Error highlighting in Map.
[sgt/puzzles] / map.c
1 /*
2 * map.c: Game involving four-colouring a map.
3 */
4
5 /*
6 * TODO:
7 *
8 * - clue marking
9 * - more solver brains?
10 * - better four-colouring algorithm?
11 * - pencil marks?
12 */
13
14 #include <stdio.h>
15 #include <stdlib.h>
16 #include <string.h>
17 #include <assert.h>
18 #include <ctype.h>
19 #include <math.h>
20
21 #include "puzzles.h"
22
23 /*
24 * I don't seriously anticipate wanting to change the number of
25 * colours used in this game, but it doesn't cost much to use a
26 * #define just in case :-)
27 */
28 #define FOUR 4
29 #define THREE (FOUR-1)
30 #define FIVE (FOUR+1)
31 #define SIX (FOUR+2)
32
33 /*
34 * Ghastly run-time configuration option, just for Gareth (again).
35 */
36 static int flash_type = -1;
37 static float flash_length;
38
39 /*
40 * Difficulty levels. I do some macro ickery here to ensure that my
41 * enum and the various forms of my name list always match up.
42 */
43 #define DIFFLIST(A) \
44 A(EASY,Easy,e) \
45 A(NORMAL,Normal,n)
46 #define ENUM(upper,title,lower) DIFF_ ## upper,
47 #define TITLE(upper,title,lower) #title,
48 #define ENCODE(upper,title,lower) #lower
49 #define CONFIG(upper,title,lower) ":" #title
50 enum { DIFFLIST(ENUM) DIFFCOUNT };
51 static char const *const map_diffnames[] = { DIFFLIST(TITLE) };
52 static char const map_diffchars[] = DIFFLIST(ENCODE);
53 #define DIFFCONFIG DIFFLIST(CONFIG)
54
55 enum { TE, BE, LE, RE }; /* top/bottom/left/right edges */
56
57 enum {
58 COL_BACKGROUND,
59 COL_GRID,
60 COL_0, COL_1, COL_2, COL_3,
61 COL_ERROR, COL_ERRTEXT,
62 NCOLOURS
63 };
64
65 struct game_params {
66 int w, h, n, diff;
67 };
68
69 struct map {
70 int refcount;
71 int *map;
72 int *graph;
73 int n;
74 int ngraph;
75 int *immutable;
76 int *edgex, *edgey; /* positions of a point on each edge */
77 };
78
79 struct game_state {
80 game_params p;
81 struct map *map;
82 int *colouring;
83 int completed, cheated;
84 };
85
86 static game_params *default_params(void)
87 {
88 game_params *ret = snew(game_params);
89
90 ret->w = 20;
91 ret->h = 15;
92 ret->n = 30;
93 ret->diff = DIFF_NORMAL;
94
95 return ret;
96 }
97
98 static const struct game_params map_presets[] = {
99 {20, 15, 30, DIFF_EASY},
100 {20, 15, 30, DIFF_NORMAL},
101 {30, 25, 75, DIFF_NORMAL},
102 };
103
104 static int game_fetch_preset(int i, char **name, game_params **params)
105 {
106 game_params *ret;
107 char str[80];
108
109 if (i < 0 || i >= lenof(map_presets))
110 return FALSE;
111
112 ret = snew(game_params);
113 *ret = map_presets[i];
114
115 sprintf(str, "%dx%d, %d regions, %s", ret->w, ret->h, ret->n,
116 map_diffnames[ret->diff]);
117
118 *name = dupstr(str);
119 *params = ret;
120 return TRUE;
121 }
122
123 static void free_params(game_params *params)
124 {
125 sfree(params);
126 }
127
128 static game_params *dup_params(game_params *params)
129 {
130 game_params *ret = snew(game_params);
131 *ret = *params; /* structure copy */
132 return ret;
133 }
134
135 static void decode_params(game_params *params, char const *string)
136 {
137 char const *p = string;
138
139 params->w = atoi(p);
140 while (*p && isdigit((unsigned char)*p)) p++;
141 if (*p == 'x') {
142 p++;
143 params->h = atoi(p);
144 while (*p && isdigit((unsigned char)*p)) p++;
145 } else {
146 params->h = params->w;
147 }
148 if (*p == 'n') {
149 p++;
150 params->n = atoi(p);
151 while (*p && (*p == '.' || isdigit((unsigned char)*p))) p++;
152 } else {
153 params->n = params->w * params->h / 8;
154 }
155 if (*p == 'd') {
156 int i;
157 p++;
158 for (i = 0; i < DIFFCOUNT; i++)
159 if (*p == map_diffchars[i])
160 params->diff = i;
161 if (*p) p++;
162 }
163 }
164
165 static char *encode_params(game_params *params, int full)
166 {
167 char ret[400];
168
169 sprintf(ret, "%dx%dn%d", params->w, params->h, params->n);
170 if (full)
171 sprintf(ret + strlen(ret), "d%c", map_diffchars[params->diff]);
172
173 return dupstr(ret);
174 }
175
176 static config_item *game_configure(game_params *params)
177 {
178 config_item *ret;
179 char buf[80];
180
181 ret = snewn(5, config_item);
182
183 ret[0].name = "Width";
184 ret[0].type = C_STRING;
185 sprintf(buf, "%d", params->w);
186 ret[0].sval = dupstr(buf);
187 ret[0].ival = 0;
188
189 ret[1].name = "Height";
190 ret[1].type = C_STRING;
191 sprintf(buf, "%d", params->h);
192 ret[1].sval = dupstr(buf);
193 ret[1].ival = 0;
194
195 ret[2].name = "Regions";
196 ret[2].type = C_STRING;
197 sprintf(buf, "%d", params->n);
198 ret[2].sval = dupstr(buf);
199 ret[2].ival = 0;
200
201 ret[3].name = "Difficulty";
202 ret[3].type = C_CHOICES;
203 ret[3].sval = DIFFCONFIG;
204 ret[3].ival = params->diff;
205
206 ret[4].name = NULL;
207 ret[4].type = C_END;
208 ret[4].sval = NULL;
209 ret[4].ival = 0;
210
211 return ret;
212 }
213
214 static game_params *custom_params(config_item *cfg)
215 {
216 game_params *ret = snew(game_params);
217
218 ret->w = atoi(cfg[0].sval);
219 ret->h = atoi(cfg[1].sval);
220 ret->n = atoi(cfg[2].sval);
221 ret->diff = cfg[3].ival;
222
223 return ret;
224 }
225
226 static char *validate_params(game_params *params, int full)
227 {
228 if (params->w < 2 || params->h < 2)
229 return "Width and height must be at least two";
230 if (params->n < 5)
231 return "Must have at least five regions";
232 if (params->n > params->w * params->h)
233 return "Too many regions to fit in grid";
234 return NULL;
235 }
236
237 /* ----------------------------------------------------------------------
238 * Cumulative frequency table functions.
