More defensive-coding fixes from James H.
[sgt/puzzles] / filling.c
1 /* -*- tab-width: 8; indent-tabs-mode: t -*-
2 * filling.c: An implementation of the Nikoli game fillomino.
3 * Copyright (C) 2007 Jonas Kölker. See LICENSE for the license.
4 */
5
6 /* TODO:
7 *
8 * - use a typedef instead of int for numbers on the board
9 * + replace int with something else (signed short?)
10 * - the type should be signed (for -board[i] and -SENTINEL)
11 * - the type should be somewhat big: board[i] = i
12 * - Using shorts gives us 181x181 puzzles as upper bound.
13 *
14 * - make a somewhat more clever solver
15 * + enable "ghost regions" of size > 1
16 * - one can put an upper bound on the size of a ghost region
17 * by considering the board size and summing present hints.
18 * + for each square, for i=1..n, what is the distance to a region
19 * containing i? How full is the region? How is this useful?
20 *
21 * - in board generation, after having merged regions such that no
22 * more merges are necessary, try splitting (big) regions.
23 * + it seems that smaller regions make for better puzzles; see
24 * for instance the 7x7 puzzle in this file (grep for 7x7:).
25 *
26 * - symmetric hints (solo-style)
27 * + right now that means including _many_ hints, and the puzzles
28 * won't look any nicer. Not worth it (at the moment).
29 *
30 * - make the solver do recursion/backtracking.
31 * + This is for user-submitted puzzles, not for puzzle
32 * generation (on the other hand, never say never).
33 *
34 * - prove that only w=h=2 needs a special case
35 *
36 * - solo-like pencil marks?
37 *
38 * - a user says that the difficulty is unevenly distributed.
39 * + partition into levels? Will they be non-crap?
40 *
41 * - Allow square contents > 9?
42 * + I could use letters for digits (solo does this), but
43 * letters don't have numeric significance (normal people hate
44 * base36), which is relevant here (much more than in solo).
45 * + [click, 1, 0, enter] => [10 in clicked square]?
46 * + How much information is needed to solve? Does one need to
47 * know the algorithm by which the largest number is set?
48 *
49 * - eliminate puzzle instances with done chunks (1's in particular)?
50 * + that's what the qsort call is all about.
51 * + the 1's don't bother me that much.
52 * + but this takes a LONG time (not always possible)?
53 * - this may be affected by solver (lack of) quality.
54 * - weed them out by construction instead of post-cons check
55 * + but that interleaves make_board and new_game_desc: you
56 * have to alternate between changing the board and
57 * changing the hint set (instead of just creating the
58 * board once, then changing the hint set once -> done).
59 *
60 * - use binary search when discovering the minimal sovable point
61 * + profile to show a need (but when the solver gets slower...)
62 * + 7x9 @ .011s, 9x13 @ .075s, 17x13 @ .661s (all avg with n=100)
63 * + but the hints are independent, not linear, so... what?
64 */
65
66 #include <assert.h>
67 #include <ctype.h>
68 #include <math.h>
69 #include <stdarg.h>
70 #include <stdio.h>
71 #include <stdlib.h>
72 #include <string.h>
73
74 #include "puzzles.h"
75
76 static unsigned char verbose;
77
78 static void printv(char *fmt, ...) {
79 #ifndef PALM
80 if (verbose) {
81 va_list va;
82 va_start(va, fmt);
83 vprintf(fmt, va);
84 va_end(va);
85 }
86 #endif
87 }
88
89 /*****************************************************************************
90 * GAME CONFIGURATION AND PARAMETERS *
91 *****************************************************************************/
92
93 struct game_params {
94 int h, w;
95 };
96
97 struct shared_state {
98 struct game_params params;
99 int *clues;
100 int refcnt;
101 };
102
103 struct game_state {
104 int *board;
105 struct shared_state *shared;
106 int completed, cheated;
107 };
108
109 static const struct game_params filling_defaults[3] = {{7, 9}, {9, 13}, {13, 17}};
110
111 static game_params *default_params(void)
112 {
113 game_params *ret = snew(game_params);
114
115 *ret = filling_defaults[1]; /* struct copy */
116
117 return ret;
118 }
119
120 static int game_fetch_preset(int i, char **name, game_params **params)
121 {
122 char buf[64];
123
124 if (i < 0 || i >= lenof(filling_defaults)) return FALSE;
125 *params = snew(game_params);
126 **params = filling_defaults[i]; /* struct copy */
127 sprintf(buf, "%dx%d", filling_defaults[i].h, filling_defaults[i].w);
128 *name = dupstr(buf);
129
130 return TRUE;
131 }
132
133 static void free_params(game_params *params)
134 {
135 sfree(params);
136 }
137
138 static game_params *dup_params(game_params *params)
139 {
140 game_params *ret = snew(game_params);
141 *ret = *params; /* struct copy */
142 return ret;
143 }
144
145 static void decode_params(game_params *ret, char const *string)
146 {
147 ret->w = ret->h = atoi(string);
148 while (*string && isdigit((unsigned char) *string)) ++string;
149 if (*string == 'x') ret->h = atoi(++string);
150 }
151
152 static char *encode_params(game_params *params, int full)
153 {
154 char buf[64];
155 sprintf(buf, "%dx%d", params->w, params->h);
156 return dupstr(buf);
157 }
158
159 static config_item *game_configure(game_params *params)
160 {
161 config_item *ret;
162 char buf[64];
163
164 ret = snewn(3, config_item);
165
166 ret[0].name = "Width";
167 ret[0].type = C_STRING;
168 sprintf(buf, "%d", params->w);
169 ret[0].sval = dupstr(buf);
170 ret[0].ival = 0;
171
172 ret[1].name = "Height";
173 ret[1].type = C_STRING;
174 sprintf(buf, "%d", params->h);
175 ret[1].sval = dupstr(buf);
176 ret[1].ival = 0;
177
178 ret[2].name = NULL;
179 ret[2].type = C_END;
180 ret[2].sval = NULL;
181 ret[2].ival = 0;
182
183 return ret;
184 }
185
186 static game_params *custom_params(config_item *cfg)
187 {
188 game_params *ret = snew(game_params);
189
190 ret->w = atoi(cfg[0].sval);
191 ret->h = atoi(cfg[1].sval);
192
193 return ret;
194 }
195
196 static char *validate_params(game_params *params, int full)
197 {
198 if (params->w < 1) return "Width must be at least one";
199 if (params->h < 1) return "Height must be at least one";
200
201 return NULL;
202 }
203
204 /*****************************************************************************
