More defensive-coding fixes from James H.
[sgt/puzzles] / loopy.c
1 /*
2 * loopy.c:
3 *
4 * An implementation of the Nikoli game 'Loop the loop'.
5 * (c) Mike Pinna, 2005, 2006
6 * Substantially rewritten to allowing for more general types of grid.
7 * (c) Lambros Lambrou 2008
8 *
9 * vim: set shiftwidth=4 :set textwidth=80:
10 */
11
12 /*
13 * Possible future solver enhancements:
14 *
15 * - There's an interesting deductive technique which makes use
16 * of topology rather than just graph theory. Each _face_ in
17 * the grid is either inside or outside the loop; you can tell
18 * that two faces are on the same side of the loop if they're
19 * separated by a LINE_NO (or, more generally, by a path
20 * crossing no LINE_UNKNOWNs and an even number of LINE_YESes),
21 * and on the opposite side of the loop if they're separated by
22 * a LINE_YES (or an odd number of LINE_YESes and no
23 * LINE_UNKNOWNs). Oh, and any face separated from the outside
24 * of the grid by a LINE_YES or a LINE_NO is on the inside or
25 * outside respectively. So if you can track this for all
26 * faces, you figure out the state of the line between a pair
27 * once their relative insideness is known.
28 * + The way I envisage this working is simply to keep an edsf
29 * of all _faces_, which indicates whether they're on
30 * opposite sides of the loop from one another. We also
31 * include a special entry in the edsf for the infinite
32 * exterior "face".
33 * + So, the simple way to do this is to just go through the
34 * edges: every time we see an edge in a state other than
35 * LINE_UNKNOWN which separates two faces that aren't in the
36 * same edsf class, we can rectify that by merging the
37 * classes. Then, conversely, an edge in LINE_UNKNOWN state
38 * which separates two faces that _are_ in the same edsf
39 * class can immediately have its state determined.
40 * + But you can go one better, if you're prepared to loop
41 * over all _pairs_ of edges. Suppose we have edges A and B,
42 * which respectively separate faces A1,A2 and B1,B2.
43 * Suppose that A,B are in the same edge-edsf class and that
44 * A1,B1 (wlog) are in the same face-edsf class; then we can
45 * immediately place A2,B2 into the same face-edsf class (as
46 * each other, not as A1 and A2) one way round or the other.
47 * And conversely again, if A1,B1 are in the same face-edsf
48 * class and so are A2,B2, then we can put A,B into the same
49 * face-edsf class.
50 * * Of course, this deduction requires a quadratic-time
51 * loop over all pairs of edges in the grid, so it should
52 * be reserved until there's nothing easier left to be
53 * done.
54 *
55 * - The generalised grid support has made me (SGT) notice a
56 * possible extension to the loop-avoidance code. When you have
57 * a path of connected edges such that no other edges at all
58 * are incident on any vertex in the middle of the path - or,
59 * alternatively, such that any such edges are already known to
60 * be LINE_NO - then you know those edges are either all
61 * LINE_YES or all LINE_NO. Hence you can mentally merge the
62 * entire path into a single long curly edge for the purposes
63 * of loop avoidance, and look directly at whether or not the
64 * extreme endpoints of the path are connected by some other
65 * route. I find this coming up fairly often when I play on the
66 * octagonal grid setting, so it might be worth implementing in
67 * the solver.
68 *
69 * - (Just a speed optimisation.) Consider some todo list queue where every
70 * time we modify something we mark it for consideration by other bits of
71 * the solver, to save iteration over things that have already been done.
72 */
73
74 #include <stdio.h>
75 #include <stdlib.h>
76 #include <stddef.h>
77 #include <string.h>
78 #include <assert.h>
79 #include <ctype.h>
80 #include <math.h>
81
82 #include "puzzles.h"
83 #include "tree234.h"
84 #include "grid.h"
85
86 /* Debugging options */
87
88 /*
89 #define DEBUG_CACHES
90 #define SHOW_WORKING
91 #define DEBUG_DLINES
92 */
93
94 /* ----------------------------------------------------------------------
95 * Struct, enum and function declarations
96 */
97
98 enum {
99 COL_BACKGROUND,
100 COL_FOREGROUND,
101 COL_LINEUNKNOWN,
102 COL_HIGHLIGHT,
103 COL_MISTAKE,
104 COL_SATISFIED,
105 COL_FAINT,
106 NCOLOURS
107 };
108
109 struct game_state {
110 grid *game_grid;
111
112 /* Put -1 in a face that doesn't get a clue */
113 signed char *clues;
114
115 /* Array of line states, to store whether each line is
116 * YES, NO or UNKNOWN */
117 char *lines;
118
119 unsigned char *line_errors;
120
121 int solved;
122 int cheated;
123
124 /* Used in game_text_format(), so that it knows what type of
125 * grid it's trying to render as ASCII text. */
126 int grid_type;
127 };
128
129 enum solver_status {
130 SOLVER_SOLVED, /* This is the only solution the solver could find */
131 SOLVER_MISTAKE, /* This is definitely not a solution */
132 SOLVER_AMBIGUOUS, /* This _might_ be an ambiguous solution */
133 SOLVER_INCOMPLETE /* This may be a partial solution */
134 };
135
136 /* ------ Solver state ------ */
137 typedef struct solver_state {
138 game_state *state;
139 enum solver_status solver_status;
140 /* NB looplen is the number of dots that are joined together at a point, ie a
141 * looplen of 1 means there are no lines to a particular dot */
142 int *looplen;
143
144 /* Difficulty level of solver. Used by solver functions that want to
145 * vary their behaviour depending on the requested difficulty level. */
146 int diff;
147
148 /* caches */
149 char *dot_yes_count;
150 char *dot_no_count;
151 char *face_yes_count;
152 char *face_no_count;
153 char *dot_solved, *face_solved;
154 int *dotdsf;
155
156 /* Information for Normal level deductions:
157 * For each dline, store a bitmask for whether we know:
158 * (bit 0) at least one is YES
159 * (bit 1) at most one is YES */
160 char *dlines;
161
162 /* Hard level information */
163 int *linedsf;
164 } solver_state;
165
166 /*
167 * Difficulty levels. I do some macro ickery here to ensure that my
168 * enum and the various forms of my name list always match up.
169 */
170
171 #define DIFFLIST(A) \
172 A(EASY,Easy,e) \
173 A(NORMAL,Normal,n) \
174 A(TRICKY,Tricky,t) \
175 A(HARD,Hard,h)
176 #define ENUM(upper,title,lower) DIFF_ ## upper,
177 #define TITLE(upper,title,lower) #title,
178 #define ENCODE(upper,title,lower) #lower
179 #define CONFIG(upper,title,lower) ":" #title
180 enum { DIFFLIST(ENUM) DIFF_MAX };
181 static char const *const diffnames[] = { DIFFLIST(TITLE) };
182 static char const diffchars[] = DIFFLIST(ENCODE);
183 #define DIFFCONFIG DIFFLIST(CONFIG)
184
185 /*
186 * Solver routines, sorted roughly in order of computational cost.
187 * The solver will run the faster deductions first, and slower deductions are
188 * only invoked when the faster deductions are unable to make progress.
189 * Each function is associated with a difficulty level, so that the generated
190 * puzzles are solvable by applying only the functions with the chosen
191 * difficulty level or lower.
192 */
193 #define SOLVERLIST(A) \
194 A(trivial_deductions, DIFF_EASY) \
195 A(dline_deductions, DIFF_NORMAL) \
196 A(linedsf_deductions, DIFF_HARD) \
197 A(loop_deductions, DIFF_EASY)
198 #define SOLVER_FN_DECL(fn,diff) static int fn(solver_state *);
199 #define SOLVER_FN(fn,diff) &fn,
200 #define SOLVER_DIFF(fn,diff) diff,
201 SOLVERLIST(SOLVER_FN_DECL)
202 static int (*(solver_fns[]))(solver_state *) = { SOLVERLIST(SOLVER_FN) };
203 static int const solver_diffs[] = { SOLVERLIST(SOLVER_DIFF) };
204 const int NUM_SOLVERS = sizeof(solver_diffs)/sizeof(*solver_diffs);
205
206 struct game_params {
207 int w, h;
208 int diff;
209 int type;
210
211 /* Grid generation is expensive, so keep a (ref-counted) reference to the
212 * grid for these parameters, and only generate when required. */
213 grid *game_grid;
214 };
215
216 /* line_drawstate is the same as line_state, but with the extra ERROR
217 * possibility. The drawing code copies line_state to line_drawstate,
218 * except in the case that the line is an error. */
219 enum line_state { LINE_YES, LINE_UNKNOWN, LINE_NO };
220 enum line_drawstate { DS_LINE_YES, DS_LINE_UNKNOWN,
221 DS_LINE_NO, DS_LINE_ERROR };
222
223 #define OPP(line_state) \
224 (2 - line_state)
225
226
227 struct game_drawstate {
228 int started;
229 int tilesize;
230 int flashing;
231 char *lines;
232 char *clue_error;
233 char *clue_satisfied;
234 };
235
236 static char *validate_desc(game_params *params, char *desc);
237 static int dot_order(const game_state* state, int i, char line_type);
238 static int face_order(const game_state* state, int i, char line_type);
239 static solver_state *solve_game_rec(const solver_state *sstate);
240
241 #ifdef DEBUG_CACHES
242 static void check_caches(const solver_state* sstate);
243 #else
244 #define check_caches(s)
245 #endif
246
247 /* ------- List of grid generators ------- */
248 #define GRIDLIST(A) \
249 A(Squares,grid_new_square,3,3) \
250 A(Triangular,grid_new_triangular,3,3) \
251 A(Honeycomb,grid_new_honeycomb,3,3) \
252 A(Snub-Square,grid_new_snubsquare,3,3) \
253 A(Cairo,grid_new_cairo,3,4) \
254 A(Great-Hexagonal,grid_new_greathexagonal,3,3) \
255 A(Octagonal,grid_new_octagonal,3,3) \
256 A(Kites,grid_new_kites,3,3)
257
258 #define GRID_NAME(title,fn,amin,omin) #title,
259 #define GRID_CONFIG(title,fn,amin,omin) ":" #title
260 #define GRID_FN(title,fn,amin,omin) &fn,
261 #define GRID_SIZES(title,fn,amin,omin) \
262 {amin, omin, \
263 "Width and height for this grid type must both be at least " #amin, \
264 "At least one of width and height for this grid type must be at least " #omin,},
265 static char const *const gridnames[] = { GRIDLIST(GRID_NAME) };
266 #define GRID_CONFIGS GRIDLIST(GRID_CONFIG)
267 static grid * (*(grid_fns[]))(int w, int h) = { GRIDLIST(GRID_FN) };
268 #define NUM_GRID_TYPES (sizeof(grid_fns) / sizeof(grid_fns[0]))
269 static const struct {
270 int amin, omin;
271 char *aerr, *oerr;
272 } grid_size_limits[] = { GRIDLIST(GRID_SIZES) };
273
274 /* Generates a (dynamically allocated) new grid, according to the
275 * type and size requested in params. Does nothing if the grid is already
276 * generated. The allocated grid is owned by the params object, and will be
277 * freed in free_params(). */
278 static void params_generate_grid(game_params *params)
279 {
280 if (!params->game_grid) {
281 params->game_grid = grid_fns[params->type](params->w, params->h);
282 }
283 }
284
285 /* ----------------------------------------------------------------------
286 * Preprocessor magic
287 */
288
289 /* General constants */
290 #define PREFERRED_TILE_SIZE 32
291 #define BORDER(tilesize) ((tilesize) / 2)
292 #define FLASH_TIME 0.5F
293
294 #define BIT_SET(field, bit) ((field) & (1<<(bit)))
295
296 #define SET_BIT(field, bit) (BIT_SET(field, bit) ? FALSE : \
297 ((field) |= (1<<(bit)), TRUE))
298
299 #define CLEAR_BIT(field, bit) (BIT_SET(field, bit) ? \
300 ((field) &= ~(1<<(bit)), TRUE) : FALSE)
301
302 #define CLUE2CHAR(c) \
303 ((c < 0) ? ' ' : c + '0')
304
305 /* ----------------------------------------------------------------------
306 * General struct manipulation and other straightforward code
307 */
308
309 static game_state *dup_game(game_state *state)
310 {
311 game_state *ret = snew(game_state);
312
313 ret->game_grid = state->game_grid;
314 ret->game_grid->refcount++;
315
316 ret->solved = state->solved;
317 ret->cheated = state->cheated;
318
319 ret->clues = snewn(state->game_grid->num_faces, signed char);
320 memcpy(ret->clues, state->clues, state->game_grid->num_faces);
321
322 ret->lines = snewn(state->game_grid->num_edges, char);
323 memcpy(ret->lines, state->lines, state->game_grid->num_edges);
324
325 ret->line_errors = snewn(state->game_grid->num_edges, unsigned char);
326 memcpy(ret->line_errors, state->line_errors, state->game_grid->num_edges);
327
328 ret->grid_type = state->grid_type;
329 return ret;
330 }
331
332 static void free_game(game_state *state)
333 {
334 if (state) {
335 grid_free(state->game_grid);
336 sfree(state->clues);
337 sfree(state->lines);
338 sfree(state->line_errors);
339 sfree(state);
340 }
341 }
342
343 static solver_state *new_solver_state(game_state *state, int diff) {
344 int i;
345 int num_dots = state->game_grid->num_dots;
346 int num_faces = state->game_grid->num_faces;
347 int num_edges = state->game_grid->num_edges;
348 solver_state *ret = snew(solver_state);
349
350 ret->state = dup_game(state);
351
352 ret->solver_status = SOLVER_INCOMPLETE;
353 ret->diff = diff;
354
355 ret->dotdsf = snew_dsf(num_dots);
356 ret->looplen = snewn(num_dots, int);
357
358 for (i = 0; i < num_dots; i++) {
359 ret->looplen[i] = 1;
360 }
361
362 ret->dot_solved = snewn(num_dots, char);
363 ret->face_solved = snewn(num_faces, char);
364 memset(ret->dot_solved, FALSE, num_dots);
365 memset(ret->face_solved, FALSE, num_faces);
366
367 ret->dot_yes_count = snewn(num_dots, char);
368 memset(ret->dot_yes_count, 0, num_dots);
369 ret->dot_no_count = snewn(num_dots, char);
370 memset(ret->dot_no_count, 0, num_dots);
371 ret->face_yes_count = snewn(num_faces, char);
372 memset(ret->face_yes_count, 0, num_faces);
373 ret->face_no_count = snewn(num_faces, char);
374 memset(ret->face_no_count, 0, num_faces);
375
376 if (diff < DIFF_NORMAL) {
377 ret->dlines = NULL;
378 } else {
379 ret->dlines = snewn(2*num_edges, char);
380 memset(ret->dlines, 0, 2*num_edges);
381 }
382
383 if (diff < DIFF_HARD) {
384 ret->linedsf = NULL;
385 } else {
386 ret->linedsf = snew_dsf(state->game_grid->num_edges);
387 }
388
389 return ret;
390 }
391
392 static void free_solver_state(solver_state *sstate) {
393 if (sstate) {
394 free_game(sstate->state);
395 sfree(sstate->dotdsf);
396 sfree(sstate->looplen);
397 sfree(sstate->dot_solved);
398 sfree(sstate->face_solved);
399 sfree(sstate->dot_yes_count);
400 sfree(sstate->dot_no_count);
401 sfree(sstate->face_yes_count);
402 sfree(sstate->face_no_count);
403
404 /* OK, because sfree(NULL) is a no-op */
405 sfree(sstate->dlines);
406 sfree(sstate->linedsf);
407
408 sfree(sstate);
409 }
410 }
411
412 static solver_state *dup_solver_state(const solver_state *sstate) {
413 game_state *state = sstate->state;
414 int num_dots = state->game_grid->num_dots;
415 int num_faces = state->game_grid->num_faces;
416 int num_edges = state->game_grid->num_edges;
417 solver_state *ret = snew(solver_state);
418
419 ret->state = state = dup_game(sstate->state);
420
421 ret->solver_status = sstate->solver_status;
422 ret->diff = sstate->diff;
423
424 ret->dotdsf = snewn(num_dots, int);
425 ret->looplen = snewn(num_dots, int);
426 memcpy(ret->dotdsf, sstate->dotdsf,
427 num_dots * sizeof(int));
428 memcpy(ret->looplen, sstate->looplen,
429 num_dots * sizeof(int));
430
431 ret->dot_solved = snewn(num_dots, char);
432 ret->face_solved = snewn(num_faces, char);
433 memcpy(ret->dot_solved, sstate->dot_solved, num_dots);
434 memcpy(ret->face_solved, sstate->face_solved, num_faces);
435
436 ret->dot_yes_count = snewn(num_dots, char);
437 memcpy(ret->dot_yes_count, sstate->dot_yes_count, num_dots);
438 ret->dot_no_count = snewn(num_dots, char);
439 memcpy(ret->dot_no_count, sstate->dot_no_count, num_dots);
440
441 ret->face_yes_count = snewn(num_faces, char);
442 memcpy(ret->face_yes_count, sstate->face_yes_count, num_faces);
