Completely re-engineered version of Loopy, courtesy of Lambros
[sgt/puzzles] / loopy.c
1 /*
2 * loopy.c:
3 *
4 * An implementation of the Nikoli game 'Loop the loop'.
5 * (c) Mike Pinna, 2005, 2006
6 * Substantially rewritten to allowing for more general types of grid.
7 * (c) Lambros Lambrou 2008
8 *
9 * vim: set shiftwidth=4 :set textwidth=80:
10 */
11
12 /*
13 *
14 * - There's an interesting deductive technique which makes use of topology
15 * rather than just graph theory. Each _square_ in the grid is either inside
16 * or outside the loop; you can tell that two squares are on the same side
17 * of the loop if they're separated by an x (or, more generally, by a path
18 * crossing no LINE_UNKNOWNs and an even number of LINE_YESes), and on the
19 * opposite side of the loop if they're separated by a line (or an odd
20 * number of LINE_YESes and no LINE_UNKNOWNs). Oh, and any square separated
21 * from the outside of the grid by a LINE_YES or a LINE_NO is on the inside
22 * or outside respectively. So if you can track this for all squares, you
23 * figure out the state of the line between a pair once their relative
24 * insideness is known.
25 *
26 * - (Just a speed optimisation.) Consider some todo list queue where every
27 * time we modify something we mark it for consideration by other bits of
28 * the solver, to save iteration over things that have already been done.
29 */
30
31 #include <stdio.h>
32 #include <stdlib.h>
33 #include <string.h>
34 #include <assert.h>
35 #include <ctype.h>
36 #include <math.h>
37
38 #include "puzzles.h"
39 #include "tree234.h"
40 #include "grid.h"
41
42 /* Debugging options */
43
44 /*
45 #define DEBUG_CACHES
46 #define SHOW_WORKING
47 #define DEBUG_DLINES
48 */
49
50 /* ----------------------------------------------------------------------
51 * Struct, enum and function declarations
52 */
53
54 enum {
55 COL_BACKGROUND,
56 COL_FOREGROUND,
57 COL_LINEUNKNOWN,
58 COL_HIGHLIGHT,
59 COL_MISTAKE,
60 COL_SATISFIED,
61 NCOLOURS
62 };
63
64 struct game_state {
65 grid *game_grid;
66
67 /* Put -1 in a face that doesn't get a clue */
68 signed char *clues;
69
70 /* Array of line states, to store whether each line is
71 * YES, NO or UNKNOWN */
72 char *lines;
73
74 int solved;
75 int cheated;
76
77 /* Used in game_text_format(), so that it knows what type of
78 * grid it's trying to render as ASCII text. */
79 int grid_type;
80 };
81
82 enum solver_status {
83 SOLVER_SOLVED, /* This is the only solution the solver could find */
84 SOLVER_MISTAKE, /* This is definitely not a solution */
85 SOLVER_AMBIGUOUS, /* This _might_ be an ambiguous solution */
86 SOLVER_INCOMPLETE /* This may be a partial solution */
87 };
88
89 /* ------ Solver state ------ */
90 typedef struct normal {
91 /* For each dline, store a bitmask for whether we know:
92 * (bit 0) at least one is YES
93 * (bit 1) at most one is YES */
94 char *dlines;
95 } normal_mode_state;
96
97 typedef struct hard {
98 int *linedsf;
99 } hard_mode_state;
100
101 typedef struct solver_state {
102 game_state *state;
103 enum solver_status solver_status;
104 /* NB looplen is the number of dots that are joined together at a point, ie a
105 * looplen of 1 means there are no lines to a particular dot */
106 int *looplen;
107
108 /* caches */
109 char *dot_yes_count;
110 char *dot_no_count;
111 char *face_yes_count;
112 char *face_no_count;
113 char *dot_solved, *face_solved;
114 int *dotdsf;
115
116 normal_mode_state *normal;
117 hard_mode_state *hard;
118 } solver_state;
119
120 /*
121 * Difficulty levels. I do some macro ickery here to ensure that my
122 * enum and the various forms of my name list always match up.
123 */
124
125 #define DIFFLIST(A) \
126 A(EASY,Easy,e,easy_mode_deductions) \
127 A(NORMAL,Normal,n,normal_mode_deductions) \
128 A(HARD,Hard,h,hard_mode_deductions)
129 #define ENUM(upper,title,lower,fn) DIFF_ ## upper,
130 #define TITLE(upper,title,lower,fn) #title,
131 #define ENCODE(upper,title,lower,fn) #lower
132 #define CONFIG(upper,title,lower,fn) ":" #title
133 #define SOLVER_FN_DECL(upper,title,lower,fn) static int fn(solver_state *);
134 #define SOLVER_FN(upper,title,lower,fn) &fn,
135 enum { DIFFLIST(ENUM) DIFF_MAX };
136 static char const *const diffnames[] = { DIFFLIST(TITLE) };
137 static char const diffchars[] = DIFFLIST(ENCODE);
138 #define DIFFCONFIG DIFFLIST(CONFIG)
139 DIFFLIST(SOLVER_FN_DECL);
140 static int (*(solver_fns[]))(solver_state *) = { DIFFLIST(SOLVER_FN) };
141
142 struct game_params {
143 int w, h;
144 int diff;
145 int type;
146
147 /* Grid generation is expensive, so keep a (ref-counted) reference to the
148 * grid for these parameters, and only generate when required. */
149 grid *game_grid;
150 };
151
152 enum line_state { LINE_YES, LINE_UNKNOWN, LINE_NO };
153
154 #define OPP(line_state) \
155 (2 - line_state)
156
157
158 struct game_drawstate {
159 int started;
160 int tilesize;
161 int flashing;
162 char *lines;
163 char *clue_error;
164 char *clue_satisfied;
165 };
166
167 static char *validate_desc(game_params *params, char *desc);
168 static int dot_order(const game_state* state, int i, char line_type);
169 static int face_order(const game_state* state, int i, char line_type);
170 static solver_state *solve_game_rec(const solver_state *sstate,
171 int diff);
172
173 #ifdef DEBUG_CACHES
174 static void check_caches(const solver_state* sstate);
175 #else
176 #define check_caches(s)
177 #endif
178
179 /* ------- List of grid generators ------- */
180 #define GRIDLIST(A) \
181 A(Squares,grid_new_square) \
182 A(Triangular,grid_new_triangular) \
183 A(Honeycomb,grid_new_honeycomb) \
184 A(Snub-Square,grid_new_snubsquare) \
185 A(Cairo,grid_new_cairo) \
186 A(Great-Hexagonal,grid_new_greathexagonal) \
187 A(Octagonal,grid_new_octagonal) \
188 A(Kites,grid_new_kites)
189
190 #define GRID_NAME(title,fn) #title,
191 #define GRID_CONFIG(title,fn) ":" #title
192 #define GRID_FN(title,fn) &fn,
193 static char const *const gridnames[] = { GRIDLIST(GRID_NAME) };
194 #define GRID_CONFIGS GRIDLIST(GRID_CONFIG)
195 static grid * (*(grid_fns[]))(int w, int h) = { GRIDLIST(GRID_FN) };
196 static const int NUM_GRID_TYPES = sizeof(grid_fns) / sizeof(grid_fns[0]);
197
198 /* Generates a (dynamically allocated) new grid, according to the
199 * type and size requested in params. Does nothing if the grid is already
200 * generated. The allocated grid is owned by the params object, and will be
201 * freed in free_params(). */
202 static void params_generate_grid(game_params *params)
203 {
204 if (!params->game_grid) {
205 params->game_grid = grid_fns[params->type](params->w, params->h);
206 }
207 }
208
209 /* ----------------------------------------------------------------------
210 * Preprocessor magic
211 */
212
213 /* General constants */
214 #define PREFERRED_TILE_SIZE 32
215 #define BORDER(tilesize) ((tilesize) / 2)
216 #define FLASH_TIME 0.5F
217
218 #define BIT_SET(field, bit) ((field) & (1<<(bit)))
219
220 #define SET_BIT(field, bit) (BIT_SET(field, bit) ? FALSE : \
221 ((field) |= (1<<(bit)), TRUE))
222
223 #define CLEAR_BIT(field, bit) (BIT_SET(field, bit) ? \
224 ((field) &= ~(1<<(bit)), TRUE) : FALSE)
225
226 #define CLUE2CHAR(c) \
227 ((c < 0) ? ' ' : c + '0')
228
229 /* ----------------------------------------------------------------------
230 * General struct manipulation and other straightforward code
231 */
232
233 static game_state *dup_game(game_state *state)
234 {
235 game_state *ret = snew(game_state);
236
237 ret->game_grid = state->game_grid;
238 ret->game_grid->refcount++;
239
240 ret->solved = state->solved;
241 ret->cheated = state->cheated;
242
243 ret->clues = snewn(state->game_grid->num_faces, signed char);
244 memcpy(ret->clues, state->clues, state->game_grid->num_faces);
245
246 ret->lines = snewn(state->game_grid->num_edges, char);
247 memcpy(ret->lines, state->lines, state->game_grid->num_edges);
248
249 ret->grid_type = state->grid_type;
250 return ret;
251 }
252
253 static void free_game(game_state *state)
254 {
255 if (state) {
256 grid_free(state->game_grid);
257 sfree(state->clues);
258 sfree(state->lines);
259 sfree(state);
260 }
261 }
262
263 static solver_state *new_solver_state(game_state *state, int diff) {
264 int i;
265 int num_dots = state->game_grid->num_dots;
266 int num_faces = state->game_grid->num_faces;
267 int num_edges = state->game_grid->num_edges;
268 solver_state *ret = snew(solver_state);
269
270 ret->state = dup_game(state);
271
272 ret->solver_status = SOLVER_INCOMPLETE;
273
274 ret->dotdsf = snew_dsf(num_dots);
275 ret->looplen = snewn(num_dots, int);
276
277 for (i = 0; i < num_dots; i++) {
278 ret->looplen[i] = 1;
279 }
280
281 ret->dot_solved = snewn(num_dots, char);
282 ret->face_solved = snewn(num_faces, char);
283 memset(ret->dot_solved, FALSE, num_dots);
284 memset(ret->face_solved, FALSE, num_faces);
285
286 ret->dot_yes_count = snewn(num_dots, char);
287 memset(ret->dot_yes_count, 0, num_dots);
288 ret->dot_no_count = snewn(num_dots, char);
289 memset(ret->dot_no_count, 0, num_dots);
290 ret->face_yes_count = snewn(num_faces, char);
291 memset(ret->face_yes_count, 0, num_faces);
292 ret->face_no_count = snewn(num_faces, char);
293 memset(ret->face_no_count, 0, num_faces);
294
295 if (diff < DIFF_NORMAL) {
296 ret->normal = NULL;
297 } else {
298 ret->normal = snew(normal_mode_state);
299 ret->normal->dlines = snewn(2*num_edges, char);
300 memset(ret->normal->dlines, 0, 2*num_edges);
301 }
302
303 if (diff < DIFF_HARD) {
304 ret->hard = NULL;
305 } else {
306 ret->hard = snew(hard_mode_state);
307 ret->hard->linedsf = snew_dsf(state->game_grid->num_edges);
308 }
309
310 return ret;
311 }
312
313 static void free_solver_state(solver_state *sstate) {
314 if (sstate) {
315 free_game(sstate->state);
316 sfree(sstate->dotdsf);
317 sfree(sstate->looplen);
318 sfree(sstate->dot_solved);
319 sfree(sstate->face_solved);
320 sfree(sstate->dot_yes_count);
321 sfree(sstate->dot_no_count);
322 sfree(sstate->face_yes_count);
323 sfree(sstate->face_no_count);
324
325 if (sstate->normal) {
326 sfree(sstate->normal->dlines);
327 sfree(sstate->normal);
328 }
329
330 if (sstate->hard) {
331 sfree(sstate->hard->linedsf);
332 sfree(sstate->hard);
333 }
334
335 sfree(sstate);
336 }
337 }
338
339 static solver_state *dup_solver_state(const solver_state *sstate) {
340 game_state *state = sstate->state;
341 int num_dots = state->game_grid->num_dots;
342 int num_faces = state->game_grid->num_faces;
343 int num_edges = state->game_grid->num_edges;
344 solver_state *ret = snew(solver_state);
345
346 ret->state = state = dup_game(sstate->state);
347
348 ret->solver_status = sstate->solver_status;
349
350 ret->dotdsf = snewn(num_dots, int);
351 ret->looplen = snewn(num_dots, int);
352 memcpy(ret->dotdsf, sstate->dotdsf,
353 num_dots * sizeof(int));
354 memcpy(ret->looplen, sstate->looplen,
355 num_dots * sizeof(int));
356
357 ret->dot_solved = snewn(num_dots, char);
358 ret->face_solved = snewn(num_faces, char);
359 memcpy(ret->dot_solved, sstate->dot_solved, num_dots);
360 memcpy(ret->face_solved, sstate->face_solved, num_faces);
361
362 ret->dot_yes_count = snewn(num_dots, char);
363 memcpy(ret->dot_yes_count, sstate->dot_yes_count, num_dots);
364 ret->dot_no_count = snewn(num_dots, char);
365 memcpy(ret->dot_no_count, sstate->dot_no_count, num_dots);
366
367 ret->face_yes_count = snewn(num_faces, char);
368 memcpy(ret->face_yes_count, sstate->face_yes_count, num_faces);
369 ret->face_no_count = snewn(num_faces, char);
370 memcpy(ret->face_no_count, sstate->face_no_count, num_faces);
371
372 if (sstate->normal) {
373 ret->normal = snew(normal_mode_state);
374 ret->normal->dlines = snewn(2*num_edges, char);
375 memcpy(ret->normal->dlines, sstate->normal->dlines,
376 2*num_edges);
377 } else {
378 ret->normal = NULL;
379 }
380
381 if (sstate->hard) {
382 ret->hard = snew(hard_mode_state);
383 ret->hard->linedsf = snewn(num_edges, int);
384 memcpy(ret->hard->linedsf, sstate->hard->linedsf,
385 num_edges * sizeof(int));
386 } else {
387 ret->hard = NULL;
388 }
389
390 return ret;
391 }
392
393 static game_params *default_params(void)
394 {
395 game_params *ret = snew(game_params);
396
397 #ifdef SLOW_SYSTEM
398 ret->h = 7;
399 ret->w = 7;
400 #else
401 ret->h = 10;
402 ret->w = 10;
403 #endif
404 ret->diff = DIFF_EASY;
405 ret->type = 0;
406
407 ret->game_grid = NULL;
408
409 return ret;
410 }
411
412 static game_params *dup_params(game_params *params)
413 {
414 game_params *ret = snew(game_params);
415
416 *ret = *params; /* structure copy */
417 if (ret->game_grid) {
418 ret->game_grid->refcount++;
419 }
420 return ret;
421 }
422
423 static const game_params presets[] = {
424 { 7, 7, DIFF_EASY, 0, NULL },
425 { 10, 10, DIFF_EASY, 0, NULL },
426 { 7, 7, DIFF_NORMAL, 0, NULL },
427 { 10, 10, DIFF_NORMAL, 0, NULL },
428 { 7, 7, DIFF_HARD, 0, NULL },
429 { 10, 10, DIFF_HARD, 0, NULL },
430 { 10, 10, DIFF_HARD, 1, NULL },
431 { 12, 10, DIFF_HARD, 2, NULL },
432 { 7, 7, DIFF_HARD, 3, NULL },
433 { 9, 9, DIFF_HARD, 4, NULL },
434 { 5, 4, DIFF_HARD, 5, NULL },
435 { 7, 7, DIFF_HARD, 6, NULL },
436 { 5, 5, DIFF_HARD, 7, NULL },
437 };
438
439 static int game_fetch_preset(int i, char **name, game_params **params)
440 {
441 game_params *tmppar;
442 char buf[80];
443
444 if (i < 0 || i >= lenof(presets))
445 return FALSE;
446
447 tmppar = snew(game_params);
448 *tmppar = presets[i];
449 *params = tmppar;
450 sprintf(buf, "%dx%d %s - %s", tmppar->h, tmppar->w,
451 gridnames[tmppar->type], diffnames[tmppar->diff]);
452 *name = dupstr(buf);
453
454 return TRUE;
455 }
456
457 static void free_params(game_params *params)
458 {
459 if (params->game_grid) {
460 grid_free(params->game_grid);
461 }
462 sfree(params);
463 }
464
465 static void decode_params(game_params *params, char const *string)
466 {
467 if (params->game_grid) {
468 grid_free(params->game_grid);
469 params->game_grid = NULL;
470 }
471 params->h = params->w = atoi(string);
472 params->diff = DIFF_EASY;
473 while (*string && isdigit((unsigned char)*string)) string++;
474 if (*string == 'x') {
475 string++;
476 params->h = atoi(string);
477 while (*string && isdigit((unsigned char)*string)) string++;
478 }
479 if (*string == 't') {
480 string++;
481 params->type = atoi(string);
482 while (*string && isdigit((unsigned char)*string)) string++;
483 }
484 if (*string == 'd') {
485 int i;
486 string++;
487 for (i = 0; i < DIFF_MAX; i++)
488 if (*string == diffchars[i])
489 params->diff = i;
490 if (*string) string++;
491 }
492 }
493
494 static char *encode_params(game_params *params, int full)
495 {
496 char str[80];
497 sprintf(str, "%dx%dt%d", params->w, params->h, params->type);
498 if (full)
499 sprintf(str + strlen(str), "d%c", diffchars[params->diff]);
500 return dupstr(str);
501 }
502
503 static config_item *game_configure(game_params *params)
504 {
505 config_item *ret;
506 char buf[80];
507
508 ret = snewn(5, config_item);
509
510 ret[0].name = "Width";
511 ret[0].type = C_STRING;
512 sprintf(buf, "%d", params->w);
513 ret[0].sval = dupstr(buf);
514 ret[0].ival = 0;
515
516 ret[1].name = "Height";
517 ret[1].type = C_STRING;
518 sprintf(buf, "%d", params->h);
519 ret[1].sval = dupstr(buf);
520 ret[1].ival = 0;
521
522 ret[2].name = "Grid type";
523 ret[2].type = C_CHOICES;
524 ret[2].sval = GRID_CONFIGS;
525 ret[2].ival = params->type;
526
527 ret[3].name = "Difficulty";
528 ret[3].type = C_CHOICES;
529 ret[3].sval = DIFFCONFIG;
530 ret[3].ival = params->diff;
531
532 ret[4].name = NULL;
533 ret[4].type = C_END;
534 ret[4].sval = NULL;
535 ret[4].ival = 0;
536
537 return ret;
538 }
539
540 static game_params *custom_params(config_item *cfg)
541 {
542 game_params *ret = snew(game_params);
543
544 ret->w = atoi(cfg[0].sval);
545 ret->h = atoi(cfg[1].sval);
546 ret->type = cfg[2].ival;
547 ret->diff = cfg[3].ival;
548
549 ret->game_grid = NULL;
550 return ret;
551 }
552
553 static char *validate_params(game_params *params, int full)
554 {
555 if (params->w < 3 || params->h < 3)
556 return "Width and height must both be at least 3";
557 if (params->type < 0 || params->type >= NUM_GRID_TYPES)
558 return "Illegal grid type";
559
560 /*
561 * This shouldn't be able to happen at all, since decode_params
562 * and custom_params will never generate anything that isn't
563 * within range.