205 * STRINGIFICATION OF GAME STATE *
206 *****************************************************************************/
207
208 #define EMPTY 0
209
210 /* Example of plaintext rendering:
211 * +---+---+---+---+---+---+---+
212 * | 6 | | | 2 | | | 2 |
213 * +---+---+---+---+---+---+---+
214 * | | 3 | | 6 | | 3 | |
215 * +---+---+---+---+---+---+---+
216 * | 3 | | | | | | 1 |
217 * +---+---+---+---+---+---+---+
218 * | | 2 | 3 | | 4 | 2 | |
219 * +---+---+---+---+---+---+---+
220 * | 2 | | | | | | 3 |
221 * +---+---+---+---+---+---+---+
222 * | | 5 | | 1 | | 4 | |
223 * +---+---+---+---+---+---+---+
224 * | 4 | | | 3 | | | 3 |
225 * +---+---+---+---+---+---+---+
226 *
227 * This puzzle instance is taken from the nikoli website
228 * Encoded (unsolved and solved), the strings are these:
229 * 7x7:6002002030603030000010230420200000305010404003003
230 * 7x7:6662232336663232331311235422255544325413434443313
231 */
232 static char *board_to_string(int *board, int w, int h) {
233 const int sz = w * h;
234 const int chw = (4*w + 2); /* +2 for trailing '+' and '\n' */
235 const int chh = (2*h + 1); /* +1: n fence segments, n+1 posts */
236 const int chlen = chw * chh;
237 char *repr = snewn(chlen + 1, char);
238 int i;
239
240 assert(board);
241
242 /* build the first line ("^(\+---){n}\+$") */
243 for (i = 0; i < w; ++i) {
244 repr[4*i + 0] = '+';
245 repr[4*i + 1] = '-';
246 repr[4*i + 2] = '-';
247 repr[4*i + 3] = '-';
248 }
249 repr[4*i + 0] = '+';
250 repr[4*i + 1] = '\n';
251
252 /* ... and copy it onto the odd-numbered lines */
253 for (i = 0; i < h; ++i) memcpy(repr + (2*i + 2) * chw, repr, chw);
254
255 /* build the second line ("^(\|\t){n}\|$") */
256 for (i = 0; i < w; ++i) {
257 repr[chw + 4*i + 0] = '|';
258 repr[chw + 4*i + 1] = ' ';
259 repr[chw + 4*i + 2] = ' ';
260 repr[chw + 4*i + 3] = ' ';
261 }
262 repr[chw + 4*i + 0] = '|';
263 repr[chw + 4*i + 1] = '\n';
264
265 /* ... and copy it onto the even-numbered lines */
266 for (i = 1; i < h; ++i) memcpy(repr + (2*i + 1) * chw, repr + chw, chw);
267
268 /* fill in the numbers */
269 for (i = 0; i < sz; ++i) {
270 const int x = i % w;
271 const int y = i / w;
272 if (board[i] == EMPTY) continue;
273 repr[chw*(2*y + 1) + (4*x + 2)] = board[i] + '0';
274 }
275
276 repr[chlen] = '\0';
277 return repr;
278 }
279
280 static int game_can_format_as_text_now(game_params *params)
281 {
282 return TRUE;
283 }
284
285 static char *game_text_format(game_state *state)
286 {
287 const int w = state->shared->params.w;
288 const int h = state->shared->params.h;
289 return board_to_string(state->board, w, h);
290 }
291
292 /*****************************************************************************
293 * GAME GENERATION AND SOLVER *
294 *****************************************************************************/
295
296 static const int dx[4] = {-1, 1, 0, 0};
297 static const int dy[4] = {0, 0, -1, 1};
298
299 struct solver_state
300 {
301 int *dsf;
302 int *board;
303 int *connected;
304 int nempty;
305 };
306
307 static void print_board(int *board, int w, int h) {
308 if (verbose) {
309 char *repr = board_to_string(board, w, h);
310 printv("%s\n", repr);
311 free(repr);
312 }
313 }
314
315 static game_state *new_game(midend *, game_params *, char *);
316 static void free_game(game_state *);
317
318 #define SENTINEL sz
319
320 /* generate a random valid board; uses validate_board. */
321 static void make_board(int *board, int w, int h, random_state *rs) {
322 int *dsf;
323
324 const unsigned int sz = w * h;
325
326 /* w=h=2 is a special case which requires a number > max(w, h) */
327 /* TODO prove that this is the case ONLY for w=h=2. */
328 const int maxsize = min(max(max(w, h), 3), 9);
329
330 /* Note that if 1 in {w, h} then it's impossible to have a region
331 * of size > w*h, so the special case only affects w=h=2. */
332
333 int nboards = 0;
334 int i;
335
336 assert(w >= 1);
337 assert(h >= 1);
338
339 assert(board);
340
341 dsf = snew_dsf(sz); /* implicit dsf_init */
342
343 /* I abuse the board variable: when generating the puzzle, it
344 * contains a shuffled list of numbers {0, ..., nsq-1}. */
345 for (i = 0; i < (int)sz; ++i) board[i] = i;
346
347 while (1) {
348 int change;
349 ++nboards;
350 shuffle(board, sz, sizeof (int), rs);
351 /* while the board can in principle be fixed */
352 do {
353 change = FALSE;
354 for (i = 0; i < (int)sz; ++i) {
355 int a = SENTINEL;
356 int b = SENTINEL;
357 int c = SENTINEL;
358 const int aa = dsf_canonify(dsf, board[i]);
359 int cc = sz;
360 int j;
361 for (j = 0; j < 4; ++j) {
362 const int x = (board[i] % w) + dx[j];
363 const int y = (board[i] / w) + dy[j];
364 int bb;
365 if (x < 0 || x >= w || y < 0 || y >= h) continue;
366 bb = dsf_canonify(dsf, w*y + x);
367 if (aa == bb) continue;
368 else if (dsf_size(dsf, aa) == dsf_size(dsf, bb)) {
369 a = aa;
370 b = bb;
371 c = cc;
372 } else if (cc == sz) c = cc = bb;
373 }
374 if (a != SENTINEL) {
375 a = dsf_canonify(dsf, a);
376 assert(a != dsf_canonify(dsf, b));
377 if (c != sz) assert(a != dsf_canonify(dsf, c));
378 dsf_merge(dsf, a, c == sz? b: c);
379 /* if repair impossible; make a new board */
380 if (dsf_size(dsf, a) > maxsize) goto retry;
381 change = TRUE;
382 }
383 }
384 } while (change);
385
386 for (i = 0; i < (int)sz; ++i) board[i] = dsf_size(dsf, i);
387
388 sfree(dsf);
389 printv("returning board number %d\n", nboards);
390 return;
391
392 retry:
393 dsf_init(dsf, sz);
394 }
395 assert(FALSE); /* unreachable */
396 }
397
398 static int rhofree(int *hop, int start) {
399 int turtle = start, rabbit = hop[start];
400 while (rabbit != turtle) { /* find a cycle */
401 turtle = hop[turtle];
402 rabbit = hop[hop[rabbit]];
403 }
404 do { /* check that start is in the cycle */
405 rabbit = hop[rabbit];
406 if (start == rabbit) return 1;
407 } while (rabbit != turtle);
408 return 0;
409 }
410
411 static void merge(int *dsf, int *connected, int a, int b) {
412 int c;
413 assert(dsf);
414 assert(connected);
415 assert(rhofree(connected, a));
416 assert(rhofree(connected, b));
417 a = dsf_canonify(dsf, a);
418 b = dsf_canonify(dsf, b);
419 if (a == b) return;
420 dsf_merge(dsf, a, b);
421 c = connected[a];
422 connected[a] = connected[b];
423 connected[b] = c;
424 assert(rhofree(connected, a));