443 ret->face_no_count = snewn(num_faces, char);
444 memcpy(ret->face_no_count, sstate->face_no_count, num_faces);
445
446 if (sstate->dlines) {
447 ret->dlines = snewn(2*num_edges, char);
448 memcpy(ret->dlines, sstate->dlines,
449 2*num_edges);
450 } else {
451 ret->dlines = NULL;
452 }
453
454 if (sstate->linedsf) {
455 ret->linedsf = snewn(num_edges, int);
456 memcpy(ret->linedsf, sstate->linedsf,
457 num_edges * sizeof(int));
458 } else {
459 ret->linedsf = NULL;
460 }
461
462 return ret;
463 }
464
465 static game_params *default_params(void)
466 {
467 game_params *ret = snew(game_params);
468
469 #ifdef SLOW_SYSTEM
470 ret->h = 7;
471 ret->w = 7;
472 #else
473 ret->h = 10;
474 ret->w = 10;
475 #endif
476 ret->diff = DIFF_EASY;
477 ret->type = 0;
478
479 ret->game_grid = NULL;
480
481 return ret;
482 }
483
484 static game_params *dup_params(game_params *params)
485 {
486 game_params *ret = snew(game_params);
487
488 *ret = *params; /* structure copy */
489 if (ret->game_grid) {
490 ret->game_grid->refcount++;
491 }
492 return ret;
493 }
494
495 static const game_params presets[] = {
496 #ifdef SMALL_SCREEN
497 { 7, 7, DIFF_EASY, 0, NULL },
498 { 7, 7, DIFF_NORMAL, 0, NULL },
499 { 7, 7, DIFF_HARD, 0, NULL },
500 { 7, 7, DIFF_HARD, 1, NULL },
501 { 7, 7, DIFF_HARD, 2, NULL },
502 { 5, 5, DIFF_HARD, 3, NULL },
503 { 7, 7, DIFF_HARD, 4, NULL },
504 { 5, 4, DIFF_HARD, 5, NULL },
505 { 5, 5, DIFF_HARD, 6, NULL },
506 { 5, 5, DIFF_HARD, 7, NULL },
507 #else
508 { 7, 7, DIFF_EASY, 0, NULL },
509 { 10, 10, DIFF_EASY, 0, NULL },
510 { 7, 7, DIFF_NORMAL, 0, NULL },
511 { 10, 10, DIFF_NORMAL, 0, NULL },
512 { 7, 7, DIFF_HARD, 0, NULL },
513 { 10, 10, DIFF_HARD, 0, NULL },
514 { 10, 10, DIFF_HARD, 1, NULL },
515 { 12, 10, DIFF_HARD, 2, NULL },
516 { 7, 7, DIFF_HARD, 3, NULL },
517 { 9, 9, DIFF_HARD, 4, NULL },
518 { 5, 4, DIFF_HARD, 5, NULL },
519 { 7, 7, DIFF_HARD, 6, NULL },
520 { 5, 5, DIFF_HARD, 7, NULL },
521 #endif
522 };
523
524 static int game_fetch_preset(int i, char **name, game_params **params)
525 {
526 game_params *tmppar;
527 char buf[80];
528
529 if (i < 0 || i >= lenof(presets))
530 return FALSE;
531
532 tmppar = snew(game_params);
533 *tmppar = presets[i];
534 *params = tmppar;
535 sprintf(buf, "%dx%d %s - %s", tmppar->h, tmppar->w,
536 gridnames[tmppar->type], diffnames[tmppar->diff]);
537 *name = dupstr(buf);
538
539 return TRUE;
540 }
541
542 static void free_params(game_params *params)
543 {
544 if (params->game_grid) {
545 grid_free(params->game_grid);
546 }
547 sfree(params);
548 }
549
550 static void decode_params(game_params *params, char const *string)
551 {
552 if (params->game_grid) {
553 grid_free(params->game_grid);
554 params->game_grid = NULL;
555 }
556 params->h = params->w = atoi(string);
557 params->diff = DIFF_EASY;
558 while (*string && isdigit((unsigned char)*string)) string++;
559 if (*string == 'x') {
560 string++;
561 params->h = atoi(string);
562 while (*string && isdigit((unsigned char)*string)) string++;
563 }
564 if (*string == 't') {
565 string++;
566 params->type = atoi(string);
567 while (*string && isdigit((unsigned char)*string)) string++;
568 }
569 if (*string == 'd') {
570 int i;
571 string++;
572 for (i = 0; i < DIFF_MAX; i++)
573 if (*string == diffchars[i])
574 params->diff = i;
575 if (*string) string++;
576 }
577 }
578
579 static char *encode_params(game_params *params, int full)
580 {
581 char str[80];
582 sprintf(str, "%dx%dt%d", params->w, params->h, params->type);
583 if (full)
584 sprintf(str + strlen(str), "d%c", diffchars[params->diff]);
585 return dupstr(str);
586 }
587
588 static config_item *game_configure(game_params *params)
589 {
590 config_item *ret;
591 char buf[80];
592
593 ret = snewn(5, config_item);
594
595 ret[0].name = "Width";
596 ret[0].type = C_STRING;
597 sprintf(buf, "%d", params->w);
598 ret[0].sval = dupstr(buf);
599 ret[0].ival = 0;
600
601 ret[1].name = "Height";
602 ret[1].type = C_STRING;
603 sprintf(buf, "%d", params->h);
604 ret[1].sval = dupstr(buf);
605 ret[1].ival = 0;
606
607 ret[2].name = "Grid type";
608 ret[2].type = C_CHOICES;
609 ret[2].sval = GRID_CONFIGS;
610 ret[2].ival = params->type;
611
612 ret[3].name = "Difficulty";
613 ret[3].type = C_CHOICES;
614 ret[3].sval = DIFFCONFIG;
615 ret[3].ival = params->diff;
616
617 ret[4].name = NULL;
618 ret[4].type = C_END;
619 ret[4].sval = NULL;
620 ret[4].ival = 0;
621
622 return ret;
623 }
624
625 static game_params *custom_params(config_item *cfg)
626 {
627 game_params *ret = snew(game_params);
628
629 ret->w = atoi(cfg[0].sval);
630 ret->h = atoi(cfg[1].sval);
631 ret->type = cfg[2].ival;
632 ret->diff = cfg[3].ival;
633
634 ret->game_grid = NULL;
635 return ret;
636 }
637
638 static char *validate_params(game_params *params, int full)
639 {
640 if (params->type < 0 || params->type >= NUM_GRID_TYPES)
641 return "Illegal grid type";
642 if (params->w < grid_size_limits[params->type].amin ||
643 params->h < grid_size_limits[params->type].amin)
644 return grid_size_limits[params->type].aerr;
645 if (params->w < grid_size_limits[params->type].omin &&
646 params->h < grid_size_limits[params->type].omin)
647 return grid_size_limits[params->type].oerr;
648
649 /*
650 * This shouldn't be able to happen at all, since decode_params
651 * and custom_params will never generate anything that isn't
652 * within range.
653 */
654 assert(params->diff < DIFF_MAX);
655
656 return NULL;
657 }
658
659 /* Returns a newly allocated string describing the current puzzle */
660 static char *state_to_text(const game_state *state)
661 {
662 grid *g = state->game_grid;
663 char *retval;
664 int num_faces = g->num_faces;
665 char *description = snewn(num_faces + 1, char);
666 char *dp = description;
667 int empty_count = 0;
668 int i;
669
670 for (i = 0; i < num_faces; i++) {
671 if (state->clues[i] < 0) {
672 if (empty_count > 25) {
673 dp += sprintf(dp, "%c", (int)(empty_count + 'a' - 1));
674 empty_count = 0;
675 }
676 empty_count++;
677 } else {
678 if (empty_count) {
679 dp += sprintf(dp, "%c", (int)(empty_count + 'a' - 1));
680 empty_count = 0;
681 }
682 dp += sprintf(dp, "%c", (int)CLUE2CHAR(state->clues[i]));
683 }
684 }
685
686 if (empty_count)
687 dp += sprintf(dp, "%c", (int)(empty_count + 'a' - 1));
688
689 retval = dupstr(description);
690 sfree(description);
691
692 return retval;
693 }
694
695 /* We require that the params pass the test in validate_params and that the
696 * description fills the entire game area */
697 static char *validate_desc(game_params *params, char *desc)
698 {
699 int count = 0;
700 grid *g;
701 params_generate_grid(params);
702 g = params->game_grid;
703
704 for (; *desc; ++desc) {
705 if (*desc >= '0' && *desc <= '9') {
706 count++;
707 continue;
708 }
709 if (*desc >= 'a') {
710 count += *desc - 'a' + 1;
711 continue;
712 }
713 return "Unknown character in description";
714 }
715
716 if (count < g->num_faces)
717 return "Description too short for board size";
718 if (count > g->num_faces)
719 return "Description too long for board size";
720
721 return NULL;
722 }
723
724 /* Sums the lengths of the numbers in range [0,n) */
725 /* See equivalent function in solo.c for justification of this. */
726 static int len_0_to_n(int n)
727 {
728 int len = 1; /* Counting 0 as a bit of a special case */
729 int i;
730
731 for (i = 1; i < n; i *= 10) {
732 len += max(n - i, 0);
733 }
734
735 return len;
736 }
737
738 static char *encode_solve_move(const game_state *state)
739 {
740 int len;
741 char *ret, *p;
742 int i;
743 int num_edges = state->game_grid->num_edges;
744
745 /* This is going to return a string representing the moves needed to set
746 * every line in a grid to be the same as the ones in 'state'. The exact
747 * length of this string is predictable. */
748
749 len = 1; /* Count the 'S' prefix */
750 /* Numbers in all lines */
751 len += len_0_to_n(num_edges);
752 /* For each line we also have a letter */
753 len += num_edges;
754
755 ret = snewn(len + 1, char);
756 p = ret;
757
758 p += sprintf(p, "S");
759
760 for (i = 0; i < num_edges; i++) {
761 switch (state->lines[i]) {
762 case LINE_YES:
763 p += sprintf(p, "%dy", i);
764 break;
765 case LINE_NO:
766 p += sprintf(p, "%dn", i);
767 break;
768 }
769 }
770
771 /* No point in doing sums like that if they're going to be wrong */
772 assert(strlen(ret) <= (size_t)len);
773 return ret;
774 }
775
776 static game_ui *new_ui(game_state *state)
777 {
778 return NULL;
779 }
780
781 static void free_ui(game_ui *ui)
782 {
783 }
784
785 static char *encode_ui(game_ui *ui)
786 {
787 return NULL;
788 }
789
790 static void decode_ui(game_ui *ui, char *encoding)
791 {
792 }
793
794 static void game_changed_state(game_ui *ui, game_state *oldstate,
795 game_state *newstate)
796 {
797 }
798
799 static void game_compute_size(game_params *params, int tilesize,
800 int *x, int *y)
801 {
802 grid *g;
803 int grid_width, grid_height, rendered_width, rendered_height;
804
805 params_generate_grid(params);
806 g = params->game_grid;
807 grid_width = g->highest_x - g->lowest_x;
808 grid_height = g->highest_y - g->lowest_y;
809 /* multiply first to minimise rounding error on integer division */
810 rendered_width = grid_width * tilesize / g->tilesize;
811 rendered_height = grid_height * tilesize / g->tilesize;
812 *x = rendered_width + 2 * BORDER(tilesize) + 1;
813 *y = rendered_height + 2 * BORDER(tilesize) + 1;
814 }
815
816 static void game_set_size(drawing *dr, game_drawstate *ds,
817 game_params *params, int tilesize)
818 {
819 ds->tilesize = tilesize;
820 }
821
822 static float *game_colours(frontend *fe, int *ncolours)
823 {
824 float *ret = snewn(4 * NCOLOURS, float);
825
826 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
827
828 ret[COL_FOREGROUND * 3 + 0] = 0.0F;
829 ret[COL_FOREGROUND * 3 + 1] = 0.0F;
830 ret[COL_FOREGROUND * 3 + 2] = 0.0F;
831
832 ret[COL_LINEUNKNOWN * 3 + 0] = 0.8F;
833 ret[COL_LINEUNKNOWN * 3 + 1] = 0.8F;
834 ret[COL_LINEUNKNOWN * 3 + 2] = 0.0F;
835
836 ret[COL_HIGHLIGHT * 3 + 0] = 1.0F;
837 ret[COL_HIGHLIGHT * 3 + 1] = 1.0F;
838 ret[COL_HIGHLIGHT * 3 + 2] = 1.0F;
839
840 ret[COL_MISTAKE * 3 + 0] = 1.0F;
841 ret[COL_MISTAKE * 3 + 1] = 0.0F;
842 ret[COL_MISTAKE * 3 + 2] = 0.0F;
843
844 ret[COL_SATISFIED * 3 + 0] = 0.0F;
845 ret[COL_SATISFIED * 3 + 1] = 0.0F;
846 ret[COL_SATISFIED * 3 + 2] = 0.0F;
847
848 /* We want the faint lines to be a bit darker than the background.
849 * Except if the background is pretty dark already; then it ought to be a
850 * bit lighter. Oy vey.
851 */
852 ret[COL_FAINT * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] * 0.9F;
853 ret[COL_FAINT * 3 + 1] = ret[COL_BACKGROUND * 3 + 1] * 0.9F;
854 ret[COL_FAINT * 3 + 2] = ret[COL_BACKGROUND * 3 + 2] * 0.9F;
855
856 *ncolours = NCOLOURS;
857 return ret;
858 }
859
860 static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
861 {
862 struct game_drawstate *ds = snew(struct game_drawstate);
863 int num_faces = state->game_grid->num_faces;
864 int num_edges = state->game_grid->num_edges;
865
866 ds->tilesize = 0;
867 ds->started = 0;
868 ds->lines = snewn(num_edges, char);
869 ds->clue_error = snewn(num_faces, char);
870 ds->clue_satisfied = snewn(num_faces, char);
871 ds->flashing = 0;
872
873 memset(ds->lines, LINE_UNKNOWN, num_edges);
874 memset(ds->clue_error, 0, num_faces);
875 memset(ds->clue_satisfied, 0, num_faces);
876
877 return ds;
878 }
879
880 static void game_free_drawstate(drawing *dr, game_drawstate *ds)
881 {
882 sfree(ds->clue_error);
883 sfree(ds->clue_satisfied);
884 sfree(ds->lines);
885 sfree(ds);
886 }
887
888 static int game_timing_state(game_state *state, game_ui *ui)
889 {
890 return TRUE;
891 }
892
893 static float game_anim_length(game_state *oldstate, game_state *newstate,
894 int dir, game_ui *ui)
895 {
896 return 0.0F;
897 }
898
899 static int game_can_format_as_text_now(game_params *params)
900 {
901 if (params->type != 0)
902 return FALSE;
903 return TRUE;
904 }
905
906 static char *game_text_format(game_state *state)
907 {
908 int w, h, W, H;
909 int x, y, i;
910 int cell_size;
911 char *ret;
912 grid *g = state->game_grid;
913 grid_face *f;
914
915 assert(state->grid_type == 0);
916
917 /* Work out the basic size unit */
918 f = g->faces; /* first face */
919 assert(f->order == 4);
920 /* The dots are ordered clockwise, so the two opposite
921 * corners are guaranteed to span the square */
922 cell_size = abs(f->dots[0]->x - f->dots[2]->x);
923
924 w = (g->highest_x - g->lowest_x) / cell_size;
925 h = (g->highest_y - g->lowest_y) / cell_size;
926
927 /* Create a blank "canvas" to "draw" on */
928 W = 2 * w + 2;
929 H = 2 * h + 1;
930 ret = snewn(W * H + 1, char);
931 for (y = 0; y < H; y++) {
932 for (x = 0; x < W-1; x++) {
933 ret[y*W + x] = ' ';
934 }
935 ret[y*W + W-1] = '\n';
936 }
937 ret[H*W] = '\0';
938
939 /* Fill in edge info */
940 for (i = 0; i < g->num_edges; i++) {
941 grid_edge *e = g->edges + i;
942 /* Cell coordinates, from (0,0) to (w-1,h-1) */
943 int x1 = (e->dot1->x - g->lowest_x) / cell_size;
944 int x2 = (e->dot2->x - g->lowest_x) / cell_size;
945 int y1 = (e->dot1->y - g->lowest_y) / cell_size;
946 int y2 = (e->dot2->y - g->lowest_y) / cell_size;
947 /* Midpoint, in canvas coordinates (canvas coordinates are just twice
948 * cell coordinates) */
949 x = x1 + x2;
950 y = y1 + y2;
951 switch (state->lines[i]) {
952 case LINE_YES:
953 ret[y*W + x] = (y1 == y2) ? '-' : '|';
954 break;
955 case LINE_NO:
956 ret[y*W + x] = 'x';
957 break;
958 case LINE_UNKNOWN:
959 break; /* already a space */
960 default:
961 assert(!"Illegal line state");
962 }
963 }
964
965 /* Fill in clues */
966 for (i = 0; i < g->num_faces; i++) {
967 int x1, x2, y1, y2;
968
969 f = g->faces + i;
970 assert(f->order == 4);
971 /* Cell coordinates, from (0,0) to (w-1,h-1) */
972 x1 = (f->dots[0]->x - g->lowest_x) / cell_size;
973 x2 = (f->dots[2]->x - g->lowest_x) / cell_size;
974 y1 = (f->dots[0]->y - g->lowest_y) / cell_size;
975 y2 = (f->dots[2]->y - g->lowest_y) / cell_size;
976 /* Midpoint, in canvas coordinates */
977 x = x1 + x2;
978 y = y1 + y2;
979 ret[y*W + x] = CLUE2CHAR(state->clues[i]);
980 }
981 return ret;
982 }
983
984 /* ----------------------------------------------------------------------
985 * Debug code
986 */
987
988 #ifdef DEBUG_CACHES
989 static void check_caches(const solver_state* sstate)
990 {
991 int i;
992 const game_state *state = sstate->state;
993 const grid *g = state->game_grid;
994
995 for (i = 0; i < g->num_dots; i++) {
996 assert(dot_order(state, i, LINE_YES) == sstate->dot_yes_count[i]);
997 assert(dot_order(state, i, LINE_NO) == sstate->dot_no_count[i]);
998 }
999
1000 for (i = 0; i < g->num_faces; i++) {
1001 assert(face_order(state, i, LINE_YES) == sstate->face_yes_count[i]);
1002 assert(face_order(state, i, LINE_NO) == sstate->face_no_count[i]);
1003 }
1004 }
1005
1006 #if 0
1007 #define check_caches(s) \
1008 do { \
1009 fprintf(stderr, "check_caches at line %d\n", __LINE__); \
1010 check_caches(s); \
1011 } while (0)
1012 #endif
1013 #endif /* DEBUG_CACHES */
1014
1015 /* ----------------------------------------------------------------------
1016 * Solver utility functions
1017 */
1018
1019 /* Sets the line (with index i) to the new state 'line_new', and updates
1020 * the cached counts of any affected faces and dots.