239 */
240
241 /*
242 * Initialise a cumulative frequency table. (Hardly worth writing
243 * this function; all it does is to initialise everything in the
244 * array to zero.)
245 */
246 static void cf_init(int *table, int n)
247 {
248 int i;
249
250 for (i = 0; i < n; i++)
251 table[i] = 0;
252 }
253
254 /*
255 * Increment the count of symbol `sym' by `count'.
256 */
257 static void cf_add(int *table, int n, int sym, int count)
258 {
259 int bit;
260
261 bit = 1;
262 while (sym != 0) {
263 if (sym & bit) {
264 table[sym] += count;
265 sym &= ~bit;
266 }
267 bit <<= 1;
268 }
269
270 table[0] += count;
271 }
272
273 /*
274 * Cumulative frequency lookup: return the total count of symbols
275 * with value less than `sym'.
276 */
277 static int cf_clookup(int *table, int n, int sym)
278 {
279 int bit, index, limit, count;
280
281 if (sym == 0)
282 return 0;
283
284 assert(0 < sym && sym <= n);
285
286 count = table[0]; /* start with the whole table size */
287
288 bit = 1;
289 while (bit < n)
290 bit <<= 1;
291
292 limit = n;
293
294 while (bit > 0) {
295 /*
296 * Find the least number with its lowest set bit in this
297 * position which is greater than or equal to sym.
298 */
299 index = ((sym + bit - 1) &~ (bit * 2 - 1)) + bit;
300
301 if (index < limit) {
302 count -= table[index];
303 limit = index;
304 }
305
306 bit >>= 1;
307 }
308
309 return count;
310 }
311
312 /*
313 * Single frequency lookup: return the count of symbol `sym'.
314 */
315 static int cf_slookup(int *table, int n, int sym)
316 {
317 int count, bit;
318
319 assert(0 <= sym && sym < n);
320
321 count = table[sym];
322
323 for (bit = 1; sym+bit < n && !(sym & bit); bit <<= 1)
324 count -= table[sym+bit];
325
326 return count;
327 }
328
329 /*
330 * Return the largest symbol index such that the cumulative
331 * frequency up to that symbol is less than _or equal to_ count.
332 */
333 static int cf_whichsym(int *table, int n, int count) {
334 int bit, sym, top;
335
336 assert(count >= 0 && count < table[0]);
337
338 bit = 1;
339 while (bit < n)
340 bit <<= 1;
341
342 sym = 0;
343 top = table[0];
344
345 while (bit > 0) {
346 if (sym+bit < n) {
347 if (count >= top - table[sym+bit])
348 sym += bit;
349 else
350 top -= table[sym+bit];
351 }
352
353 bit >>= 1;
354 }
355
356 return sym;
357 }
358
359 /* ----------------------------------------------------------------------
360 * Map generation.
361 *
362 * FIXME: this isn't entirely optimal at present, because it
363 * inherently prioritises growing the largest region since there
364 * are more squares adjacent to it. This acts as a destabilising
365 * influence leading to a few large regions and mostly small ones.
366 * It might be better to do it some other way.
367 */
368
369 #define WEIGHT_INCREASED 2 /* for increased perimeter */
370 #define WEIGHT_DECREASED 4 /* for decreased perimeter */
371 #define WEIGHT_UNCHANGED 3 /* for unchanged perimeter */
372
373 /*
374 * Look at a square and decide which colours can be extended into
375 * it.
376 *
377 * If called with index < 0, it adds together one of
378 * WEIGHT_INCREASED, WEIGHT_DECREASED or WEIGHT_UNCHANGED for each
379 * colour that has a valid extension (according to the effect that
380 * it would have on the perimeter of the region being extended) and
381 * returns the overall total.
382 *
383 * If called with index >= 0, it returns one of the possible
384 * colours depending on the value of index, in such a way that the
385 * number of possible inputs which would give rise to a given
386 * return value correspond to the weight of that value.
387 */
388 static int extend_options(int w, int h, int n, int *map,
389 int x, int y, int index)
390 {
391 int c, i, dx, dy;
392 int col[8];
393 int total = 0;
394
395 if (map[y*w+x] >= 0) {
396 assert(index < 0);
397 return 0; /* can't do this square at all */
398 }
399
400 /*
401 * Fetch the eight neighbours of this square, in order around
402 * the square.
403 */
404 for (dy = -1; dy <= +1; dy++)
405 for (dx = -1; dx <= +1; dx++) {
406 int index = (dy < 0 ? 6-dx : dy > 0 ? 2+dx : 2*(1+dx));
407 if (x+dx >= 0 && x+dx < w && y+dy >= 0 && y+dy < h)
408 col[index] = map[(y+dy)*w+(x+dx)];
409 else
410 col[index] = -1;
411 }
412
413 /*
414 * Iterate over each colour that might be feasible.