425 assert(rhofree(connected, b));
426 }
427
428 static void *memdup(const void *ptr, size_t len, size_t esz) {
429 void *dup = smalloc(len * esz);
430 assert(ptr);
431 memcpy(dup, ptr, len * esz);
432 return dup;
433 }
434
435 static void expand(struct solver_state *s, int w, int h, int t, int f) {
436 int j;
437 assert(s);
438 assert(s->board[t] == EMPTY); /* expand to empty square */
439 assert(s->board[f] != EMPTY); /* expand from non-empty square */
440 printv(
441 "learn: expanding %d from (%d, %d) into (%d, %d)\n",
442 s->board[f], f % w, f / w, t % w, t / w);
443 s->board[t] = s->board[f];
444 for (j = 0; j < 4; ++j) {
445 const int x = (t % w) + dx[j];
446 const int y = (t / w) + dy[j];
447 const int idx = w*y + x;
448 if (x < 0 || x >= w || y < 0 || y >= h) continue;
449 if (s->board[idx] != s->board[t]) continue;
450 merge(s->dsf, s->connected, t, idx);
451 }
452 --s->nempty;
453 }
454
455 static void clear_count(int *board, int sz) {
456 int i;
457 for (i = 0; i < sz; ++i) {
458 if (board[i] >= 0) continue;
459 else if (board[i] == -SENTINEL) board[i] = EMPTY;
460 else board[i] = -board[i];
461 }
462 }
463
464 static void flood_count(int *board, int w, int h, int i, int n, int *c) {
465 const int sz = w * h;
466 int k;
467
468 if (board[i] == EMPTY) board[i] = -SENTINEL;
469 else if (board[i] == n) board[i] = -board[i];
470 else return;
471
472 if (--*c == 0) return;
473
474 for (k = 0; k < 4; ++k) {
475 const int x = (i % w) + dx[k];
476 const int y = (i / w) + dy[k];
477 const int idx = w*y + x;
478 if (x < 0 || x >= w || y < 0 || y >= h) continue;
479 flood_count(board, w, h, idx, n, c);
480 if (*c == 0) return;
481 }
482 }
483
484 static int check_capacity(int *board, int w, int h, int i) {
485 int n = board[i];
486 flood_count(board, w, h, i, board[i], &n);
487 clear_count(board, w * h);
488 return n == 0;
489 }
490
491 static int expandsize(const int *board, int *dsf, int w, int h, int i, int n) {
492 int j;
493 int nhits = 0;
494 int hits[4];
495 int size = 1;
496 for (j = 0; j < 4; ++j) {
497 const int x = (i % w) + dx[j];
498 const int y = (i / w) + dy[j];
499 const int idx = w*y + x;
500 int root;
501 int m;
502 if (x < 0 || x >= w || y < 0 || y >= h) continue;
503 if (board[idx] != n) continue;
504 root = dsf_canonify(dsf, idx);
505 for (m = 0; m < nhits && root != hits[m]; ++m);
506 if (m < nhits) continue;
507 printv("\t (%d, %d) contrib %d to size\n", x, y, dsf[root] >> 2);
508 size += dsf_size(dsf, root);
509 assert(dsf_size(dsf, root) >= 1);
510 hits[nhits++] = root;
511 }
512 return size;
513 }
514
515 /*
516 * +---+---+---+---+---+---+---+
517 * | 6 | | | 2 | | | 2 |
518 * +---+---+---+---+---+---+---+
519 * | | 3 | | 6 | | 3 | |
520 * +---+---+---+---+---+---+---+
521 * | 3 | | | | | | 1 |
522 * +---+---+---+---+---+---+---+
523 * | | 2 | 3 | | 4 | 2 | |
524 * +---+---+---+---+---+---+---+
525 * | 2 | | | | | | 3 |
526 * +---+---+---+---+---+---+---+
527 * | | 5 | | 1 | | 4 | |
528 * +---+---+---+---+---+---+---+
529 * | 4 | | | 3 | | | 3 |
530 * +---+---+---+---+---+---+---+
531 */
532
533 /* Solving techniques:
534 *
535 * CONNECTED COMPONENT FORCED EXPANSION (too big):
536 * When a CC can only be expanded in one direction, because all the
537 * other ones would make the CC too big.
538 * +---+---+---+---+---+
539 * | 2 | 2 | | 2 | _ |
540 * +---+---+---+---+---+
541 *
542 * CONNECTED COMPONENT FORCED EXPANSION (too small):
543 * When a CC must include a particular square, because otherwise there
544 * would not be enough room to complete it. This includes squares not
545 * adjacent to the CC through learn_critical_square.
546 * +---+---+
547 * | 2 | _ |
548 * +---+---+
549 *
550 * DROPPING IN A ONE:
551 * When an empty square has no neighbouring empty squares and only a 1
552 * will go into the square (or other CCs would be too big).
553 * +---+---+---+
554 * | 2 | 2 | _ |
555 * +---+---+---+
556 *
557 * TODO: generalise DROPPING IN A ONE: find the size of the CC of
558 * empty squares and a list of all adjacent numbers. See if only one
559 * number in {1, ..., size} u {all adjacent numbers} is possible.
560 * Probably this is only effective for a CC size < n for some n (4?)
561 *
562 * TODO: backtracking.
563 */
564
565 static void filled_square(struct solver_state *s, int w, int h, int i) {
566 int j;
567 for (j = 0; j < 4; ++j) {
568 const int x = (i % w) + dx[j];
569 const int y = (i / w) + dy[j];
570 const int idx = w*y + x;
571 if (x < 0 || x >= w || y < 0 || y >= h) continue;
572 if (s->board[i] == s->board[idx])
573 merge(s->dsf, s->connected, i, idx);
574 }
575 }
576
577 static void init_solver_state(struct solver_state *s, int w, int h) {
578 const int sz = w * h;
579 int i;
580 assert(s);
581
582 s->nempty = 0;
583 for (i = 0; i < sz; ++i) s->connected[i] = i;
584 for (i = 0; i < sz; ++i)
585 if (s->board[i] == EMPTY) ++s->nempty;
586 else filled_square(s, w, h, i);
587 }
588
589 static int learn_expand_or_one(struct solver_state *s, int w, int h) {
590 const int sz = w * h;
591 int i;
592 int learn = FALSE;
593
594 assert(s);
595
596 for (i = 0; i < sz; ++i) {
597 int j;
598 int one = TRUE;
599
600 if (s->board[i] != EMPTY) continue;
601
602 for (j = 0; j < 4; ++j) {
603 const int x = (i % w) + dx[j];
604 const int y = (i / w) + dy[j];
605 const int idx = w*y + x;
606 if (x < 0 || x >= w || y < 0 || y >= h) continue;
607 if (s->board[idx] == EMPTY) {
608 one = FALSE;
609 continue;
610 }
611 if (one &&
612 (s->board[idx] == 1 ||
613 (s->board[idx] >= expandsize(s->board, s->dsf, w, h,
614 i, s->board[idx]))))
615 one = FALSE;
616 assert(s->board[i] == EMPTY);
617 s->board[i] = -SENTINEL;
618 if (check_capacity(s->board, w, h, idx)) continue;
619 assert(s->board[i] == EMPTY);
620 printv("learn: expanding in one\n");
621 expand(s, w, h, i, idx);
622 learn = TRUE;
623 break;
624 }
625
626 if (j == 4 && one) {
627 printv("learn: one at (%d, %d)\n", i % w, i / w);
628 assert(s->board[i] == EMPTY);
629 s->board[i] = 1;
630 assert(s->nempty);
631 --s->nempty;
632 learn = TRUE;
633 }
634 }
635 return learn;
636 }
637
638 static int learn_blocked_expansion(struct solver_state *s, int w, int h) {
639 const int sz = w * h;
640 int i;
641 int learn = FALSE;
642
643 assert(s);