564 */
565 assert(params->diff < DIFF_MAX);
566
567 return NULL;
568 }
569
570 /* Returns a newly allocated string describing the current puzzle */
571 static char *state_to_text(const game_state *state)
572 {
573 grid *g = state->game_grid;
574 char *retval;
575 int num_faces = g->num_faces;
576 char *description = snewn(num_faces + 1, char);
577 char *dp = description;
578 int empty_count = 0;
579 int i;
580
581 for (i = 0; i < num_faces; i++) {
582 if (state->clues[i] < 0) {
583 if (empty_count > 25) {
584 dp += sprintf(dp, "%c", (int)(empty_count + 'a' - 1));
585 empty_count = 0;
586 }
587 empty_count++;
588 } else {
589 if (empty_count) {
590 dp += sprintf(dp, "%c", (int)(empty_count + 'a' - 1));
591 empty_count = 0;
592 }
593 dp += sprintf(dp, "%c", (int)CLUE2CHAR(state->clues[i]));
594 }
595 }
596
597 if (empty_count)
598 dp += sprintf(dp, "%c", (int)(empty_count + 'a' - 1));
599
600 retval = dupstr(description);
601 sfree(description);
602
603 return retval;
604 }
605
606 /* We require that the params pass the test in validate_params and that the
607 * description fills the entire game area */
608 static char *validate_desc(game_params *params, char *desc)
609 {
610 int count = 0;
611 grid *g;
612 params_generate_grid(params);
613 g = params->game_grid;
614
615 for (; *desc; ++desc) {
616 if (*desc >= '0' && *desc <= '9') {
617 count++;
618 continue;
619 }
620 if (*desc >= 'a') {
621 count += *desc - 'a' + 1;
622 continue;
623 }
624 return "Unknown character in description";
625 }
626
627 if (count < g->num_faces)
628 return "Description too short for board size";
629 if (count > g->num_faces)
630 return "Description too long for board size";
631
632 return NULL;
633 }
634
635 /* Sums the lengths of the numbers in range [0,n) */
636 /* See equivalent function in solo.c for justification of this. */
637 static int len_0_to_n(int n)
638 {
639 int len = 1; /* Counting 0 as a bit of a special case */
640 int i;
641
642 for (i = 1; i < n; i *= 10) {
643 len += max(n - i, 0);
644 }
645
646 return len;
647 }
648
649 static char *encode_solve_move(const game_state *state)
650 {
651 int len;
652 char *ret, *p;
653 int i;
654 int num_edges = state->game_grid->num_edges;
655
656 /* This is going to return a string representing the moves needed to set
657 * every line in a grid to be the same as the ones in 'state'. The exact
658 * length of this string is predictable. */
659
660 len = 1; /* Count the 'S' prefix */
661 /* Numbers in all lines */
662 len += len_0_to_n(num_edges);
663 /* For each line we also have a letter */
664 len += num_edges;
665
666 ret = snewn(len + 1, char);
667 p = ret;
668
669 p += sprintf(p, "S");
670
671 for (i = 0; i < num_edges; i++) {
672 switch (state->lines[i]) {
673 case LINE_YES:
674 p += sprintf(p, "%dy", i);
675 break;
676 case LINE_NO:
677 p += sprintf(p, "%dn", i);
678 break;
679 }
680 }
681
682 /* No point in doing sums like that if they're going to be wrong */
683 assert(strlen(ret) <= (size_t)len);
684 return ret;
685 }
686
687 static game_ui *new_ui(game_state *state)
688 {
689 return NULL;
690 }
691
692 static void free_ui(game_ui *ui)
693 {
694 }
695
696 static char *encode_ui(game_ui *ui)
697 {
698 return NULL;
699 }
700
701 static void decode_ui(game_ui *ui, char *encoding)
702 {
703 }
704
705 static void game_changed_state(game_ui *ui, game_state *oldstate,
706 game_state *newstate)
707 {
708 }
709
710 static void game_compute_size(game_params *params, int tilesize,
711 int *x, int *y)
712 {
713 grid *g;
714 params_generate_grid(params);
715 g = params->game_grid;
716 int grid_width = g->highest_x - g->lowest_x;
717 int grid_height = g->highest_y - g->lowest_y;
718 /* multiply first to minimise rounding error on integer division */
719 int rendered_width = grid_width * tilesize / g->tilesize;
720 int rendered_height = grid_height * tilesize / g->tilesize;
721 *x = rendered_width + 2 * BORDER(tilesize) + 1;
722 *y = rendered_height + 2 * BORDER(tilesize) + 1;
723 }
724
725 static void game_set_size(drawing *dr, game_drawstate *ds,
726 game_params *params, int tilesize)
727 {
728 ds->tilesize = tilesize;
729 }
730
731 static float *game_colours(frontend *fe, int *ncolours)
732 {
733 float *ret = snewn(4 * NCOLOURS, float);
734
735 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
736
737 ret[COL_FOREGROUND * 3 + 0] = 0.0F;
738 ret[COL_FOREGROUND * 3 + 1] = 0.0F;
739 ret[COL_FOREGROUND * 3 + 2] = 0.0F;
740
741 ret[COL_LINEUNKNOWN * 3 + 0] = 0.8F;
742 ret[COL_LINEUNKNOWN * 3 + 1] = 0.8F;
743 ret[COL_LINEUNKNOWN * 3 + 2] = 0.0F;
744
745 ret[COL_HIGHLIGHT * 3 + 0] = 1.0F;
746 ret[COL_HIGHLIGHT * 3 + 1] = 1.0F;
747 ret[COL_HIGHLIGHT * 3 + 2] = 1.0F;
748
749 ret[COL_MISTAKE * 3 + 0] = 1.0F;
750 ret[COL_MISTAKE * 3 + 1] = 0.0F;
751 ret[COL_MISTAKE * 3 + 2] = 0.0F;
752
753 ret[COL_SATISFIED * 3 + 0] = 0.0F;
754 ret[COL_SATISFIED * 3 + 1] = 0.0F;
755 ret[COL_SATISFIED * 3 + 2] = 0.0F;
756
757 *ncolours = NCOLOURS;
758 return ret;
759 }
760
761 static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
762 {
763 struct game_drawstate *ds = snew(struct game_drawstate);
764 int num_faces = state->game_grid->num_faces;
765 int num_edges = state->game_grid->num_edges;
766
767 ds->tilesize = 0;
768 ds->started = 0;
769 ds->lines = snewn(num_edges, char);
770 ds->clue_error = snewn(num_faces, char);
771 ds->clue_satisfied = snewn(num_faces, char);
772 ds->flashing = 0;
773
774 memset(ds->lines, LINE_UNKNOWN, num_edges);
775 memset(ds->clue_error, 0, num_faces);
776 memset(ds->clue_satisfied, 0, num_faces);
777
778 return ds;
779 }
780
781 static void game_free_drawstate(drawing *dr, game_drawstate *ds)
782 {
783 sfree(ds->clue_error);
784 sfree(ds->clue_satisfied);
785 sfree(ds->lines);
786 sfree(ds);
787 }
788
789 static int game_timing_state(game_state *state, game_ui *ui)
790 {
791 return TRUE;
792 }
793
794 static float game_anim_length(game_state *oldstate, game_state *newstate,
795 int dir, game_ui *ui)
796 {
797 return 0.0F;
798 }
799
800 static int game_can_format_as_text_now(game_params *params)
801 {
802 if (params->type != 0)
803 return FALSE;
804 return TRUE;
805 }
806
807 static char *game_text_format(game_state *state)
808 {
809 int w, h, W, H;
810 int x, y, i;
811 int cell_size;
812 char *ret;
813 grid *g = state->game_grid;
814 grid_face *f;
815
816 assert(state->grid_type == 0);
817
818 /* Work out the basic size unit */
819 f = g->faces; /* first face */
820 assert(f->order == 4);
821 /* The dots are ordered clockwise, so the two opposite
822 * corners are guaranteed to span the square */
823 cell_size = abs(f->dots[0]->x - f->dots[2]->x);
824
825 w = (g->highest_x - g->lowest_x) / cell_size;
826 h = (g->highest_y - g->lowest_y) / cell_size;
827
828 /* Create a blank "canvas" to "draw" on */
829 W = 2 * w + 2;
830 H = 2 * h + 1;
831 ret = snewn(W * H + 1, char);
832 for (y = 0; y < H; y++) {
833 for (x = 0; x < W-1; x++) {
834 ret[y*W + x] = ' ';
835 }
836 ret[y*W + W-1] = '\n';
837 }
838 ret[H*W] = '\0';
839
840 /* Fill in edge info */
841 for (i = 0; i < g->num_edges; i++) {
842 grid_edge *e = g->edges + i;
843 /* Cell coordinates, from (0,0) to (w-1,h-1) */
844 int x1 = (e->dot1->x - g->lowest_x) / cell_size;
845 int x2 = (e->dot2->x - g->lowest_x) / cell_size;
846 int y1 = (e->dot1->y - g->lowest_y) / cell_size;
847 int y2 = (e->dot2->y - g->lowest_y) / cell_size;
848 /* Midpoint, in canvas coordinates (canvas coordinates are just twice
849 * cell coordinates) */
850 x = x1 + x2;
851 y = y1 + y2;
852 switch (state->lines[i]) {
853 case LINE_YES:
854 ret[y*W + x] = (y1 == y2) ? '-' : '|';
855 break;
856 case LINE_NO:
857 ret[y*W + x] = 'x';
858 break;
859 case LINE_UNKNOWN:
860 break; /* already a space */
861 default:
862 assert(!"Illegal line state");
863 }
864 }
865
866 /* Fill in clues */
867 for (i = 0; i < g->num_faces; i++) {
868 f = g->faces + i;
869 assert(f->order == 4);
870 /* Cell coordinates, from (0,0) to (w-1,h-1) */
871 int x1 = (f->dots[0]->x - g->lowest_x) / cell_size;
872 int x2 = (f->dots[2]->x - g->lowest_x) / cell_size;
873 int y1 = (f->dots[0]->y - g->lowest_y) / cell_size;
874 int y2 = (f->dots[2]->y - g->lowest_y) / cell_size;
875 /* Midpoint, in canvas coordinates */
876 x = x1 + x2;
877 y = y1 + y2;
878 ret[y*W + x] = CLUE2CHAR(state->clues[i]);
879 }
880 return ret;
881 }
882
883 /* ----------------------------------------------------------------------
884 * Debug code
885 */
886
887 #ifdef DEBUG_CACHES
888 static void check_caches(const solver_state* sstate)
889 {
890 int i;
891 const game_state *state = sstate->state;
892 const grid *g = state->game_grid;
893
894 for (i = 0; i < g->num_dots; i++) {
895 assert(dot_order(state, i, LINE_YES) == sstate->dot_yes_count[i]);
896 assert(dot_order(state, i, LINE_NO) == sstate->dot_no_count[i]);
897 }
898
899 for (i = 0; i < g->num_faces; i++) {
900 assert(face_order(state, i, LINE_YES) == sstate->face_yes_count[i]);
901 assert(face_order(state, i, LINE_NO) == sstate->face_no_count[i]);
902 }
903 }
904
905 #if 0
906 #define check_caches(s) \
907 do { \
908 fprintf(stderr, "check_caches at line %d\n", __LINE__); \
909 check_caches(s); \
910 } while (0)
911 #endif
912 #endif /* DEBUG_CACHES */
913
914 /* ----------------------------------------------------------------------
915 * Solver utility functions
916 */
917
918 /* Sets the line (with index i) to the new state 'line_new', and updates
919 * the cached counts of any affected faces and dots.