415 *
416 * FIXME: this routine currently has O(n) running time. We
417 * could turn it into O(FOUR) by only bothering to iterate over
418 * the colours mentioned in the four neighbouring squares.
419 */
420
421 for (c = 0; c < n; c++) {
422 int count, neighbours, runs;
423
424 /*
425 * One of the even indices of col (representing the
426 * orthogonal neighbours of this square) must be equal to
427 * c, or else this square is not adjacent to region c and
428 * obviously cannot become an extension of it at this time.
429 */
430 neighbours = 0;
431 for (i = 0; i < 8; i += 2)
432 if (col[i] == c)
433 neighbours++;
434 if (!neighbours)
435 continue;
436
437 /*
438 * Now we know this square is adjacent to region c. The
439 * next question is, would extending it cause the region to
440 * become non-simply-connected? If so, we mustn't do it.
441 *
442 * We determine this by looking around col to see if we can
443 * find more than one separate run of colour c.
444 */
445 runs = 0;
446 for (i = 0; i < 8; i++)
447 if (col[i] == c && col[(i+1) & 7] != c)
448 runs++;
449 if (runs > 1)
450 continue;
451
452 assert(runs == 1);
453
454 /*
455 * This square is a possibility. Determine its effect on
456 * the region's perimeter (computed from the number of
457 * orthogonal neighbours - 1 means a perimeter increase, 3
458 * a decrease, 2 no change; 4 is impossible because the
459 * region would already not be simply connected) and we're
460 * done.
461 */
462 assert(neighbours > 0 && neighbours < 4);
463 count = (neighbours == 1 ? WEIGHT_INCREASED :
464 neighbours == 2 ? WEIGHT_UNCHANGED : WEIGHT_DECREASED);
465
466 total += count;
467 if (index >= 0 && index < count)
468 return c;
469 else
470 index -= count;
471 }
472
473 assert(index < 0);
474
475 return total;
476 }
477
478 static void genmap(int w, int h, int n, int *map, random_state *rs)
479 {
480 int wh = w*h;
481 int x, y, i, k;
482 int *tmp;
483
484 assert(n <= wh);
485 tmp = snewn(wh, int);
486
487 /*
488 * Clear the map, and set up `tmp' as a list of grid indices.
489 */
490 for (i = 0; i < wh; i++) {
491 map[i] = -1;
492 tmp[i] = i;
493 }
494
495 /*
496 * Place the region seeds by selecting n members from `tmp'.
497 */
498 k = wh;
499 for (i = 0; i < n; i++) {
500 int j = random_upto(rs, k);
501 map[tmp[j]] = i;
502 tmp[j] = tmp[--k];
503 }
504
505 /*
506 * Re-initialise `tmp' as a cumulative frequency table. This
507 * will store the number of possible region colours we can
508 * extend into each square.
509 */
510 cf_init(tmp, wh);
511
512 /*
513 * Go through the grid and set up the initial cumulative
514 * frequencies.
515 */
516 for (y = 0; y < h; y++)
517 for (x = 0; x < w; x++)
518 cf_add(tmp, wh, y*w+x,
519 extend_options(w, h, n, map, x, y, -1));
520
521 /*
522 * Now repeatedly choose a square we can extend a region into,
523 * and do so.
524 */
525 while (tmp[0] > 0) {
526 int k = random_upto(rs, tmp[0]);
527 int sq;
528 int colour;
529 int xx, yy;
530
531 sq = cf_whichsym(tmp, wh, k);
532 k -= cf_clookup(tmp, wh, sq);
533 x = sq % w;
534 y = sq / w;
535 colour = extend_options(w, h, n, map, x, y, k);
536
537 map[sq] = colour;
538
539 /*
540 * Re-scan the nine cells around the one we've just
541 * modified.
542 */
543 for (yy = max(y-1, 0); yy < min(y+2, h); yy++)
544 for (xx = max(x-1, 0); xx < min(x+2, w); xx++) {
545 cf_add(tmp, wh, yy*w+xx,
546 -cf_slookup(tmp, wh, yy*w+xx) +
547 extend_options(w, h, n, map, xx, yy, -1));
548 }
549 }
550
551 /*
552 * Finally, go through and normalise the region labels into
553 * order, meaning that indistinguishable maps are actually
554 * identical.
555 */
556 for (i = 0; i < n; i++)
557 tmp[i] = -1;
558 k = 0;
559 for (i = 0; i < wh; i++) {
560 assert(map[i] >= 0);
561 if (tmp[map[i]] < 0)
562 tmp[map[i]] = k++;
563 map[i] = tmp[map[i]];
564 }
565
566 sfree(tmp);
567 }
568
569 /* ----------------------------------------------------------------------
570 * Functions to handle graphs.
571 */
572
573 /*
574 * Having got a map in a square grid, convert it into a graph
575 * representation.
576 */
577 static int gengraph(int w, int h, int n, int *map, int *graph)
578 {
579 int i, j, x, y;
580
581 /*
582 * Start by setting the graph up as an adjacency matrix. We'll
583 * turn it into a list later.
584 */
585 for (i = 0; i < n*n; i++)
586 graph[i] = 0;
587
588 /*
589 * Iterate over the map looking for all adjacencies.
590 */
591 for (y = 0; y < h; y++)
592 for (x = 0; x < w; x++) {
593 int v, vx, vy;
594 v = map[y*w+x];
595 if (x+1 < w && (vx = map[y*w+(x+1)]) != v)
596 graph[v*n+vx] = graph[vx*n+v] = 1;
597 if (y+1 < h && (vy = map[(y+1)*w+x]) != v)
598 graph[v*n+vy] = graph[vy*n+v] = 1;
599 }
600
601 /*
602 * Turn the matrix into a list.