644 /* for every connected component */
645 for (i = 0; i < sz; ++i) {
646 int exp = SENTINEL;
647 int j;
648
649 if (s->board[i] == EMPTY) continue;
650 j = dsf_canonify(s->dsf, i);
651
652 /* (but only for each connected component) */
653 if (i != j) continue;
654
655 /* (and not if it's already complete) */
656 if (dsf_size(s->dsf, j) == s->board[j]) continue;
657
658 /* for each square j _in_ the connected component */
659 do {
660 int k;
661 printv(" looking at (%d, %d)\n", j % w, j / w);
662
663 /* for each neighbouring square (idx) */
664 for (k = 0; k < 4; ++k) {
665 const int x = (j % w) + dx[k];
666 const int y = (j / w) + dy[k];
667 const int idx = w*y + x;
668 int size;
669 /* int l;
670 int nhits = 0;
671 int hits[4]; */
672 if (x < 0 || x >= w || y < 0 || y >= h) continue;
673 if (s->board[idx] != EMPTY) continue;
674 if (exp == idx) continue;
675 printv("\ttrying to expand onto (%d, %d)\n", x, y);
676
677 /* find out the would-be size of the new connected
678 * component if we actually expanded into idx */
679 /*
680 size = 1;
681 for (l = 0; l < 4; ++l) {
682 const int lx = x + dx[l];
683 const int ly = y + dy[l];
684 const int idxl = w*ly + lx;
685 int root;
686 int m;
687 if (lx < 0 || lx >= w || ly < 0 || ly >= h) continue;
688 if (board[idxl] != board[j]) continue;
689 root = dsf_canonify(dsf, idxl);
690 for (m = 0; m < nhits && root != hits[m]; ++m);
691 if (m != nhits) continue;
692 // printv("\t (%d, %d) contributed %d to size\n", lx, ly, dsf[root] >> 2);
693 size += dsf_size(dsf, root);
694 assert(dsf_size(dsf, root) >= 1);
695 hits[nhits++] = root;
696 }
697 */
698
699 size = expandsize(s->board, s->dsf, w, h, idx, s->board[j]);
700
701 /* ... and see if that size is too big, or if we
702 * have other expansion candidates. Otherwise
703 * remember the (so far) only candidate. */
704
705 printv("\tthat would give a size of %d\n", size);
706 if (size > s->board[j]) continue;
707 /* printv("\tnow knowing %d expansions\n", nexpand + 1); */
708 if (exp != SENTINEL) goto next_i;
709 assert(exp != idx);
710 exp = idx;
711 }
712
713 j = s->connected[j]; /* next square in the same CC */
714 assert(s->board[i] == s->board[j]);
715 } while (j != i);
716 /* end: for each square j _in_ the connected component */
717
718 if (exp == SENTINEL) continue;
719 printv("learning to expand\n");
720 expand(s, w, h, exp, i);
721 learn = TRUE;
722
723 next_i:
724 ;
725 }
726 /* end: for each connected component */
727 return learn;
728 }
729
730 static int learn_critical_square(struct solver_state *s, int w, int h) {
731 const int sz = w * h;
732 int i;
733 int learn = FALSE;
734 assert(s);
735
736 /* for each connected component */
737 for (i = 0; i < sz; ++i) {
738 int j;
739 if (s->board[i] == EMPTY) continue;
740 if (i != dsf_canonify(s->dsf, i)) continue;
741 if (dsf_size(s->dsf, i) == s->board[i]) continue;
742 assert(s->board[i] != 1);
743 /* for each empty square */
744 for (j = 0; j < sz; ++j) {
745 if (s->board[j] != EMPTY) continue;
746 s->board[j] = -SENTINEL;
747 if (check_capacity(s->board, w, h, i)) continue;
748 /* if not expanding s->board[i] to s->board[j] implies
749 * that s->board[i] can't reach its full size, ... */
750 assert(s->nempty);
751 printv(
752 "learn: ds %d at (%d, %d) blocking (%d, %d)\n",
753 s->board[i], j % w, j / w, i % w, i / w);
754 --s->nempty;
755 s->board[j] = s->board[i];
756 filled_square(s, w, h, j);
757 learn = TRUE;
758 }
759 }
760 return learn;
761 }
762
763 static int solver(const int *orig, int w, int h, char **solution) {
764 const int sz = w * h;
765
766 struct solver_state ss;
767 ss.board = memdup(orig, sz, sizeof (int));
768 ss.dsf = snew_dsf(sz); /* eqv classes: connected components */
769 ss.connected = snewn(sz, int); /* connected[n] := n.next; */
770 /* cyclic disjoint singly linked lists, same partitioning as dsf.
771 * The lists lets you iterate over a partition given any member */
772
773 printv("trying to solve this:\n");
774 print_board(ss.board, w, h);
775
776 init_solver_state(&ss, w, h);
777 do {
778 if (learn_blocked_expansion(&ss, w, h)) continue;
779 if (learn_expand_or_one(&ss, w, h)) continue;
780 if (learn_critical_square(&ss, w, h)) continue;
781 break;
782 } while (ss.nempty);
783
784 printv("best guess:\n");
785 print_board(ss.board, w, h);
786
787 if (solution) {
788 int i;
789 assert(*solution == NULL);
790 *solution = snewn(sz + 2, char);
791 **solution = 's';
792 for (i = 0; i < sz; ++i) (*solution)[i + 1] = ss.board[i] + '0';
793 (*solution)[sz + 1] = '\0';
794 /* We don't need the \0 for execute_move (the only user)
795 * I'm just being printf-friendly in case I wanna print */
796 }
797
798 sfree(ss.dsf);
799 sfree(ss.board);
800 sfree(ss.connected);
801
802 return !ss.nempty;
803 }
804
805 static int *make_dsf(int *dsf, int *board, const int w, const int h) {
806 const int sz = w * h;
807 int i;
808
809 if (!dsf)
810 dsf = snew_dsf(w * h);
811 else
812 dsf_init(dsf, w * h);
813
814 for (i = 0; i < sz; ++i) {
815 int j;
816 for (j = 0; j < 4; ++j) {
817 const int x = (i % w) + dx[j];
818 const int y = (i / w) + dy[j];
819 const int k = w*y + x;
820 if (x < 0 || x >= w || y < 0 || y >= h) continue;
821 if (board[i] == board[k]) dsf_merge(dsf, i, k);
822 }
823 }
824 return dsf;
825 }
826
827 /*
828 static int filled(int *board, int *randomize, int k, int n) {
829 int i;
830 if (board == NULL) return FALSE;
831 if (randomize == NULL) return FALSE;
832 if (k > n) return FALSE;
833 for (i = 0; i < k; ++i) if (board[randomize[i]] == 0) return FALSE;
834 for (; i < n; ++i) if (board[randomize[i]] != 0) return FALSE;
835 return TRUE;
836 }
837 */
838
839 static int *g_board;
840 static int compare(const void *pa, const void *pb) {
841 if (!g_board) return 0;
842 return g_board[*(const int *)pb] - g_board[*(const int *)pa];
843 }
844
845 static void minimize_clue_set(int *board, int w, int h, int *randomize) {
846 const int sz = w * h;
847 int i;
848 int *board_cp = snewn(sz, int);
849 memcpy(board_cp, board, sz * sizeof (int));
850
851 /* since more clues only helps and never hurts, one pass will do
852 * just fine: if we can remove clue n with k clues of index > n,
853 * we could have removed clue n with >= k clues of index > n.