920 * Returns TRUE if this actually changed the line's state. */
921 static int solver_set_line(solver_state *sstate, int i,
922 enum line_state line_new
923 #ifdef SHOW_WORKING
924 , const char *reason
925 #endif
926 )
927 {
928 game_state *state = sstate->state;
929 grid *g;
930 grid_edge *e;
931
932 assert(line_new != LINE_UNKNOWN);
933
934 check_caches(sstate);
935
936 if (state->lines[i] == line_new) {
937 return FALSE; /* nothing changed */
938 }
939 state->lines[i] = line_new;
940
941 #ifdef SHOW_WORKING
942 fprintf(stderr, "solver: set line [%d] to %s (%s)\n",
943 i, line_new == LINE_YES ? "YES" : "NO",
944 reason);
945 #endif
946
947 g = state->game_grid;
948 e = g->edges + i;
949
950 /* Update the cache for both dots and both faces affected by this. */
951 if (line_new == LINE_YES) {
952 sstate->dot_yes_count[e->dot1 - g->dots]++;
953 sstate->dot_yes_count[e->dot2 - g->dots]++;
954 if (e->face1) {
955 sstate->face_yes_count[e->face1 - g->faces]++;
956 }
957 if (e->face2) {
958 sstate->face_yes_count[e->face2 - g->faces]++;
959 }
960 } else {
961 sstate->dot_no_count[e->dot1 - g->dots]++;
962 sstate->dot_no_count[e->dot2 - g->dots]++;
963 if (e->face1) {
964 sstate->face_no_count[e->face1 - g->faces]++;
965 }
966 if (e->face2) {
967 sstate->face_no_count[e->face2 - g->faces]++;
968 }
969 }
970
971 check_caches(sstate);
972 return TRUE;
973 }
974
975 #ifdef SHOW_WORKING
976 #define solver_set_line(a, b, c) \
977 solver_set_line(a, b, c, __FUNCTION__)
978 #endif
979
980 /*
981 * Merge two dots due to the existence of an edge between them.
982 * Updates the dsf tracking equivalence classes, and keeps track of
983 * the length of path each dot is currently a part of.
984 * Returns TRUE if the dots were already linked, ie if they are part of a
985 * closed loop, and false otherwise.
986 */
987 static int merge_dots(solver_state *sstate, int edge_index)
988 {
989 int i, j, len;
990 grid *g = sstate->state->game_grid;
991 grid_edge *e = g->edges + edge_index;
992
993 i = e->dot1 - g->dots;
994 j = e->dot2 - g->dots;
995
996 i = dsf_canonify(sstate->dotdsf, i);
997 j = dsf_canonify(sstate->dotdsf, j);
998
999 if (i == j) {
1000 return TRUE;
1001 } else {
1002 len = sstate->looplen[i] + sstate->looplen[j];
1003 dsf_merge(sstate->dotdsf, i, j);
1004 i = dsf_canonify(sstate->dotdsf, i);
1005 sstate->looplen[i] = len;
1006 return FALSE;
1007 }
1008 }
1009
1010 /* Merge two lines because the solver has deduced that they must be either
1011 * identical or opposite. Returns TRUE if this is new information, otherwise
1012 * FALSE. */
1013 static int merge_lines(solver_state *sstate, int i, int j, int inverse
1014 #ifdef SHOW_WORKING
1015 , const char *reason
1016 #endif
1017 )
1018 {
1019 int inv_tmp;
1020
1021 assert(i < sstate->state->game_grid->num_edges);
1022 assert(j < sstate->state->game_grid->num_edges);
1023
1024 i = edsf_canonify(sstate->hard->linedsf, i, &inv_tmp);
1025 inverse ^= inv_tmp;
1026 j = edsf_canonify(sstate->hard->linedsf, j, &inv_tmp);
1027 inverse ^= inv_tmp;
1028
1029 edsf_merge(sstate->hard->linedsf, i, j, inverse);
1030
1031 #ifdef SHOW_WORKING
1032 if (i != j) {
1033 fprintf(stderr, "%s [%d] [%d] %s(%s)\n",
1034 __FUNCTION__, i, j,
1035 inverse ? "inverse " : "", reason);
1036 }
1037 #endif
1038 return (i != j);
1039 }
1040
1041 #ifdef SHOW_WORKING
1042 #define merge_lines(a, b, c, d) \
1043 merge_lines(a, b, c, d, __FUNCTION__)
1044 #endif
1045
1046 /* Count the number of lines of a particular type currently going into the
1047 * given dot. */
1048 static int dot_order(const game_state* state, int dot, char line_type)
1049 {
1050 int n = 0;
1051 grid *g = state->game_grid;
1052 grid_dot *d = g->dots + dot;
1053 int i;
1054
1055 for (i = 0; i < d->order; i++) {
1056 grid_edge *e = d->edges[i];
1057 if (state->lines[e - g->edges] == line_type)
1058 ++n;
1059 }
1060 return n;
1061 }
1062
1063 /* Count the number of lines of a particular type currently surrounding the
1064 * given face */
1065 static int face_order(const game_state* state, int face, char line_type)
1066 {
1067 int n = 0;
1068 grid *g = state->game_grid;
1069 grid_face *f = g->faces + face;
1070 int i;
1071
1072 for (i = 0; i < f->order; i++) {
1073 grid_edge *e = f->edges[i];
1074 if (state->lines[e - g->edges] == line_type)
1075 ++n;
1076 }
1077 return n;
1078 }
1079
1080 /* Set all lines bordering a dot of type old_type to type new_type
1081 * Return value tells caller whether this function actually did anything */
1082 static int dot_setall(solver_state *sstate, int dot,
1083 char old_type, char new_type)
1084 {
1085 int retval = FALSE, r;
1086 game_state *state = sstate->state;
1087 grid *g;
1088 grid_dot *d;
1089 int i;
1090
1091 if (old_type == new_type)
1092 return FALSE;
1093
1094 g = state->game_grid;
1095 d = g->dots + dot;
1096
1097 for (i = 0; i < d->order; i++) {
1098 int line_index = d->edges[i] - g->edges;
1099 if (state->lines[line_index] == old_type) {
1100 r = solver_set_line(sstate, line_index, new_type);
1101 assert(r == TRUE);
1102 retval = TRUE;
1103 }
1104 }
1105 return retval;
1106 }
1107
1108 /* Set all lines bordering a face of type old_type to type new_type */
1109 static int face_setall(solver_state *sstate, int face,
1110 char old_type, char new_type)
1111 {
1112 int retval = FALSE, r;
1113 game_state *state = sstate->state;
1114 grid *g;
1115 grid_face *f;
1116 int i;
1117
1118 if (old_type == new_type)
1119 return FALSE;
1120
1121 g = state->game_grid;
1122 f = g->faces + face;
1123
1124 for (i = 0; i < f->order; i++) {
1125 int line_index = f->edges[i] - g->edges;
1126 if (state->lines[line_index] == old_type) {
1127 r = solver_set_line(sstate, line_index, new_type);
1128 assert(r == TRUE);
1129 retval = TRUE;
1130 }
1131 }
1132 return retval;
1133 }
1134
1135 /* ----------------------------------------------------------------------
1136 * Loop generation and clue removal
1137 */
1138
1139 /* We're going to store a list of current candidate faces for lighting.
1140 * Each face gets a 'score', which tells us how adding that face right
1141 * now would affect the length of the solution loop. We're trying to
1142 * maximise that quantity so will bias our random selection of faces to
1143 * light towards those with high scores */
1144 struct face {
1145 int score;
1146 unsigned long random;
1147 grid_face *f;
1148 };
1149
1150 static int get_face_cmpfn(void *v1, void *v2)
1151 {
1152 struct face *f1 = v1;
1153 struct face *f2 = v2;
1154 /* These grid_face pointers always point into the same list of
1155 * 'grid_face's, so it's valid to subtract them. */
1156 return f1->f - f2->f;
1157 }
1158
1159 static int face_sort_cmpfn(void *v1, void *v2)
1160 {
1161 struct face *f1 = v1;
1162 struct face *f2 = v2;
1163 int r;
1164
1165 r = f2->score - f1->score;
1166 if (r) {
1167 return r;
1168 }
1169
1170 if (f1->random < f2->random)
1171 return -1;
1172 else if (f1->random > f2->random)
1173 return 1;
1174
1175 /*
1176 * It's _just_ possible that two faces might have been given
1177 * the same random value. In that situation, fall back to
1178 * comparing based on the positions within the grid's face-list.
1179 * This introduces a tiny directional bias, but not a significant one.
1180 */
1181 return get_face_cmpfn(f1, f2);
1182 }
1183
1184 enum { FACE_LIT, FACE_UNLIT };
1185
1186 /* face should be of type grid_face* here. */
1187 #define FACE_LIT_STATE(face) \
1188 ( (face) == NULL ? FACE_UNLIT : \
1189 board[(face) - g->faces] )
1190
1191 /* 'board' is an array of these enums, indicating which faces are
1192 * currently lit. Returns whether it's legal to light up the
1193 * given face. */
1194 static int can_light_face(grid *g, char* board, int face_index)
1195 {
1196 int i, j;
1197 grid_face *test_face = g->faces + face_index;
1198 grid_face *starting_face, *current_face;
1199 int transitions;
1200 int current_state, s;
1201 int found_lit_neighbour = FALSE;
1202 assert(board[face_index] == FACE_UNLIT);
1203
1204 /* Can only consider a face for lighting if it's adjacent to an
1205 * already lit face. */
1206 for (i = 0; i < test_face->order; i++) {
1207 grid_edge *e = test_face->edges[i];
1208 grid_face *f = (e->face1 == test_face) ? e->face2 : e->face1;
1209 if (FACE_LIT_STATE(f) == FACE_LIT) {
1210 found_lit_neighbour = TRUE;
1211 break;
1212 }
1213 }
1214 if (!found_lit_neighbour)
1215 return FALSE;
1216
1217 /* Need to avoid creating a loop of lit faces around some unlit faces.
1218 * Also need to avoid meeting another lit face at a corner, with
1219 * unlit faces in between. Here's a simple test that (I believe) takes
1220 * care of both these conditions:
1221 *
1222 * Take the circular path formed by this face's edges, and inflate it
1223 * slightly outwards. Imagine walking around this path and consider
1224 * the faces that you visit in sequence. This will include all faces
1225 * touching the given face, either along an edge or just at a corner.
1226 * Count the number of LIT/UNLIT transitions you encounter, as you walk
1227 * along the complete loop. This will obviously turn out to be an even
1228 * number.
1229 * If 0, we're either in a completely unlit zone, or this face is a hole
1230 * in a completely lit zone. If the former, we would create a brand new
1231 * island by lighting this face. And the latter ought to be impossible -
1232 * it would mean there's already a lit loop, so something went wrong
1233 * earlier.
1234 * If 4 or greater, there are too many separate lit regions touching this
1235 * face, and lighting it up would create a loop or a corner-violation.
1236 * The only allowed case is when the count is exactly 2. */
1237
1238 /* i points to a dot around the test face.
1239 * j points to a face around the i^th dot.
1240 * The current face will always be:
1241 * test_face->dots[i]->faces[j]
1242 * We assume dots go clockwise around the test face,
1243 * and faces go clockwise around dots. */
1244 i = j = 0;
1245 starting_face = test_face->dots[0]->faces[0];
1246 if (starting_face == test_face) {
1247 j = 1;
1248 starting_face = test_face->dots[0]->faces[1];
1249 }
1250 current_face = starting_face;
1251 transitions = 0;
1252 current_state = FACE_LIT_STATE(current_face);
1253
1254 do {
1255 /* Advance to next face.
1256 * Need to loop here because it might take several goes to
1257 * find it. */
1258 while (TRUE) {
1259 j++;
1260 if (j == test_face->dots[i]->order)
1261 j = 0;
1262
1263 if (test_face->dots[i]->faces[j] == test_face) {
1264 /* Advance to next dot round test_face, then
1265 * find current_face around new dot
1266 * and advance to the next face clockwise */
1267 i++;
1268 if (i == test_face->order)
1269 i = 0;
1270 for (j = 0; j < test_face->dots[i]->order; j++) {
1271 if (test_face->dots[i]->faces[j] == current_face)
1272 break;
1273 }
1274 /* Must actually find current_face around new dot,
1275 * or else something's wrong with the grid. */
1276 assert(j != test_face->dots[i]->order);
1277 /* Found, so advance to next face and try again */
1278 } else {
1279 break;
1280 }
1281 }
1282 /* (i,j) are now advanced to next face */
1283 current_face = test_face->dots[i]->faces[j];
1284 s = FACE_LIT_STATE(current_face);
1285 if (s != current_state) {
1286 ++transitions;
1287 current_state = s;
1288 if (transitions > 2)
1289 return FALSE; /* no point in continuing */
1290 }
1291 } while (current_face != starting_face);
1292
1293 return (transitions == 2) ? TRUE : FALSE;
1294 }
1295
1296 /* The 'score' of a face reflects its current desirability for selection
1297 * as the next face to light. We want to encourage moving into uncharted
1298 * areas so we give scores according to how many of the face's neighbours
1299 * are currently unlit. */
1300 static int face_score(grid *g, char *board, grid_face *face)
1301 {
1302 /* Simple formula: score = neighbours unlit - neighbours lit */
1303 int lit_count = 0, unlit_count = 0;
1304 int i;
1305 grid_face *f;
1306 grid_edge *e;
1307 for (i = 0; i < face->order; i++) {
1308 e = face->edges[i];
1309 f = (e->face1 == face) ? e->face2 : e->face1;
1310 if (FACE_LIT_STATE(f) == FACE_LIT)
1311 ++lit_count;
1312 else
1313 ++unlit_count;
1314 }
1315 return unlit_count - lit_count;
1316 }
1317
1318 /* Generate a new complete set of clues for the given game_state. */
1319 static void add_full_clues(game_state *state, random_state *rs)
1320 {
1321 signed char *clues = state->clues;
1322 char *board;
1323 grid *g = state->game_grid;
1324 int i, j, c;
1325 int num_faces = g->num_faces;
1326 int first_time = TRUE;
1327
1328 struct face *face, *tmpface;
1329 struct face face_pos;
1330
1331 /* These will contain exactly the same information, sorted into different
1332 * orders */
1333 tree234 *lightable_faces_sorted, *lightable_faces_gettable;
1334
1335 #define IS_LIGHTING_CANDIDATE(i) \
1336 (board[i] == FACE_UNLIT && \
1337 can_light_face(g, board, i))
1338
1339 board = snewn(num_faces, char);
1340
1341 /* Make a board */
1342 memset(board, FACE_UNLIT, num_faces);
1343
1344 /* We need a way of favouring faces that will increase our loopiness.
1345 * We do this by maintaining a list of all candidate faces sorted by
1346 * their score and choose randomly from that with appropriate skew.