603 */
604 for (i = j = 0; i < n*n; i++)
605 if (graph[i])
606 graph[j++] = i;
607
608 return j;
609 }
610
611 static int graph_edge_index(int *graph, int n, int ngraph, int i, int j)
612 {
613 int v = i*n+j;
614 int top, bot, mid;
615
616 bot = -1;
617 top = ngraph;
618 while (top - bot > 1) {
619 mid = (top + bot) / 2;
620 if (graph[mid] == v)
621 return mid;
622 else if (graph[mid] < v)
623 bot = mid;
624 else
625 top = mid;
626 }
627 return -1;
628 }
629
630 #define graph_adjacent(graph, n, ngraph, i, j) \
631 (graph_edge_index((graph), (n), (ngraph), (i), (j)) >= 0)
632
633 static int graph_vertex_start(int *graph, int n, int ngraph, int i)
634 {
635 int v = i*n;
636 int top, bot, mid;
637
638 bot = -1;
639 top = ngraph;
640 while (top - bot > 1) {
641 mid = (top + bot) / 2;
642 if (graph[mid] < v)
643 bot = mid;
644 else
645 top = mid;
646 }
647 return top;
648 }
649
650 /* ----------------------------------------------------------------------
651 * Generate a four-colouring of a graph.
652 *
653 * FIXME: it would be nice if we could convert this recursion into
654 * pseudo-recursion using some sort of explicit stack array, for
655 * the sake of the Palm port and its limited stack.
656 */
657
658 static int fourcolour_recurse(int *graph, int n, int ngraph,
659 int *colouring, int *scratch, random_state *rs)
660 {
661 int nfree, nvert, start, i, j, k, c, ci;
662 int cs[FOUR];
663
664 /*
665 * Find the smallest number of free colours in any uncoloured
666 * vertex, and count the number of such vertices.
667 */
668
669 nfree = FIVE; /* start off bigger than FOUR! */
670 nvert = 0;
671 for (i = 0; i < n; i++)
672 if (colouring[i] < 0 && scratch[i*FIVE+FOUR] <= nfree) {
673 if (nfree > scratch[i*FIVE+FOUR]) {
674 nfree = scratch[i*FIVE+FOUR];
675 nvert = 0;
676 }
677 nvert++;
678 }
679
680 /*
681 * If there aren't any uncoloured vertices at all, we're done.
682 */
683 if (nvert == 0)
684 return TRUE; /* we've got a colouring! */
685
686 /*
687 * Pick a random vertex in that set.
688 */
689 j = random_upto(rs, nvert);
690 for (i = 0; i < n; i++)
691 if (colouring[i] < 0 && scratch[i*FIVE+FOUR] == nfree)
692 if (j-- == 0)
693 break;
694 assert(i < n);
695 start = graph_vertex_start(graph, n, ngraph, i);
696
697 /*
698 * Loop over the possible colours for i, and recurse for each
699 * one.
700 */
701 ci = 0;
702 for (c = 0; c < FOUR; c++)
703 if (scratch[i*FIVE+c] == 0)
704 cs[ci++] = c;
705 shuffle(cs, ci, sizeof(*cs), rs);
706
707 while (ci-- > 0) {
708 c = cs[ci];
709
710 /*
711 * Fill in this colour.
712 */
713 colouring[i] = c;
714
715 /*
716 * Update the scratch space to reflect a new neighbour
717 * of this colour for each neighbour of vertex i.
718 */
719 for (j = start; j < ngraph && graph[j] < n*(i+1); j++) {
720 k = graph[j] - i*n;
721 if (scratch[k*FIVE+c] == 0)
722 scratch[k*FIVE+FOUR]--;
723 scratch[k*FIVE+c]++;
724 }
725
726 /*
727 * Recurse.
728 */
729 if (fourcolour_recurse(graph, n, ngraph, colouring, scratch, rs))
730 return TRUE; /* got one! */
731
732 /*
733 * If that didn't work, clean up and try again with a
734 * different colour.
735 */
736 for (j = start; j < ngraph && graph[j] < n*(i+1); j++) {
737 k = graph[j] - i*n;
738 scratch[k*FIVE+c]--;
739 if (scratch[k*FIVE+c] == 0)
740 scratch[k*FIVE+FOUR]++;
741 }
742 colouring[i] = -1;
743 }
744
745 /*
746 * If we reach here, we were unable to find a colouring at all.
747 * (This doesn't necessarily mean the Four Colour Theorem is
748 * violated; it might just mean we've gone down a dead end and
749 * need to back up and look somewhere else. It's only an FCT
750 * violation if we get all the way back up to the top level and
751 * still fail.)
752 */
753 return FALSE;
754 }
755
756 static void fourcolour(int *graph, int n, int ngraph, int *colouring,
757 random_state *rs)
758 {
759 int *scratch;
760 int i;
761
762 /*
763 * For each vertex and each colour, we store the number of
764 * neighbours that have that colour. Also, we store the number
765 * of free colours for the vertex.
766 */
767 scratch = snewn(n * FIVE, int);
768 for (i = 0; i < n * FIVE; i++)
769 scratch[i] = (i % FIVE == FOUR ? FOUR : 0);
770
771 /*
772 * Clear the colouring to start with.
773 */
774 for (i = 0; i < n; i++)
775 colouring[i] = -1;
776
777 i = fourcolour_recurse(graph, n, ngraph, colouring, scratch, rs);
778 assert(i); /* by the Four Colour Theorem :-) */
779
780 sfree(scratch);
781 }
782
783 /* ----------------------------------------------------------------------
784 * Non-recursive solver.