854 * So an additional pass wouldn't do anything [use induction]. */
855 for (i = 0; i < sz; ++i) {
856 if (board[randomize[i]] == EMPTY) continue;
857 board[randomize[i]] = EMPTY;
858 /* (rot.) symmetry tends to include _way_ too many hints */
859 /* board[sz - randomize[i] - 1] = EMPTY; */
860 if (!solver(board, w, h, NULL)) {
861 board[randomize[i]] = board_cp[randomize[i]];
862 /* board[sz - randomize[i] - 1] =
863 board_cp[sz - randomize[i] - 1]; */
864 }
865 }
866
867 sfree(board_cp);
868 }
869
870 static char *new_game_desc(game_params *params, random_state *rs,
871 char **aux, int interactive)
872 {
873 const int w = params->w;
874 const int h = params->h;
875 const int sz = w * h;
876 int *board = snewn(sz, int);
877 int *randomize = snewn(sz, int);
878 char *game_description = snewn(sz + 1, char);
879 int i;
880
881 for (i = 0; i < sz; ++i) {
882 board[i] = EMPTY;
883 randomize[i] = i;
884 }
885
886 make_board(board, w, h, rs);
887 g_board = board;
888 qsort(randomize, sz, sizeof (int), compare);
889 minimize_clue_set(board, w, h, randomize);
890
891 for (i = 0; i < sz; ++i) {
892 assert(board[i] >= 0);
893 assert(board[i] < 10);
894 game_description[i] = board[i] + '0';
895 }
896 game_description[sz] = '\0';
897
898 /*
899 solver(board, w, h, aux);
900 print_board(board, w, h);
901 */
902
903 sfree(randomize);
904 sfree(board);
905
906 return game_description;
907 }
908
909 static char *validate_desc(game_params *params, char *desc)
910 {
911 int i;
912 const int sz = params->w * params->h;
913 const char m = '0' + max(max(params->w, params->h), 3);
914
915 printv("desc = '%s'; sz = %d\n", desc, sz);
916
917 for (i = 0; desc[i] && i < sz; ++i)
918 if (!isdigit((unsigned char) *desc))
919 return "non-digit in string";
920 else if (desc[i] > m)
921 return "too large digit in string";
922 if (desc[i]) return "string too long";
923 else if (i < sz) return "string too short";
924 return NULL;
925 }
926
927 static game_state *new_game(midend *me, game_params *params, char *desc)
928 {
929 game_state *state = snew(game_state);
930 int sz = params->w * params->h;
931 int i;
932
933 state->cheated = state->completed = FALSE;
934 state->shared = snew(struct shared_state);
935 state->shared->refcnt = 1;
936 state->shared->params = *params; /* struct copy */
937 state->shared->clues = snewn(sz, int);
938 for (i = 0; i < sz; ++i) state->shared->clues[i] = desc[i] - '0';
939 state->board = memdup(state->shared->clues, sz, sizeof (int));
940
941 return state;
942 }
943
944 static game_state *dup_game(game_state *state)
945 {
946 const int sz = state->shared->params.w * state->shared->params.h;
947 game_state *ret = snew(game_state);
948
949 ret->board = memdup(state->board, sz, sizeof (int));
950 ret->shared = state->shared;
951 ret->cheated = state->cheated;
952 ret->completed = state->completed;
953 ++ret->shared->refcnt;
954
955 return ret;
956 }
957
958 static void free_game(game_state *state)
959 {
960 assert(state);
961 sfree(state->board);
962 if (--state->shared->refcnt == 0) {
963 sfree(state->shared->clues);
964 sfree(state->shared);
965 }
966 sfree(state);
967 }
968
969 static char *solve_game(game_state *state, game_state *currstate,
970 char *aux, char **error)
971 {
972 if (aux == NULL) {
973 const int w = state->shared->params.w;
974 const int h = state->shared->params.h;
975 if (!solver(state->board, w, h, &aux))
976 *error = "Sorry, I couldn't find a solution";
977 }
978 return aux;
979 }
980
981 /*****************************************************************************
982 * USER INTERFACE STATE AND ACTION *
983 *****************************************************************************/
984
985 struct game_ui {
986 int *sel; /* w*h highlighted squares, or NULL */
987 int cur_x, cur_y, cur_visible;
988 };
989
990 static game_ui *new_ui(game_state *state)
991 {
992 game_ui *ui = snew(game_ui);
993
994 ui->sel = NULL;
995 ui->cur_x = ui->cur_y = ui->cur_visible = 0;
996
997 return ui;
998 }
999
1000 static void free_ui(game_ui *ui)
1001 {
1002 if (ui->sel)
1003 sfree(ui->sel);
1004 sfree(ui);
1005 }
1006
1007 static char *encode_ui(game_ui *ui)
1008 {
1009 return NULL;
1010 }
1011
1012 static void decode_ui(game_ui *ui, char *encoding)
1013 {
1014 }
1015
1016 static void game_changed_state(game_ui *ui, game_state *oldstate,
1017 game_state *newstate)
1018 {
1019 /* Clear any selection */
1020 if (ui->sel) {
1021 sfree(ui->sel);
1022 ui->sel = NULL;
1023 }
1024 }
1025
1026 #define PREFERRED_TILE_SIZE 32
1027 #define TILE_SIZE (ds->tilesize)
1028 #define BORDER (TILE_SIZE / 2)
1029 #define BORDER_WIDTH (max(TILE_SIZE / 32, 1))
1030
1031 struct game_drawstate {
1032 struct game_params params;
1033 int tilesize;
1034 int started;
1035 int *v, *flags;
1036 int *dsf_scratch, *border_scratch;
1037 };
1038
1039 static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
1040 int x, int y, int button)
1041 {
1042 const int w = state->shared->params.w;
1043 const int h = state->shared->params.h;
1044
1045 const int tx = (x + TILE_SIZE - BORDER) / TILE_SIZE - 1;
1046 const int ty = (y + TILE_SIZE - BORDER) / TILE_SIZE - 1;
1047
1048 char *move = NULL;
1049 int i;
1050
1051 assert(ui);
1052 assert(ds);
1053
1054 button &= ~MOD_MASK;
1055
1056 if (button == LEFT_BUTTON || button == LEFT_DRAG) {
1057 /* A left-click anywhere will clear the current selection. */
1058 if (button == LEFT_BUTTON) {
1059 if (ui->sel) {
1060 sfree(ui->sel);
1061 ui->sel = NULL;
1062 }
1063 }
1064 if (tx >= 0 && tx < w && ty >= 0 && ty < h) {
1065 if (!ui->sel) {
1066 ui->sel = snewn(w*h, int);
1067 memset(ui->sel, 0, w*h*sizeof(int));
1068 }
1069 if (!state->shared->clues[w*ty+tx])
1070 ui->sel[w*ty+tx] = 1;
1071 }
1072 ui->cur_visible = 0;
1073 return ""; /* redraw */
1074 }
1075
1076 if (IS_CURSOR_MOVE(button)) {
1077 ui->cur_visible = 1;
1078 move_cursor(button, &ui->cur_x, &ui->cur_y, w, h, 0);
1079 return "";
1080 }
1081 if (IS_CURSOR_SELECT(button)) {
1082 if (!ui->cur_visible) {
1083 ui->cur_visible = 1;
1084 return "";
1085 }
1086 if (!ui->sel) {
1087 ui->sel = snewn(w*h, int);
1088 memset(ui->sel, 0, w*h*sizeof(int));
1089 }
1090 if (state->shared->clues[w*ui->cur_y + ui->cur_x] == 0)
1091 ui->sel[w*ui->cur_y + ui->cur_x] ^= 1;
1092 return "";
1093 }
1094
1095 switch (button) {
1096 case ' ':
1097 case '\r':
1098 case '\n':
1099 case '\b':
1100 case '\177':
1101 button = 0;
1102 break;
1103 default:
1104 if (!isdigit(button)) return NULL;
1105 button -= '0';
1106 if (button > (w == 2 && h == 2? 3: max(w, h))) return NULL;
1107 }
1108
1109 for (i = 0; i < w*h; i++) {
1110 char buf[32];
1111 if ((ui->sel && ui->sel[i]) ||
1112 (!ui->sel && ui->cur_visible && (w*ui->cur_y+ui->cur_x) == i)) {
1113 if (state->shared->clues[i] != 0) continue; /* in case cursor is on clue */
1114 if (state->board[i] != button) {
1115 sprintf(buf, "%s%d", move ? "," : "", i);
1116 if (move) {
1117 move = srealloc(move, strlen(move)+strlen(buf)+1);
1118 strcat(move, buf);
1119 } else {
1120 move = smalloc(strlen(buf)+1);
1121 strcpy(move, buf);
1122 }
1123 }
1124 }
1125 }
1126 if (move) {
1127 char buf[32];
1128 sprintf(buf, "_%d", button);
1129 move = srealloc(move, strlen(move)+strlen(buf)+1);
1130 strcat(move, buf);
1131 }
1132 if (!ui->sel) return move ? move : NULL;
1133 sfree(ui->sel);
1134 ui->sel = NULL;
1135 /* Need to update UI at least, as we cleared the selection */
1136 return move ? move : "";
1137 }
1138
1139 static game_state *execute_move(game_state *state, char *move)
1140 {
1141 game_state *new_state = NULL;
1142 const int sz = state->shared->params.w * state->shared->params.h;
1143
1144 if (*move == 's') {
1145 int i = 0;
1146 new_state = dup_game(state);
1147 for (++move; i < sz; ++i) new_state->board[i] = move[i] - '0';
1148 new_state->cheated = TRUE;
1149 } else {
1150 int value;
1151 char *endptr, *delim = strchr(move, '_');
1152 if (!delim) goto err;
1153 value = strtol(delim+1, &endptr, 0);
1154 if (*endptr || endptr == delim+1) goto err;
1155 if (value < 0 || value > 9) goto err;
1156 new_state = dup_game(state);
1157 while (*move) {
1158 const int i = strtol(move, &endptr, 0);
1159 if (endptr == move) goto err;
1160 if (i < 0 || i >= sz) goto err;
1161 new_state->board[i] = value;
1162 if (*endptr == '_') break;
1163 if (*endptr != ',') goto err;
1164 move = endptr + 1;
1165 }
1166 }
1167
1168 /*
1169 * Check for completion.