1347 * In order to avoid consistently biasing towards particular faces, we
1348 * need the sort order _within_ each group of scores to be completely
1349 * random. But it would be abusing the hospitality of the tree234 data
1350 * structure if our comparison function were nondeterministic :-). So with
1351 * each face we associate a random number that does not change during a
1352 * particular run of the generator, and use that as a secondary sort key.
1353 * Yes, this means we will be biased towards particular random faces in
1354 * any one run but that doesn't actually matter. */
1355
1356 lightable_faces_sorted = newtree234(face_sort_cmpfn);
1357 lightable_faces_gettable = newtree234(get_face_cmpfn);
1358 #define ADD_FACE(f) \
1359 do { \
1360 struct face *x = add234(lightable_faces_sorted, f); \
1361 assert(x == f); \
1362 x = add234(lightable_faces_gettable, f); \
1363 assert(x == f); \
1364 } while (0)
1365
1366 #define REMOVE_FACE(f) \
1367 do { \
1368 struct face *x = del234(lightable_faces_sorted, f); \
1369 assert(x); \
1370 x = del234(lightable_faces_gettable, f); \
1371 assert(x); \
1372 } while (0)
1373
1374 /* Light faces one at a time until the board is interesting enough */
1375 while (TRUE)
1376 {
1377 if (first_time) {
1378 first_time = FALSE;
1379 /* lightable_faces_xxx are empty, so start the process by
1380 * lighting up the middle face. These tree234s should
1381 * remain empty, consistent with what would happen if
1382 * first_time were FALSE. */
1383 board[g->middle_face - g->faces] = FACE_LIT;
1384 face = snew(struct face);
1385 face->f = g->middle_face;
1386 /* No need to initialise any more of 'face' here, no other fields
1387 * are used in this case. */
1388 } else {
1389 /* We have count234(lightable_faces_gettable) possibilities, and in
1390 * lightable_faces_sorted they are sorted with the most desirable
1391 * first. */
1392 c = count234(lightable_faces_sorted);
1393 if (c == 0)
1394 break;
1395 assert(c == count234(lightable_faces_gettable));
1396
1397 /* Check that the best face available is any good */
1398 face = (struct face *)index234(lightable_faces_sorted, 0);
1399 assert(face);
1400
1401 /*
1402 * The situation for a general grid is slightly different from
1403 * a square grid. Decreasing the perimeter should be allowed
1404 * sometimes (think about creating a hexagon of lit triangles,
1405 * for example). For if it were _never_ done, then the user would
1406 * be able to illicitly deduce certain things. So we do it
1407 * sometimes but not always.
1408 */
1409 if (face->score <= 0 && random_upto(rs, 2) == 0) {
1410 break;
1411 }
1412
1413 assert(face->f); /* not the infinite face */
1414 assert(FACE_LIT_STATE(face->f) == FACE_UNLIT);
1415
1416 /* Update data structures */
1417 /* Light up the face and remove it from the lists */
1418 board[face->f - g->faces] = FACE_LIT;
1419 REMOVE_FACE(face);
1420 }
1421
1422 /* The face we've just lit up potentially affects the lightability
1423 * of any neighbouring faces (touching at a corner or edge). So the
1424 * search needs to be conducted around all faces touching the one
1425 * we've just lit. Iterate over its corners, then over each corner's
1426 * faces. */
1427 for (i = 0; i < face->f->order; i++) {
1428 grid_dot *d = face->f->dots[i];
1429 for (j = 0; j < d->order; j++) {
1430 grid_face *f2 = d->faces[j];
1431 if (f2 == NULL)
1432 continue;
1433 if (f2 == face->f)
1434 continue;
1435 face_pos.f = f2;
1436 tmpface = find234(lightable_faces_gettable, &face_pos, NULL);
1437 if (tmpface) {
1438 assert(tmpface->f == face_pos.f);
1439 assert(FACE_LIT_STATE(tmpface->f) == FACE_UNLIT);
1440 REMOVE_FACE(tmpface);
1441 } else {
1442 tmpface = snew(struct face);
1443 tmpface->f = face_pos.f;
1444 tmpface->random = random_bits(rs, 31);
1445 }
1446 tmpface->score = face_score(g, board, tmpface->f);
1447
1448 if (IS_LIGHTING_CANDIDATE(tmpface->f - g->faces)) {
1449 ADD_FACE(tmpface);
1450 } else {
1451 sfree(tmpface);
1452 }
1453 }
1454 }
1455 sfree(face);
1456 }
1457
1458 /* Clean up */
1459 while ((face = delpos234(lightable_faces_gettable, 0)) != NULL)
1460 sfree(face);
1461 freetree234(lightable_faces_gettable);
1462 freetree234(lightable_faces_sorted);
1463
1464 /* Fill out all the clues by initialising to 0, then iterating over
1465 * all edges and incrementing each clue as we find edges that border
1466 * between LIT/UNLIT faces */
1467 memset(clues, 0, num_faces);
1468 for (i = 0; i < g->num_edges; i++) {
1469 grid_edge *e = g->edges + i;
1470 grid_face *f1 = e->face1;
1471 grid_face *f2 = e->face2;
1472 if (FACE_LIT_STATE(f1) != FACE_LIT_STATE(f2)) {
1473 if (f1) clues[f1 - g->faces]++;
1474 if (f2) clues[f2 - g->faces]++;
1475 }
1476 }
1477
1478 sfree(board);
1479 }
1480
1481
1482 static int game_has_unique_soln(const game_state *state, int diff)
1483 {
1484 int ret;
1485 solver_state *sstate_new;
1486 solver_state *sstate = new_solver_state((game_state *)state, diff);
1487
1488 sstate_new = solve_game_rec(sstate, diff);
1489
1490 assert(sstate_new->solver_status != SOLVER_MISTAKE);
1491 ret = (sstate_new->solver_status == SOLVER_SOLVED);
1492
1493 free_solver_state(sstate_new);
1494 free_solver_state(sstate);
1495
1496 return ret;
1497 }
1498
1499
1500 /* Remove clues one at a time at random. */
1501 static game_state *remove_clues(game_state *state, random_state *rs,
1502 int diff)
1503 {
1504 int *face_list;
1505 int num_faces = state->game_grid->num_faces;
1506 game_state *ret = dup_game(state), *saved_ret;
1507 int n;
1508
1509 /* We need to remove some clues. We'll do this by forming a list of all
1510 * available clues, shuffling it, then going along one at a
1511 * time clearing each clue in turn for which doing so doesn't render the
1512 * board unsolvable. */
1513 face_list = snewn(num_faces, int);
1514 for (n = 0; n < num_faces; ++n) {
1515 face_list[n] = n;
1516 }
1517
1518 shuffle(face_list, num_faces, sizeof(int), rs);
1519
1520 for (n = 0; n < num_faces; ++n) {
1521 saved_ret = dup_game(ret);
1522 ret->clues[face_list[n]] = -1;
1523
1524 if (game_has_unique_soln(ret, diff)) {
1525 free_game(saved_ret);
1526 } else {
1527 free_game(ret);
1528 ret = saved_ret;
1529 }
1530 }
1531 sfree(face_list);
1532
1533 return ret;
1534 }
1535
1536
1537 static char *new_game_desc(game_params *params, random_state *rs,
1538 char **aux, int interactive)
1539 {
1540 /* solution and description both use run-length encoding in obvious ways */
1541 char *retval;
1542 grid *g;
1543 game_state *state = snew(game_state);
1544 game_state *state_new;
1545 params_generate_grid(params);
1546 state->game_grid = g = params->game_grid;
1547 g->refcount++;
1548 state->clues = snewn(g->num_faces, signed char);
1549 state->lines = snewn(g->num_edges, char);
1550
1551 state->grid_type = params->type;
1552
1553 newboard_please:
1554
1555 memset(state->lines, LINE_UNKNOWN, g->num_edges);
1556
1557 state->solved = state->cheated = FALSE;
1558
1559 /* Get a new random solvable board with all its clues filled in. Yes, this
1560 * can loop for ever if the params are suitably unfavourable, but
1561 * preventing games smaller than 4x4 seems to stop this happening */
1562 do {
1563 add_full_clues(state, rs);
1564 } while (!game_has_unique_soln(state, params->diff));
1565
1566 state_new = remove_clues(state, rs, params->diff);
1567 free_game(state);
1568 state = state_new;
1569
1570
1571 if (params->diff > 0 && game_has_unique_soln(state, params->diff-1)) {
1572 #ifdef SHOW_WORKING
1573 fprintf(stderr, "Rejecting board, it is too easy\n");
1574 #endif
1575 goto newboard_please;
1576 }
1577
1578 retval = state_to_text(state);
1579
1580 free_game(state);
1581
1582 assert(!validate_desc(params, retval));
1583
1584 return retval;
1585 }
1586
1587 static game_state *new_game(midend *me, game_params *params, char *desc)
1588 {
1589 int i;
1590 game_state *state = snew(game_state);
1591 int empties_to_make = 0;
1592 int n;
1593 const char *dp = desc;
1594 grid *g;
1595 params_generate_grid(params);
1596 state->game_grid = g = params->game_grid;
1597 g->refcount++;
1598 int num_faces = g->num_faces;
1599 int num_edges = g->num_edges;
1600
1601 state->clues = snewn(num_faces, signed char);
1602 state->lines = snewn(num_edges, char);
1603
1604 state->solved = state->cheated = FALSE;
1605
1606 state->grid_type = params->type;
1607
1608 for (i = 0; i < num_faces; i++) {
1609 if (empties_to_make) {
1610 empties_to_make--;
1611 state->clues[i] = -1;
1612 continue;
1613 }
1614
1615 assert(*dp);
1616 n = *dp - '0';
1617 if (n >= 0 && n < 10) {
1618 state->clues[i] = n;
1619 } else {
1620 n = *dp - 'a' + 1;
1621 assert(n > 0);
1622 state->clues[i] = -1;
1623 empties_to_make = n - 1;
1624 }
1625 ++dp;
1626 }
1627
1628 memset(state->lines, LINE_UNKNOWN, num_edges);
1629
1630 return state;
1631 }
1632
1633 enum { LOOP_NONE=0, LOOP_SOLN, LOOP_NOT_SOLN };
1634
1635 /* ----------------------------------------------------------------------
1636 * Solver logic
1637 *
1638 * Our solver modes operate as follows. Each mode also uses the modes above it.
1639 *
1640 * Easy Mode
1641 * Just implement the rules of the game.
1642 *
1643 * Normal Mode
1644 * For each (adjacent) pair of lines through each dot we store a bit for
1645 * whether at least one of them is on and whether at most one is on. (If we
1646 * know both or neither is on that's already stored more directly.)
1647 *
1648 * Advanced Mode
1649 * Use edsf data structure to make equivalence classes of lines that are
1650 * known identical to or opposite to one another.
1651 */
1652
1653
1654 /* DLines:
1655 * For general grids, we consider "dlines" to be pairs of lines joined
1656 * at a dot. The lines must be adjacent around the dot, so we can think of
1657 * a dline as being a dot+face combination. Or, a dot+edge combination where
1658 * the second edge is taken to be the next clockwise edge from the dot.
1659 * Original loopy code didn't have this extra restriction of the lines being
1660 * adjacent. From my tests with square grids, this extra restriction seems to
1661 * take little, if anything, away from the quality of the puzzles.
1662 * A dline can be uniquely identified by an edge/dot combination, given that
1663 * a dline-pair always goes clockwise around its common dot. The edge/dot
1664 * combination can be represented by an edge/bool combination - if bool is
1665 * TRUE, use edge->dot1 else use edge->dot2. So the total number of dlines is
1666 * exactly twice the number of edges in the grid - although the dlines
1667 * spanning the infinite face are not all that useful to the solver.
1668 * Note that, by convention, a dline goes clockwise around its common dot,
1669 * which means the dline goes anti-clockwise around its common face.
1670 */
1671
1672 /* Helper functions for obtaining an index into an array of dlines, given
1673 * various information. We assume the grid layout conventions about how
1674 * the various lists are interleaved - see grid_make_consistent() for
1675 * details. */
1676
1677 /* i points to the first edge of the dline pair, reading clockwise around
1678 * the dot. */
1679 static int dline_index_from_dot(grid *g, grid_dot *d, int i)
1680 {
1681 grid_edge *e = d->edges[i];
1682 int ret;
1683 #ifdef DEBUG_DLINES
1684 grid_edge *e2;
1685 int i2 = i+1;
1686 if (i2 == d->order) i2 = 0;
1687 e2 = d->edges[i2];
1688 #endif
1689 ret = 2 * (e - g->edges) + ((e->dot1 == d) ? 1 : 0);
1690 #ifdef DEBUG_DLINES
1691 printf("dline_index_from_dot: d=%d,i=%d, edges [%d,%d] - %d\n",
1692 (int)(d - g->dots), i, (int)(e - g->edges),
1693 (int)(e2 - g->edges), ret);
1694 #endif
1695 return ret;
1696 }
1697 /* i points to the second edge of the dline pair, reading clockwise around
1698 * the face. That is, the edges of the dline, starting at edge{i}, read
1699 * anti-clockwise around the face. By layout conventions, the common dot
1700 * of the dline will be f->dots[i] */
1701 static int dline_index_from_face(grid *g, grid_face *f, int i)
1702 {
1703 grid_edge *e = f->edges[i];
1704 grid_dot *d = f->dots[i];
1705 int ret;
1706 #ifdef DEBUG_DLINES
1707 grid_edge *e2;
1708 int i2 = i - 1;
1709 if (i2 < 0) i2 += f->order;
1710 e2 = f->edges[i2];
1711 #endif
1712 ret = 2 * (e - g->edges) + ((e->dot1 == d) ? 1 : 0);
1713 #ifdef DEBUG_DLINES
1714 printf("dline_index_from_face: f=%d,i=%d, edges [%d,%d] - %d\n",
1715 (int)(f - g->faces), i, (int)(e - g->edges),
1716 (int)(e2 - g->edges), ret);
1717 #endif
1718 return ret;
1719 }
1720 static int is_atleastone(const char *dline_array, int index)
1721 {
1722 return BIT_SET(dline_array[index], 0);
1723 }
1724 static int set_atleastone(char *dline_array, int index)
1725 {
1726 return SET_BIT(dline_array[index], 0);
1727 }
1728 static int is_atmostone(const char *dline_array, int index)
1729 {
1730 return BIT_SET(dline_array[index], 1);
1731 }
1732 static int set_atmostone(char *dline_array, int index)
1733 {
1734 return SET_BIT(dline_array[index], 1);
1735 }
1736
1737 static void array_setall(char *array, char from, char to, int len)
1738 {
1739 char *p = array, *p_old = p;
1740 int len_remaining = len;
1741
1742 while ((p = memchr(p, from, len_remaining))) {
1743 *p = to;
1744 len_remaining -= p - p_old;
1745 p_old = p;
1746 }
1747 }
1748
1749 /* Helper, called when doing dline dot deductions, in the case where we
1750 * have 4 UNKNOWNs, and two of them (adjacent) have *exactly* one YES between
1751 * them (because of dline atmostone/atleastone).