785 */
786
787 struct solver_scratch {
788 unsigned char *possible; /* bitmap of colours for each region */
789 int *graph;
790 int n;
791 int ngraph;
792 };
793
794 static struct solver_scratch *new_scratch(int *graph, int n, int ngraph)
795 {
796 struct solver_scratch *sc;
797
798 sc = snew(struct solver_scratch);
799 sc->graph = graph;
800 sc->n = n;
801 sc->ngraph = ngraph;
802 sc->possible = snewn(n, unsigned char);
803
804 return sc;
805 }
806
807 static void free_scratch(struct solver_scratch *sc)
808 {
809 sfree(sc->possible);
810 sfree(sc);
811 }
812
813 static int place_colour(struct solver_scratch *sc,
814 int *colouring, int index, int colour)
815 {
816 int *graph = sc->graph, n = sc->n, ngraph = sc->ngraph;
817 int j, k;
818
819 if (!(sc->possible[index] & (1 << colour)))
820 return FALSE; /* can't do it */
821
822 sc->possible[index] = 1 << colour;
823 colouring[index] = colour;
824
825 /*
826 * Rule out this colour from all the region's neighbours.
827 */
828 for (j = graph_vertex_start(graph, n, ngraph, index);
829 j < ngraph && graph[j] < n*(index+1); j++) {
830 k = graph[j] - index*n;
831 sc->possible[k] &= ~(1 << colour);
832 }
833
834 return TRUE;
835 }
836
837 /*
838 * Returns 0 for impossible, 1 for success, 2 for failure to
839 * converge (i.e. puzzle is either ambiguous or just too
840 * difficult).
841 */
842 static int map_solver(struct solver_scratch *sc,
843 int *graph, int n, int ngraph, int *colouring,
844 int difficulty)
845 {
846 int i;
847
848 /*
849 * Initialise scratch space.
850 */
851 for (i = 0; i < n; i++)
852 sc->possible[i] = (1 << FOUR) - 1;
853
854 /*
855 * Place clues.
856 */
857 for (i = 0; i < n; i++)
858 if (colouring[i] >= 0) {
859 if (!place_colour(sc, colouring, i, colouring[i]))
860 return 0; /* the clues aren't even consistent! */
861 }
862
863 /*
864 * Now repeatedly loop until we find nothing further to do.
865 */
866 while (1) {
867 int done_something = FALSE;
868
869 if (difficulty < DIFF_EASY)
870 break; /* can't do anything at all! */
871
872 /*
873 * Simplest possible deduction: find a region with only one
874 * possible colour.
875 */
876 for (i = 0; i < n; i++) if (colouring[i] < 0) {
877 int p = sc->possible[i];
878
879 if (p == 0)
880 return 0; /* puzzle is inconsistent */
881
882 if ((p & (p-1)) == 0) { /* p is a power of two */
883 int c;
884 for (c = 0; c < FOUR; c++)
885 if (p == (1 << c))
886 break;
887 assert(c < FOUR);
888 if (!place_colour(sc, colouring, i, c))
889 return 0; /* found puzzle to be inconsistent */
890 done_something = TRUE;
891 }
892 }
893
894 if (done_something)
895 continue;
896
897 if (difficulty < DIFF_NORMAL)
898 break; /* can't do anything harder */
899
900 /*
901 * Failing that, go up one level. Look for pairs of regions
902 * which (a) both have the same pair of possible colours,
903 * (b) are adjacent to one another, (c) are adjacent to the
904 * same region, and (d) that region still thinks it has one
905 * or both of those possible colours.
906 *
907 * Simplest way to do this is by going through the graph
908 * edge by edge, so that we start with property (b) and
909 * then look for (a) and finally (c) and (d).
910 */
911 for (i = 0; i < ngraph; i++) {
912 int j1 = graph[i] / n, j2 = graph[i] % n;
913 int j, k, v, v2;
914
915 if (j1 > j2)
916 continue; /* done it already, other way round */
917
918 if (colouring[j1] >= 0 || colouring[j2] >= 0)
919 continue; /* they're not undecided */
920
921 if (sc->possible[j1] != sc->possible[j2])
922 continue; /* they don't have the same possibles */
923
924 v = sc->possible[j1];
925 /*
926 * See if v contains exactly two set bits.
927 */
928 v2 = v & -v; /* find lowest set bit */
929 v2 = v & ~v2; /* clear it */
930 if (v2 == 0 || (v2 & (v2-1)) != 0) /* not power of 2 */
931 continue;
932
933 /*
934 * We've found regions j1 and j2 satisfying properties
935 * (a) and (b): they have two possible colours between
936 * them, and since they're adjacent to one another they
937 * must use _both_ those colours between them.
938 * Therefore, if they are both adjacent to any other
939 * region then that region cannot be either colour.
940 *
941 * Go through the neighbours of j1 and see if any are
942 * shared with j2.
943 */
944 for (j = graph_vertex_start(graph, n, ngraph, j1);
945 j < ngraph && graph[j] < n*(j1+1); j++) {
946 k = graph[j] - j1*n;
947 if (graph_adjacent(graph, n, ngraph, k, j2) &&
948 (sc->possible[k] & v)) {
949 sc->possible[k] &= ~v;
950 done_something = TRUE;
951 }
952 }
953 }
954
955 if (!done_something)
956 break;
957 }
958
959 /*
960 * We've run out of things to deduce. See if we've got the lot.
961 */
962 for (i = 0; i < n; i++)
963 if (colouring[i] < 0)
964 return 2;
965
966 return 1; /* success! */
967 }
968
969 /* ----------------------------------------------------------------------
970 * Game generation main function.