1170 */
1171 if (!new_state->completed) {
1172 const int w = new_state->shared->params.w;
1173 const int h = new_state->shared->params.h;
1174 const int sz = w * h;
1175 int *dsf = make_dsf(NULL, new_state->board, w, h);
1176 int i;
1177 for (i = 0; i < sz && new_state->board[i] == dsf_size(dsf, i); ++i);
1178 sfree(dsf);
1179 if (i == sz)
1180 new_state->completed = TRUE;
1181 }
1182
1183 return new_state;
1184
1185 err:
1186 if (new_state) free_game(new_state);
1187 return NULL;
1188 }
1189
1190 /* ----------------------------------------------------------------------
1191 * Drawing routines.
1192 */
1193
1194 #define FLASH_TIME 0.4F
1195
1196 #define COL_CLUE COL_GRID
1197 enum {
1198 COL_BACKGROUND,
1199 COL_GRID,
1200 COL_HIGHLIGHT,
1201 COL_CORRECT,
1202 COL_ERROR,
1203 COL_USER,
1204 COL_CURSOR,
1205 NCOLOURS
1206 };
1207
1208 static void game_compute_size(game_params *params, int tilesize,
1209 int *x, int *y)
1210 {
1211 *x = (params->w + 1) * tilesize;
1212 *y = (params->h + 1) * tilesize;
1213 }
1214
1215 static void game_set_size(drawing *dr, game_drawstate *ds,
1216 game_params *params, int tilesize)
1217 {
1218 ds->tilesize = tilesize;
1219 }
1220
1221 static float *game_colours(frontend *fe, int *ncolours)
1222 {
1223 float *ret = snewn(3 * NCOLOURS, float);
1224
1225 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
1226
1227 ret[COL_GRID * 3 + 0] = 0.0F;
1228 ret[COL_GRID * 3 + 1] = 0.0F;
1229 ret[COL_GRID * 3 + 2] = 0.0F;
1230
1231 ret[COL_HIGHLIGHT * 3 + 0] = 0.85F * ret[COL_BACKGROUND * 3 + 0];
1232 ret[COL_HIGHLIGHT * 3 + 1] = 0.85F * ret[COL_BACKGROUND * 3 + 1];
1233 ret[COL_HIGHLIGHT * 3 + 2] = 0.85F * ret[COL_BACKGROUND * 3 + 2];
1234
1235 ret[COL_CORRECT * 3 + 0] = 0.9F * ret[COL_BACKGROUND * 3 + 0];
1236 ret[COL_CORRECT * 3 + 1] = 0.9F * ret[COL_BACKGROUND * 3 + 1];
1237 ret[COL_CORRECT * 3 + 2] = 0.9F * ret[COL_BACKGROUND * 3 + 2];
1238
1239 ret[COL_CURSOR * 3 + 0] = 0.5F * ret[COL_BACKGROUND * 3 + 0];
1240 ret[COL_CURSOR * 3 + 1] = 0.5F * ret[COL_BACKGROUND * 3 + 1];
1241 ret[COL_CURSOR * 3 + 2] = 0.5F * ret[COL_BACKGROUND * 3 + 2];
1242
1243 ret[COL_ERROR * 3 + 0] = 1.0F;
1244 ret[COL_ERROR * 3 + 1] = 0.85F * ret[COL_BACKGROUND * 3 + 1];
1245 ret[COL_ERROR * 3 + 2] = 0.85F * ret[COL_BACKGROUND * 3 + 2];
1246
1247 ret[COL_USER * 3 + 0] = 0.0F;
1248 ret[COL_USER * 3 + 1] = 0.6F * ret[COL_BACKGROUND * 3 + 1];
1249 ret[COL_USER * 3 + 2] = 0.0F;
1250
1251 *ncolours = NCOLOURS;
1252 return ret;
1253 }
1254
1255 static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
1256 {
1257 struct game_drawstate *ds = snew(struct game_drawstate);
1258 int i;
1259
1260 ds->tilesize = PREFERRED_TILE_SIZE;
1261 ds->started = 0;
1262 ds->params = state->shared->params;
1263 ds->v = snewn(ds->params.w * ds->params.h, int);
1264 ds->flags = snewn(ds->params.w * ds->params.h, int);
1265 for (i = 0; i < ds->params.w * ds->params.h; i++)
1266 ds->v[i] = ds->flags[i] = -1;
1267 ds->border_scratch = snewn(ds->params.w * ds->params.h, int);
1268 ds->dsf_scratch = NULL;
1269
1270 return ds;
1271 }
1272
1273 static void game_free_drawstate(drawing *dr, game_drawstate *ds)
1274 {
1275 sfree(ds->v);
1276 sfree(ds->flags);
1277 sfree(ds->border_scratch);
1278 sfree(ds->dsf_scratch);
1279 sfree(ds);
1280 }
1281
1282 #define BORDER_U 0x001
1283 #define BORDER_D 0x002
1284 #define BORDER_L 0x004
1285 #define BORDER_R 0x008
1286 #define BORDER_UR 0x010
1287 #define BORDER_DR 0x020
1288 #define BORDER_UL 0x040
1289 #define BORDER_DL 0x080
1290 #define HIGH_BG 0x100
1291 #define CORRECT_BG 0x200
1292 #define ERROR_BG 0x400
1293 #define USER_COL 0x800
1294 #define CURSOR_SQ 0x1000
1295
1296 static void draw_square(drawing *dr, game_drawstate *ds, int x, int y,
1297 int n, int flags)
1298 {
1299 assert(dr);
1300 assert(ds);
1301
1302 /*
1303 * Clip to the grid square.
1304 */
1305 clip(dr, BORDER + x*TILE_SIZE, BORDER + y*TILE_SIZE,
1306 TILE_SIZE, TILE_SIZE);
1307
1308 /*
1309 * Clear the square.
1310 */
1311 draw_rect(dr,
1312 BORDER + x*TILE_SIZE,
1313 BORDER + y*TILE_SIZE,
1314 TILE_SIZE,
1315 TILE_SIZE,
1316 (flags & HIGH_BG ? COL_HIGHLIGHT :
1317 flags & ERROR_BG ? COL_ERROR :
1318 flags & CORRECT_BG ? COL_CORRECT : COL_BACKGROUND));
1319
1320 /*
1321 * Draw the grid lines.
1322 */
1323 draw_line(dr, BORDER + x*TILE_SIZE, BORDER + y*TILE_SIZE,
1324 BORDER + (x+1)*TILE_SIZE, BORDER + y*TILE_SIZE, COL_GRID);
1325 draw_line(dr, BORDER + x*TILE_SIZE, BORDER + y*TILE_SIZE,
1326 BORDER + x*TILE_SIZE, BORDER + (y+1)*TILE_SIZE, COL_GRID);
1327
1328 /*
1329 * Draw the number.