1021 * Returns TRUE if this actually changed the line's state. */
1022 static int solver_set_line(solver_state *sstate, int i,
1023 enum line_state line_new
1024 #ifdef SHOW_WORKING
1025 , const char *reason
1026 #endif
1027 )
1028 {
1029 game_state *state = sstate->state;
1030 grid *g;
1031 grid_edge *e;
1032
1033 assert(line_new != LINE_UNKNOWN);
1034
1035 check_caches(sstate);
1036
1037 if (state->lines[i] == line_new) {
1038 return FALSE; /* nothing changed */
1039 }
1040 state->lines[i] = line_new;
1041
1042 #ifdef SHOW_WORKING
1043 fprintf(stderr, "solver: set line [%d] to %s (%s)\n",
1044 i, line_new == LINE_YES ? "YES" : "NO",
1045 reason);
1046 #endif
1047
1048 g = state->game_grid;
1049 e = g->edges + i;
1050
1051 /* Update the cache for both dots and both faces affected by this. */
1052 if (line_new == LINE_YES) {
1053 sstate->dot_yes_count[e->dot1 - g->dots]++;
1054 sstate->dot_yes_count[e->dot2 - g->dots]++;
1055 if (e->face1) {
1056 sstate->face_yes_count[e->face1 - g->faces]++;
1057 }
1058 if (e->face2) {
1059 sstate->face_yes_count[e->face2 - g->faces]++;
1060 }
1061 } else {
1062 sstate->dot_no_count[e->dot1 - g->dots]++;
1063 sstate->dot_no_count[e->dot2 - g->dots]++;
1064 if (e->face1) {
1065 sstate->face_no_count[e->face1 - g->faces]++;
1066 }
1067 if (e->face2) {
1068 sstate->face_no_count[e->face2 - g->faces]++;
1069 }
1070 }
1071
1072 check_caches(sstate);
1073 return TRUE;
1074 }
1075
1076 #ifdef SHOW_WORKING
1077 #define solver_set_line(a, b, c) \
1078 solver_set_line(a, b, c, __FUNCTION__)
1079 #endif
1080
1081 /*
1082 * Merge two dots due to the existence of an edge between them.
1083 * Updates the dsf tracking equivalence classes, and keeps track of
1084 * the length of path each dot is currently a part of.
1085 * Returns TRUE if the dots were already linked, ie if they are part of a
1086 * closed loop, and false otherwise.
1087 */
1088 static int merge_dots(solver_state *sstate, int edge_index)
1089 {
1090 int i, j, len;
1091 grid *g = sstate->state->game_grid;
1092 grid_edge *e = g->edges + edge_index;
1093
1094 i = e->dot1 - g->dots;
1095 j = e->dot2 - g->dots;
1096
1097 i = dsf_canonify(sstate->dotdsf, i);
1098 j = dsf_canonify(sstate->dotdsf, j);
1099
1100 if (i == j) {
1101 return TRUE;
1102 } else {
1103 len = sstate->looplen[i] + sstate->looplen[j];
1104 dsf_merge(sstate->dotdsf, i, j);
1105 i = dsf_canonify(sstate->dotdsf, i);
1106 sstate->looplen[i] = len;
1107 return FALSE;
1108 }
1109 }
1110
1111 /* Merge two lines because the solver has deduced that they must be either
1112 * identical or opposite. Returns TRUE if this is new information, otherwise
1113 * FALSE. */
1114 static int merge_lines(solver_state *sstate, int i, int j, int inverse
1115 #ifdef SHOW_WORKING
1116 , const char *reason
1117 #endif
1118 )
1119 {
1120 int inv_tmp;
1121
1122 assert(i < sstate->state->game_grid->num_edges);
1123 assert(j < sstate->state->game_grid->num_edges);
1124
1125 i = edsf_canonify(sstate->linedsf, i, &inv_tmp);
1126 inverse ^= inv_tmp;
1127 j = edsf_canonify(sstate->linedsf, j, &inv_tmp);
1128 inverse ^= inv_tmp;
1129
1130 edsf_merge(sstate->linedsf, i, j, inverse);
1131
1132 #ifdef SHOW_WORKING
1133 if (i != j) {
1134 fprintf(stderr, "%s [%d] [%d] %s(%s)\n",
1135 __FUNCTION__, i, j,
1136 inverse ? "inverse " : "", reason);
1137 }
1138 #endif
1139 return (i != j);
1140 }
1141
1142 #ifdef SHOW_WORKING
1143 #define merge_lines(a, b, c, d) \
1144 merge_lines(a, b, c, d, __FUNCTION__)
1145 #endif
1146
1147 /* Count the number of lines of a particular type currently going into the
1148 * given dot. */
1149 static int dot_order(const game_state* state, int dot, char line_type)
1150 {
1151 int n = 0;
1152 grid *g = state->game_grid;
1153 grid_dot *d = g->dots + dot;
1154 int i;
1155
1156 for (i = 0; i < d->order; i++) {
1157 grid_edge *e = d->edges[i];
1158 if (state->lines[e - g->edges] == line_type)
1159 ++n;
1160 }
1161 return n;
1162 }
1163
1164 /* Count the number of lines of a particular type currently surrounding the
1165 * given face */
1166 static int face_order(const game_state* state, int face, char line_type)
1167 {
1168 int n = 0;
1169 grid *g = state->game_grid;
1170 grid_face *f = g->faces + face;
1171 int i;
1172
1173 for (i = 0; i < f->order; i++) {
1174 grid_edge *e = f->edges[i];
1175 if (state->lines[e - g->edges] == line_type)
1176 ++n;
1177 }
1178 return n;
1179 }
1180
1181 /* Set all lines bordering a dot of type old_type to type new_type
1182 * Return value tells caller whether this function actually did anything */
1183 static int dot_setall(solver_state *sstate, int dot,
1184 char old_type, char new_type)
1185 {
1186 int retval = FALSE, r;
1187 game_state *state = sstate->state;
1188 grid *g;
1189 grid_dot *d;
1190 int i;
1191
1192 if (old_type == new_type)
1193 return FALSE;
1194
1195 g = state->game_grid;
1196 d = g->dots + dot;
1197
1198 for (i = 0; i < d->order; i++) {
1199 int line_index = d->edges[i] - g->edges;
1200 if (state->lines[line_index] == old_type) {
1201 r = solver_set_line(sstate, line_index, new_type);
1202 assert(r == TRUE);
1203 retval = TRUE;
1204 }
1205 }
1206 return retval;
1207 }
1208
1209 /* Set all lines bordering a face of type old_type to type new_type */
1210 static int face_setall(solver_state *sstate, int face,
1211 char old_type, char new_type)
1212 {
1213 int retval = FALSE, r;
1214 game_state *state = sstate->state;
1215 grid *g;
1216 grid_face *f;
1217 int i;
1218
1219 if (old_type == new_type)
1220 return FALSE;
1221
1222 g = state->game_grid;
1223 f = g->faces + face;
1224
1225 for (i = 0; i < f->order; i++) {
1226 int line_index = f->edges[i] - g->edges;
1227 if (state->lines[line_index] == old_type) {
1228 r = solver_set_line(sstate, line_index, new_type);
1229 assert(r == TRUE);
1230 retval = TRUE;
1231 }
1232 }
1233 return retval;
1234 }
1235
1236 /* ----------------------------------------------------------------------
1237 * Loop generation and clue removal
1238 */
1239
1240 /* We're going to store lists of current candidate faces for colouring black
1241 * or white.
1242 * Each face gets a 'score', which tells us how adding that face right
1243 * now would affect the curliness of the solution loop. We're trying to
1244 * maximise that quantity so will bias our random selection of faces to
1245 * colour those with high scores */
1246 struct face_score {
1247 int white_score;
1248 int black_score;
1249 unsigned long random;
1250 /* No need to store a grid_face* here. The 'face_scores' array will
1251 * be a list of 'face_score' objects, one for each face of the grid, so
1252 * the position (index) within the 'face_scores' array will determine
1253 * which face corresponds to a particular face_score.
1254 * Having a single 'face_scores' array for all faces simplifies memory
1255 * management, and probably improves performance, because we don't have to
1256 * malloc/free each individual face_score, and we don't have to maintain
1257 * a mapping from grid_face* pointers to face_score* pointers.
1258 */
1259 };
1260
1261 static int generic_sort_cmpfn(void *v1, void *v2, size_t offset)
1262 {
1263 struct face_score *f1 = v1;
1264 struct face_score *f2 = v2;
1265 int r;
1266
1267 r = *(int *)((char *)f2 + offset) - *(int *)((char *)f1 + offset);
1268 if (r) {
1269 return r;
1270 }
1271
1272 if (f1->random < f2->random)
1273 return -1;
1274 else if (f1->random > f2->random)
1275 return 1;
1276
1277 /*
1278 * It's _just_ possible that two faces might have been given
1279 * the same random value. In that situation, fall back to
1280 * comparing based on the positions within the face_scores list.
1281 * This introduces a tiny directional bias, but not a significant one.
1282 */
1283 return f1 - f2;
1284 }
1285
1286 static int white_sort_cmpfn(void *v1, void *v2)
1287 {
1288 return generic_sort_cmpfn(v1, v2, offsetof(struct face_score,white_score));
1289 }
1290
1291 static int black_sort_cmpfn(void *v1, void *v2)
1292 {
1293 return generic_sort_cmpfn(v1, v2, offsetof(struct face_score,black_score));
1294 }
1295
1296 enum face_colour { FACE_WHITE, FACE_GREY, FACE_BLACK };
1297
1298 /* face should be of type grid_face* here. */
1299 #define FACE_COLOUR(face) \
1300 ( (face) == NULL ? FACE_BLACK : \
1301 board[(face) - g->faces] )
1302
1303 /* 'board' is an array of these enums, indicating which faces are
1304 * currently black/white/grey. 'colour' is FACE_WHITE or FACE_BLACK.
1305 * Returns whether it's legal to colour the given face with this colour. */
1306 static int can_colour_face(grid *g, char* board, int face_index,
1307 enum face_colour colour)
1308 {
1309 int i, j;
1310 grid_face *test_face = g->faces + face_index;
1311 grid_face *starting_face, *current_face;
1312 int transitions;
1313 int current_state, s; /* booleans: equal or not-equal to 'colour' */
1314 int found_same_coloured_neighbour = FALSE;
1315 assert(board[face_index] != colour);
1316
1317 /* Can only consider a face for colouring if it's adjacent to a face
1318 * with the same colour. */
1319 for (i = 0; i < test_face->order; i++) {
1320 grid_edge *e = test_face->edges[i];
1321 grid_face *f = (e->face1 == test_face) ? e->face2 : e->face1;
1322 if (FACE_COLOUR(f) == colour) {
1323 found_same_coloured_neighbour = TRUE;
1324 break;
1325 }
1326 }
1327 if (!found_same_coloured_neighbour)
1328 return FALSE;
1329
1330 /* Need to avoid creating a loop of faces of this colour around some
1331 * differently-coloured faces.
1332 * Also need to avoid meeting a same-coloured face at a corner, with
1333 * other-coloured faces in between. Here's a simple test that (I believe)
1334 * takes care of both these conditions:
1335 *
1336 * Take the circular path formed by this face's edges, and inflate it
1337 * slightly outwards. Imagine walking around this path and consider
1338 * the faces that you visit in sequence. This will include all faces
1339 * touching the given face, either along an edge or just at a corner.
1340 * Count the number of 'colour'/not-'colour' transitions you encounter, as
1341 * you walk along the complete loop. This will obviously turn out to be
1342 * an even number.
1343 * If 0, we're either in the middle of an "island" of this colour (should
1344 * be impossible as we're not supposed to create black or white loops),
1345 * or we're about to start a new island - also not allowed.
1346 * If 4 or greater, there are too many separate coloured regions touching
1347 * this face, and colouring it would create a loop or a corner-violation.
1348 * The only allowed case is when the count is exactly 2. */
1349
1350 /* i points to a dot around the test face.
1351 * j points to a face around the i^th dot.
1352 * The current face will always be:
1353 * test_face->dots[i]->faces[j]
1354 * We assume dots go clockwise around the test face,
1355 * and faces go clockwise around dots. */
1356 i = j = 0;
1357 starting_face = test_face->dots[0]->faces[0];
1358 if (starting_face == test_face) {
1359 j = 1;
1360 starting_face = test_face->dots[0]->faces[1];
1361 }
1362 current_face = starting_face;
1363 transitions = 0;
1364 current_state = (FACE_COLOUR(current_face) == colour);
1365
1366 do {
1367 /* Advance to next face.
1368 * Need to loop here because it might take several goes to
1369 * find it. */
1370 while (TRUE) {
1371 j++;
1372 if (j == test_face->dots[i]->order)
1373 j = 0;
1374
1375 if (test_face->dots[i]->faces[j] == test_face) {
1376 /* Advance to next dot round test_face, then
1377 * find current_face around new dot
1378 * and advance to the next face clockwise */
1379 i++;
1380 if (i == test_face->order)
1381 i = 0;
1382 for (j = 0; j < test_face->dots[i]->order; j++) {
1383 if (test_face->dots[i]->faces[j] == current_face)
1384 break;
1385 }
1386 /* Must actually find current_face around new dot,
1387 * or else something's wrong with the grid. */
1388 assert(j != test_face->dots[i]->order);
1389 /* Found, so advance to next face and try again */
1390 } else {
1391 break;
1392 }
1393 }
1394 /* (i,j) are now advanced to next face */
1395 current_face = test_face->dots[i]->faces[j];
1396 s = (FACE_COLOUR(current_face) == colour);
1397 if (s != current_state) {
1398 ++transitions;
1399 current_state = s;
1400 if (transitions > 2)
1401 return FALSE; /* no point in continuing */
1402 }
1403 } while (current_face != starting_face);
1404
1405 return (transitions == 2) ? TRUE : FALSE;
1406 }
1407
1408 /* Count the number of neighbours of 'face', having colour 'colour' */
1409 static int face_num_neighbours(grid *g, char *board, grid_face *face,
1410 enum face_colour colour)
1411 {
1412 int colour_count = 0;
1413 int i;
1414 grid_face *f;
1415 grid_edge *e;
1416 for (i = 0; i < face->order; i++) {
1417 e = face->edges[i];
1418 f = (e->face1 == face) ? e->face2 : e->face1;
1419 if (FACE_COLOUR(f) == colour)
1420 ++colour_count;
1421 }
1422 return colour_count;
1423 }
1424
1425 /* The 'score' of a face reflects its current desirability for selection
1426 * as the next face to colour white or black. We want to encourage moving
1427 * into grey areas and increasing loopiness, so we give scores according to
1428 * how many of the face's neighbours are currently coloured the same as the
1429 * proposed colour. */
1430 static int face_score(grid *g, char *board, grid_face *face,
1431 enum face_colour colour)
1432 {
1433 /* Simple formula: score = 0 - num. same-coloured neighbours,
1434 * so a higher score means fewer same-coloured neighbours. */
1435 return -face_num_neighbours(g, board, face, colour);
1436 }
1437
1438 /* Generate a new complete set of clues for the given game_state.
1439 * The method is to generate a WHITE/BLACK colouring of all the faces,
1440 * such that the WHITE faces will define the inside of the path, and the
1441 * BLACK faces define the outside.
1442 * To do this, we initially colour all faces GREY. The infinite space outside
1443 * the grid is coloured BLACK, and we choose a random face to colour WHITE.
1444 * Then we gradually grow the BLACK and the WHITE regions, eliminating GREY
1445 * faces, until the grid is filled with BLACK/WHITE. As we grow the regions,
1446 * we avoid creating loops of a single colour, to preserve the topological
1447 * shape of the WHITE and BLACK regions.
1448 * We also try to make the boundary as loopy and twisty as possible, to avoid
1449 * generating paths that are uninteresting.
1450 * The algorithm works by choosing a BLACK/WHITE colour, then choosing a GREY
1451 * face that can be coloured with that colour (without violating the
1452 * topological shape of that region). It's not obvious, but I think this
1453 * algorithm is guaranteed to terminate without leaving any GREY faces behind.
1454 * Indeed, if there are any GREY faces at all, both the WHITE and BLACK
1455 * regions can be grown.
1456 * This is checked using assert()ions, and I haven't seen any failures yet.
1457 *
1458 * Hand-wavy proof: imagine what can go wrong...
1459 *
1460 * Could the white faces get completely cut off by the black faces, and still
1461 * leave some grey faces remaining?
1462 * No, because then the black faces would form a loop around both the white
1463 * faces and the grey faces, which is disallowed because we continually
1464 * maintain the correct topological shape of the black region.
1465 * Similarly, the black faces can never get cut off by the white faces. That
1466 * means both the WHITE and BLACK regions always have some room to grow into
1467 * the GREY regions.
1468 * Could it be that we can't colour some GREY face, because there are too many
1469 * WHITE/BLACK transitions as we walk round the face? (see the
1470 * can_colour_face() function for details)
1471 * No. Imagine otherwise, and we see WHITE/BLACK/WHITE/BLACK as we walk
1472 * around the face. The two WHITE faces would be connected by a WHITE path,
1473 * and the BLACK faces would be connected by a BLACK path. These paths would
1474 * have to cross, which is impossible.
1475 * Another thing that could go wrong: perhaps we can't find any GREY face to
1476 * colour WHITE, because it would create a loop-violation or a corner-violation
1477 * with the other WHITE faces?
1478 * This is a little bit tricky to prove impossible. Imagine you have such a
1479 * GREY face (that is, if you coloured it WHITE, you would create a WHITE loop
1480 * or corner violation).
1481 * That would cut all the non-white area into two blobs. One of those blobs
1482 * must be free of BLACK faces (because the BLACK stuff is a connected blob).
1483 * So we have a connected GREY area, completely surrounded by WHITE
1484 * (including the GREY face we've tentatively coloured WHITE).
1485 * A well-known result in graph theory says that you can always find a GREY
1486 * face whose removal leaves the remaining GREY area connected. And it says
1487 * there are at least two such faces, so we can always choose the one that
1488 * isn't the "tentative" GREY face. Colouring that face WHITE leaves
1489 * everything nice and connected, including that "tentative" GREY face which
1490 * acts as a gateway to the rest of the non-WHITE grid.