1752 * On entry, edge points to the first of these two UNKNOWNs. This function
1753 * will find the opposite UNKNOWNS (if they are adjacent to one another)
1754 * and set their corresponding dline to atleastone. (Setting atmostone
1755 * already happens in earlier dline deductions) */
1756 static int dline_set_opp_atleastone(solver_state *sstate,
1757 grid_dot *d, int edge)
1758 {
1759 game_state *state = sstate->state;
1760 grid *g = state->game_grid;
1761 int N = d->order;
1762 int opp, opp2;
1763 for (opp = 0; opp < N; opp++) {
1764 int opp_dline_index;
1765 if (opp == edge || opp == edge+1 || opp == edge-1)
1766 continue;
1767 if (opp == 0 && edge == N-1)
1768 continue;
1769 if (opp == N-1 && edge == 0)
1770 continue;
1771 opp2 = opp + 1;
1772 if (opp2 == N) opp2 = 0;
1773 /* Check if opp, opp2 point to LINE_UNKNOWNs */
1774 if (state->lines[d->edges[opp] - g->edges] != LINE_UNKNOWN)
1775 continue;
1776 if (state->lines[d->edges[opp2] - g->edges] != LINE_UNKNOWN)
1777 continue;
1778 /* Found opposite UNKNOWNS and they're next to each other */
1779 opp_dline_index = dline_index_from_dot(g, d, opp);
1780 return set_atleastone(sstate->normal->dlines, opp_dline_index);
1781 }
1782 return FALSE;
1783 }
1784
1785
1786 /* Set pairs of lines around this face which are known to be identical, to
1787 * the given line_state */
1788 static int face_setall_identical(solver_state *sstate, int face_index,
1789 enum line_state line_new)
1790 {
1791 /* can[dir] contains the canonical line associated with the line in
1792 * direction dir from the square in question. Similarly inv[dir] is
1793 * whether or not the line in question is inverse to its canonical
1794 * element. */
1795 int retval = FALSE;
1796 game_state *state = sstate->state;
1797 grid *g = state->game_grid;
1798 grid_face *f = g->faces + face_index;
1799 int N = f->order;
1800 int i, j;
1801 int can1, can2, inv1, inv2;
1802
1803 for (i = 0; i < N; i++) {
1804 int line1_index = f->edges[i] - g->edges;
1805 if (state->lines[line1_index] != LINE_UNKNOWN)
1806 continue;
1807 for (j = i + 1; j < N; j++) {
1808 int line2_index = f->edges[j] - g->edges;
1809 if (state->lines[line2_index] != LINE_UNKNOWN)
1810 continue;
1811
1812 /* Found two UNKNOWNS */
1813 can1 = edsf_canonify(sstate->hard->linedsf, line1_index, &inv1);
1814 can2 = edsf_canonify(sstate->hard->linedsf, line2_index, &inv2);
1815 if (can1 == can2 && inv1 == inv2) {
1816 solver_set_line(sstate, line1_index, line_new);
1817 solver_set_line(sstate, line2_index, line_new);
1818 }
1819 }
1820 }
1821 return retval;
1822 }
1823
1824 /* Given a dot or face, and a count of LINE_UNKNOWNs, find them and
1825 * return the edge indices into e. */
1826 static void find_unknowns(game_state *state,
1827 grid_edge **edge_list, /* Edge list to search (from a face or a dot) */
1828 int expected_count, /* Number of UNKNOWNs (comes from solver's cache) */
1829 int *e /* Returned edge indices */)
1830 {
1831 int c = 0;
1832 grid *g = state->game_grid;
1833 while (c < expected_count) {
1834 int line_index = *edge_list - g->edges;
1835 if (state->lines[line_index] == LINE_UNKNOWN) {
1836 e[c] = line_index;
1837 c++;
1838 }
1839 ++edge_list;
1840 }
1841 }
1842
1843 /* If we have a list of edges, and we know whether the number of YESs should
1844 * be odd or even, and there are only a few UNKNOWNs, we can do some simple
1845 * linedsf deductions. This can be used for both face and dot deductions.
1846 * Returns the difficulty level of the next solver that should be used,
1847 * or DIFF_MAX if no progress was made. */
1848 static int parity_deductions(solver_state *sstate,
1849 grid_edge **edge_list, /* Edge list (from a face or a dot) */
1850 int total_parity, /* Expected number of YESs modulo 2 (either 0 or 1) */
1851 int unknown_count)
1852 {
1853 game_state *state = sstate->state;
1854 int diff = DIFF_MAX;
1855 int *linedsf = sstate->hard->linedsf;
1856
1857 if (unknown_count == 2) {
1858 /* Lines are known alike/opposite, depending on inv. */
1859 int e[2];
1860 find_unknowns(state, edge_list, 2, e);
1861 if (merge_lines(sstate, e[0], e[1], total_parity))
1862 diff = min(diff, DIFF_HARD);
1863 } else if (unknown_count == 3) {
1864 int e[3];
1865 int can[3]; /* canonical edges */
1866 int inv[3]; /* whether can[x] is inverse to e[x] */
1867 find_unknowns(state, edge_list, 3, e);
1868 can[0] = edsf_canonify(linedsf, e[0], inv);
1869 can[1] = edsf_canonify(linedsf, e[1], inv+1);
1870 can[2] = edsf_canonify(linedsf, e[2], inv+2);
1871 if (can[0] == can[1]) {
1872 if (solver_set_line(sstate, e[2], (total_parity^inv[0]^inv[1]) ?
1873 LINE_YES : LINE_NO))
1874 diff = min(diff, DIFF_EASY);
1875 }
1876 if (can[0] == can[2]) {
1877 if (solver_set_line(sstate, e[1], (total_parity^inv[0]^inv[2]) ?
1878 LINE_YES : LINE_NO))
1879 diff = min(diff, DIFF_EASY);
1880 }
1881 if (can[1] == can[2]) {
1882 if (solver_set_line(sstate, e[0], (total_parity^inv[1]^inv[2]) ?
1883 LINE_YES : LINE_NO))
1884 diff = min(diff, DIFF_EASY);
1885 }
1886 } else if (unknown_count == 4) {
1887 int e[4];
1888 int can[4]; /* canonical edges */
1889 int inv[4]; /* whether can[x] is inverse to e[x] */
1890 find_unknowns(state, edge_list, 4, e);
1891 can[0] = edsf_canonify(linedsf, e[0], inv);
1892 can[1] = edsf_canonify(linedsf, e[1], inv+1);
1893 can[2] = edsf_canonify(linedsf, e[2], inv+2);
1894 can[3] = edsf_canonify(linedsf, e[3], inv+3);
1895 if (can[0] == can[1]) {
1896 if (merge_lines(sstate, e[2], e[3], total_parity^inv[0]^inv[1]))
1897 diff = min(diff, DIFF_HARD);
1898 } else if (can[0] == can[2]) {
1899 if (merge_lines(sstate, e[1], e[3], total_parity^inv[0]^inv[2]))
1900 diff = min(diff, DIFF_HARD);
1901 } else if (can[0] == can[3]) {
1902 if (merge_lines(sstate, e[1], e[2], total_parity^inv[0]^inv[3]))
1903 diff = min(diff, DIFF_HARD);
1904 } else if (can[1] == can[2]) {
1905 if (merge_lines(sstate, e[0], e[3], total_parity^inv[1]^inv[2]))
1906 diff = min(diff, DIFF_HARD);
1907 } else if (can[1] == can[3]) {
1908 if (merge_lines(sstate, e[0], e[2], total_parity^inv[1]^inv[3]))
1909 diff = min(diff, DIFF_HARD);
1910 } else if (can[2] == can[3]) {
1911 if (merge_lines(sstate, e[0], e[1], total_parity^inv[2]^inv[3]))
1912 diff = min(diff, DIFF_HARD);
1913 }
1914 }
1915 return diff;
1916 }
1917
1918
1919 /*
1920 * These are the main solver functions.
1921 *
1922 * Their return values are diff values corresponding to the lowest mode solver
1923 * that would notice the work that they have done. For example if the normal
1924 * mode solver adds actual lines or crosses, it will return DIFF_EASY as the
1925 * easy mode solver might be able to make progress using that. It doesn't make
1926 * sense for one of them to return a diff value higher than that of the
1927 * function itself.
1928 *
1929 * Each function returns the lowest value it can, as early as possible, in
1930 * order to try and pass as much work as possible back to the lower level
1931 * solvers which progress more quickly.
1932 */
1933
1934 /* PROPOSED NEW DESIGN:
1935 * We have a work queue consisting of 'events' notifying us that something has
1936 * happened that a particular solver mode might be interested in. For example
1937 * the hard mode solver might do something that helps the normal mode solver at
1938 * dot [x,y] in which case it will enqueue an event recording this fact. Then
1939 * we pull events off the work queue, and hand each in turn to the solver that
1940 * is interested in them. If a solver reports that it failed we pass the same
1941 * event on to progressively more advanced solvers and the loop detector. Once
1942 * we've exhausted an event, or it has helped us progress, we drop it and
1943 * continue to the next one. The events are sorted first in order of solver
1944 * complexity (easy first) then order of insertion (oldest first).
1945 * Once we run out of events we loop over each permitted solver in turn
1946 * (easiest first) until either a deduction is made (and an event therefore
1947 * emerges) or no further deductions can be made (in which case we've failed).
1948 *
1949 * QUESTIONS:
1950 * * How do we 'loop over' a solver when both dots and squares are concerned.
1951 * Answer: first all squares then all dots.
1952 */
1953
1954 static int easy_mode_deductions(solver_state *sstate)
1955 {
1956 int i, current_yes, current_no;
1957 game_state *state = sstate->state;
1958 grid *g = state->game_grid;
1959 int diff = DIFF_MAX;
1960
1961 /* Per-face deductions */
1962 for (i = 0; i < g->num_faces; i++) {
1963 grid_face *f = g->faces + i;
1964
1965 if (sstate->face_solved[i])
1966 continue;
1967
1968 current_yes = sstate->face_yes_count[i];
1969 current_no = sstate->face_no_count[i];
1970
1971 if (current_yes + current_no == f->order) {
1972 sstate->face_solved[i] = TRUE;
1973 continue;
1974 }
1975
1976 if (state->clues[i] < 0)
1977 continue;
1978
1979 if (state->clues[i] < current_yes) {
1980 sstate->solver_status = SOLVER_MISTAKE;
1981 return DIFF_EASY;
1982 }
1983 if (state->clues[i] == current_yes) {
1984 if (face_setall(sstate, i, LINE_UNKNOWN, LINE_NO))
1985 diff = min(diff, DIFF_EASY);
1986 sstate->face_solved[i] = TRUE;
1987 continue;
1988 }
1989
1990 if (f->order - state->clues[i] < current_no) {
1991 sstate->solver_status = SOLVER_MISTAKE;
1992 return DIFF_EASY;
1993 }
1994 if (f->order - state->clues[i] == current_no) {
1995 if (face_setall(sstate, i, LINE_UNKNOWN, LINE_YES))
1996 diff = min(diff, DIFF_EASY);
1997 sstate->face_solved[i] = TRUE;
1998 continue;
1999 }
2000 }
2001
2002 check_caches(sstate);
2003
2004 /* Per-dot deductions */
2005 for (i = 0; i < g->num_dots; i++) {
2006 grid_dot *d = g->dots + i;
2007 int yes, no, unknown;
2008
2009 if (sstate->dot_solved[i])
2010 continue;
2011
2012 yes = sstate->dot_yes_count[i];
2013 no = sstate->dot_no_count[i];
2014 unknown = d->order - yes - no;
2015
2016 if (yes == 0) {
2017 if (unknown == 0) {
2018 sstate->dot_solved[i] = TRUE;
2019 } else if (unknown == 1) {
2020 dot_setall(sstate, i, LINE_UNKNOWN, LINE_NO);
2021 diff = min(diff, DIFF_EASY);
2022 sstate->dot_solved[i] = TRUE;
2023 }
2024 } else if (yes == 1) {
2025 if (unknown == 0) {
2026 sstate->solver_status = SOLVER_MISTAKE;
2027 return DIFF_EASY;
2028 } else if (unknown == 1) {
2029 dot_setall(sstate, i, LINE_UNKNOWN, LINE_YES);
2030 diff = min(diff, DIFF_EASY);
2031 }
2032 } else if (yes == 2) {
2033 if (unknown > 0) {
2034 dot_setall(sstate, i, LINE_UNKNOWN, LINE_NO);
2035 diff = min(diff, DIFF_EASY);
2036 }
2037 sstate->dot_solved[i] = TRUE;
2038 } else {
2039 sstate->solver_status = SOLVER_MISTAKE;
2040 return DIFF_EASY;
2041 }
2042 }
2043
2044 check_caches(sstate);
2045
2046 return diff;
2047 }
2048
2049 static int normal_mode_deductions(solver_state *sstate)
2050 {
2051 game_state *state = sstate->state;
2052 grid *g = state->game_grid;
2053 char *dlines = sstate->normal->dlines;
2054 int i;
2055 int diff = DIFF_MAX;
2056
2057 /* ------ Face deductions ------ */
2058
2059 /* Given a set of dline atmostone/atleastone constraints, need to figure
2060 * out if we can deduce any further info. For more general faces than
2061 * squares, this turns out to be a tricky problem.
2062 * The approach taken here is to define (per face) NxN matrices:
2063 * "maxs" and "mins".
2064 * The entries maxs(j,k) and mins(j,k) define the upper and lower limits
2065 * for the possible number of edges that are YES between positions j and k
2066 * going clockwise around the face. Can think of j and k as marking dots
2067 * around the face (recall the labelling scheme: edge0 joins dot0 to dot1,
2068 * edge1 joins dot1 to dot2 etc).
2069 * Trivially, mins(j,j) = maxs(j,j) = 0, and we don't even bother storing
2070 * these. mins(j,j+1) and maxs(j,j+1) are determined by whether edge{j}
2071 * is YES, NO or UNKNOWN. mins(j,j+2) and maxs(j,j+2) are related to
2072 * the dline atmostone/atleastone status for edges j and j+1.
2073 *
2074 * Then we calculate the remaining entries recursively. We definitely
2075 * know that
2076 * mins(j,k) >= { mins(j,u) + mins(u,k) } for any u between j and k.
2077 * This is because any valid placement of YESs between j and k must give
2078 * a valid placement between j and u, and also between u and k.
2079 * I believe it's sufficient to use just the two values of u:
2080 * j+1 and j+2. Seems to work well in practice - the bounds we compute
2081 * are rigorous, even if they might not be best-possible.
2082 *
2083 * Once we have maxs and mins calculated, we can make inferences about
2084 * each dline{j,j+1} by looking at the possible complementary edge-counts
2085 * mins(j+2,j) and maxs(j+2,j) and comparing these with the face clue.
2086 * As well as dlines, we can make similar inferences about single edges.
2087 * For example, consider a pentagon with clue 3, and we know at most one
2088 * of (edge0, edge1) is YES, and at most one of (edge2, edge3) is YES.
2089 * We could then deduce edge4 is YES, because maxs(0,4) would be 2, so
2090 * that final edge would have to be YES to make the count up to 3.