1330 */
1331 if (n) {
1332 char buf[2];
1333 buf[0] = n + '0';
1334 buf[1] = '\0';
1335 draw_text(dr,
1336 (x + 1) * TILE_SIZE,
1337 (y + 1) * TILE_SIZE,
1338 FONT_VARIABLE,
1339 TILE_SIZE / 2,
1340 ALIGN_VCENTRE | ALIGN_HCENTRE,
1341 flags & USER_COL ? COL_USER : COL_CLUE,
1342 buf);
1343 }
1344
1345 /*
1346 * Draw bold lines around the borders.
1347 */
1348 if (flags & BORDER_L)
1349 draw_rect(dr,
1350 BORDER + x*TILE_SIZE + 1,
1351 BORDER + y*TILE_SIZE + 1,
1352 BORDER_WIDTH,
1353 TILE_SIZE - 1,
1354 COL_GRID);
1355 if (flags & BORDER_U)
1356 draw_rect(dr,
1357 BORDER + x*TILE_SIZE + 1,
1358 BORDER + y*TILE_SIZE + 1,
1359 TILE_SIZE - 1,
1360 BORDER_WIDTH,
1361 COL_GRID);
1362 if (flags & BORDER_R)
1363 draw_rect(dr,
1364 BORDER + (x+1)*TILE_SIZE - BORDER_WIDTH,
1365 BORDER + y*TILE_SIZE + 1,
1366 BORDER_WIDTH,
1367 TILE_SIZE - 1,
1368 COL_GRID);
1369 if (flags & BORDER_D)
1370 draw_rect(dr,
1371 BORDER + x*TILE_SIZE + 1,
1372 BORDER + (y+1)*TILE_SIZE - BORDER_WIDTH,
1373 TILE_SIZE - 1,
1374 BORDER_WIDTH,
1375 COL_GRID);
1376 if (flags & BORDER_UL)
1377 draw_rect(dr,
1378 BORDER + x*TILE_SIZE + 1,
1379 BORDER + y*TILE_SIZE + 1,
1380 BORDER_WIDTH,
1381 BORDER_WIDTH,
1382 COL_GRID);
1383 if (flags & BORDER_UR)
1384 draw_rect(dr,
1385 BORDER + (x+1)*TILE_SIZE - BORDER_WIDTH,
1386 BORDER + y*TILE_SIZE + 1,
1387 BORDER_WIDTH,
1388 BORDER_WIDTH,
1389 COL_GRID);
1390 if (flags & BORDER_DL)
1391 draw_rect(dr,
1392 BORDER + x*TILE_SIZE + 1,
1393 BORDER + (y+1)*TILE_SIZE - BORDER_WIDTH,
1394 BORDER_WIDTH,
1395 BORDER_WIDTH,
1396 COL_GRID);
1397 if (flags & BORDER_DR)
1398 draw_rect(dr,
1399 BORDER + (x+1)*TILE_SIZE - BORDER_WIDTH,
1400 BORDER + (y+1)*TILE_SIZE - BORDER_WIDTH,
1401 BORDER_WIDTH,
1402 BORDER_WIDTH,
1403 COL_GRID);
1404
1405 if (flags & CURSOR_SQ) {
1406 int coff = TILE_SIZE/8;
1407 draw_rect_outline(dr,
1408 BORDER + x*TILE_SIZE + coff,
1409 BORDER + y*TILE_SIZE + coff,
1410 TILE_SIZE - coff*2,
1411 TILE_SIZE - coff*2,
1412 COL_CURSOR);
1413 }
1414
1415 unclip(dr);
1416
1417 draw_update(dr,
1418 BORDER + x*TILE_SIZE,
1419 BORDER + y*TILE_SIZE,
1420 TILE_SIZE,
1421 TILE_SIZE);
1422 }
1423
1424 static void draw_grid(drawing *dr, game_drawstate *ds, game_state *state,
1425 game_ui *ui, int flashy, int borders, int shading)
1426 {
1427 const int w = state->shared->params.w;
1428 const int h = state->shared->params.h;
1429 int x;
1430 int y;
1431
1432 /*
1433 * Build a dsf for the board in its current state, to use for
1434 * highlights and hints.
1435 */
1436 ds->dsf_scratch = make_dsf(ds->dsf_scratch, state->board, w, h);
1437
1438 /*
1439 * Work out where we're putting borders between the cells.
1440 */
1441 for (y = 0; y < w*h; y++)
1442 ds->border_scratch[y] = 0;
1443
1444 for (y = 0; y < h; y++)
1445 for (x = 0; x < w; x++) {
1446 int dx, dy;
1447 int v1, s1, v2, s2;
1448
1449 for (dx = 0; dx <= 1; dx++) {
1450 int border = FALSE;
1451
1452 dy = 1 - dx;
1453
1454 if (x+dx >= w || y+dy >= h)
1455 continue;
1456
1457 v1 = state->board[y*w+x];
1458 v2 = state->board[(y+dy)*w+(x+dx)];
1459 s1 = dsf_size(ds->dsf_scratch, y*w+x);
1460 s2 = dsf_size(ds->dsf_scratch, (y+dy)*w+(x+dx));
1461
1462 /*
1463 * We only ever draw a border between two cells if
1464 * they don't have the same contents.
1465 */
1466 if (v1 != v2) {
1467 /*
1468 * But in that situation, we don't always draw
1469 * a border. We do if the two cells both
1470 * contain actual numbers...
1471 */
1472 if (v1 && v2)
1473 border = TRUE;
1474
1475 /*
1476 * ... or if at least one of them is a
1477 * completed or overfull omino.
1478 */
1479 if (v1 && s1 >= v1)
1480 border = TRUE;
1481 if (v2 && s2 >= v2)
1482 border = TRUE;
1483 }
1484
1485 if (border)
1486 ds->border_scratch[y*w+x] |= (dx ? 1 : 2);
1487 }
1488 }
1489
1490 /*
1491 * Actually do the drawing.
1492 */
1493 for (y = 0; y < h; ++y)
1494 for (x = 0; x < w; ++x) {
1495 /*
1496 * Determine what we need to draw in this square.
1497 */
1498 int v = state->board[y*w+x];
1499 int flags = 0;
1500
1501 if (flashy || !shading) {
1502 /* clear all background flags */
1503 } else if (ui && ui->sel && ui->sel[y*w+x]) {
1504 flags |= HIGH_BG;
1505 } else if (v) {
1506 int size = dsf_size(ds->dsf_scratch, y*w+x);
1507 if (size == v)
1508 flags |= CORRECT_BG;
1509 else if (size > v)
1510 flags |= ERROR_BG;
1511 }
1512 if (ui && ui->cur_visible && x == ui->cur_x && y == ui->cur_y)
1513 flags |= CURSOR_SQ;
1514
1515 /*
1516 * Borders at the very edges of the grid are
1517 * independent of the `borders' flag.