971 */
972
973 static char *new_game_desc(game_params *params, random_state *rs,
974 char **aux, int interactive)
975 {
976 struct solver_scratch *sc = NULL;
977 int *map, *graph, ngraph, *colouring, *colouring2, *regions;
978 int i, j, w, h, n, solveret, cfreq[FOUR];
979 int wh;
980 int mindiff, tries;
981 #ifdef GENERATION_DIAGNOSTICS
982 int x, y;
983 #endif
984 char *ret, buf[80];
985 int retlen, retsize;
986
987 w = params->w;
988 h = params->h;
989 n = params->n;
990 wh = w*h;
991
992 *aux = NULL;
993
994 map = snewn(wh, int);
995 graph = snewn(n*n, int);
996 colouring = snewn(n, int);
997 colouring2 = snewn(n, int);
998 regions = snewn(n, int);
999
1000 /*
1001 * This is the minimum difficulty below which we'll completely
1002 * reject a map design. Normally we set this to one below the
1003 * requested difficulty, ensuring that we have the right
1004 * result. However, for particularly dense maps or maps with
1005 * particularly few regions it might not be possible to get the
1006 * desired difficulty, so we will eventually drop this down to
1007 * -1 to indicate that any old map will do.
1008 */
1009 mindiff = params->diff;
1010 tries = 50;
1011
1012 while (1) {
1013
1014 /*
1015 * Create the map.
1016 */
1017 genmap(w, h, n, map, rs);
1018
1019 #ifdef GENERATION_DIAGNOSTICS
1020 for (y = 0; y < h; y++) {
1021 for (x = 0; x < w; x++) {
1022 int v = map[y*w+x];
1023 if (v >= 62)
1024 putchar('!');
1025 else if (v >= 36)
1026 putchar('a' + v-36);
1027 else if (v >= 10)
1028 putchar('A' + v-10);
1029 else
1030 putchar('0' + v);
1031 }
1032 putchar('\n');
1033 }
1034 #endif
1035
1036 /*
1037 * Convert the map into a graph.
1038 */
1039 ngraph = gengraph(w, h, n, map, graph);
1040
1041 #ifdef GENERATION_DIAGNOSTICS
1042 for (i = 0; i < ngraph; i++)
1043 printf("%d-%d\n", graph[i]/n, graph[i]%n);
1044 #endif
1045
1046 /*
1047 * Colour the map.
1048 */
1049 fourcolour(graph, n, ngraph, colouring, rs);
1050
1051 #ifdef GENERATION_DIAGNOSTICS
1052 for (i = 0; i < n; i++)
1053 printf("%d: %d\n", i, colouring[i]);
1054
1055 for (y = 0; y < h; y++) {
1056 for (x = 0; x < w; x++) {
1057 int v = colouring[map[y*w+x]];
1058 if (v >= 36)
1059 putchar('a' + v-36);
1060 else if (v >= 10)
1061 putchar('A' + v-10);
1062 else
1063 putchar('0' + v);
1064 }
1065 putchar('\n');
1066 }
1067 #endif
1068
1069 /*
1070 * Encode the solution as an aux string.
1071 */
1072 if (*aux) /* in case we've come round again */
1073 sfree(*aux);
1074 retlen = retsize = 0;
1075 ret = NULL;
1076 for (i = 0; i < n; i++) {
1077 int len;
1078
1079 if (colouring[i] < 0)
1080 continue;
1081
1082 len = sprintf(buf, "%s%d:%d", i ? ";" : "S;", colouring[i], i);
1083 if (retlen + len >= retsize) {
1084 retsize = retlen + len + 256;
1085 ret = sresize(ret, retsize, char);
1086 }
1087 strcpy(ret + retlen, buf);
1088 retlen += len;
1089 }
1090 *aux = ret;
1091
1092 /*
1093 * Remove the region colours one by one, keeping
1094 * solubility. Also ensure that there always remains at
1095 * least one region of every colour, so that the user can
1096 * drag from somewhere.
1097 */
1098 for (i = 0; i < FOUR; i++)
1099 cfreq[i] = 0;
1100 for (i = 0; i < n; i++) {
1101 regions[i] = i;
1102 cfreq[colouring[i]]++;
1103 }
1104 for (i = 0; i < FOUR; i++)
1105 if (cfreq[i] == 0)
1106 continue;
1107
1108 shuffle(regions, n, sizeof(*regions), rs);
1109
1110 if (sc) free_scratch(sc);
1111 sc = new_scratch(graph, n, ngraph);
1112
1113 for (i = 0; i < n; i++) {
1114 j = regions[i];
1115
1116 if (cfreq[colouring[j]] == 1)
1117 continue; /* can't remove last region of colour */
1118
1119 memcpy(colouring2, colouring, n*sizeof(int));
1120 colouring2[j] = -1;
1121 solveret = map_solver(sc, graph, n, ngraph, colouring2,
1122 params->diff);
1123 assert(solveret >= 0); /* mustn't be impossible! */
1124 if (solveret == 1) {
1125 cfreq[colouring[j]]--;
1126 colouring[j] = -1;
1127 }
1128 }
1129
1130 #ifdef GENERATION_DIAGNOSTICS
1131 for (i = 0; i < n; i++)
1132 if (colouring[i] >= 0) {
1133 if (i >= 62)
1134 putchar('!');
1135 else if (i >= 36)
1136 putchar('a' + i-36);
1137 else if (i >= 10)
1138 putchar('A' + i-10);
1139 else
1140 putchar('0' + i);
1141 printf(": %d\n", colouring[i]);
1142 }
1143 #endif
1144
1145 /*
1146 * Finally, check that the puzzle is _at least_ as hard as
1147 * required, and indeed that it isn't already solved.
1148 * (Calling map_solver with negative difficulty ensures the
1149 * latter - if a solver which _does nothing_ can't solve
1150 * it, it's too easy!)
1151 */
1152 memcpy(colouring2, colouring, n*sizeof(int));
1153 if (map_solver(sc, graph, n, ngraph, colouring2,
1154 mindiff - 1) == 1) {
1155 /*
1156 * Drop minimum difficulty if necessary.