2091 */
2092
2093 /* Much quicker to allocate arrays on the stack than the heap, so
2094 * define the largest possible face size, and base our array allocations
2095 * on that. We check this with an assertion, in case someone decides to
2096 * make a grid which has larger faces than this. Note, this algorithm
2097 * could get quite expensive if there are many large faces. */
2098 #define MAX_FACE_SIZE 8
2099
2100 for (i = 0; i < g->num_faces; i++) {
2101 int maxs[MAX_FACE_SIZE][MAX_FACE_SIZE];
2102 int mins[MAX_FACE_SIZE][MAX_FACE_SIZE];
2103 grid_face *f = g->faces + i;
2104 int N = f->order;
2105 int j,m;
2106 int clue = state->clues[i];
2107 assert(N <= MAX_FACE_SIZE);
2108 if (sstate->face_solved[i])
2109 continue;
2110 if (clue < 0) continue;
2111
2112 /* Calculate the (j,j+1) entries */
2113 for (j = 0; j < N; j++) {
2114 int edge_index = f->edges[j] - g->edges;
2115 int dline_index;
2116 enum line_state line1 = state->lines[edge_index];
2117 enum line_state line2;
2118 int tmp;
2119 int k = j + 1;
2120 if (k >= N) k = 0;
2121 maxs[j][k] = (line1 == LINE_NO) ? 0 : 1;
2122 mins[j][k] = (line1 == LINE_YES) ? 1 : 0;
2123 /* Calculate the (j,j+2) entries */
2124 dline_index = dline_index_from_face(g, f, k);
2125 edge_index = f->edges[k] - g->edges;
2126 line2 = state->lines[edge_index];
2127 k++;
2128 if (k >= N) k = 0;
2129
2130 /* max */
2131 tmp = 2;
2132 if (line1 == LINE_NO) tmp--;
2133 if (line2 == LINE_NO) tmp--;
2134 if (tmp == 2 && is_atmostone(dlines, dline_index))
2135 tmp = 1;
2136 maxs[j][k] = tmp;
2137
2138 /* min */
2139 tmp = 0;
2140 if (line1 == LINE_YES) tmp++;
2141 if (line2 == LINE_YES) tmp++;
2142 if (tmp == 0 && is_atleastone(dlines, dline_index))
2143 tmp = 1;
2144 mins[j][k] = tmp;
2145 }
2146
2147 /* Calculate the (j,j+m) entries for m between 3 and N-1 */
2148 for (m = 3; m < N; m++) {
2149 for (j = 0; j < N; j++) {
2150 int k = j + m;
2151 int u = j + 1;
2152 int v = j + 2;
2153 int tmp;
2154 if (k >= N) k -= N;
2155 if (u >= N) u -= N;
2156 if (v >= N) v -= N;
2157 maxs[j][k] = maxs[j][u] + maxs[u][k];
2158 mins[j][k] = mins[j][u] + mins[u][k];
2159 tmp = maxs[j][v] + maxs[v][k];
2160 maxs[j][k] = min(maxs[j][k], tmp);
2161 tmp = mins[j][v] + mins[v][k];
2162 mins[j][k] = max(mins[j][k], tmp);
2163 }
2164 }
2165
2166 /* See if we can make any deductions */
2167 for (j = 0; j < N; j++) {
2168 int k;
2169 grid_edge *e = f->edges[j];
2170 int line_index = e - g->edges;
2171 int dline_index;
2172
2173 if (state->lines[line_index] != LINE_UNKNOWN)
2174 continue;
2175 k = j + 1;
2176 if (k >= N) k = 0;
2177
2178 /* minimum YESs in the complement of this edge */
2179 if (mins[k][j] > clue) {
2180 sstate->solver_status = SOLVER_MISTAKE;
2181 return DIFF_EASY;
2182 }
2183 if (mins[k][j] == clue) {
2184 /* setting this edge to YES would make at least
2185 * (clue+1) edges - contradiction */
2186 solver_set_line(sstate, line_index, LINE_NO);
2187 diff = min(diff, DIFF_EASY);
2188 }
2189 if (maxs[k][j] < clue - 1) {
2190 sstate->solver_status = SOLVER_MISTAKE;
2191 return DIFF_EASY;
2192 }
2193 if (maxs[k][j] == clue - 1) {
2194 /* Only way to satisfy the clue is to set edge{j} as YES */
2195 solver_set_line(sstate, line_index, LINE_YES);
2196 diff = min(diff, DIFF_EASY);
2197 }
2198
2199 /* Now see if we can make dline deduction for edges{j,j+1} */
2200 e = f->edges[k];
2201 if (state->lines[e - g->edges] != LINE_UNKNOWN)
2202 /* Only worth doing this for an UNKNOWN,UNKNOWN pair.
2203 * Dlines where one of the edges is known, are handled in the
2204 * dot-deductions */
2205 continue;
2206
2207 dline_index = dline_index_from_face(g, f, k);
2208 k++;
2209 if (k >= N) k = 0;
2210
2211 /* minimum YESs in the complement of this dline */
2212 if (mins[k][j] > clue - 2) {
2213 /* Adding 2 YESs would break the clue */
2214 if (set_atmostone(dlines, dline_index))
2215 diff = min(diff, DIFF_NORMAL);
2216 }
2217 /* maximum YESs in the complement of this dline */
2218 if (maxs[k][j] < clue) {
2219 /* Adding 2 NOs would mean not enough YESs */
2220 if (set_atleastone(dlines, dline_index))
2221 diff = min(diff, DIFF_NORMAL);
2222 }
2223 }
2224 }
2225
2226 if (diff < DIFF_NORMAL)
2227 return diff;
2228
2229 /* ------ Dot deductions ------ */
2230
2231 for (i = 0; i < g->num_dots; i++) {
2232 grid_dot *d = g->dots + i;
2233 int N = d->order;
2234 int yes, no, unknown;
2235 int j;
2236 if (sstate->dot_solved[i])
2237 continue;
2238 yes = sstate->dot_yes_count[i];
2239 no = sstate->dot_no_count[i];
2240 unknown = N - yes - no;
2241
2242 for (j = 0; j < N; j++) {
2243 int k;
2244 int dline_index;
2245 int line1_index, line2_index;
2246 enum line_state line1, line2;
2247 k = j + 1;
2248 if (k >= N) k = 0;
2249 dline_index = dline_index_from_dot(g, d, j);
2250 line1_index = d->edges[j] - g->edges;
2251 line2_index = d->edges[k] - g->edges;
2252 line1 = state->lines[line1_index];
2253 line2 = state->lines[line2_index];
2254
2255 /* Infer dline state from line state */
2256 if (line1 == LINE_NO || line2 == LINE_NO) {
2257 if (set_atmostone(dlines, dline_index))
2258 diff = min(diff, DIFF_NORMAL);
2259 }
2260 if (line1 == LINE_YES || line2 == LINE_YES) {
2261 if (set_atleastone(dlines, dline_index))
2262 diff = min(diff, DIFF_NORMAL);
2263 }
2264 /* Infer line state from dline state */
2265 if (is_atmostone(dlines, dline_index)) {
2266 if (line1 == LINE_YES && line2 == LINE_UNKNOWN) {
2267 solver_set_line(sstate, line2_index, LINE_NO);
2268 diff = min(diff, DIFF_EASY);
2269 }
2270 if (line2 == LINE_YES && line1 == LINE_UNKNOWN) {
2271 solver_set_line(sstate, line1_index, LINE_NO);
2272 diff = min(diff, DIFF_EASY);
2273 }
2274 }
2275 if (is_atleastone(dlines, dline_index)) {
2276 if (line1 == LINE_NO && line2 == LINE_UNKNOWN) {
2277 solver_set_line(sstate, line2_index, LINE_YES);
2278 diff = min(diff, DIFF_EASY);
2279 }
2280 if (line2 == LINE_NO && line1 == LINE_UNKNOWN) {
2281 solver_set_line(sstate, line1_index, LINE_YES);
2282 diff = min(diff, DIFF_EASY);
2283 }
2284 }
2285 /* Deductions that depend on the numbers of lines.
2286 * Only bother if both lines are UNKNOWN, otherwise the
2287 * easy-mode solver (or deductions above) would have taken
2288 * care of it. */
2289 if (line1 != LINE_UNKNOWN || line2 != LINE_UNKNOWN)
2290 continue;
2291
2292 if (yes == 0 && unknown == 2) {
2293 /* Both these unknowns must be identical. If we know
2294 * atmostone or atleastone, we can make progress. */
2295 if (is_atmostone(dlines, dline_index)) {
2296 solver_set_line(sstate, line1_index, LINE_NO);
2297 solver_set_line(sstate, line2_index, LINE_NO);
2298 diff = min(diff, DIFF_EASY);
2299 }
2300 if (is_atleastone(dlines, dline_index)) {
2301 solver_set_line(sstate, line1_index, LINE_YES);
2302 solver_set_line(sstate, line2_index, LINE_YES);
2303 diff = min(diff, DIFF_EASY);
2304 }
2305 }
2306 if (yes == 1) {
2307 if (set_atmostone(dlines, dline_index))
2308 diff = min(diff, DIFF_NORMAL);
2309 if (unknown == 2) {
2310 if (set_atleastone(dlines, dline_index))
2311 diff = min(diff, DIFF_NORMAL);
2312 }
2313 }
2314
2315 /* If we have atleastone set for this dline, infer
2316 * atmostone for each "opposite" dline (that is, each
2317 * dline without edges in common with this one).
2318 * Again, this test is only worth doing if both these
2319 * lines are UNKNOWN. For if one of these lines were YES,
2320 * the (yes == 1) test above would kick in instead. */
2321 if (is_atleastone(dlines, dline_index)) {
2322 int opp;
2323 for (opp = 0; opp < N; opp++) {
2324 int opp_dline_index;
2325 if (opp == j || opp == j+1 || opp == j-1)
2326 continue;
2327 if (j == 0 && opp == N-1)
2328 continue;
2329 if (j == N-1 && opp == 0)
2330 continue;
2331 opp_dline_index = dline_index_from_dot(g, d, opp);
2332 if (set_atmostone(dlines, opp_dline_index))
2333 diff = min(diff, DIFF_NORMAL);
2334 }
2335
2336 if (yes == 0 && is_atmostone(dlines, dline_index)) {
2337 /* This dline has *exactly* one YES and there are no
2338 * other YESs. This allows more deductions. */
2339 if (unknown == 3) {
2340 /* Third unknown must be YES */
2341 for (opp = 0; opp < N; opp++) {
2342 int opp_index;
2343 if (opp == j || opp == k)
2344 continue;
2345 opp_index = d->edges[opp] - g->edges;
2346 if (state->lines[opp_index] == LINE_UNKNOWN) {
2347 solver_set_line(sstate, opp_index, LINE_YES);
2348 diff = min(diff, DIFF_EASY);
2349 }
2350 }
2351 } else if (unknown == 4) {
2352 /* Exactly one of opposite UNKNOWNS is YES. We've
2353 * already set atmostone, so set atleastone as well.
2354 */
2355 if (dline_set_opp_atleastone(sstate, d, j))
2356 diff = min(diff, DIFF_NORMAL);
2357 }
2358 }
2359 }
2360 }
2361 }
2362 return diff;
2363 }
2364
2365 static int hard_mode_deductions(solver_state *sstate)
2366 {
2367 game_state *state = sstate->state;
2368 grid *g = state->game_grid;
2369 char *dlines = sstate->normal->dlines;
2370 int i;
2371 int diff = DIFF_MAX;
2372 int diff_tmp;
2373
2374 /* ------ Face deductions ------ */
2375
2376 /* A fully-general linedsf deduction seems overly complicated
2377 * (I suspect the problem is NP-complete, though in practice it might just
2378 * be doable because faces are limited in size).
2379 * For simplicity, we only consider *pairs* of LINE_UNKNOWNS that are
2380 * known to be identical. If setting them both to YES (or NO) would break
2381 * the clue, set them to NO (or YES). */
2382
2383 for (i = 0; i < g->num_faces; i++) {
2384 int N, yes, no, unknown;
2385 int clue;
2386
2387 if (sstate->face_solved[i])
2388 continue;
2389 clue = state->clues[i];
2390 if (clue < 0)
2391 continue;
2392
2393 N = g->faces[i].order;
2394 yes = sstate->face_yes_count[i];
2395 if (yes + 1 == clue) {
2396 if (face_setall_identical(sstate, i, LINE_NO))
2397 diff = min(diff, DIFF_EASY);
2398 }
2399 no = sstate->face_no_count[i];
2400 if (no + 1 == N - clue) {
2401 if (face_setall_identical(sstate, i, LINE_YES))
2402 diff = min(diff, DIFF_EASY);
2403 }
2404
2405 /* Reload YES count, it might have changed */
2406 yes = sstate->face_yes_count[i];
2407 unknown = N - no - yes;
2408
2409 /* Deductions with small number of LINE_UNKNOWNs, based on overall
2410 * parity of lines. */
2411 diff_tmp = parity_deductions(sstate, g->faces[i].edges,
2412 (clue - yes) % 2, unknown);
2413 diff = min(diff, diff_tmp);
2414 }
2415
2416 /* ------ Dot deductions ------ */
2417 for (i = 0; i < g->num_dots; i++) {
2418 grid_dot *d = g->dots + i;
2419 int N = d->order;
2420 int j;
2421 int yes, no, unknown;
2422 /* Go through dlines, and do any dline<->linedsf deductions wherever
2423 * we find two UNKNOWNS. */
2424 for (j = 0; j < N; j++) {
2425 int dline_index = dline_index_from_dot(g, d, j);
2426 int line1_index;
2427 int line2_index;
2428 int can1, can2, inv1, inv2;
2429 int j2;
2430 line1_index = d->edges[j] - g->edges;
2431 if (state->lines[line1_index] != LINE_UNKNOWN)
2432 continue;
2433 j2 = j + 1;
2434 if (j2 == N) j2 = 0;
2435 line2_index = d->edges[j2] - g->edges;
2436 if (state->lines[line2_index] != LINE_UNKNOWN)
2437 continue;
2438 /* Infer dline flags from linedsf */
2439 can1 = edsf_canonify(sstate->hard->linedsf, line1_index, &inv1);
2440 can2 = edsf_canonify(sstate->hard->linedsf, line2_index, &inv2);
2441 if (can1 == can2 && inv1 != inv2) {
2442 /* These are opposites, so set dline atmostone/atleastone */
2443 if (set_atmostone(dlines, dline_index))
2444 diff = min(diff, DIFF_NORMAL);
2445 if (set_atleastone(dlines, dline_index))
2446 diff = min(diff, DIFF_NORMAL);
2447 continue;
2448 }
2449 /* Infer linedsf from dline flags */
2450 if (is_atmostone(dlines, dline_index)
2451 && is_atleastone(dlines, dline_index)) {
2452 if (merge_lines(sstate, line1_index, line2_index, 1))
2453 diff = min(diff, DIFF_HARD);
2454 }
2455 }
2456
2457 /* Deductions with small number of LINE_UNKNOWNs, based on overall
2458 * parity of lines. */
2459 yes = sstate->dot_yes_count[i];
2460 no = sstate->dot_no_count[i];
2461 unknown = N - yes - no;
2462 diff_tmp = parity_deductions(sstate, d->edges,
2463 yes % 2, unknown);
2464 diff = min(diff, diff_tmp);
2465 }
2466
2467 /* ------ Edge dsf deductions ------ */
2468
2469 /* If the state of a line is known, deduce the state of its canonical line
2470 * too, and vice versa. */
2471 for (i = 0; i < g->num_edges; i++) {
2472 int can, inv;
2473 enum line_state s;
2474 can = edsf_canonify(sstate->hard->linedsf, i, &inv);
2475 if (can == i)
2476 continue;
2477 s = sstate->state->lines[can];
2478 if (s != LINE_UNKNOWN) {
2479 if (solver_set_line(sstate, i, inv ? OPP(s) : s))
2480 diff = min(diff, DIFF_EASY);
2481 } else {
2482 s = sstate->state->lines[i];
2483 if (s != LINE_UNKNOWN) {
2484 if (solver_set_line(sstate, can, inv ? OPP(s) : s))
2485 diff = min(diff, DIFF_EASY);
2486 }
2487 }
2488 }
2489
2490 return diff;
2491 }
2492
2493 static int loop_deductions(solver_state *sstate)
2494 {
2495 int edgecount = 0, clues = 0, satclues = 0, sm1clues = 0;
2496 game_state *state = sstate->state;
2497 grid *g = state->game_grid;
2498 int shortest_chainlen = g->num_dots;
2499 int loop_found = FALSE;
2500 int dots_connected;
2501 int progress = FALSE;
2502 int i;
2503
2504 /*
2505 * Go through the grid and update for all the new edges.
