->cur_x == x && ui->cur_y == y)
2811 v |= G_CURSOR;*/
2812
2813 if (v != dsv ||
2814 lv != INDEX(ds,lv,x,y) ||
2815 lh != INDEX(ds,lh,x,y) ||
2816 force) {
2817 GRID(ds, x, y) = v | G_REDRAW;
2818 INDEX(ds,lv,x,y) = lv;
2819 INDEX(ds,lh,x,y) = lh;
2820 lines_redraw(dr, state, ds, ui, x, y, v, lv, lh);
2821 } else
2822 GRID(ds,x,y) &= ~G_REDRAW;
2823 }
2824 }
2825
2826 /* Draw islands. */
2827 for (i = 0; i < state->n_islands; i++) {
2828 is = &state->islands[i];
2829 v = GRID(state, is->x, is->y) | flash;
2830
2831 redraw = 0;
2832 for (j = 0; j < is->adj.npoints; j++) {
2833 if (GRID(ds,is->adj.points[j].x,is->adj.points[j].y) & G_REDRAW) {
2834 redraw = 1;
2835 }
2836 }
2837
2838 if (is_drag_src) {
2839 if (is == is_drag_src)
2840 v |= G_ISSEL;
2841 else if (is_drag_dst && is == is_drag_dst)
2842 v |= G_ISSEL;
2843 }
2844
2845 if (island_impossible(is, v & G_MARK)) v |= G_WARN;
2846
2847 if (ui->cur_visible && ui->cur_x == is->x && ui->cur_y == is->y)
2848 v |= G_CURSOR;
2849
2850 if ((v != GRID(ds, is->x, is->y)) || force || redraw) {
2851 GRID(ds,is->x,is->y) = v;
2852 island_redraw(dr, state, ds, is, v);
2853 }
2854 }
2855 }
2856
2857 static float game_anim_length(game_state *oldstate, game_state *newstate,
2858 int dir, game_ui *ui)
2859 {
2860 return 0.0F;
2861 }
2862
2863 static float game_flash_length(game_state *oldstate, game_state *newstate,
2864 int dir, game_ui *ui)
2865 {
2866 if (!oldstate->completed && newstate->completed &&
2867 !oldstate->solved && !newstate->solved)
2868 return FLASH_TIME;
2869
2870 return 0.0F;
2871 }
2872
2873 static int game_status(game_state *state)
2874 {
2875 return state->completed ? +1 : 0;
2876 }
2877
2878 static int game_timing_state(game_state *state, game_ui *ui)
2879 {
2880 return TRUE;
2881 }
2882
2883 static void game_print_size(game_params *params, float *x, float *y)
2884 {
2885 int pw, ph;
2886
2887 /* 10mm squares by default. */
2888 game_compute_size(params, 1000, &pw, &ph);
2889 *x = pw / 100.0F;
2890 *y = ph / 100.0F;
2891 }
2892
2893 static void game_print(drawing *dr, game_state *state, int ts)
2894 {
2895 int ink = print_mono_colour(dr, 0);
2896 int paper = print_mono_colour(dr, 1);
2897 int x, y, cx, cy, i, nl;
2898 int loff;
2899 grid_type grid;
2900
2901 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
2902 game_drawstate ads, *ds = &ads;
2903 ads.tilesize = ts;
2904
2905 /* I don't think this wants a border. */
2906
2907 /* Bridges */
2908 loff = ts / (8 * sqrt((state->params.maxb - 1)));
2909 print_line_width(dr, ts / 12);
2910 for (x = 0; x < state->w; x++) {
2911 for (y = 0; y < state->h; y++) {
2912 cx = COORD(x); cy = COORD(y);
2913 grid = GRID(state,x,y);
2914 nl = INDEX(state,lines,x,y);
2915
2916 if (grid & G_ISLAND) continue;
2917 if (grid & G_LINEV) {
2918 for (i = 0; i < nl; i++)
2919 draw_line(dr, cx+ts/2+(2*i-nl+1)*loff, cy,
2920 cx+ts/2+(2*i-nl+1)*loff, cy+ts, ink);
2921 }
2922 if (grid & G_LINEH) {
2923 for (i = 0; i < nl; i++)
2924 draw_line(dr, cx, cy+ts/2+(2*i-nl+1)*loff,
2925 cx+ts, cy+ts/2+(2*i-nl+1)*loff, ink);
2926 }
2927 }
2928 }
2929
2930 /* Islands */
2931 for (i = 0; i < state->n_islands; i++) {
2932 char str[32];
2933 struct island *is = &state->islands[i];
2934 grid = GRID(state, is->x, is->y);
2935 cx = COORD(is->x) + ts/2;
2936 cy = COORD(is->y) + ts/2;
2937
2938 draw_circle(dr, cx, cy, ISLAND_RADIUS, paper, ink);
2939
2940 sprintf(str, "%d", is->count);
2941 draw_text(dr, cx, cy, FONT_VARIABLE, ISLAND_NUMSIZE(is),
2942 ALIGN_VCENTRE | ALIGN_HCENTRE, ink, str);
2943 }
2944 }
2945
2946 #ifdef COMBINED
2947 #define thegame bridges
2948 #endif
2949
2950 const struct game thegame = {
2951 "Bridges", "games.bridges", "bridges",
2952 default_params,
2953 game_fetch_preset,
2954 decode_params,
2955 encode_params,
2956 free_params,
2957 dup_params,
2958 TRUE, game_configure, custom_params,
2959 validate_params,
2960 new_game_desc,
2961 validate_desc,
2962 new_game,
2963 dup_game,
2964 free_game,
2965 TRUE, solve_game,
2966 TRUE, game_can_format_as_text_now, game_text_format,
2967 new_ui,
2968 free_ui,
2969 encode_ui,
2970 decode_ui,
2971 game_changed_state,
2972 interpret_move,
2973 execute_move,
2974 PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
2975 game_colours,
2976 game_new_drawstate,
2977 game_free_drawstate,
2978 game_redraw,
2979 game_anim_length,
2980 game_flash_length,
2981 game_status,
2982 TRUE, FALSE, game_print_size, game_print,
2983 FALSE, /* wants_statusbar */
2984 FALSE, game_timing_state,
2985 REQUIRE_RBUTTON, /* flags */
2986 };
2987
2988 /* vim: set shiftwidth=4 tabstop=8: */