1157 */
1158 if (mindiff > 0 && (n < 9 || n > 3*wh/2)) {
1159 if (tries-- <= 0)
1160 mindiff = 0; /* give up and go for Easy */
1161 }
1162 continue;
1163 }
1164
1165 break;
1166 }
1167
1168 /*
1169 * Encode as a game ID. We do this by:
1170 *
1171 * - first going along the horizontal edges row by row, and
1172 * then the vertical edges column by column
1173 * - encoding the lengths of runs of edges and runs of
1174 * non-edges
1175 * - the decoder will reconstitute the region boundaries from
1176 * this and automatically number them the same way we did
1177 * - then we encode the initial region colours in a Slant-like
1178 * fashion (digits 0-3 interspersed with letters giving
1179 * lengths of runs of empty spaces).
1180 */
1181 retlen = retsize = 0;
1182 ret = NULL;
1183
1184 {
1185 int run, pv;
1186
1187 /*
1188 * Start with a notional non-edge, so that there'll be an
1189 * explicit `a' to distinguish the case where we start with
1190 * an edge.
1191 */
1192 run = 1;
1193 pv = 0;
1194
1195 for (i = 0; i < w*(h-1) + (w-1)*h; i++) {
1196 int x, y, dx, dy, v;
1197
1198 if (i < w*(h-1)) {
1199 /* Horizontal edge. */
1200 y = i / w;
1201 x = i % w;
1202 dx = 0;
1203 dy = 1;
1204 } else {
1205 /* Vertical edge. */
1206 x = (i - w*(h-1)) / h;
1207 y = (i - w*(h-1)) % h;
1208 dx = 1;
1209 dy = 0;
1210 }
1211
1212 if (retlen + 10 >= retsize) {
1213 retsize = retlen + 256;
1214 ret = sresize(ret, retsize, char);
1215 }
1216
1217 v = (map[y*w+x] != map[(y+dy)*w+(x+dx)]);
1218
1219 if (pv != v) {
1220 ret[retlen++] = 'a'-1 + run;
1221 run = 1;
1222 pv = v;
1223 } else {
1224 /*
1225 * 'z' is a special case in this encoding. Rather
1226 * than meaning a run of 26 and a state switch, it
1227 * means a run of 25 and _no_ state switch, because
1228 * otherwise there'd be no way to encode runs of
1229 * more than 26.
1230 */
1231 if (run == 25) {
1232 ret[retlen++] = 'z';
1233 run = 0;
1234 }
1235 run++;
1236 }
1237 }
1238
1239 ret[retlen++] = 'a'-1 + run;
1240 ret[retlen++] = ',';
1241
1242 run = 0;
1243 for (i = 0; i < n; i++) {
1244 if (retlen + 10 >= retsize) {
1245 retsize = retlen + 256;
1246 ret = sresize(ret, retsize, char);
1247 }
1248
1249 if (colouring[i] < 0) {
1250 /*
1251 * In _this_ encoding, 'z' is a run of 26, since
1252 * there's no implicit state switch after each run.
1253 * Confusingly different, but more compact.
1254 */
1255 if (run == 26) {
1256 ret[retlen++] = 'z';
1257 run = 0;
1258 }
1259 run++;
1260 } else {
1261 if (run > 0)
1262 ret[retlen++] = 'a'-1 + run;
1263 ret[retlen++] = '0' + colouring[i];
1264 run = 0;
1265 }
1266 }
1267 if (run > 0)
1268 ret[retlen++] = 'a'-1 + run;
1269 ret[retlen] = '\0';
1270
1271 assert(retlen < retsize);
1272 }
1273
1274 free_scratch(sc);
1275 sfree(regions);
1276 sfree(colouring2);
1277 sfree(colouring);
1278 sfree(graph);
1279 sfree(map);
1280
1281 return ret;
1282 }
1283
1284 static char *parse_edge_list(game_params *params, char **desc, int *map)
1285 {
1286 int w = params->w, h = params->h, wh = w*h, n = params->n;
1287 int i, k, pos, state;
1288 char *p = *desc;
1289
1290 for (i = 0; i < wh; i++)
1291 map[wh+i] = i;
1292
1293 pos = -1;
1294 state = 0;
1295
1296 /*
1297 * Parse the game description to get the list of edges, and
1298 * build up a disjoint set forest as we go (by identifying
1299 * pairs of squares whenever the edge list shows a non-edge).
1300 */
1301 while (*p && *p != ',') {
1302 if (*p < 'a' || *p > 'z')
1303 return "Unexpected character in edge list";
1304 if (*p == 'z')
1305 k = 25;
1306 else
1307 k = *p - 'a' + 1;
1308 while (k-- > 0) {
1309 int x, y, dx, dy;
1310
1311 if (pos < 0) {
1312 pos++;
1313 continue;
1314 } else if (pos < w*(h-1)) {
1315 /* Horizontal edge. */
1316 y = pos / w;
1317 x = pos % w;
1318 dx = 0;
1319 dy = 1;
1320 } else if (pos < 2*wh-w-h) {
1321 /* Vertical edge. */
1322 x = (pos - w*(h-1)) / h;
1323 y = (pos - w*(h-1)) % h;
1324 dx = 1;
1325 dy = 0;
1326 } else
1327 return "Too much data in edge list";
1328 if (!state)
1329 dsf_merge(map+wh, y*w+x, (y+dy)*w+(x+dx));
1330
1331 pos++;
1332 }
1333 if (*p != 'z')
1334 state = !state;
1335 p++;
1336 }
1337 assert(pos <= 2*wh-w-h);
1338 if (pos < 2*wh-w-h)
1339 return "Too little data in edge list";
1340
1341 /*
1342 * Now go through again and allocate region numbers.