1491 */
1492 static void add_full_clues(game_state *state, random_state *rs)
1493 {
1494 signed char *clues = state->clues;
1495 char *board;
1496 grid *g = state->game_grid;
1497 int i, j;
1498 int num_faces = g->num_faces;
1499 struct face_score *face_scores; /* Array of face_score objects */
1500 struct face_score *fs; /* Points somewhere in the above list */
1501 struct grid_face *cur_face;
1502 tree234 *lightable_faces_sorted;
1503 tree234 *darkable_faces_sorted;
1504 int *face_list;
1505 int do_random_pass;
1506
1507 board = snewn(num_faces, char);
1508
1509 /* Make a board */
1510 memset(board, FACE_GREY, num_faces);
1511
1512 /* Create and initialise the list of face_scores */
1513 face_scores = snewn(num_faces, struct face_score);
1514 for (i = 0; i < num_faces; i++) {
1515 face_scores[i].random = random_bits(rs, 31);
1516 face_scores[i].black_score = face_scores[i].white_score = 0;
1517 }
1518
1519 /* Colour a random, finite face white. The infinite face is implicitly
1520 * coloured black. Together, they will seed the random growth process
1521 * for the black and white areas. */
1522 i = random_upto(rs, num_faces);
1523 board[i] = FACE_WHITE;
1524
1525 /* We need a way of favouring faces that will increase our loopiness.
1526 * We do this by maintaining a list of all candidate faces sorted by
1527 * their score and choose randomly from that with appropriate skew.
1528 * In order to avoid consistently biasing towards particular faces, we
1529 * need the sort order _within_ each group of scores to be completely
1530 * random. But it would be abusing the hospitality of the tree234 data
1531 * structure if our comparison function were nondeterministic :-). So with
1532 * each face we associate a random number that does not change during a
1533 * particular run of the generator, and use that as a secondary sort key.
1534 * Yes, this means we will be biased towards particular random faces in
1535 * any one run but that doesn't actually matter. */
1536
1537 lightable_faces_sorted = newtree234(white_sort_cmpfn);
1538 darkable_faces_sorted = newtree234(black_sort_cmpfn);
1539
1540 /* Initialise the lists of lightable and darkable faces. This is
1541 * slightly different from the code inside the while-loop, because we need
1542 * to check every face of the board (the grid structure does not keep a
1543 * list of the infinite face's neighbours). */
1544 for (i = 0; i < num_faces; i++) {
1545 grid_face *f = g->faces + i;
1546 struct face_score *fs = face_scores + i;
1547 if (board[i] != FACE_GREY) continue;
1548 /* We need the full colourability check here, it's not enough simply
1549 * to check neighbourhood. On some grids, a neighbour of the infinite
1550 * face is not necessarily darkable. */
1551 if (can_colour_face(g, board, i, FACE_BLACK)) {
1552 fs->black_score = face_score(g, board, f, FACE_BLACK);
1553 add234(darkable_faces_sorted, fs);
1554 }
1555 if (can_colour_face(g, board, i, FACE_WHITE)) {
1556 fs->white_score = face_score(g, board, f, FACE_WHITE);
1557 add234(lightable_faces_sorted, fs);
1558 }
1559 }
1560
1561 /* Colour faces one at a time until no more faces are colourable. */
1562 while (TRUE)
1563 {
1564 enum face_colour colour;
1565 struct face_score *fs_white, *fs_black;
1566 int c_lightable = count234(lightable_faces_sorted);
1567 int c_darkable = count234(darkable_faces_sorted);
1568 if (c_lightable == 0) {
1569 /* No more lightable faces. Because of how the algorithm
1570 * works, there should be no more darkable faces either. */
1571 assert(c_darkable == 0);
1572 break;
1573 }
1574
1575 fs_white = (struct face_score *)index234(lightable_faces_sorted, 0);
1576 fs_black = (struct face_score *)index234(darkable_faces_sorted, 0);
1577
1578 /* Choose a colour, and colour the best available face
1579 * with that colour. */
1580 colour = random_upto(rs, 2) ? FACE_WHITE : FACE_BLACK;
1581
1582 if (colour == FACE_WHITE)
1583 fs = fs_white;
1584 else
1585 fs = fs_black;
1586 assert(fs);
1587 i = fs - face_scores;
1588 assert(board[i] == FACE_GREY);
1589 board[i] = colour;
1590
1591 /* Remove this newly-coloured face from the lists. These lists should
1592 * only contain grey faces. */
1593 del234(lightable_faces_sorted, fs);
1594 del234(darkable_faces_sorted, fs);
1595
1596 /* Remember which face we've just coloured */
1597 cur_face = g->faces + i;
1598
1599 /* The face we've just coloured potentially affects the colourability
1600 * and the scores of any neighbouring faces (touching at a corner or
1601 * edge). So the search needs to be conducted around all faces
1602 * touching the one we've just lit. Iterate over its corners, then
1603 * over each corner's faces. For each such face, we remove it from
1604 * the lists, recalculate any scores, then add it back to the lists
1605 * (depending on whether it is lightable, darkable or both). */
1606 for (i = 0; i < cur_face->order; i++) {
1607 grid_dot *d = cur_face->dots[i];
1608 for (j = 0; j < d->order; j++) {
1609 grid_face *f = d->faces[j];
1610 int fi; /* face index of f */
1611
1612 if (f == NULL)
1613 continue;
1614 if (f == cur_face)
1615 continue;
1616
1617 /* If the face is already coloured, it won't be on our
1618 * lightable/darkable lists anyway, so we can skip it without
1619 * bothering with the removal step. */
1620 if (FACE_COLOUR(f) != FACE_GREY) continue;
1621
1622 /* Find the face index and face_score* corresponding to f */
1623 fi = f - g->faces;
1624 fs = face_scores + fi;
1625
1626 /* Remove from lightable list if it's in there. We do this,
1627 * even if it is still lightable, because the score might
1628 * be different, and we need to remove-then-add to maintain
1629 * correct sort order. */
1630 del234(lightable_faces_sorted, fs);
1631 if (can_colour_face(g, board, fi, FACE_WHITE)) {
1632 fs->white_score = face_score(g, board, f, FACE_WHITE);
1633 add234(lightable_faces_sorted, fs);
1634 }
1635 /* Do the same for darkable list. */
1636 del234(darkable_faces_sorted, fs);
1637 if (can_colour_face(g, board, fi, FACE_BLACK)) {
1638 fs->black_score = face_score(g, board, f, FACE_BLACK);
1639 add234(darkable_faces_sorted, fs);
1640 }
1641 }
1642 }
1643 }
1644
1645 /* Clean up */
1646 freetree234(lightable_faces_sorted);
1647 freetree234(darkable_faces_sorted);
1648 sfree(face_scores);
1649
1650 /* The next step requires a shuffled list of all faces */
1651 face_list = snewn(num_faces, int);
1652 for (i = 0; i < num_faces; ++i) {
1653 face_list[i] = i;
1654 }
1655 shuffle(face_list, num_faces, sizeof(int), rs);
1656
1657 /* The above loop-generation algorithm can often leave large clumps
1658 * of faces of one colour. In extreme cases, the resulting path can be
1659 * degenerate and not very satisfying to solve.
1660 * This next step alleviates this problem:
1661 * Go through the shuffled list, and flip the colour of any face we can
1662 * legally flip, and which is adjacent to only one face of the opposite
1663 * colour - this tends to grow 'tendrils' into any clumps.
1664 * Repeat until we can find no more faces to flip. This will
1665 * eventually terminate, because each flip increases the loop's
1666 * perimeter, which cannot increase for ever.
1667 * The resulting path will have maximal loopiness (in the sense that it
1668 * cannot be improved "locally". Unfortunately, this allows a player to
1669 * make some illicit deductions. To combat this (and make the path more
1670 * interesting), we do one final pass making random flips. */
1671
1672 /* Set to TRUE for final pass */
1673 do_random_pass = FALSE;
1674
1675 while (TRUE) {
1676 /* Remember whether a flip occurred during this pass */
1677 int flipped = FALSE;
1678
1679 for (i = 0; i < num_faces; ++i) {
1680 int j = face_list[i];
1681 enum face_colour opp =
1682 (board[j] == FACE_WHITE) ? FACE_BLACK : FACE_WHITE;
1683 if (can_colour_face(g, board, j, opp)) {
1684 grid_face *face = g->faces +j;
1685 if (do_random_pass) {
1686 /* final random pass */
1687 if (!random_upto(rs, 10))
1688 board[j] = opp;
1689 } else {
1690 /* normal pass - flip when neighbour count is 1 */
1691 if (face_num_neighbours(g, board, face, opp) == 1) {
1692 board[j] = opp;
1693 flipped = TRUE;
1694 }
1695 }
1696 }
1697 }
1698
1699 if (do_random_pass) break;
1700 if (!flipped) do_random_pass = TRUE;
1701 }
1702
1703 sfree(face_list);
1704
1705 /* Fill out all the clues by initialising to 0, then iterating over
1706 * all edges and incrementing each clue as we find edges that border
1707 * between BLACK/WHITE faces. While we're at it, we verify that the
1708 * algorithm does work, and there aren't any GREY faces still there. */
1709 memset(clues, 0, num_faces);
1710 for (i = 0; i < g->num_edges; i++) {
1711 grid_edge *e = g->edges + i;
1712 grid_face *f1 = e->face1;
1713 grid_face *f2 = e->face2;
1714 enum face_colour c1 = FACE_COLOUR(f1);
1715 enum face_colour c2 = FACE_COLOUR(f2);
1716 assert(c1 != FACE_GREY);
1717 assert(c2 != FACE_GREY);
1718 if (c1 != c2) {
1719 if (f1) clues[f1 - g->faces]++;
1720 if (f2) clues[f2 - g->faces]++;
1721 }
1722 }
1723
1724 sfree(board);
1725 }
1726
1727
1728 static int game_has_unique_soln(const game_state *state, int diff)
1729 {
1730 int ret;
1731 solver_state *sstate_new;
1732 solver_state *sstate = new_solver_state((game_state *)state, diff);
1733
1734 sstate_new = solve_game_rec(sstate);
1735
1736 assert(sstate_new->solver_status != SOLVER_MISTAKE);
1737 ret = (sstate_new->solver_status == SOLVER_SOLVED);
1738
1739 free_solver_state(sstate_new);
1740 free_solver_state(sstate);
1741
1742 return ret;
1743 }
1744
1745
1746 /* Remove clues one at a time at random. */
1747 static game_state *remove_clues(game_state *state, random_state *rs,
1748 int diff)
1749 {
1750 int *face_list;
1751 int num_faces = state->game_grid->num_faces;
1752 game_state *ret = dup_game(state), *saved_ret;
1753 int n;
1754
1755 /* We need to remove some clues. We'll do this by forming a list of all
1756 * available clues, shuffling it, then going along one at a
1757 * time clearing each clue in turn for which doing so doesn't render the
1758 * board unsolvable. */
1759 face_list = snewn(num_faces, int);
1760 for (n = 0; n < num_faces; ++n) {
1761 face_list[n] = n;
1762 }
1763
1764 shuffle(face_list, num_faces, sizeof(int), rs);
1765
1766 for (n = 0; n < num_faces; ++n) {
1767 saved_ret = dup_game(ret);
1768 ret->clues[face_list[n]] = -1;
1769
1770 if (game_has_unique_soln(ret, diff)) {
1771 free_game(saved_ret);
1772 } else {
1773 free_game(ret);
1774 ret = saved_ret;
1775 }
1776 }
1777 sfree(face_list);
1778
1779 return ret;
1780 }
1781
1782
1783 static char *new_game_desc(game_params *params, random_state *rs,
1784 char **aux, int interactive)
1785 {
1786 /* solution and description both use run-length encoding in obvious ways */
1787 char *retval;
1788 grid *g;
1789 game_state *state = snew(game_state);
1790 game_state *state_new;
1791 params_generate_grid(params);
1792 state->game_grid = g = params->game_grid;
1793 g->refcount++;
1794 state->clues = snewn(g->num_faces, signed char);
1795 state->lines = snewn(g->num_edges, char);
1796 state->line_errors = snewn(g->num_edges, unsigned char);
1797
1798 state->grid_type = params->type;
1799
1800 newboard_please:
1801
1802 memset(state->lines, LINE_UNKNOWN, g->num_edges);
1803 memset(state->line_errors, 0, g->num_edges);
1804
1805 state->solved = state->cheated = FALSE;
1806
1807 /* Get a new random solvable board with all its clues filled in. Yes, this
1808 * can loop for ever if the params are suitably unfavourable, but
1809 * preventing games smaller than 4x4 seems to stop this happening */
1810 do {
1811 add_full_clues(state, rs);
1812 } while (!game_has_unique_soln(state, params->diff));
1813
1814 state_new = remove_clues(state, rs, params->diff);
1815 free_game(state);
1816 state = state_new;
1817
1818
1819 if (params->diff > 0 && game_has_unique_soln(state, params->diff-1)) {
1820 #ifdef SHOW_WORKING
1821 fprintf(stderr, "Rejecting board, it is too easy\n");
1822 #endif
1823 goto newboard_please;
1824 }
1825
1826 retval = state_to_text(state);
1827
1828 free_game(state);
1829
1830 assert(!validate_desc(params, retval));
1831
1832 return retval;
1833 }
1834
1835 static game_state *new_game(midend *me, game_params *params, char *desc)
1836 {
1837 int i;
1838 game_state *state = snew(game_state);
1839 int empties_to_make = 0;
1840 int n;
1841 const char *dp = desc;
1842 grid *g;
1843 int num_faces, num_edges;
1844
1845 params_generate_grid(params);
1846 state->game_grid = g = params->game_grid;
1847 g->refcount++;
1848 num_faces = g->num_faces;
1849 num_edges = g->num_edges;
1850
1851 state->clues = snewn(num_faces, signed char);
1852 state->lines = snewn(num_edges, char);
1853 state->line_errors = snewn(num_edges, unsigned char);
1854
1855 state->solved = state->cheated = FALSE;
1856
1857 state->grid_type = params->type;
1858
1859 for (i = 0; i < num_faces; i++) {
1860 if (empties_to_make) {
1861 empties_to_make--;
1862 state->clues[i] = -1;
1863 continue;
1864 }
1865
1866 assert(*dp);
1867 n = *dp - '0';
1868 if (n >= 0 && n < 10) {
1869 state->clues[i] = n;
1870 } else {
1871 n = *dp - 'a' + 1;
1872 assert(n > 0);
1873 state->clues[i] = -1;
1874 empties_to_make = n - 1;
1875 }
1876 ++dp;
1877 }
1878
1879 memset(state->lines, LINE_UNKNOWN, num_edges);
1880 memset(state->line_errors, 0, num_edges);
1881 return state;
1882 }
1883
1884 /* Calculates the line_errors data, and checks if the current state is a
1885 * solution */
1886 static int check_completion(game_state *state)
1887 {
1888 grid *g = state->game_grid;
1889 int *dsf;
1890 int num_faces = g->num_faces;
1891 int i;
1892 int infinite_area, finite_area;
1893 int loops_found = 0;
1894 int found_edge_not_in_loop = FALSE;
1895
1896 memset(state->line_errors, 0, g->num_edges);
1897
1898 /* LL implementation of SGT's idea:
1899 * A loop will partition the grid into an inside and an outside.
1900 * If there is more than one loop, the grid will be partitioned into
1901 * even more distinct regions. We can therefore track equivalence of
1902 * faces, by saying that two faces are equivalent when there is a non-YES
1903 * edge between them.
1904 * We could keep track of the number of connected components, by counting
1905 * the number of dsf-merges that aren't no-ops.
1906 * But we're only interested in 3 separate cases:
1907 * no loops, one loop, more than one loop.
1908 *
1909 * No loops: all faces are equivalent to the infinite face.
1910 * One loop: only two equivalence classes - finite and infinite.
1911 * >= 2 loops: there are 2 distinct finite regions.
1912 *
1913 * So we simply make two passes through all the edges.
1914 * In the first pass, we dsf-merge the two faces bordering each non-YES
1915 * edge.
1916 * In the second pass, we look for YES-edges bordering:
1917 * a) two non-equivalent faces.
1918 * b) two non-equivalent faces, and one of them is part of a different
1919 * finite area from the first finite area we've seen.
1920 *
1921 * An occurrence of a) means there is at least one loop.
1922 * An occurrence of b) means there is more than one loop.
1923 * Edges satisfying a) are marked as errors.
1924 *
1925 * While we're at it, we set a flag if we find a YES edge that is not
1926 * part of a loop.
1927 * This information will help decide, if there's a single loop, whether it
1928 * is a candidate for being a solution (that is, all YES edges are part of
1929 * this loop).
1930 *
1931 * If there is a candidate loop, we then go through all clues and check
1932 * they are all satisfied. If so, we have found a solution and we can
1933 * unmark all line_errors.
1934 */
1935
1936 /* Infinite face is at the end - its index is num_faces.