2506 * Since merge_dots() is idempotent, the simplest way to
2507 * do this is just to update for _all_ the edges.
2508 * Also, while we're here, we count the edges.
2509 */
2510 for (i = 0; i < g->num_edges; i++) {
2511 if (state->lines[i] == LINE_YES) {
2512 loop_found |= merge_dots(sstate, i);
2513 edgecount++;
2514 }
2515 }
2516
2517 /*
2518 * Count the clues, count the satisfied clues, and count the
2519 * satisfied-minus-one clues.
2520 */
2521 for (i = 0; i < g->num_faces; i++) {
2522 int c = state->clues[i];
2523 if (c >= 0) {
2524 int o = sstate->face_yes_count[i];
2525 if (o == c)
2526 satclues++;
2527 else if (o == c-1)
2528 sm1clues++;
2529 clues++;
2530 }
2531 }
2532
2533 for (i = 0; i < g->num_dots; ++i) {
2534 dots_connected =
2535 sstate->looplen[dsf_canonify(sstate->dotdsf, i)];
2536 if (dots_connected > 1)
2537 shortest_chainlen = min(shortest_chainlen, dots_connected);
2538 }
2539
2540 assert(sstate->solver_status == SOLVER_INCOMPLETE);
2541
2542 if (satclues == clues && shortest_chainlen == edgecount) {
2543 sstate->solver_status = SOLVER_SOLVED;
2544 /* This discovery clearly counts as progress, even if we haven't
2545 * just added any lines or anything */
2546 progress = TRUE;
2547 goto finished_loop_deductionsing;
2548 }
2549
2550 /*
2551 * Now go through looking for LINE_UNKNOWN edges which
2552 * connect two dots that are already in the same
2553 * equivalence class. If we find one, test to see if the
2554 * loop it would create is a solution.
2555 */
2556 for (i = 0; i < g->num_edges; i++) {
2557 grid_edge *e = g->edges + i;
2558 int d1 = e->dot1 - g->dots;
2559 int d2 = e->dot2 - g->dots;
2560 int eqclass, val;
2561 if (state->lines[i] != LINE_UNKNOWN)
2562 continue;
2563
2564 eqclass = dsf_canonify(sstate->dotdsf, d1);
2565 if (eqclass != dsf_canonify(sstate->dotdsf, d2))
2566 continue;
2567
2568 val = LINE_NO; /* loop is bad until proven otherwise */
2569
2570 /*
2571 * This edge would form a loop. Next
2572 * question: how long would the loop be?
2573 * Would it equal the total number of edges
2574 * (plus the one we'd be adding if we added
2575 * it)?
2576 */
2577 if (sstate->looplen[eqclass] == edgecount + 1) {
2578 int sm1_nearby;
2579
2580 /*
2581 * This edge would form a loop which
2582 * took in all the edges in the entire
2583 * grid. So now we need to work out
2584 * whether it would be a valid solution
2585 * to the puzzle, which means we have to
2586 * check if it satisfies all the clues.
2587 * This means that every clue must be
2588 * either satisfied or satisfied-minus-
2589 * 1, and also that the number of
2590 * satisfied-minus-1 clues must be at
2591 * most two and they must lie on either
2592 * side of this edge.
2593 */
2594 sm1_nearby = 0;
2595 if (e->face1) {
2596 int f = e->face1 - g->faces;
2597 int c = state->clues[f];
2598 if (c >= 0 && sstate->face_yes_count[f] == c - 1)
2599 sm1_nearby++;
2600 }
2601 if (e->face2) {
2602 int f = e->face2 - g->faces;
2603 int c = state->clues[f];
2604 if (c >= 0 && sstate->face_yes_count[f] == c - 1)
2605 sm1_nearby++;
2606 }
2607 if (sm1clues == sm1_nearby &&
2608 sm1clues + satclues == clues) {
2609 val = LINE_YES; /* loop is good! */
2610 }
2611 }
2612
2613 /*
2614 * Right. Now we know that adding this edge
2615 * would form a loop, and we know whether
2616 * that loop would be a viable solution or
2617 * not.
2618 *
2619 * If adding this edge produces a solution,
2620 * then we know we've found _a_ solution but
2621 * we don't know that it's _the_ solution -
2622 * if it were provably the solution then
2623 * we'd have deduced this edge some time ago
2624 * without the need to do loop detection. So
2625 * in this state we return SOLVER_AMBIGUOUS,
2626 * which has the effect that hitting Solve
2627 * on a user-provided puzzle will fill in a
2628 * solution but using the solver to
2629 * construct new puzzles won't consider this
2630 * a reasonable deduction for the user to
2631 * make.
2632 */
2633 progress = solver_set_line(sstate, i, val);
2634 assert(progress == TRUE);
2635 if (val == LINE_YES) {
2636 sstate->solver_status = SOLVER_AMBIGUOUS;
2637 goto finished_loop_deductionsing;
2638 }
2639 }
2640
2641 finished_loop_deductionsing:
2642 return progress ? DIFF_EASY : DIFF_MAX;
2643 }
2644
2645 /* This will return a dynamically allocated solver_state containing the (more)
2646 * solved grid */
2647 static solver_state *solve_game_rec(const solver_state *sstate_start,
2648 int diff)
2649 {
2650 solver_state *sstate, *sstate_saved;
2651 int solver_progress;
2652 game_state *state;
2653
2654 /* Indicates which solver we should call next. This is a sensible starting
2655 * point */
2656 int current_solver = DIFF_EASY, next_solver;
2657 sstate = dup_solver_state(sstate_start);
2658
2659 /* Cache the values of some variables for readability */
2660 state = sstate->state;
2661
2662 sstate_saved = NULL;
2663
2664 solver_progress = FALSE;
2665
2666 check_caches(sstate);
2667
2668 do {
2669 if (sstate->solver_status == SOLVER_MISTAKE)
2670 return sstate;
2671
2672 next_solver = solver_fns[current_solver](sstate);
2673
2674 if (next_solver == DIFF_MAX) {
2675 if (current_solver < diff && current_solver + 1 < DIFF_MAX) {
2676 /* Try next beefier solver */
2677 next_solver = current_solver + 1;
2678 } else {
2679 next_solver = loop_deductions(sstate);
2680 }
2681 }
2682
2683 if (sstate->solver_status == SOLVER_SOLVED ||
2684 sstate->solver_status == SOLVER_AMBIGUOUS) {
2685 /* fprintf(stderr, "Solver completed\n"); */
2686 break;
2687 }
2688
2689 /* Once we've looped over all permitted solvers then the loop
2690 * deductions without making any progress, we'll exit this while loop */
2691 current_solver = next_solver;
2692 } while (current_solver < DIFF_MAX);
2693
2694 if (sstate->solver_status == SOLVER_SOLVED ||
2695 sstate->solver_status == SOLVER_AMBIGUOUS) {
2696 /* s/LINE_UNKNOWN/LINE_NO/g */
2697 array_setall(sstate->state->lines, LINE_UNKNOWN, LINE_NO,
2698 sstate->state->game_grid->num_edges);
2699 return sstate;
2700 }
2701
2702 return sstate;
2703 }
2704
2705 static char *solve_game(game_state *state, game_state *currstate,
2706 char *aux, char **error)
2707 {
2708 char *soln = NULL;
2709 solver_state *sstate, *new_sstate;
2710
2711 sstate = new_solver_state(state, DIFF_MAX);
2712 new_sstate = solve_game_rec(sstate, DIFF_MAX);
2713
2714 if (new_sstate->solver_status == SOLVER_SOLVED) {
2715 soln = encode_solve_move(new_sstate->state);
2716 } else if (new_sstate->solver_status == SOLVER_AMBIGUOUS) {
2717 soln = encode_solve_move(new_sstate->state);
2718 /**error = "Solver found ambiguous solutions"; */
2719 } else {
2720 soln = encode_solve_move(new_sstate->state);
2721 /**error = "Solver failed"; */
2722 }
2723
2724 free_solver_state(new_sstate);
2725 free_solver_state(sstate);
2726
2727 return soln;
2728 }
2729
2730 /* ----------------------------------------------------------------------
2731 * Drawing and mouse-handling
2732 */
2733
2734 static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
2735 int x, int y, int button)
2736 {
2737 grid *g = state->game_grid;
2738 grid_edge *e;
2739 int i;
2740 char *ret, buf[80];
2741 char button_char = ' ';
2742 enum line_state old_state;
2743
2744 button &= ~MOD_MASK;
2745
2746 /* Convert mouse-click (x,y) to grid coordinates */
2747 x -= BORDER(ds->tilesize);
2748 y -= BORDER(ds->tilesize);
2749 x = x * g->tilesize / ds->tilesize;
2750 y = y * g->tilesize / ds->tilesize;
2751 x += g->lowest_x;
2752 y += g->lowest_y;
2753
2754 e = grid_nearest_edge(g, x, y);
2755 if (e == NULL)
2756 return NULL;
2757
2758 i = e - g->edges;
2759
2760 /* I think it's only possible to play this game with mouse clicks, sorry */
2761 /* Maybe will add mouse drag support some time */
2762 old_state = state->lines[i];
2763
2764 switch (button) {
2765 case LEFT_BUTTON:
2766 switch (old_state) {
2767 case LINE_UNKNOWN:
2768 button_char = 'y';
2769 break;
2770 case LINE_YES:
2771 case LINE_NO:
2772 button_char = 'u';
2773 break;
2774 }
2775 break;
2776 case MIDDLE_BUTTON:
2777 button_char = 'u';
2778 break;
2779 case RIGHT_BUTTON:
2780 switch (old_state) {
2781 case LINE_UNKNOWN:
2782 button_char = 'n';
2783 break;
2784 case LINE_NO:
2785 case LINE_YES:
2786 button_char = 'u';
2787 break;
2788 }
2789 break;
2790 default:
2791 return NULL;
2792 }
2793
2794
2795 sprintf(buf, "%d%c", i, (int)button_char);
2796 ret = dupstr(buf);
2797
2798 return ret;
2799 }
2800
2801 static game_state *execute_move(game_state *state, char *move)
2802 {
2803 int i;
2804 game_state *newstate = dup_game(state);
2805 grid *g = state->game_grid;
2806
2807 if (move[0] == 'S') {
2808 move++;
2809 newstate->cheated = TRUE;
2810 }
2811
2812 while (*move) {
2813 i = atoi(move);
2814 move += strspn(move, "1234567890");
2815 switch (*(move++)) {
2816 case 'y':
2817 newstate->lines[i] = LINE_YES;
2818 break;
2819 case 'n':
2820 newstate->lines[i] = LINE_NO;
2821 break;
2822 case 'u':
2823 newstate->lines[i] = LINE_UNKNOWN;
2824 break;
2825 default:
2826 goto fail;
2827 }
2828 }
2829
2830 /*
2831 * Check for completion.
2832 */
2833 for (i = 0; i < g->num_edges; i++) {
2834 if (newstate->lines[i] == LINE_YES)
2835 break;
2836 }
2837 if (i < g->num_edges) {
2838 int looplen, count;
2839 grid_edge *start_edge = g->edges + i;
2840 grid_edge *e = start_edge;
2841 grid_dot *d = e->dot1;
2842 /*
2843 * We've found an edge i. Follow it round
2844 * to see if it's part of a loop.
2845 */
2846 looplen = 0;
2847 while (1) {
2848 int j;
2849 int order = dot_order(newstate, d - g->dots, LINE_YES);
2850 if (order != 2)
2851 goto completion_check_done;
2852
2853 /* Find other edge around this dot */
2854 for (j = 0; j < d->order; j++) {
2855 grid_edge *e2 = d->edges[j];
2856 if (e2 != e && newstate->lines[e2 - g->edges] == LINE_YES)
2857 break;
2858 }
2859 assert(j != d->order); /* dot_order guarantees success */
2860
2861 e = d->edges[j];
2862 d = (e->dot1 == d) ? e->dot2 : e->dot1;
2863 looplen++;
2864
2865 if (e == start_edge)
2866 break;
2867 }
2868
2869 /*
2870 * We've traced our way round a loop, and we know how many
2871 * line segments were involved. Count _all_ the line
2872 * segments in the grid, to see if the loop includes them
2873 * all.
2874 */
2875 count = 0;
2876 for (i = 0; i < g->num_edges; i++) {
2877 if (newstate->lines[i] == LINE_YES)
2878 count++;
2879 }
2880 assert(count >= looplen);
2881 if (count != looplen)
2882 goto completion_check_done;
2883
2884 /*
2885 * The grid contains one closed loop and nothing else.
2886 * Check that all the clues are satisfied.
2887 */
2888 for (i = 0; i < g->num_faces; i++) {
2889 int c = newstate->clues[i];
2890 if (c >= 0) {
2891 if (face_order(newstate, i, LINE_YES) != c) {
2892 goto completion_check_done;
2893 }
2894 }
2895 }
2896
2897 /*
2898 * Completed!
2899 */
2900 newstate->solved = TRUE;
2901 }
2902
2903 completion_check_done:
2904 return newstate;
2905
2906 fail:
2907 free_game(newstate);
2908 return NULL;
2909 }
2910
2911 /* ----------------------------------------------------------------------
2912 * Drawing routines.
2913 */
2914
2915 /* Convert from grid coordinates to screen coordinates */
2916 static void grid_to_screen(const game_drawstate *ds, const grid *g,
2917 int grid_x, int grid_y, int *x, int *y)
2918 {
2919 *x = grid_x - g->lowest_x;
2920 *y = grid_y - g->lowest_y;
2921 *x = *x * ds->tilesize / g->tilesize;
2922 *y = *y * ds->tilesize / g->tilesize;
2923 *x += BORDER(ds->tilesize);
2924 *y += BORDER(ds->tilesize);
2925 }
2926
2927 /* Returns (into x,y) position of centre of face for rendering the text clue.