1518 */
1519 if (x == 0)
1520 flags |= BORDER_L;
1521 if (y == 0)
1522 flags |= BORDER_U;
1523 if (x == w-1)
1524 flags |= BORDER_R;
1525 if (y == h-1)
1526 flags |= BORDER_D;
1527
1528 if (borders) {
1529 if (x == 0 || (ds->border_scratch[y*w+(x-1)] & 1))
1530 flags |= BORDER_L;
1531 if (y == 0 || (ds->border_scratch[(y-1)*w+x] & 2))
1532 flags |= BORDER_U;
1533 if (x == w-1 || (ds->border_scratch[y*w+x] & 1))
1534 flags |= BORDER_R;
1535 if (y == h-1 || (ds->border_scratch[y*w+x] & 2))
1536 flags |= BORDER_D;
1537
1538 if (y > 0 && x > 0 && (ds->border_scratch[(y-1)*w+(x-1)]))
1539 flags |= BORDER_UL;
1540 if (y > 0 && x < w-1 &&
1541 ((ds->border_scratch[(y-1)*w+x] & 1) ||
1542 (ds->border_scratch[(y-1)*w+(x+1)] & 2)))
1543 flags |= BORDER_UR;
1544 if (y < h-1 && x > 0 &&
1545 ((ds->border_scratch[y*w+(x-1)] & 2) ||
1546 (ds->border_scratch[(y+1)*w+(x-1)] & 1)))
1547 flags |= BORDER_DL;
1548 if (y < h-1 && x < w-1 &&
1549 ((ds->border_scratch[y*w+(x+1)] & 2) ||
1550 (ds->border_scratch[(y+1)*w+x] & 1)))
1551 flags |= BORDER_DR;
1552 }
1553
1554 if (!state->shared->clues[y*w+x])
1555 flags |= USER_COL;
1556
1557 if (ds->v[y*w+x] != v || ds->flags[y*w+x] != flags) {
1558 draw_square(dr, ds, x, y, v, flags);
1559 ds->v[y*w+x] = v;
1560 ds->flags[y*w+x] = flags;
1561 }
1562 }
1563 }
1564
1565 static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
1566 game_state *state, int dir, game_ui *ui,
1567 float animtime, float flashtime)
1568 {
1569 const int w = state->shared->params.w;
1570 const int h = state->shared->params.h;
1571
1572 const int flashy =
1573 flashtime > 0 &&
1574 (flashtime <= FLASH_TIME/3 || flashtime >= FLASH_TIME*2/3);
1575
1576 if (!ds->started) {
1577 /*
1578 * The initial contents of the window are not guaranteed and
1579 * can vary with front ends. To be on the safe side, all games
1580 * should start by drawing a big background-colour rectangle
1581 * covering the whole window.
1582 */
1583 draw_rect(dr, 0, 0, w*TILE_SIZE + 2*BORDER, h*TILE_SIZE + 2*BORDER,
1584 COL_BACKGROUND);
1585
1586 /*
1587 * Smaller black rectangle which is the main grid.
1588 */
1589 draw_rect(dr, BORDER - BORDER_WIDTH, BORDER - BORDER_WIDTH,
1590 w*TILE_SIZE + 2*BORDER_WIDTH + 1,
1591 h*TILE_SIZE + 2*BORDER_WIDTH + 1,
1592 COL_GRID);
1593
1594 draw_update(dr, 0, 0, w*TILE_SIZE + 2*BORDER, h*TILE_SIZE + 2*BORDER);
1595
1596 ds->started = TRUE;
1597 }
1598
1599 draw_grid(dr, ds, state, ui, flashy, TRUE, TRUE);
1600 }
1601
1602 static float game_anim_length(game_state *oldstate, game_state *newstate,
1603 int dir, game_ui *ui)
1604 {
1605 return 0.0F;
1606 }
1607
1608 static float game_flash_length(game_state *oldstate, game_state *newstate,
1609 int dir, game_ui *ui)
1610 {
1611 assert(oldstate);
1612 assert(newstate);
1613 assert(newstate->shared);
1614 assert(oldstate->shared == newstate->shared);
1615 if (!oldstate->completed && newstate->completed &&
1616 !oldstate->cheated && !newstate->cheated)
1617 return FLASH_TIME;
1618 return 0.0F;
1619 }
1620
1621 static int game_timing_state(game_state *state, game_ui *ui)
1622 {
1623 return TRUE;
1624 }
1625
1626 static void game_print_size(game_params *params, float *x, float *y)
1627 {
1628 int pw, ph;
1629
1630 /*
1631 * I'll use 6mm squares by default.
1632 */
1633 game_compute_size(params, 600, &pw, &ph);
1634 *x = pw / 100.0F;
1635 *y = ph / 100.0F;
1636 }
1637
1638 static void game_print(drawing *dr, game_state *state, int tilesize)
1639 {
1640 const int w = state->shared->params.w;
1641 const int h = state->shared->params.h;
1642 int c, i, borders;
1643
1644 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
1645 game_drawstate *ds = game_new_drawstate(dr, state);
1646 game_set_size(dr, ds, NULL, tilesize);
1647
1648 c = print_mono_colour(dr, 1); assert(c == COL_BACKGROUND);
1649 c = print_mono_colour(dr, 0); assert(c == COL_GRID);
1650 c = print_mono_colour(dr, 1); assert(c == COL_HIGHLIGHT);
1651 c = print_mono_colour(dr, 1); assert(c == COL_CORRECT);
1652 c = print_mono_colour(dr, 1); assert(c == COL_ERROR);
1653 c = print_mono_colour(dr, 0); assert(c == COL_USER);
1654
1655 /*
1656 * Border.
1657 */
1658 draw_rect(dr, BORDER - BORDER_WIDTH, BORDER - BORDER_WIDTH,
1659 w*TILE_SIZE + 2*BORDER_WIDTH + 1,
1660 h*TILE_SIZE + 2*BORDER_WIDTH + 1,
1661 COL_GRID);
1662
1663 /*
1664 * We'll draw borders between the ominoes iff the grid is not
1665 * pristine. So scan it to see if it is.
1666 */
1667 borders = FALSE;
1668 for (i = 0; i < w*h; i++)
1669 if (state->board[i] && !state->shared->clues[i])
1670 borders = TRUE;
1671
1672 /*
1673 * Draw grid.
1674 */
1675 print_line_width(dr, TILE_SIZE / 64);
1676 draw_grid(dr, ds, state, NULL, FALSE, borders, FALSE);
1677
1678 /*
1679 * Clean up.
1680 */
1681 game_free_drawstate(dr, ds);
1682 }
1683
1684 #ifdef COMBINED
1685 #define thegame filling
1686 #endif
1687
1688 const struct game thegame = {
1689 "Filling", "games.filling", "filling",
1690 default_params,
1691 game_fetch_preset,
1692 decode_params,
1693 encode_params,
1694 free_params,
1695 dup_params,
1696 TRUE, game_configure, custom_params,
1697 validate_params,
1698 new_game_desc,
1699 validate_desc,
1700 new_game,
1701 dup_game,
1702 free_game,
1703 TRUE, solve_game,
1704 TRUE, game_can_format_as_text_now, game_text_format,
1705 new_ui,
1706 free_ui,
1707 encode_ui,
1708 decode_ui,
1709 game_changed_state,
1710 interpret_move,
1711 execute_move,
1712 PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
1713 game_colours,
1714 game_new_drawstate,
1715 game_free_drawstate,
1716 game_redraw,
1717 game_anim_length,
1718 game_flash_length,
1719 TRUE, FALSE, game_print_size, game_print,
1720 FALSE, /* wants_statusbar */
1721 FALSE, game_timing_state,
1722 REQUIRE_NUMPAD, /* flags */
1723 };
1724
1725 #ifdef STANDALONE_SOLVER /* solver? hah! */
1726
1727 int main(int argc, char **argv) {
1728 while (*++argv) {
1729 game_params *params;
1730 game_state *state;
1731 char *par;
1732 char *desc;
1733
1734 for (par = desc = *argv; *desc != '\0' && *desc != ':'; ++desc);
1735 if (*desc == '\0') {
1736 fprintf(stderr, "bad puzzle id: %s", par);
1737 continue;
1738 }
1739
1740 *desc++ = '\0';
1741
1742 params = snew(game_params);
1743 decode_params(params, par);
1744 state = new_game(NULL, params, desc);
1745 if (solver(state->board, params->w, params->h, NULL))
1746 printf("%s:%s: solvable\n", par, desc);
1747 else
1748 printf("%s:%s: not solvable\n", par, desc);
1749 }
1750 return 0;
1751 }
1752
1753 #endif
1754
1755 /* vim: set shiftwidth=4 tabstop=8: */