1937 * This macro is just to make this obvious! */
1938 #define INF_FACE num_faces
1939 dsf = snewn(num_faces + 1, int);
1940 dsf_init(dsf, num_faces + 1);
1941
1942 /* First pass */
1943 for (i = 0; i < g->num_edges; i++) {
1944 grid_edge *e = g->edges + i;
1945 int f1 = e->face1 ? e->face1 - g->faces : INF_FACE;
1946 int f2 = e->face2 ? e->face2 - g->faces : INF_FACE;
1947 if (state->lines[i] != LINE_YES)
1948 dsf_merge(dsf, f1, f2);
1949 }
1950
1951 /* Second pass */
1952 infinite_area = dsf_canonify(dsf, INF_FACE);
1953 finite_area = -1;
1954 for (i = 0; i < g->num_edges; i++) {
1955 grid_edge *e = g->edges + i;
1956 int f1 = e->face1 ? e->face1 - g->faces : INF_FACE;
1957 int can1 = dsf_canonify(dsf, f1);
1958 int f2 = e->face2 ? e->face2 - g->faces : INF_FACE;
1959 int can2 = dsf_canonify(dsf, f2);
1960 if (state->lines[i] != LINE_YES) continue;
1961
1962 if (can1 == can2) {
1963 /* Faces are equivalent, so this edge not part of a loop */
1964 found_edge_not_in_loop = TRUE;
1965 continue;
1966 }
1967 state->line_errors[i] = TRUE;
1968 if (loops_found == 0) loops_found = 1;
1969
1970 /* Don't bother with further checks if we've already found 2 loops */
1971 if (loops_found == 2) continue;
1972
1973 if (finite_area == -1) {
1974 /* Found our first finite area */
1975 if (can1 != infinite_area)
1976 finite_area = can1;
1977 else
1978 finite_area = can2;
1979 }
1980
1981 /* Have we found a second area? */
1982 if (finite_area != -1) {
1983 if (can1 != infinite_area && can1 != finite_area) {
1984 loops_found = 2;
1985 continue;
1986 }
1987 if (can2 != infinite_area && can2 != finite_area) {
1988 loops_found = 2;
1989 }
1990 }
1991 }
1992
1993 /*
1994 printf("loops_found = %d\n", loops_found);
1995 printf("found_edge_not_in_loop = %s\n",
1996 found_edge_not_in_loop ? "TRUE" : "FALSE");
1997 */
1998
1999 sfree(dsf); /* No longer need the dsf */
2000
2001 /* Have we found a candidate loop? */
2002 if (loops_found == 1 && !found_edge_not_in_loop) {
2003 /* Yes, so check all clues are satisfied */
2004 int found_clue_violation = FALSE;
2005 for (i = 0; i < num_faces; i++) {
2006 int c = state->clues[i];
2007 if (c >= 0) {
2008 if (face_order(state, i, LINE_YES) != c) {
2009 found_clue_violation = TRUE;
2010 break;
2011 }
2012 }
2013 }
2014
2015 if (!found_clue_violation) {
2016 /* The loop is good */
2017 memset(state->line_errors, 0, g->num_edges);
2018 return TRUE; /* No need to bother checking for dot violations */
2019 }
2020 }
2021
2022 /* Check for dot violations */
2023 for (i = 0; i < g->num_dots; i++) {
2024 int yes = dot_order(state, i, LINE_YES);
2025 int unknown = dot_order(state, i, LINE_UNKNOWN);
2026 if ((yes == 1 && unknown == 0) || (yes >= 3)) {
2027 /* violation, so mark all YES edges as errors */
2028 grid_dot *d = g->dots + i;
2029 int j;
2030 for (j = 0; j < d->order; j++) {
2031 int e = d->edges[j] - g->edges;
2032 if (state->lines[e] == LINE_YES)
2033 state->line_errors[e] = TRUE;
2034 }
2035 }
2036 }
2037 return FALSE;
2038 }
2039
2040 /* ----------------------------------------------------------------------
2041 * Solver logic
2042 *
2043 * Our solver modes operate as follows. Each mode also uses the modes above it.
2044 *
2045 * Easy Mode
2046 * Just implement the rules of the game.
2047 *
2048 * Normal and Tricky Modes
2049 * For each (adjacent) pair of lines through each dot we store a bit for
2050 * whether at least one of them is on and whether at most one is on. (If we
2051 * know both or neither is on that's already stored more directly.)
2052 *
2053 * Advanced Mode
2054 * Use edsf data structure to make equivalence classes of lines that are
2055 * known identical to or opposite to one another.
2056 */
2057
2058
2059 /* DLines:
2060 * For general grids, we consider "dlines" to be pairs of lines joined
2061 * at a dot. The lines must be adjacent around the dot, so we can think of
2062 * a dline as being a dot+face combination. Or, a dot+edge combination where
2063 * the second edge is taken to be the next clockwise edge from the dot.
2064 * Original loopy code didn't have this extra restriction of the lines being
2065 * adjacent. From my tests with square grids, this extra restriction seems to
2066 * take little, if anything, away from the quality of the puzzles.
2067 * A dline can be uniquely identified by an edge/dot combination, given that
2068 * a dline-pair always goes clockwise around its common dot. The edge/dot
2069 * combination can be represented by an edge/bool combination - if bool is
2070 * TRUE, use edge->dot1 else use edge->dot2. So the total number of dlines is
2071 * exactly twice the number of edges in the grid - although the dlines
2072 * spanning the infinite face are not all that useful to the solver.
2073 * Note that, by convention, a dline goes clockwise around its common dot,
2074 * which means the dline goes anti-clockwise around its common face.
2075 */
2076
2077 /* Helper functions for obtaining an index into an array of dlines, given
2078 * various information. We assume the grid layout conventions about how
2079 * the various lists are interleaved - see grid_make_consistent() for
2080 * details. */
2081
2082 /* i points to the first edge of the dline pair, reading clockwise around
2083 * the dot. */
2084 static int dline_index_from_dot(grid *g, grid_dot *d, int i)
2085 {
2086 grid_edge *e = d->edges[i];
2087 int ret;
2088 #ifdef DEBUG_DLINES
2089 grid_edge *e2;
2090 int i2 = i+1;
2091 if (i2 == d->order) i2 = 0;
2092 e2 = d->edges[i2];
2093 #endif
2094 ret = 2 * (e - g->edges) + ((e->dot1 == d) ? 1 : 0);
2095 #ifdef DEBUG_DLINES
2096 printf("dline_index_from_dot: d=%d,i=%d, edges [%d,%d] - %d\n",
2097 (int)(d - g->dots), i, (int)(e - g->edges),
2098 (int)(e2 - g->edges), ret);
2099 #endif
2100 return ret;
2101 }
2102 /* i points to the second edge of the dline pair, reading clockwise around
2103 * the face. That is, the edges of the dline, starting at edge{i}, read
2104 * anti-clockwise around the face. By layout conventions, the common dot
2105 * of the dline will be f->dots[i] */
2106 static int dline_index_from_face(grid *g, grid_face *f, int i)
2107 {
2108 grid_edge *e = f->edges[i];
2109 grid_dot *d = f->dots[i];
2110 int ret;
2111 #ifdef DEBUG_DLINES
2112 grid_edge *e2;
2113 int i2 = i - 1;
2114 if (i2 < 0) i2 += f->order;
2115 e2 = f->edges[i2];
2116 #endif
2117 ret = 2 * (e - g->edges) + ((e->dot1 == d) ? 1 : 0);
2118 #ifdef DEBUG_DLINES
2119 printf("dline_index_from_face: f=%d,i=%d, edges [%d,%d] - %d\n",
2120 (int)(f - g->faces), i, (int)(e - g->edges),
2121 (int)(e2 - g->edges), ret);
2122 #endif
2123 return ret;
2124 }
2125 static int is_atleastone(const char *dline_array, int index)
2126 {
2127 return BIT_SET(dline_array[index], 0);
2128 }
2129 static int set_atleastone(char *dline_array, int index)
2130 {
2131 return SET_BIT(dline_array[index], 0);
2132 }
2133 static int is_atmostone(const char *dline_array, int index)
2134 {
2135 return BIT_SET(dline_array[index], 1);
2136 }
2137 static int set_atmostone(char *dline_array, int index)
2138 {
2139 return SET_BIT(dline_array[index], 1);
2140 }
2141
2142 static void array_setall(char *array, char from, char to, int len)
2143 {
2144 char *p = array, *p_old = p;
2145 int len_remaining = len;
2146
2147 while ((p = memchr(p, from, len_remaining))) {
2148 *p = to;
2149 len_remaining -= p - p_old;
2150 p_old = p;
2151 }
2152 }
2153
2154 /* Helper, called when doing dline dot deductions, in the case where we
2155 * have 4 UNKNOWNs, and two of them (adjacent) have *exactly* one YES between
2156 * them (because of dline atmostone/atleastone).
2157 * On entry, edge points to the first of these two UNKNOWNs. This function
2158 * will find the opposite UNKNOWNS (if they are adjacent to one another)
2159 * and set their corresponding dline to atleastone. (Setting atmostone
2160 * already happens in earlier dline deductions) */
2161 static int dline_set_opp_atleastone(solver_state *sstate,
2162 grid_dot *d, int edge)
2163 {
2164 game_state *state = sstate->state;
2165 grid *g = state->game_grid;
2166 int N = d->order;
2167 int opp, opp2;
2168 for (opp = 0; opp < N; opp++) {
2169 int opp_dline_index;
2170 if (opp == edge || opp == edge+1 || opp == edge-1)
2171 continue;
2172 if (opp == 0 && edge == N-1)
2173 continue;
2174 if (opp == N-1 && edge == 0)
2175 continue;
2176 opp2 = opp + 1;
2177 if (opp2 == N) opp2 = 0;
2178 /* Check if opp, opp2 point to LINE_UNKNOWNs */
2179 if (state->lines[d->edges[opp] - g->edges] != LINE_UNKNOWN)
2180 continue;
2181 if (state->lines[d->edges[opp2] - g->edges] != LINE_UNKNOWN)
2182 continue;
2183 /* Found opposite UNKNOWNS and they're next to each other */
2184 opp_dline_index = dline_index_from_dot(g, d, opp);
2185 return set_atleastone(sstate->dlines, opp_dline_index);
2186 }
2187 return FALSE;
2188 }
2189
2190
2191 /* Set pairs of lines around this face which are known to be identical, to
2192 * the given line_state */
2193 static int face_setall_identical(solver_state *sstate, int face_index,
2194 enum line_state line_new)
2195 {
2196 /* can[dir] contains the canonical line associated with the line in
2197 * direction dir from the square in question. Similarly inv[dir] is
2198 * whether or not the line in question is inverse to its canonical
2199 * element. */
2200 int retval = FALSE;
2201 game_state *state = sstate->state;
2202 grid *g = state->game_grid;
2203 grid_face *f = g->faces + face_index;
2204 int N = f->order;
2205 int i, j;
2206 int can1, can2, inv1, inv2;
2207
2208 for (i = 0; i < N; i++) {
2209 int line1_index = f->edges[i] - g->edges;
2210 if (state->lines[line1_index] != LINE_UNKNOWN)
2211 continue;
2212 for (j = i + 1; j < N; j++) {
2213 int line2_index = f->edges[j] - g->edges;
2214 if (state->lines[line2_index] != LINE_UNKNOWN)
2215 continue;
2216
2217 /* Found two UNKNOWNS */
2218 can1 = edsf_canonify(sstate->linedsf, line1_index, &inv1);
2219 can2 = edsf_canonify(sstate->linedsf, line2_index, &inv2);
2220 if (can1 == can2 && inv1 == inv2) {
2221 solver_set_line(sstate, line1_index, line_new);
2222 solver_set_line(sstate, line2_index, line_new);
2223 }
2224 }
2225 }
2226 return retval;
2227 }
2228
2229 /* Given a dot or face, and a count of LINE_UNKNOWNs, find them and
2230 * return the edge indices into e. */
2231 static void find_unknowns(game_state *state,
2232 grid_edge **edge_list, /* Edge list to search (from a face or a dot) */
2233 int expected_count, /* Number of UNKNOWNs (comes from solver's cache) */
2234 int *e /* Returned edge indices */)
2235 {
2236 int c = 0;
2237 grid *g = state->game_grid;
2238 while (c < expected_count) {
2239 int line_index = *edge_list - g->edges;
2240 if (state->lines[line_index] == LINE_UNKNOWN) {
2241 e[c] = line_index;
2242 c++;
2243 }
2244 ++edge_list;
2245 }
2246 }
2247
2248 /* If we have a list of edges, and we know whether the number of YESs should
2249 * be odd or even, and there are only a few UNKNOWNs, we can do some simple
2250 * linedsf deductions. This can be used for both face and dot deductions.
2251 * Returns the difficulty level of the next solver that should be used,
2252 * or DIFF_MAX if no progress was made. */
2253 static int parity_deductions(solver_state *sstate,
2254 grid_edge **edge_list, /* Edge list (from a face or a dot) */
2255 int total_parity, /* Expected number of YESs modulo 2 (either 0 or 1) */
2256 int unknown_count)
2257 {
2258 game_state *state = sstate->state;
2259 int diff = DIFF_MAX;
2260 int *linedsf = sstate->linedsf;
2261
2262 if (unknown_count == 2) {
2263 /* Lines are known alike/opposite, depending on inv. */
2264 int e[2];
2265 find_unknowns(state, edge_list, 2, e);
2266 if (merge_lines(sstate, e[0], e[1], total_parity))
2267 diff = min(diff, DIFF_HARD);
2268 } else if (unknown_count == 3) {
2269 int e[3];
2270 int can[3]; /* canonical edges */
2271 int inv[3]; /* whether can[x] is inverse to e[x] */
2272 find_unknowns(state, edge_list, 3, e);
2273 can[0] = edsf_canonify(linedsf, e[0], inv);
2274 can[1] = edsf_canonify(linedsf, e[1], inv+1);
2275 can[2] = edsf_canonify(linedsf, e[2], inv+2);
2276 if (can[0] == can[1]) {
2277 if (solver_set_line(sstate, e[2], (total_parity^inv[0]^inv[1]) ?
2278 LINE_YES : LINE_NO))
2279 diff = min(diff, DIFF_EASY);
2280 }
2281 if (can[0] == can[2]) {
2282 if (solver_set_line(sstate, e[1], (total_parity^inv[0]^inv[2]) ?
2283 LINE_YES : LINE_NO))
2284 diff = min(diff, DIFF_EASY);
2285 }
2286 if (can[1] == can[2]) {
2287 if (solver_set_line(sstate, e[0], (total_parity^inv[1]^inv[2]) ?
2288 LINE_YES : LINE_NO))
2289 diff = min(diff, DIFF_EASY);
2290 }
2291 } else if (unknown_count == 4) {
2292 int e[4];
2293 int can[4]; /* canonical edges */
2294 int inv[4]; /* whether can[x] is inverse to e[x] */
2295 find_unknowns(state, edge_list, 4, e);
2296 can[0] = edsf_canonify(linedsf, e[0], inv);
2297 can[1] = edsf_canonify(linedsf, e[1], inv+1);
2298 can[2] = edsf_canonify(linedsf, e[2], inv+2);
2299 can[3] = edsf_canonify(linedsf, e[3], inv+3);
2300 if (can[0] == can[1]) {
2301 if (merge_lines(sstate, e[2], e[3], total_parity^inv[0]^inv[1]))
2302 diff = min(diff, DIFF_HARD);
2303 } else if (can[0] == can[2]) {
2304 if (merge_lines(sstate, e[1], e[3], total_parity^inv[0]^inv[2]))
2305 diff = min(diff, DIFF_HARD);
2306 } else if (can[0] == can[3]) {
2307 if (merge_lines(sstate, e[1], e[2], total_parity^inv[0]^inv[3]))
2308 diff = min(diff, DIFF_HARD);
2309 } else if (can[1] == can[2]) {
2310 if (merge_lines(sstate, e[0], e[3], total_parity^inv[1]^inv[2]))
2311 diff = min(diff, DIFF_HARD);
2312 } else if (can[1] == can[3]) {
2313 if (merge_lines(sstate, e[0], e[2], total_parity^inv[1]^inv[3]))
2314 diff = min(diff, DIFF_HARD);
2315 } else if (can[2] == can[3]) {
2316 if (merge_lines(sstate, e[0], e[1], total_parity^inv[2]^inv[3]))
2317 diff = min(diff, DIFF_HARD);
2318 }
2319 }
2320 return diff;
2321 }
2322
2323
2324 /*
2325 * These are the main solver functions.
2326 *
2327 * Their return values are diff values corresponding to the lowest mode solver
2328 * that would notice the work that they have done. For example if the normal
2329 * mode solver adds actual lines or crosses, it will return DIFF_EASY as the
2330 * easy mode solver might be able to make progress using that. It doesn't make
2331 * sense for one of them to return a diff value higher than that of the
2332 * function itself.
2333 *
2334 * Each function returns the lowest value it can, as early as possible, in
2335 * order to try and pass as much work as possible back to the lower level
2336 * solvers which progress more quickly.
2337 */
2338
2339 /* PROPOSED NEW DESIGN:
2340 * We have a work queue consisting of 'events' notifying us that something has
2341 * happened that a particular solver mode might be interested in. For example
2342 * the hard mode solver might do something that helps the normal mode solver at
2343 * dot [x,y] in which case it will enqueue an event recording this fact. Then
2344 * we pull events off the work queue, and hand each in turn to the solver that
2345 * is interested in them. If a solver reports that it failed we pass the same
2346 * event on to progressively more advanced solvers and the loop detector. Once
2347 * we've exhausted an event, or it has helped us progress, we drop it and
2348 * continue to the next one. The events are sorted first in order of solver
2349 * complexity (easy first) then order of insertion (oldest first).
2350 * Once we run out of events we loop over each permitted solver in turn
2351 * (easiest first) until either a deduction is made (and an event therefore
2352 * emerges) or no further deductions can be made (in which case we've failed).
2353 *
2354 * QUESTIONS:
2355 * * How do we 'loop over' a solver when both dots and squares are concerned.
2356 * Answer: first all squares then all dots.