2928 */
2929 static void face_text_pos(const game_drawstate *ds, const grid *g,
2930 const grid_face *f, int *x, int *y)
2931 {
2932 int i;
2933
2934 /* Simplest solution is the centroid. Might not work in some cases. */
2935
2936 /* Another algorithm to look into:
2937 * Find the midpoints of the sides, find the bounding-box,
2938 * then take the centre of that. */
2939
2940 /* Best solution probably involves incentres (inscribed circles) */
2941
2942 int sx = 0, sy = 0; /* sums */
2943 for (i = 0; i < f->order; i++) {
2944 grid_dot *d = f->dots[i];
2945 sx += d->x;
2946 sy += d->y;
2947 }
2948 sx /= f->order;
2949 sy /= f->order;
2950
2951 /* convert to screen coordinates */
2952 grid_to_screen(ds, g, sx, sy, x, y);
2953 }
2954
2955 static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
2956 game_state *state, int dir, game_ui *ui,
2957 float animtime, float flashtime)
2958 {
2959 grid *g = state->game_grid;
2960 int border = BORDER(ds->tilesize);
2961 int i, n;
2962 char c[2];
2963 int line_colour, flash_changed;
2964 int clue_mistake;
2965 int clue_satisfied;
2966
2967 if (!ds->started) {
2968 /*
2969 * The initial contents of the window are not guaranteed and
2970 * can vary with front ends. To be on the safe side, all games
2971 * should start by drawing a big background-colour rectangle
2972 * covering the whole window.
2973 */
2974 int grid_width = g->highest_x - g->lowest_x;
2975 int grid_height = g->highest_y - g->lowest_y;
2976 int w = grid_width * ds->tilesize / g->tilesize;
2977 int h = grid_height * ds->tilesize / g->tilesize;
2978 draw_rect(dr, 0, 0, w + 2 * border, h + 2 * border, COL_BACKGROUND);
2979
2980 /* Draw clues */
2981 for (i = 0; i < g->num_faces; i++) {
2982 c[0] = CLUE2CHAR(state->clues[i]);
2983 c[1] = '\0';
2984 int x, y;
2985 grid_face *f = g->faces + i;
2986 face_text_pos(ds, g, f, &x, &y);
2987 draw_text(dr, x, y, FONT_VARIABLE, ds->tilesize/2,
2988 ALIGN_VCENTRE | ALIGN_HCENTRE, COL_FOREGROUND, c);
2989 }
2990 draw_update(dr, 0, 0, w + 2 * border, h + 2 * border);
2991 }
2992
2993 if (flashtime > 0 &&
2994 (flashtime <= FLASH_TIME/3 ||
2995 flashtime >= FLASH_TIME*2/3)) {
2996 flash_changed = !ds->flashing;
2997 ds->flashing = TRUE;
2998 } else {
2999 flash_changed = ds->flashing;
3000 ds->flashing = FALSE;
3001 }
3002
3003 /* Some platforms may perform anti-aliasing, which may prevent clean
3004 * repainting of lines when the colour is changed.
3005 * If a line needs to be over-drawn in a different colour, erase a
3006 * bounding-box around the line, then flag all nearby objects for redraw.
3007 */
3008 if (ds->started) {
3009 const char redraw_flag = 1<<7;
3010 for (i = 0; i < g->num_edges; i++) {
3011 /* If we're changing state, AND
3012 * the previous state was a coloured line */
3013 if ((state->lines[i] != (ds->lines[i] & ~redraw_flag)) &&
3014 ((ds->lines[i] & ~redraw_flag) != LINE_NO)) {
3015 grid_edge *e = g->edges + i;
3016 int x1 = e->dot1->x;
3017 int y1 = e->dot1->y;
3018 int x2 = e->dot2->x;
3019 int y2 = e->dot2->y;
3020 int xmin, xmax, ymin, ymax;
3021 int j;
3022 grid_to_screen(ds, g, x1, y1, &x1, &y1);
3023 grid_to_screen(ds, g, x2, y2, &x2, &y2);
3024 /* Allow extra margin for dots, and thickness of lines */
3025 xmin = min(x1, x2) - 2;
3026 xmax = max(x1, x2) + 2;
3027 ymin = min(y1, y2) - 2;
3028 ymax = max(y1, y2) + 2;
3029 /* For testing, I find it helpful to change COL_BACKGROUND
3030 * to COL_SATISFIED here. */
3031 draw_rect(dr, xmin, ymin, xmax - xmin + 1, ymax - ymin + 1,
3032 COL_BACKGROUND);
3033 draw_update(dr, xmin, ymin, xmax - xmin + 1, ymax - ymin + 1);
3034
3035 /* Mark nearby lines for redraw */
3036 for (j = 0; j < e->dot1->order; j++)
3037 ds->lines[e->dot1->edges[j] - g->edges] |= redraw_flag;
3038 for (j = 0; j < e->dot2->order; j++)
3039 ds->lines[e->dot2->edges[j] - g->edges] |= redraw_flag;
3040 /* Mark nearby clues for redraw. Use a value that is
3041 * neither TRUE nor FALSE for this. */
3042 if (e->face1)
3043 ds->clue_error[e->face1 - g->faces] = 2;
3044 if (e->face2)
3045 ds->clue_error[e->face2 - g->faces] = 2;
3046 }
3047 }
3048 }
3049
3050 /* Redraw clue colours if necessary */
3051 for (i = 0; i < g->num_faces; i++) {
3052 grid_face *f = g->faces + i;
3053 int sides = f->order;
3054 int j;
3055 n = state->clues[i];
3056 if (n < 0)
3057 continue;
3058
3059 c[0] = CLUE2CHAR(n);
3060 c[1] = '\0';
3061
3062 clue_mistake = (face_order(state, i, LINE_YES) > n ||
3063 face_order(state, i, LINE_NO ) > (sides-n));
3064
3065 clue_satisfied = (face_order(state, i, LINE_YES) == n &&
3066 face_order(state, i, LINE_NO ) == (sides-n));
3067
3068 if (clue_mistake != ds->clue_error[i]
3069 || clue_satisfied != ds->clue_satisfied[i]) {
3070 int x, y;
3071 face_text_pos(ds, g, f, &x, &y);
3072 /* There seems to be a certain amount of trial-and-error
3073 * involved in working out the correct bounding-box for
3074 * the text. */
3075 draw_rect(dr, x - ds->tilesize/4 - 1, y - ds->tilesize/4 - 3,
3076 ds->tilesize/2 + 2, ds->tilesize/2 + 5,
3077 COL_BACKGROUND);
3078 draw_text(dr, x, y,
3079 FONT_VARIABLE, ds->tilesize/2,
3080 ALIGN_VCENTRE | ALIGN_HCENTRE,
3081 clue_mistake ? COL_MISTAKE :
3082 clue_satisfied ? COL_SATISFIED : COL_FOREGROUND, c);
3083 draw_update(dr, x - ds->tilesize/4 - 1, y - ds->tilesize/4 - 3,
3084 ds->tilesize/2 + 2, ds->tilesize/2 + 5);
3085
3086 ds->clue_error[i] = clue_mistake;
3087 ds->clue_satisfied[i] = clue_satisfied;
3088
3089 /* Sometimes, the bounding-box encroaches into the surrounding
3090 * lines (particularly if the window is resized fairly small).
3091 * So redraw them. */
3092 for (j = 0; j < f->order; j++)
3093 ds->lines[f->edges[j] - g->edges] = -1;
3094 }
3095 }
3096
3097 /* I've also had a request to colour lines red if they make a non-solution
3098 * loop, or if more than two lines go into any point. I think that would
3099 * be good some time. */
3100
3101 /* Lines */
3102 for (i = 0; i < g->num_edges; i++) {
3103 grid_edge *e = g->edges + i;
3104 int x1, x2, y1, y2;
3105 int xmin, ymin, xmax, ymax;
3106 int need_draw = (state->lines[i] != ds->lines[i]) ? TRUE : FALSE;
3107 if (flash_changed && (state->lines[i] == LINE_YES))
3108 need_draw = TRUE;
3109 if (!ds->started)
3110 need_draw = TRUE; /* draw everything at the start */
3111 ds->lines[i] = state->lines[i];
3112 if (!need_draw)
3113 continue;
3114 if (state->lines[i] == LINE_UNKNOWN)
3115 line_colour = COL_LINEUNKNOWN;
3116 else if (state->lines[i] == LINE_NO)
3117 line_colour = COL_BACKGROUND;
3118 else if (ds->flashing)
3119 line_colour = COL_HIGHLIGHT;
3120 else
3121 line_colour = COL_FOREGROUND;
3122
3123 /* Convert from grid to screen coordinates */
3124 grid_to_screen(ds, g, e->dot1->x, e->dot1->y, &x1, &y1);
3125 grid_to_screen(ds, g, e->dot2->x, e->dot2->y, &x2, &y2);
3126
3127 xmin = min(x1, x2);
3128 xmax = max(x1, x2);
3129 ymin = min(y1, y2);
3130 ymax = max(y1, y2);
3131
3132 if (line_colour != COL_BACKGROUND) {
3133 /* (dx, dy) points roughly from (x1, y1) to (x2, y2).
3134 * The line is then "fattened" in a (roughly) perpendicular
3135 * direction to create a thin rectangle. */
3136 int dx = (x1 > x2) ? -1 : ((x1 < x2) ? 1 : 0);
3137 int dy = (y1 > y2) ? -1 : ((y1 < y2) ? 1 : 0);
3138 int points[] = {
3139 x1 + dy, y1 - dx,
3140 x1 - dy, y1 + dx,
3141 x2 - dy, y2 + dx,
3142 x2 + dy, y2 - dx
3143 };
3144 draw_polygon(dr, points, 4, line_colour, line_colour);
3145 }
3146 if (ds->started) {
3147 /* Draw dots at ends of the line */
3148 draw_circle(dr, x1, y1, 2, COL_FOREGROUND, COL_FOREGROUND);
3149 draw_circle(dr, x2, y2, 2, COL_FOREGROUND, COL_FOREGROUND);
3150 }
3151 draw_update(dr, xmin-2, ymin-2, xmax - xmin + 4, ymax - ymin + 4);
3152 }
3153
3154 /* Draw dots */
3155 if (!ds->started) {
3156 for (i = 0; i < g->num_dots; i++) {
3157 grid_dot *d = g->dots + i;
3158 int x, y;
3159 grid_to_screen(ds, g, d->x, d->y, &x, &y);
3160 draw_circle(dr, x, y, 2, COL_FOREGROUND, COL_FOREGROUND);
3161 }
3162 }
3163 ds->started = TRUE;
3164 }
3165
3166 static float game_flash_length(game_state *oldstate, game_state *newstate,
3167 int dir, game_ui *ui)
3168 {
3169 if (!oldstate->solved && newstate->solved &&
3170 !oldstate->cheated && !newstate->cheated) {
3171 return FLASH_TIME;
3172 }
3173
3174 return 0.0F;
3175 }
3176
3177 static void game_print_size(game_params *params, float *x, float *y)
3178 {
3179 int pw, ph;
3180
3181 /*
3182 * I'll use 7mm "squares" by default.
3183 */
3184 game_compute_size(params, 700, &pw, &ph);
3185 *x = pw / 100.0F;
3186 *y = ph / 100.0F;
3187 }
3188
3189 static void game_print(drawing *dr, game_state *state, int tilesize)
3190 {
3191 int ink = print_mono_colour(dr, 0);
3192 int i;
3193 game_drawstate ads, *ds = &ads;
3194 grid *g = state->game_grid;
3195
3196 game_set_size(dr, ds, NULL, tilesize);
3197
3198 for (i = 0; i < g->num_dots; i++) {
3199 int x, y;
3200 grid_to_screen(ds, g, g->dots[i].x, g->dots[i].y, &x, &y);
3201 draw_circle(dr, x, y, ds->tilesize / 15, ink, ink);
3202 }
3203
3204 /*
3205 * Clues.
3206 */
3207 for (i = 0; i < g->num_faces; i++) {
3208 grid_face *f = g->faces + i;
3209 int clue = state->clues[i];
3210 if (clue >= 0) {
3211 char c[2];
3212 int x, y;
3213 c[0] = CLUE2CHAR(clue);
3214 c[1] = '\0';
3215 face_text_pos(ds, g, f, &x, &y);
3216 draw_text(dr, x, y,
3217 FONT_VARIABLE, ds->tilesize / 2,
3218 ALIGN_VCENTRE | ALIGN_HCENTRE, ink, c);
3219 }
3220 }
3221
3222 /*
3223 * Lines.
3224 */
3225 for (i = 0; i < g->num_edges; i++) {
3226 int thickness = (state->lines[i] == LINE_YES) ? 30 : 150;
3227 grid_edge *e = g->edges + i;
3228 int x1, y1, x2, y2;
3229 grid_to_screen(ds, g, e->dot1->x, e->dot1->y, &x1, &y1);
3230 grid_to_screen(ds, g, e->dot2->x, e->dot2->y, &x2, &y2);
3231 if (state->lines[i] == LINE_YES)
3232 {
3233 /* (dx, dy) points from (x1, y1) to (x2, y2).
3234 * The line is then "fattened" in a perpendicular
3235 * direction to create a thin rectangle. */
3236 double d = sqrt(SQ((double)x1 - x2) + SQ((double)y1 - y2));
3237 double dx = (x2 - x1) / d;
3238 double dy = (y2 - y1) / d;
3239 dx = (dx * ds->tilesize) / thickness;
3240 dy = (dy * ds->tilesize) / thickness;
3241 int points[] = {
3242 x1 + dy, y1 - dx,
3243 x1 - dy, y1 + dx,
3244 x2 - dy, y2 + dx,
3245 x2 + dy, y2 - dx
3246 };
3247 draw_polygon(dr, points, 4, ink, ink);
3248 }
3249 else
3250 {
3251 /* Draw a dotted line */
3252 int divisions = 6;
3253 int j;
3254 for (j = 1; j < divisions; j++) {
3255 /* Weighted average */
3256 int x = (x1 * (divisions -j) + x2 * j) / divisions;
3257 int y = (y1 * (divisions -j) + y2 * j) / divisions;
3258 draw_circle(dr, x, y, ds->tilesize / thickness, ink, ink);
3259 }
3260 }
3261 }
3262 }
3263
3264 #ifdef COMBINED
3265 #define thegame loopy
3266 #endif
3267
3268 const struct game thegame = {
3269 "Loopy", "games.loopy", "loopy",
3270 default_params,
3271 game_fetch_preset,
3272 decode_params,
3273 encode_params,
3274 free_params,
3275 dup_params,
3276 TRUE, game_configure, custom_params,
3277 validate_params,
3278 new_game_desc,
3279 validate_desc,
3280 new_game,
3281 dup_game,
3282 free_game,
3283 1, solve_game,
3284 TRUE, game_can_format_as_text_now, game_text_format,
3285 new_ui,
3286 free_ui,
3287 encode_ui,
3288 decode_ui,
3289 game_changed_state,
3290 interpret_move,
3291 execute_move,
3292 PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
3293 game_colours,
3294 game_new_drawstate,
3295 game_free_drawstate,
3296 game_redraw,
3297 game_anim_length,
3298 game_flash_length,
3299 TRUE, FALSE, game_print_size, game_print,
3300 FALSE /* wants_statusbar */,
3301 FALSE, game_timing_state,
3302 0, /* mouse_priorities */
3303 };