2357 */
2358
2359 static int trivial_deductions(solver_state *sstate)
2360 {
2361 int i, current_yes, current_no;
2362 game_state *state = sstate->state;
2363 grid *g = state->game_grid;
2364 int diff = DIFF_MAX;
2365
2366 /* Per-face deductions */
2367 for (i = 0; i < g->num_faces; i++) {
2368 grid_face *f = g->faces + i;
2369
2370 if (sstate->face_solved[i])
2371 continue;
2372
2373 current_yes = sstate->face_yes_count[i];
2374 current_no = sstate->face_no_count[i];
2375
2376 if (current_yes + current_no == f->order) {
2377 sstate->face_solved[i] = TRUE;
2378 continue;
2379 }
2380
2381 if (state->clues[i] < 0)
2382 continue;
2383
2384 if (state->clues[i] < current_yes) {
2385 sstate->solver_status = SOLVER_MISTAKE;
2386 return DIFF_EASY;
2387 }
2388 if (state->clues[i] == current_yes) {
2389 if (face_setall(sstate, i, LINE_UNKNOWN, LINE_NO))
2390 diff = min(diff, DIFF_EASY);
2391 sstate->face_solved[i] = TRUE;
2392 continue;
2393 }
2394
2395 if (f->order - state->clues[i] < current_no) {
2396 sstate->solver_status = SOLVER_MISTAKE;
2397 return DIFF_EASY;
2398 }
2399 if (f->order - state->clues[i] == current_no) {
2400 if (face_setall(sstate, i, LINE_UNKNOWN, LINE_YES))
2401 diff = min(diff, DIFF_EASY);
2402 sstate->face_solved[i] = TRUE;
2403 continue;
2404 }
2405 }
2406
2407 check_caches(sstate);
2408
2409 /* Per-dot deductions */
2410 for (i = 0; i < g->num_dots; i++) {
2411 grid_dot *d = g->dots + i;
2412 int yes, no, unknown;
2413
2414 if (sstate->dot_solved[i])
2415 continue;
2416
2417 yes = sstate->dot_yes_count[i];
2418 no = sstate->dot_no_count[i];
2419 unknown = d->order - yes - no;
2420
2421 if (yes == 0) {
2422 if (unknown == 0) {
2423 sstate->dot_solved[i] = TRUE;
2424 } else if (unknown == 1) {
2425 dot_setall(sstate, i, LINE_UNKNOWN, LINE_NO);
2426 diff = min(diff, DIFF_EASY);
2427 sstate->dot_solved[i] = TRUE;
2428 }
2429 } else if (yes == 1) {
2430 if (unknown == 0) {
2431 sstate->solver_status = SOLVER_MISTAKE;
2432 return DIFF_EASY;
2433 } else if (unknown == 1) {
2434 dot_setall(sstate, i, LINE_UNKNOWN, LINE_YES);
2435 diff = min(diff, DIFF_EASY);
2436 }
2437 } else if (yes == 2) {
2438 if (unknown > 0) {
2439 dot_setall(sstate, i, LINE_UNKNOWN, LINE_NO);
2440 diff = min(diff, DIFF_EASY);
2441 }
2442 sstate->dot_solved[i] = TRUE;
2443 } else {
2444 sstate->solver_status = SOLVER_MISTAKE;
2445 return DIFF_EASY;
2446 }
2447 }
2448
2449 check_caches(sstate);
2450
2451 return diff;
2452 }
2453
2454 static int dline_deductions(solver_state *sstate)
2455 {
2456 game_state *state = sstate->state;
2457 grid *g = state->game_grid;
2458 char *dlines = sstate->dlines;
2459 int i;
2460 int diff = DIFF_MAX;
2461
2462 /* ------ Face deductions ------ */
2463
2464 /* Given a set of dline atmostone/atleastone constraints, need to figure
2465 * out if we can deduce any further info. For more general faces than
2466 * squares, this turns out to be a tricky problem.
2467 * The approach taken here is to define (per face) NxN matrices:
2468 * "maxs" and "mins".
2469 * The entries maxs(j,k) and mins(j,k) define the upper and lower limits
2470 * for the possible number of edges that are YES between positions j and k
2471 * going clockwise around the face. Can think of j and k as marking dots
2472 * around the face (recall the labelling scheme: edge0 joins dot0 to dot1,
2473 * edge1 joins dot1 to dot2 etc).
2474 * Trivially, mins(j,j) = maxs(j,j) = 0, and we don't even bother storing
2475 * these. mins(j,j+1) and maxs(j,j+1) are determined by whether edge{j}
2476 * is YES, NO or UNKNOWN. mins(j,j+2) and maxs(j,j+2) are related to
2477 * the dline atmostone/atleastone status for edges j and j+1.
2478 *
2479 * Then we calculate the remaining entries recursively. We definitely
2480 * know that
2481 * mins(j,k) >= { mins(j,u) + mins(u,k) } for any u between j and k.
2482 * This is because any valid placement of YESs between j and k must give
2483 * a valid placement between j and u, and also between u and k.
2484 * I believe it's sufficient to use just the two values of u:
2485 * j+1 and j+2. Seems to work well in practice - the bounds we compute
2486 * are rigorous, even if they might not be best-possible.
2487 *
2488 * Once we have maxs and mins calculated, we can make inferences about
2489 * each dline{j,j+1} by looking at the possible complementary edge-counts
2490 * mins(j+2,j) and maxs(j+2,j) and comparing these with the face clue.
2491 * As well as dlines, we can make similar inferences about single edges.
2492 * For example, consider a pentagon with clue 3, and we know at most one
2493 * of (edge0, edge1) is YES, and at most one of (edge2, edge3) is YES.
2494 * We could then deduce edge4 is YES, because maxs(0,4) would be 2, so
2495 * that final edge would have to be YES to make the count up to 3.
2496 */
2497
2498 /* Much quicker to allocate arrays on the stack than the heap, so
2499 * define the largest possible face size, and base our array allocations
2500 * on that. We check this with an assertion, in case someone decides to
2501 * make a grid which has larger faces than this. Note, this algorithm
2502 * could get quite expensive if there are many large faces. */
2503 #define MAX_FACE_SIZE 8
2504
2505 for (i = 0; i < g->num_faces; i++) {
2506 int maxs[MAX_FACE_SIZE][MAX_FACE_SIZE];
2507 int mins[MAX_FACE_SIZE][MAX_FACE_SIZE];
2508 grid_face *f = g->faces + i;
2509 int N = f->order;
2510 int j,m;
2511 int clue = state->clues[i];
2512 assert(N <= MAX_FACE_SIZE);
2513 if (sstate->face_solved[i])
2514 continue;
2515 if (clue < 0) continue;
2516
2517 /* Calculate the (j,j+1) entries */
2518 for (j = 0; j < N; j++) {
2519 int edge_index = f->edges[j] - g->edges;
2520 int dline_index;
2521 enum line_state line1 = state->lines[edge_index];
2522 enum line_state line2;
2523 int tmp;
2524 int k = j + 1;
2525 if (k >= N) k = 0;
2526 maxs[j][k] = (line1 == LINE_NO) ? 0 : 1;
2527 mins[j][k] = (line1 == LINE_YES) ? 1 : 0;
2528 /* Calculate the (j,j+2) entries */
2529 dline_index = dline_index_from_face(g, f, k);
2530 edge_index = f->edges[k] - g->edges;
2531 line2 = state->lines[edge_index];
2532 k++;
2533 if (k >= N) k = 0;
2534
2535 /* max */
2536 tmp = 2;
2537 if (line1 == LINE_NO) tmp--;
2538 if (line2 == LINE_NO) tmp--;
2539 if (tmp == 2 && is_atmostone(dlines, dline_index))
2540 tmp = 1;
2541 maxs[j][k] = tmp;
2542
2543 /* min */
2544 tmp = 0;
2545 if (line1 == LINE_YES) tmp++;
2546 if (line2 == LINE_YES) tmp++;
2547 if (tmp == 0 && is_atleastone(dlines, dline_index))
2548 tmp = 1;
2549 mins[j][k] = tmp;
2550 }
2551
2552 /* Calculate the (j,j+m) entries for m between 3 and N-1 */
2553 for (m = 3; m < N; m++) {
2554 for (j = 0; j < N; j++) {
2555 int k = j + m;
2556 int u = j + 1;
2557 int v = j + 2;
2558 int tmp;
2559 if (k >= N) k -= N;
2560 if (u >= N) u -= N;
2561 if (v >= N) v -= N;
2562 maxs[j][k] = maxs[j][u] + maxs[u][k];
2563 mins[j][k] = mins[j][u] + mins[u][k];
2564 tmp = maxs[j][v] + maxs[v][k];
2565 maxs[j][k] = min(maxs[j][k], tmp);
2566 tmp = mins[j][v] + mins[v][k];
2567 mins[j][k] = max(mins[j][k], tmp);
2568 }
2569 }
2570
2571 /* See if we can make any deductions */
2572 for (j = 0; j < N; j++) {
2573 int k;
2574 grid_edge *e = f->edges[j];
2575 int line_index = e - g->edges;
2576 int dline_index;
2577
2578 if (state->lines[line_index] != LINE_UNKNOWN)
2579 continue;
2580 k = j + 1;
2581 if (k >= N) k = 0;
2582
2583 /* minimum YESs in the complement of this edge */
2584 if (mins[k][j] > clue) {
2585 sstate->solver_status = SOLVER_MISTAKE;
2586 return DIFF_EASY;
2587 }
2588 if (mins[k][j] == clue) {
2589 /* setting this edge to YES would make at least
2590 * (clue+1) edges - contradiction */
2591 solver_set_line(sstate, line_index, LINE_NO);
2592 diff = min(diff, DIFF_EASY);
2593 }
2594 if (maxs[k][j] < clue - 1) {
2595 sstate->solver_status = SOLVER_MISTAKE;
2596 return DIFF_EASY;
2597 }
2598 if (maxs[k][j] == clue - 1) {
2599 /* Only way to satisfy the clue is to set edge{j} as YES */
2600 solver_set_line(sstate, line_index, LINE_YES);
2601 diff = min(diff, DIFF_EASY);
2602 }
2603
2604 /* More advanced deduction that allows propagation along diagonal
2605 * chains of faces connected by dots, for example, 3-2-...-2-3
2606 * in square grids. */
2607 if (sstate->diff >= DIFF_TRICKY) {
2608 /* Now see if we can make dline deduction for edges{j,j+1} */
2609 e = f->edges[k];
2610 if (state->lines[e - g->edges] != LINE_UNKNOWN)
2611 /* Only worth doing this for an UNKNOWN,UNKNOWN pair.
2612 * Dlines where one of the edges is known, are handled in the
2613 * dot-deductions */
2614 continue;
2615
2616 dline_index = dline_index_from_face(g, f, k);
2617 k++;
2618 if (k >= N) k = 0;
2619
2620 /* minimum YESs in the complement of this dline */
2621 if (mins[k][j] > clue - 2) {
2622 /* Adding 2 YESs would break the clue */
2623 if (set_atmostone(dlines, dline_index))
2624 diff = min(diff, DIFF_NORMAL);
2625 }
2626 /* maximum YESs in the complement of this dline */
2627 if (maxs[k][j] < clue) {
2628 /* Adding 2 NOs would mean not enough YESs */
2629 if (set_atleastone(dlines, dline_index))
2630 diff = min(diff, DIFF_NORMAL);
2631 }
2632 }
2633 }
2634 }
2635
2636 if (diff < DIFF_NORMAL)
2637 return diff;
2638
2639 /* ------ Dot deductions ------ */
2640
2641 for (i = 0; i < g->num_dots; i++) {
2642 grid_dot *d = g->dots + i;
2643 int N = d->order;
2644 int yes, no, unknown;
2645 int j;
2646 if (sstate->dot_solved[i])
2647 continue;
2648 yes = sstate->dot_yes_count[i];
2649 no = sstate->dot_no_count[i];
2650 unknown = N - yes - no;
2651
2652 for (j = 0; j < N; j++) {
2653 int k;
2654 int dline_index;
2655 int line1_index, line2_index;
2656 enum line_state line1, line2;
2657 k = j + 1;
2658 if (k >= N) k = 0;
2659 dline_index = dline_index_from_dot(g, d, j);
2660 line1_index = d->edges[j] - g->edges;
2661 line2_index = d->edges[k] - g->edges;
2662 line1 = state->lines[line1_index];
2663 line2 = state->lines[line2_index];
2664
2665 /* Infer dline state from line state */
2666 if (line1 == LINE_NO || line2 == LINE_NO) {
2667 if (set_atmostone(dlines, dline_index))
2668 diff = min(diff, DIFF_NORMAL);
2669 }
2670 if (line1 == LINE_YES || line2 == LINE_YES) {
2671 if (set_atleastone(dlines, dline_index))
2672 diff = min(diff, DIFF_NORMAL);
2673 }
2674 /* Infer line state from dline state */
2675 if (is_atmostone(dlines, dline_index)) {
2676 if (line1 == LINE_YES && line2 == LINE_UNKNOWN) {
2677 solver_set_line(sstate, line2_index, LINE_NO);
2678 diff = min(diff, DIFF_EASY);
2679 }
2680 if (line2 == LINE_YES && line1 == LINE_UNKNOWN) {
2681 solver_set_line(sstate, line1_index, LINE_NO);
2682 diff = min(diff, DIFF_EASY);
2683 }
2684 }
2685 if (is_atleastone(dlines, dline_index)) {
2686 if (line1 == LINE_NO && line2 == LINE_UNKNOWN) {
2687 solver_set_line(sstate, line2_index, LINE_YES);
2688 diff = min(diff, DIFF_EASY);
2689 }
2690 if (line2 == LINE_NO && line1 == LINE_UNKNOWN) {
2691 solver_set_line(sstate, line1_index, LINE_YES);
2692 diff = min(diff, DIFF_EASY);
2693 }
2694 }
2695 /* Deductions that depend on the numbers of lines.
2696 * Only bother if both lines are UNKNOWN, otherwise the
2697 * easy-mode solver (or deductions above) would have taken
2698 * care of it. */
2699 if (line1 != LINE_UNKNOWN || line2 != LINE_UNKNOWN)
2700 continue;
2701
2702 if (yes == 0 && unknown == 2) {
2703 /* Both these unknowns must be identical. If we know
2704 * atmostone or atleastone, we can make progress. */
2705 if (is_atmostone(dlines, dline_index)) {
2706 solver_set_line(sstate, line1_index, LINE_NO);
2707 solver_set_line(sstate, line2_index, LINE_NO);
2708 diff = min(diff, DIFF_EASY);
2709 }
2710 if (is_atleastone(dlines, dline_index)) {
2711 solver_set_line(sstate, line1_index, LINE_YES);
2712 solver_set_line(sstate, line2_index, LINE_YES);
2713 diff = min(diff, DIFF_EASY);
2714 }
2715 }
2716 if (yes == 1) {
2717 if (set_atmostone(dlines, dline_index))
2718 diff = min(diff, DIFF_NORMAL);
2719 if (unknown == 2) {
2720 if (set_atleastone(dlines, dline_index))
2721 diff = min(diff, DIFF_NORMAL);
2722 }
2723 }
2724
2725 /* More advanced deduction that allows propagation along diagonal
2726 * chains of faces connected by dots, for example: 3-2-...-2-3
2727 * in square grids. */
2728 if (sstate->diff >= DIFF_TRICKY) {
2729 /* If we have atleastone set for this dline, infer
2730 * atmostone for each "opposite" dline (that is, each
2731 * dline without edges in common with this one).
2732 * Again, this test is only worth doing if both these
2733 * lines are UNKNOWN. For if one of these lines were YES,
2734 * the (yes == 1) test above would kick in instead. */
2735 if (is_atleastone(dlines, dline_index)) {
2736 int opp;
2737 for (opp = 0; opp < N; opp++) {
2738 int opp_dline_index;
2739 if (opp == j || opp == j+1 || opp == j-1)
2740 continue;
2741 if (j == 0 && opp == N-1)
2742 continue;
2743 if (j == N-1 && opp == 0)
2744 continue;
2745 opp_dline_index = dline_index_from_dot(g, d, opp);
2746 if (set_atmostone(dlines, opp_dline_index))
2747 diff = min(diff, DIFF_NORMAL);
2748 }
2749 if (yes == 0 && is_atmostone(dlines, dline_index)) {
2750 /* This dline has *exactly* one YES and there are no
2751 * other YESs. This allows more deductions. */
2752 if (unknown == 3) {
2753 /* Third unknown must be YES */
2754 for (opp = 0; opp < N; opp++) {
2755 int opp_index;
2756 if (opp == j || opp == k)
2757 continue;
2758 opp_index = d->edges[opp] - g->edges;
2759 if (state->lines[opp_index] == LINE_UNKNOWN) {
2760 solver_set_line(sstate, opp_index,
2761 LINE_YES);
2762 diff = min(diff, DIFF_EASY);
2763 }
2764 }
2765 } else if (unknown == 4) {
2766 /* Exactly one of opposite UNKNOWNS is YES. We've
2767 * already set atmostone, so set atleastone as
2768 * well.
2769 */
2770 if (dline_set_opp_atleastone(sstate, d, j))
2771 diff = min(diff, DIFF_NORMAL);
2772 }
2773 }
2774 }
2775 }
2776 }
2777 }
2778 return diff;
2779 }
2780
2781 static int linedsf_deductions(solver_state *sstate)
2782 {
2783 game_state *state = sstate->state;
2784 grid *g = state->game_grid;
2785 char *dlines = sstate->dlines;
2786 int i;
2787 int diff = DIFF_MAX;
2788 int diff_tmp;
2789
2790 /* ------ Face deductions ------ */
2791
2792 /* A fully-general linedsf deduction seems overly complicated
2793 * (I suspect the problem is NP-complete, though in practice it might just
2794 * be doable because faces are limited in size).
2795 * For simplicity, we only consider *pairs* of LINE_UNKNOWNS that are
2796 * known to be identical. If setting them both to YES (or NO) would break
2797 * the clue, set them to NO (or YES). */
2798
2799 for (i = 0; i < g->num_faces; i++) {
2800 int N, yes, no, unknown;
2801 int clue;
2802
2803 if (sstate->face_solved[i])
2804 continue;
2805 clue = state->clues[i];
2806 if (clue < 0)
2807 continue;
2808
2809 N = g->faces[i].order;
2810 yes = sstate->face_yes_count[i];
2811 if (yes + 1 == clue) {
2812 if (face_setall_identical(sstate, i, LINE_NO))
2813 diff = min(diff, DIFF_EASY);
2814 }
2815 no = sstate->face_no_count[i];
2816 if (no + 1 == N - clue) {
2817 if (face_setall_identical(sstate, i, LINE_YES))
2818 diff = min(diff, DIFF_EASY);
2819 }
2820
2821 /* Reload YES count, it might have changed */
2822 yes = sstate->face_yes_count[i];
2823 unknown = N - no - yes;
2824
2825 /* Deductions with small number of LINE_UNKNOWNs, based on overall
2826 * parity of lines. */
2827 diff_tmp = parity_deductions(sstate, g->faces[i].edges,
2828 (clue - yes) % 2, unknown);
2829 diff = min(diff, diff_tmp);
2830 }
2831
2832 /* ------ Dot deductions ------ */
2833 for (i = 0; i < g->num_dots; i++) {
2834 grid_dot *d = g->dots + i;
2835 int N = d->order;
2836 int j;
2837 int yes, no, unknown;
2838 /* Go through dlines, and do any dline<->linedsf deductions wherever
2839 * we find two UNKNOWNS. */
2840 for (j = 0; j < N; j++) {
2841 int dline_index = dline_index_from_dot(g, d, j);
2842 int line1_index;
2843 int line2_index;
2844 int can1, can2, inv1, inv2;
2845 int j2;
2846 line1_index = d->edges[j] - g->edges;
2847 if (state->lines[line1_index] != LINE_UNKNOWN)
2848 continue;
2849 j2 = j + 1;
2850 if (j2 == N) j2 = 0;
2851 line2_index = d->edges[j2] - g->edges;
2852 if (state->lines[line2_index] != LINE_UNKNOWN)
2853 continue;
2854 /* Infer dline flags from linedsf */
2855 can1 = edsf_canonify(sstate->linedsf, line1_index, &inv1);
2856 can2 = edsf_canonify(sstate->linedsf, line2_index, &inv2);
2857 if (can1 == can2 && inv1 != inv2) {
2858 /* These are opposites, so set dline atmostone/atleastone */
2859 if (set_atmostone(dlines, dline_index))
2860 diff = min(diff, DIFF_NORMAL);
2861 if (set_atleastone(dlines, dline_index))
2862 diff = min(diff, DIFF_NORMAL);
2863 continue;
2864 }
2865 /* Infer linedsf from dline flags */
2866 if (is_atmostone(dlines, dline_index)
2867 && is_atleastone(dlines, dline_index)) {
2868 if (merge_lines(sstate, line1_index, line2_index, 1))
2869 diff = min(diff, DIFF_HARD);
2870 }
2871 }
2872
2873 /* Deductions with small number of LINE_UNKNOWNs, based on overall
2874 * parity of lines. */
2875 yes = sstate->dot_yes_count[i];
2876 no = sstate->dot_no_count[i];
2877 unknown = N - yes - no;
2878 diff_tmp = parity_deductions(sstate, d->edges,
2879 yes % 2, unknown);
2880 diff = min(diff, diff_tmp);
2881 }
2882
2883 /* ------ Edge dsf deductions ------ */
2884
2885 /* If the state of a line is known, deduce the state of its canonical line
2886 * too, and vice versa. */
2887 for (i = 0; i < g->num_edges; i++) {
2888 int can, inv;
2889 enum line_state s;
2890 can = edsf_canonify(sstate->linedsf, i, &inv);
2891 if (can == i)
2892 continue;
2893 s = sstate->state->lines[can];
2894 if (s != LINE_UNKNOWN) {
2895 if (solver_set_line(sstate, i, inv ? OPP(s) : s))
2896 diff = min(diff, DIFF_EASY);
2897 } else {
2898 s = sstate->state->lines[i];
2899 if (s != LINE_UNKNOWN) {
2900 if (solver_set_line(sstate, can, inv ? OPP(s) : s))
2901 diff = min(diff, DIFF_EASY);
2902 }
2903 }
2904 }
2905
2906 return diff;
2907 }
2908
2909 static int loop_deductions(solver_state *sstate)
2910 {
2911 int edgecount = 0, clues = 0, satclues = 0, sm1clues = 0;
2912 game_state *state = sstate->state;
2913 grid *g = state->game_grid;
2914 int shortest_chainlen = g->num_dots;
2915 int loop_found = FALSE;
2916 int dots_connected;
2917 int progress = FALSE;
2918 int i;
2919
2920 /*
2921 * Go through the grid and update for all the new edges.
2922 * Since merge_dots() is idempotent, the simplest way to
2923 * do this is just to update for _all_ the edges.
2924 * Also, while we're here, we count the edges.
2925 */
2926 for (i = 0; i < g->num_edges; i++) {
2927 if (state->lines[i] == LINE_YES) {
2928 loop_found |= merge_dots(sstate, i);
2929 edgecount++;
2930 }
2931 }
2932
2933 /*
2934 * Count the clues, count the satisfied clues, and count the
2935 * satisfied-minus-one clues.
2936 */
2937 for (i = 0; i < g->num_faces; i++) {
2938 int c = state->clues[i];
2939 if (c >= 0) {
2940 int o = sstate->face_yes_count[i];
2941 if (o == c)
2942 satclues++;
2943 else if (o == c-1)
2944 sm1clues++;
2945 clues++;
2946 }
2947 }
2948
2949 for (i = 0; i < g->num_dots; ++i) {
2950 dots_connected =
2951 sstate->looplen[dsf_canonify(sstate->dotdsf, i)];
2952 if (dots_connected > 1)
2953 shortest_chainlen = min(shortest_chainlen, dots_connected);
2954 }
2955
2956 assert(sstate->solver_status == SOLVER_INCOMPLETE);
2957
2958 if (satclues == clues && shortest_chainlen == edgecount) {
2959 sstate->solver_status = SOLVER_SOLVED;
2960 /* This discovery clearly counts as progress, even if we haven't
2961 * just added any lines or anything */
2962 progress = TRUE;
2963 goto finished_loop_deductionsing;
2964 }
2965
2966 /*
2967 * Now go through looking for LINE_UNKNOWN edges which
2968 * connect two dots that are already in the same
2969 * equivalence class. If we find one, test to see if the
2970 * loop it would create is a solution.
2971 */
2972 for (i = 0; i < g->num_edges; i++) {
2973 grid_edge *e = g->edges + i;
2974 int d1 = e->dot1 - g->dots;
2975 int d2 = e->dot2 - g->dots;
2976 int eqclass, val;
2977 if (state->lines[i] != LINE_UNKNOWN)
2978 continue;
2979
2980 eqclass = dsf_canonify(sstate->dotdsf, d1);
2981 if (eqclass != dsf_canonify(sstate->dotdsf, d2))
2982 continue;
2983
2984 val = LINE_NO; /* loop is bad until proven otherwise */
2985
2986 /*
2987 * This edge would form a loop. Next
2988 * question: how long would the loop be?
2989 * Would it equal the total number of edges
2990 * (plus the one we'd be adding if we added
2991 * it)?
2992 */
2993 if (sstate->looplen[eqclass] == edgecount + 1) {
2994 int sm1_nearby;
2995
2996 /*
2997 * This edge would form a loop which
2998 * took in all the edges in the entire
2999 * grid. So now we need to work out
3000 * whether it would be a valid solution
3001 * to the puzzle, which means we have to
3002 * check if it satisfies all the clues.
3003 * This means that every clue must be
3004 * either satisfied or satisfied-minus-
3005 * 1, and also that the number of
3006 * satisfied-minus-1 clues must be at
3007 * most two and they must lie on either
3008 * side of this edge.
3009 */
3010 sm1_nearby = 0;
3011 if (e->face1) {
3012 int f = e->face1 - g->faces;
3013 int c = state->clues[f];
3014 if (c >= 0 && sstate->face_yes_count[f] == c - 1)
3015 sm1_nearby++;
3016 }
3017 if (e->face2) {
3018 int f = e->face2 - g->faces;
3019 int c = state->clues[f];
3020 if (c >= 0 && sstate->face_yes_count[f] == c - 1)
3021 sm1_nearby++;
3022 }
3023 if (sm1clues == sm1_nearby &&
3024 sm1clues + satclues == clues) {
3025 val = LINE_YES; /* loop is good! */
3026 }
3027 }
3028
3029 /*
3030 * Right. Now we know that adding this edge
3031 * would form a loop, and we know whether
3032 * that loop would be a viable solution or
3033 * not.
3034 *
3035 * If adding this edge produces a solution,
3036 * then we know we've found _a_ solution but
3037 * we don't know that it's _the_ solution -
3038 * if it were provably the solution then
3039 * we'd have deduced this edge some time ago
3040 * without the need to do loop detection. So
3041 * in this state we return SOLVER_AMBIGUOUS,
3042 * which has the effect that hitting Solve
3043 * on a user-provided puzzle will fill in a
3044 * solution but using the solver to
3045 * construct new puzzles won't consider this
3046 * a reasonable deduction for the user to
3047 * make.
3048 */
3049 progress = solver_set_line(sstate, i, val);
3050 assert(progress == TRUE);
3051 if (val == LINE_YES) {
3052 sstate->solver_status = SOLVER_AMBIGUOUS;
3053 goto finished_loop_deductionsing;
3054 }
3055 }
3056
3057 finished_loop_deductionsing:
3058 return progress ? DIFF_EASY : DIFF_MAX;
3059 }
3060
3061 /* This will return a dynamically allocated solver_state containing the (more)
3062 * solved grid */
3063 static solver_state *solve_game_rec(const solver_state *sstate_start)
3064 {
3065 solver_state *sstate;
3066
3067 /* Index of the solver we should call next. */
3068 int i = 0;
3069
3070 /* As a speed-optimisation, we avoid re-running solvers that we know
3071 * won't make any progress. This happens when a high-difficulty
3072 * solver makes a deduction that can only help other high-difficulty
3073 * solvers.
3074 * For example: if a new 'dline' flag is set by dline_deductions, the
3075 * trivial_deductions solver cannot do anything with this information.
3076 * If we've already run the trivial_deductions solver (because it's
3077 * earlier in the list), there's no point running it again.
3078 *
3079 * Therefore: if a solver is earlier in the list than "threshold_index",
3080 * we don't bother running it if it's difficulty level is less than
3081 * "threshold_diff".
3082 */
3083 int threshold_diff = 0;
3084 int threshold_index = 0;
3085
3086 sstate = dup_solver_state(sstate_start);
3087
3088 check_caches(sstate);
3089
3090 while (i < NUM_SOLVERS) {
3091 if (sstate->solver_status == SOLVER_MISTAKE)
3092 return sstate;
3093 if (sstate->solver_status == SOLVER_SOLVED ||
3094 sstate->solver_status == SOLVER_AMBIGUOUS) {
3095 /* solver finished */
3096 break;
3097 }
3098
3099 if ((solver_diffs[i] >= threshold_diff || i >= threshold_index)
3100 && solver_diffs[i] <= sstate->diff) {
3101 /* current_solver is eligible, so use it */
3102 int next_diff = solver_fns[i](sstate);
3103 if (next_diff != DIFF_MAX) {
3104 /* solver made progress, so use new thresholds and
3105 * start again at top of list. */
3106 threshold_diff = next_diff;
3107 threshold_index = i;
3108 i = 0;
3109 continue;
3110 }
3111 }
3112 /* current_solver is ineligible, or failed to make progress, so
3113 * go to the next solver in the list */
3114 i++;
3115 }
3116
3117 if (sstate->solver_status == SOLVER_SOLVED ||
3118 sstate->solver_status == SOLVER_AMBIGUOUS) {
3119 /* s/LINE_UNKNOWN/LINE_NO/g */
3120 array_setall(sstate->state->lines, LINE_UNKNOWN, LINE_NO,
3121 sstate->state->game_grid->num_edges);
3122 return sstate;
3123 }
3124
3125 return sstate;
3126 }
3127
3128 static char *solve_game(game_state *state, game_state *currstate,
3129 char *aux, char **error)
3130 {
3131 char *soln = NULL;
3132 solver_state *sstate, *new_sstate;
3133
3134 sstate = new_solver_state(state, DIFF_MAX);
3135 new_sstate = solve_game_rec(sstate);
3136
3137 if (new_sstate->solver_status == SOLVER_SOLVED) {
3138 soln = encode_solve_move(new_sstate->state);
3139 } else if (new_sstate->solver_status == SOLVER_AMBIGUOUS) {
3140 soln = encode_solve_move(new_sstate->state);
3141 /**error = "Solver found ambiguous solutions"; */
3142 } else {
3143 soln = encode_solve_move(new_sstate->state);
3144 /**error = "Solver failed"; */
3145 }
3146
3147 free_solver_state(new_sstate);
3148 free_solver_state(sstate);
3149
3150 return soln;
3151 }
3152
3153 /* ----------------------------------------------------------------------
3154 * Drawing and mouse-handling
3155 */
3156
3157 static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
3158 int x, int y, int button)
3159 {
3160 grid *g = state->game_grid;
3161 grid_edge *e;
3162 int i;
3163 char *ret, buf[80];
3164 char button_char = ' ';
3165 enum line_state old_state;
3166
3167 button &= ~MOD_MASK;
3168
3169 /* Convert mouse-click (x,y) to grid coordinates */
3170 x -= BORDER(ds->tilesize);
3171 y -= BORDER(ds->tilesize);
3172 x = x * g->tilesize / ds->tilesize;
3173 y = y * g->tilesize / ds->tilesize;
3174 x += g->lowest_x;
3175 y += g->lowest_y;
3176
3177 e = grid_nearest_edge(g, x, y);
3178 if (e == NULL)
3179 return NULL;
3180
3181 i = e - g->edges;
3182
3183 /* I think it's only possible to play this game with mouse clicks, sorry */
3184 /* Maybe will add mouse drag support some time */
3185 old_state = state->lines[i];
3186
3187 switch (button) {
3188 case LEFT_BUTTON:
3189 switch (old_state) {
3190 case LINE_UNKNOWN:
3191 button_char = 'y';
3192 break;
3193 case LINE_YES:
3194 case LINE_NO:
3195 button_char = 'u';
3196 break;
3197 }
3198 break;
3199 case MIDDLE_BUTTON:
3200 button_char = 'u';
3201 break;
3202 case RIGHT_BUTTON:
3203 switch (old_state) {
3204 case LINE_UNKNOWN:
3205 button_char = 'n';
3206 break;
3207 case LINE_NO:
3208 case LINE_YES:
3209 button_char = 'u';
3210 break;
3211 }
3212 break;
3213 default:
3214 return NULL;
3215 }
3216
3217
3218 sprintf(buf, "%d%c", i, (int)button_char);
3219 ret = dupstr(buf);
3220
3221 return ret;
3222 }
3223
3224 static game_state *execute_move(game_state *state, char *move)
3225 {
3226 int i;
3227 game_state *newstate = dup_game(state);
3228
3229 if (move[0] == 'S') {
3230 move++;
3231 newstate->cheated = TRUE;
3232 }
3233
3234 while (*move) {
3235 i = atoi(move);
3236 if (i < 0 || i >= newstate->game_grid->num_edges)
3237 goto fail;
3238 move += strspn(move, "1234567890");
3239 switch (*(move++)) {
3240 case 'y':
3241 newstate->lines[i] = LINE_YES;
3242 break;
3243 case 'n':
3244 newstate->lines[i] = LINE_NO;
3245 break;
3246 case 'u':
3247 newstate->lines[i] = LINE_UNKNOWN;
3248 break;
3249 default:
3250 goto fail;
3251 }
3252 }
3253
3254 /*
3255 * Check for completion.
3256 */
3257 if (check_completion(newstate))
3258 newstate->solved = TRUE;
3259
3260 return newstate;
3261
3262 fail:
3263 free_game(newstate);
3264 return NULL;
3265 }
3266
3267 /* ----------------------------------------------------------------------
3268 * Drawing routines.
3269 */
3270
3271 /* Convert from grid coordinates to screen coordinates */
3272 static void grid_to_screen(const game_drawstate *ds, const grid *g,
3273 int grid_x, int grid_y, int *x, int *y)
3274 {
3275 *x = grid_x - g->lowest_x;
3276 *y = grid_y - g->lowest_y;
3277 *x = *x * ds->tilesize / g->tilesize;
3278 *y = *y * ds->tilesize / g->tilesize;
3279 *x += BORDER(ds->tilesize);
3280 *y += BORDER(ds->tilesize);
3281 }
3282
3283 /* Returns (into x,y) position of centre of face for rendering the text clue.
3284 */
3285 static void face_text_pos(const game_drawstate *ds, const grid *g,
3286 const grid_face *f, int *x, int *y)
3287 {
3288 int i;
3289
3290 /* Simplest solution is the centroid. Might not work in some cases. */
3291
3292 /* Another algorithm to look into:
3293 * Find the midpoints of the sides, find the bounding-box,
3294 * then take the centre of that. */
3295
3296 /* Best solution probably involves incentres (inscribed circles) */
3297
3298 int sx = 0, sy = 0; /* sums */
3299 for (i = 0; i < f->order; i++) {
3300 grid_dot *d = f->dots[i];
3301 sx += d->x;
3302 sy += d->y;
3303 }
3304 sx /= f->order;
3305 sy /= f->order;
3306
3307 /* convert to screen coordinates */
3308 grid_to_screen(ds, g, sx, sy, x, y);
3309 }
3310
3311 static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
3312 game_state *state, int dir, game_ui *ui,
3313 float animtime, float flashtime)
3314 {
3315 grid *g = state->game_grid;
3316 int border = BORDER(ds->tilesize);
3317 int i, n;
3318 char c[2];
3319 int line_colour, flash_changed;
3320 int clue_mistake;
3321 int clue_satisfied;
3322
3323 if (!ds->started) {
3324 /*
3325 * The initial contents of the window are not guaranteed and
3326 * can vary with front ends. To be on the safe side, all games
3327 * should start by drawing a big background-colour rectangle
3328 * covering the whole window.
3329 */
3330 int grid_width = g->highest_x - g->lowest_x;
3331 int grid_height = g->highest_y - g->lowest_y;
3332 int w = grid_width * ds->tilesize / g->tilesize;
3333 int h = grid_height * ds->tilesize / g->tilesize;
3334 draw_rect(dr, 0, 0, w + 2 * border + 1, h + 2 * border + 1,
3335 COL_BACKGROUND);
3336
3337 /* Draw clues */
3338 for (i = 0; i < g->num_faces; i++) {
3339 grid_face *f;
3340 int x, y;
3341
3342 c[0] = CLUE2CHAR(state->clues[i]);
3343 c[1] = '\0';
3344 f = g->faces + i;
3345 face_text_pos(ds, g, f, &x, &y);
3346 draw_text(dr, x, y, FONT_VARIABLE, ds->tilesize/2,
3347 ALIGN_VCENTRE | ALIGN_HCENTRE, COL_FOREGROUND, c);
3348 }
3349 draw_update(dr, 0, 0, w + 2 * border, h + 2 * border);
3350 }
3351
3352 if (flashtime > 0 &&
3353 (flashtime <= FLASH_TIME/3 ||
3354 flashtime >= FLASH_TIME*2/3)) {
3355 flash_changed = !ds->flashing;
3356 ds->flashing = TRUE;
3357 } else {
3358 flash_changed = ds->flashing;
3359 ds->flashing = FALSE;
3360 }
3361
3362 /* Some platforms may perform anti-aliasing, which may prevent clean
3363 * repainting of lines when the colour is changed.
3364 * If a line needs to be over-drawn in a different colour, erase a
3365 * bounding-box around the line, then flag all nearby objects for redraw.
3366 */
3367 if (ds->started) {
3368 const char redraw_flag = (char)(1<<7);
3369 for (i = 0; i < g->num_edges; i++) {
3370 char prev_ds = (ds->lines[i] & ~redraw_flag);
3371 char new_ds = state->lines[i];
3372 if (state->line_errors[i])
3373 new_ds = DS_LINE_ERROR;
3374
3375 /* If we're changing state, AND
3376 * the previous state was a coloured line */
3377 if ((prev_ds != new_ds) && (prev_ds != LINE_NO)) {
3378 grid_edge *e = g->edges + i;
3379 int x1 = e->dot1->x;
3380 int y1 = e->dot1->y;
3381 int x2 = e->dot2->x;
3382 int y2 = e->dot2->y;
3383 int xmin, xmax, ymin, ymax;
3384 int j;
3385 grid_to_screen(ds, g, x1, y1, &x1, &y1);
3386 grid_to_screen(ds, g, x2, y2, &x2, &y2);
3387 /* Allow extra margin for dots, and thickness of lines */
3388 xmin = min(x1, x2) - 2;
3389 xmax = max(x1, x2) + 2;
3390 ymin = min(y1, y2) - 2;
3391 ymax = max(y1, y2) + 2;
3392 /* For testing, I find it helpful to change COL_BACKGROUND
3393 * to COL_SATISFIED here. */
3394 draw_rect(dr, xmin, ymin, xmax - xmin + 1, ymax - ymin + 1,
3395 COL_BACKGROUND);
3396 draw_update(dr, xmin, ymin, xmax - xmin + 1, ymax - ymin + 1);
3397
3398 /* Mark nearby lines for redraw */
3399 for (j = 0; j < e->dot1->order; j++)
3400 ds->lines[e->dot1->edges[j] - g->edges] |= redraw_flag;
3401 for (j = 0; j < e->dot2->order; j++)
3402 ds->lines[e->dot2->edges[j] - g->edges] |= redraw_flag;
3403 /* Mark nearby clues for redraw. Use a value that is
3404 * neither TRUE nor FALSE for this. */
3405 if (e->face1)
3406 ds->clue_error[e->face1 - g->faces] = 2;
3407 if (e->face2)
3408 ds->clue_error[e->face2 - g->faces] = 2;
3409 }
3410 }
3411 }
3412
3413 /* Redraw clue colours if necessary */
3414 for (i = 0; i < g->num_faces; i++) {
3415 grid_face *f = g->faces + i;
3416 int sides = f->order;
3417 int j;
3418 n = state->clues[i];
3419 if (n < 0)
3420 continue;
3421
3422 c[0] = CLUE2CHAR(n);
3423 c[1] = '\0';
3424
3425 clue_mistake = (face_order(state, i, LINE_YES) > n ||
3426 face_order(state, i, LINE_NO ) > (sides-n));
3427
3428 clue_satisfied = (face_order(state, i, LINE_YES) == n &&
3429 face_order(state, i, LINE_NO ) == (sides-n));
3430
3431 if (clue_mistake != ds->clue_error[i]
3432 || clue_satisfied != ds->clue_satisfied[i]) {
3433 int x, y;
3434 face_text_pos(ds, g, f, &x, &y);
3435 /* There seems to be a certain amount of trial-and-error
3436 * involved in working out the correct bounding-box for
3437 * the text. */
3438 draw_rect(dr, x - ds->tilesize/4 - 1, y - ds->tilesize/4 - 3,
3439 ds->tilesize/2 + 2, ds->tilesize/2 + 5,
3440 COL_BACKGROUND);
3441 draw_text(dr, x, y,
3442 FONT_VARIABLE, ds->tilesize/2,
3443 ALIGN_VCENTRE | ALIGN_HCENTRE,
3444 clue_mistake ? COL_MISTAKE :
3445 clue_satisfied ? COL_SATISFIED : COL_FOREGROUND, c);
3446 draw_update(dr, x - ds->tilesize/4 - 1, y - ds->tilesize/4 - 3,
3447 ds->tilesize/2 + 2, ds->tilesize/2 + 5);
3448
3449 ds->clue_error[i] = clue_mistake;
3450 ds->clue_satisfied[i] = clue_satisfied;
3451
3452 /* Sometimes, the bounding-box encroaches into the surrounding
3453 * lines (particularly if the window is resized fairly small).
3454 * So redraw them. */
3455 for (j = 0; j < f->order; j++)
3456 ds->lines[f->edges[j] - g->edges] = -1;
3457 }
3458 }
3459
3460 /* Lines */
3461 for (i = 0; i < g->num_edges; i++) {
3462 grid_edge *e = g->edges + i;
3463 int x1, x2, y1, y2;
3464 int xmin, ymin, xmax, ymax;
3465 char new_ds, need_draw;
3466 new_ds = state->lines[i];
3467 if (state->line_errors[i])
3468 new_ds = DS_LINE_ERROR;
3469 need_draw = (new_ds != ds->lines[i]) ? TRUE : FALSE;
3470 if (flash_changed && (state->lines[i] == LINE_YES))
3471 need_draw = TRUE;
3472 if (!ds->started)
3473 need_draw = TRUE; /* draw everything at the start */
3474 ds->lines[i] = new_ds;
3475 if (!need_draw)
3476 continue;
3477 if (state->line_errors[i])
3478 line_colour = COL_MISTAKE;
3479 else if (state->lines[i] == LINE_UNKNOWN)
3480 line_colour = COL_LINEUNKNOWN;
3481 else if (state->lines[i] == LINE_NO)
3482 line_colour = COL_FAINT;
3483 else if (ds->flashing)
3484 line_colour = COL_HIGHLIGHT;
3485 else
3486 line_colour = COL_FOREGROUND;
3487
3488 /* Convert from grid to screen coordinates */
3489 grid_to_screen(ds, g, e->dot1->x, e->dot1->y, &x1, &y1);
3490 grid_to_screen(ds, g, e->dot2->x, e->dot2->y, &x2, &y2);
3491
3492 xmin = min(x1, x2);
3493 xmax = max(x1, x2);
3494 ymin = min(y1, y2);
3495 ymax = max(y1, y2);
3496
3497 if (line_colour == COL_FAINT) {
3498 static int draw_faint_lines = -1;
3499 if (draw_faint_lines < 0) {
3500 char *env = getenv("LOOPY_FAINT_LINES");
3501 draw_faint_lines = (!env || (env[0] == 'y' ||
3502 env[0] == 'Y'));
3503 }
3504 if (draw_faint_lines)
3505 draw_line(dr, x1, y1, x2, y2, line_colour);
3506 } else {
3507 /* (dx, dy) points roughly from (x1, y1) to (x2, y2).
3508 * The line is then "fattened" in a (roughly) perpendicular
3509 * direction to create a thin rectangle. */
3510 int dx = (x1 > x2) ? -1 : ((x1 < x2) ? 1 : 0);
3511 int dy = (y1 > y2) ? -1 : ((y1 < y2) ? 1 : 0);
3512 int points[8];
3513 points[0] = x1 + dy;
3514 points[1] = y1 - dx;
3515 points[2] = x1 - dy;
3516 points[3] = y1 + dx;
3517 points[4] = x2 - dy;
3518 points[5] = y2 + dx;
3519 points[6] = x2 + dy;
3520 points[7] = y2 - dx;
3521 draw_polygon(dr, points, 4, line_colour, line_colour);
3522 }
3523 if (ds->started) {
3524 /* Draw dots at ends of the line */
3525 draw_circle(dr, x1, y1, 2, COL_FOREGROUND, COL_FOREGROUND);
3526 draw_circle(dr, x2, y2, 2, COL_FOREGROUND, COL_FOREGROUND);
3527 }
3528 draw_update(dr, xmin-2, ymin-2, xmax - xmin + 4, ymax - ymin + 4);
3529 }
3530
3531 /* Draw dots */
3532 if (!ds->started) {
3533 for (i = 0; i < g->num_dots; i++) {
3534 grid_dot *d = g->dots + i;
3535 int x, y;
3536 grid_to_screen(ds, g, d->x, d->y, &x, &y);
3537 draw_circle(dr, x, y, 2, COL_FOREGROUND, COL_FOREGROUND);
3538 }
3539 }
3540 ds->started = TRUE;
3541 }
3542
3543 static float game_flash_length(game_state *oldstate, game_state *newstate,
3544 int dir, game_ui *ui)
3545 {
3546 if (!oldstate->solved && newstate->solved &&
3547 !oldstate->cheated && !newstate->cheated) {
3548 return FLASH_TIME;
3549 }
3550
3551 return 0.0F;
3552 }
3553
3554 static void game_print_size(game_params *params, float *x, float *y)
3555 {
3556 int pw, ph;
3557
3558 /*
3559 * I'll use 7mm "squares" by default.
3560 */
3561 game_compute_size(params, 700, &pw, &ph);
3562 *x = pw / 100.0F;
3563 *y = ph / 100.0F;
3564 }
3565
3566 static void game_print(drawing *dr, game_state *state, int tilesize)
3567 {
3568 int ink = print_mono_colour(dr, 0);
3569 int i;
3570 game_drawstate ads, *ds = &ads;
3571 grid *g = state->game_grid;
3572
3573 game_set_size(dr, ds, NULL, tilesize);
3574
3575 for (i = 0; i < g->num_dots; i++) {
3576 int x, y;
3577 grid_to_screen(ds, g, g->dots[i].x, g->dots[i].y, &x, &y);
3578 draw_circle(dr, x, y, ds->tilesize / 15, ink, ink);
3579 }
3580
3581 /*
3582 * Clues.
3583 */
3584 for (i = 0; i < g->num_faces; i++) {
3585 grid_face *f = g->faces + i;
3586 int clue = state->clues[i];
3587 if (clue >= 0) {
3588 char c[2];
3589 int x, y;
3590 c[0] = CLUE2CHAR(clue);
3591 c[1] = '\0';
3592 face_text_pos(ds, g, f, &x, &y);
3593 draw_text(dr, x, y,
3594 FONT_VARIABLE, ds->tilesize / 2,
3595 ALIGN_VCENTRE | ALIGN_HCENTRE, ink, c);
3596 }
3597 }
3598
3599 /*
3600 * Lines.
3601 */
3602 for (i = 0; i < g->num_edges; i++) {
3603 int thickness = (state->lines[i] == LINE_YES) ? 30 : 150;
3604 grid_edge *e = g->edges + i;
3605 int x1, y1, x2, y2;
3606 grid_to_screen(ds, g, e->dot1->x, e->dot1->y, &x1, &y1);
3607 grid_to_screen(ds, g, e->dot2->x, e->dot2->y, &x2, &y2);
3608 if (state->lines[i] == LINE_YES)
3609 {
3610 /* (dx, dy) points from (x1, y1) to (x2, y2).
3611 * The line is then "fattened" in a perpendicular
3612 * direction to create a thin rectangle. */
3613 double d = sqrt(SQ((double)x1 - x2) + SQ((double)y1 - y2));
3614 double dx = (x2 - x1) / d;
3615 double dy = (y2 - y1) / d;
3616 int points[8];
3617
3618 dx = (dx * ds->tilesize) / thickness;
3619 dy = (dy * ds->tilesize) / thickness;
3620 points[0] = x1 + (int)dy;
3621 points[1] = y1 - (int)dx;
3622 points[2] = x1 - (int)dy;
3623 points[3] = y1 + (int)dx;
3624 points[4] = x2 - (int)dy;
3625 points[5] = y2 + (int)dx;
3626 points[6] = x2 + (int)dy;
3627 points[7] = y2 - (int)dx;
3628 draw_polygon(dr, points, 4, ink, ink);
3629 }
3630 else
3631 {
3632 /* Draw a dotted line */
3633 int divisions = 6;
3634 int j;
3635 for (j = 1; j < divisions; j++) {
3636 /* Weighted average */
3637 int x = (x1 * (divisions -j) + x2 * j) / divisions;
3638 int y = (y1 * (divisions -j) + y2 * j) / divisions;
3639 draw_circle(dr, x, y, ds->tilesize / thickness, ink, ink);
3640 }
3641 }
3642 }
3643 }
3644
3645 #ifdef COMBINED
3646 #define thegame loopy
3647 #endif
3648
3649 const struct game thegame = {
3650 "Loopy", "games.loopy", "loopy",
3651 default_params,
3652 game_fetch_preset,
3653 decode_params,
3654 encode_params,
3655 free_params,
3656 dup_params,
3657 TRUE, game_configure, custom_params,
3658 validate_params,
3659 new_game_desc,
3660 validate_desc,
3661 new_game,
3662 dup_game,
3663 free_game,
3664 1, solve_game,
3665 TRUE, game_can_format_as_text_now, game_text_format,
3666 new_ui,
3667 free_ui,
3668 encode_ui,
3669 decode_ui,
3670 game_changed_state,
3671 interpret_move,
3672 execute_move,
3673 PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
3674 game_colours,
3675 game_new_drawstate,
3676 game_free_drawstate,
3677 game_redraw,
3678 game_anim_length,
3679 game_flash_length,
3680 TRUE, FALSE, game_print_size, game_print,
3681 FALSE /* wants_statusbar */,
3682 FALSE, game_timing_state,
3683 0, /* mouse_priorities */
3684 };
3685
3686 #ifdef STANDALONE_SOLVER
3687
3688 /*
3689 * Half-hearted standalone solver. It can't output the solution to
3690 * anything but a square puzzle, and it can't log the deductions
3691 * it makes either. But it can solve square puzzles, and more
3692 * importantly it can use its solver to grade the difficulty of
3693 * any puzzle you give it.
3694 */
3695
3696 #include <stdarg.h>
3697
3698 int main(int argc, char **argv)
3699 {
3700 game_params *p;
3701 game_state *s;
3702 char *id = NULL, *desc, *err;
3703 int grade = FALSE;
3704 int ret, diff;
3705 #if 0 /* verbose solver not supported here (yet) */
3706 int really_verbose = FALSE;
3707 #endif
3708
3709 while (--argc > 0) {
3710 char *p = *++argv;
3711 #if 0 /* verbose solver not supported here (yet) */
3712 if (!strcmp(p, "-v")) {
3713 really_verbose = TRUE;
3714 } else
3715 #endif
3716 if (!strcmp(p, "-g")) {
3717 grade = TRUE;
3718 } else if (*p == '-') {
3719 fprintf(stderr, "%s: unrecognised option `%s'\n", argv[0], p);
3720 return 1;
3721 } else {
3722 id = p;
3723 }
3724 }
3725
3726 if (!id) {
3727 fprintf(stderr, "usage: %s [-g | -v] <game_id>\n", argv[0]);
3728 return 1;
3729 }
3730
3731 desc = strchr(id, ':');
3732 if (!desc) {
3733 fprintf(stderr, "%s: game id expects a colon in it\n", argv[0]);
3734 return 1;
3735 }
3736 *desc++ = '\0';
3737
3738 p = default_params();
3739 decode_params(p, id);
3740 err = validate_desc(p, desc);
3741 if (err) {
3742 fprintf(stderr, "%s: %s\n", argv[0], err);
3743 return 1;
3744 }
3745 s = new_game(NULL, p, desc);
3746
3747 /*
3748 * When solving an Easy puzzle, we don't want to bother the
3749 * user with Hard-level deductions. For this reason, we grade
3750 * the puzzle internally before doing anything else.
3751 */
3752 ret = -1; /* placate optimiser */
3753 for (diff = 0; diff < DIFF_MAX; diff++) {
3754 solver_state *sstate_new;
3755 solver_state *sstate = new_solver_state((game_state *)s, diff);
3756
3757 sstate_new = solve_game_rec(sstate);
3758
3759 if (sstate_new->solver_status == SOLVER_MISTAKE)
3760 ret = 0;
3761 else if (sstate_new->solver_status == SOLVER_SOLVED)
3762 ret = 1;
3763 else
3764 ret = 2;
3765
3766 free_solver_state(sstate_new);
3767 free_solver_state(sstate);
3768
3769 if (ret < 2)
3770 break;
3771 }
3772
3773 if (diff == DIFF_MAX) {
3774 if (grade)
3775 printf("Difficulty rating: harder than Hard, or ambiguous\n");
3776 else
3777 printf("Unable to find a unique solution\n");
3778 } else {
3779 if (grade) {
3780 if (ret == 0)
3781 printf("Difficulty rating: impossible (no solution exists)\n");
3782 else if (ret == 1)
3783 printf("Difficulty rating: %s\n", diffnames[diff]);
3784 } else {
3785 solver_state *sstate_new;
3786 solver_state *sstate = new_solver_state((game_state *)s, diff);
3787
3788 /* If we supported a verbose solver, we'd set verbosity here */
3789
3790 sstate_new = solve_game_rec(sstate);
3791
3792 if (sstate_new->solver_status == SOLVER_MISTAKE)
3793 printf("Puzzle is inconsistent\n");
3794 else {
3795 assert(sstate_new->solver_status == SOLVER_SOLVED);
3796 if (s->grid_type == 0) {
3797 fputs(game_text_format(sstate_new->state), stdout);
3798 } else {
3799 printf("Unable to output non-square grids\n");
3800 }
3801 }
3802
3803 free_solver_state(sstate_new);
3804 free_solver_state(sstate);
3805 }
3806 }
3807
3808 return 0;
3809 }
3810
3811 #endif