1343 */
1344 pos = 0;
1345 for (i = 0; i < wh; i++)
1346 map[i] = -1;
1347 for (i = 0; i < wh; i++) {
1348 k = dsf_canonify(map+wh, i);
1349 if (map[k] < 0)
1350 map[k] = pos++;
1351 map[i] = map[k];
1352 }
1353 if (pos != n)
1354 return "Edge list defines the wrong number of regions";
1355
1356 *desc = p;
1357
1358 return NULL;
1359 }
1360
1361 static char *validate_desc(game_params *params, char *desc)
1362 {
1363 int w = params->w, h = params->h, wh = w*h, n = params->n;
1364 int area;
1365 int *map;
1366 char *ret;
1367
1368 map = snewn(2*wh, int);
1369 ret = parse_edge_list(params, &desc, map);
1370 if (ret)
1371 return ret;
1372 sfree(map);
1373
1374 if (*desc != ',')
1375 return "Expected comma before clue list";
1376 desc++; /* eat comma */
1377
1378 area = 0;
1379 while (*desc) {
1380 if (*desc >= '0' && *desc < '0'+FOUR)
1381 area++;
1382 else if (*desc >= 'a' && *desc <= 'z')
1383 area += *desc - 'a' + 1;
1384 else
1385 return "Unexpected character in clue list";
1386 desc++;
1387 }
1388 if (area < n)
1389 return "Too little data in clue list";
1390 else if (area > n)
1391 return "Too much data in clue list";
1392
1393 return NULL;
1394 }
1395
1396 static game_state *new_game(midend *me, game_params *params, char *desc)
1397 {
1398 int w = params->w, h = params->h, wh = w*h, n = params->n;
1399 int i, pos;
1400 char *p;
1401 game_state *state = snew(game_state);
1402
1403 state->p = *params;
1404 state->colouring = snewn(n, int);
1405 for (i = 0; i < n; i++)
1406 state->colouring[i] = -1;
1407
1408 state->completed = state->cheated = FALSE;
1409
1410 state->map = snew(struct map);
1411 state->map->refcount = 1;
1412 state->map->map = snewn(wh*4, int);
1413 state->map->graph = snewn(n*n, int);
1414 state->map->n = n;
1415 state->map->immutable = snewn(n, int);
1416 for (i = 0; i < n; i++)
1417 state->map->immutable[i] = FALSE;
1418
1419 p = desc;
1420
1421 {
1422 char *ret;
1423 ret = parse_edge_list(params, &p, state->map->map);
1424 assert(!ret);
1425 }
1426
1427 /*
1428 * Set up the other three quadrants in `map'.
1429 */
1430 for (i = wh; i < 4*wh; i++)
1431 state->map->map[i] = state->map->map[i % wh];
1432
1433 assert(*p == ',');
1434 p++;
1435
1436 /*
1437 * Now process the clue list.
1438 */
1439 pos = 0;
1440 while (*p) {
1441 if (*p >= '0' && *p < '0'+FOUR) {
1442 state->colouring[pos] = *p - '0';
1443 state->map->immutable[pos] = TRUE;
1444 pos++;
1445 } else {
1446 assert(*p >= 'a' && *p <= 'z');
1447 pos += *p - 'a' + 1;
1448 }
1449 p++;
1450 }
1451 assert(pos == n);
1452
1453 state->map->ngraph = gengraph(w, h, n, state->map->map, state->map->graph);
1454
1455 /*
1456 * Attempt to smooth out some of the more jagged region
1457 * outlines by the judicious use of diagonally divided squares.
1458 */
1459 {
1460 random_state *rs = random_init(desc, strlen(desc));
1461 int *squares = snewn(wh, int);
1462 int done_something;
1463
1464 for (i = 0; i < wh; i++)
1465 squares[i] = i;
1466 shuffle(squares, wh, sizeof(*squares), rs);
1467
1468 do {
1469 done_something = FALSE;
1470 for (i = 0; i < wh; i++) {
1471 int y = squares[i] / w, x = squares[i] % w;
1472 int c = state->map->map[y*w+x];
1473 int tc, bc, lc, rc;
1474
1475 if (x == 0 || x == w-1 || y == 0 || y == h-1)
1476 continue;
1477
1478 if (state->map->map[TE * wh + y*w+x] !=
1479 state->map->map[BE * wh + y*w+x])
1480 continue;
1481
1482 tc = state->map->map[BE * wh + (y-1)*w+x];
1483 bc = state->map->map[TE * wh + (y+1)*w+x];
1484 lc = state->map->map[RE * wh + y*w+(x-1)];
1485 rc = state->map->map[LE * wh + y*w+(x+1)];
1486
1487 /*
1488 * If this square is adjacent on two sides to one
1489 * region and on the other two sides to the other
1490 * region, and is itself one of the two regions, we can
1491 * adjust it so that it's a diagonal.
1492 */
1493 if (tc != bc && (tc == c || bc == c)) {
1494 if ((lc == tc && rc == bc) ||
1495 (lc == bc && rc == tc)) {
1496 state->map->map[TE * wh + y*w+x] = tc;
1497 state->map->map[BE * wh + y*w+x] = bc;
1498 state->map->map[LE * wh + y*w+x] = lc;
1499 state->map->map[RE * wh + y*w+x] = rc;
1500 done_something = TRUE;
1501 }
1502 }
1503 }
1504 } while (done_something);
1505 sfree(squares);
1506 random_free(rs);
1507 }
1508
1509 /*
1510 * Analyse the map to find a canonical line segment
1511 * corresponding to each edge. These are where we'll eventually
1512 * put error markers.
1513 */
1514 {
1515 int *bestx, *besty, *an, pass;
1516 float *ax, *ay, *best;
1517
1518 ax = snewn(state->map->ngraph, float);
1519 ay = snewn(state->map->ngraph, float);
1520 an = snewn(state->map->ngraph, int);
1521 bestx = snewn(state->map->ngraph, int);
1522 besty = snewn(state->map->ngraph, int);
1523 best = snewn(state->map->ngraph, float);
1524
1525 for (i = 0; i < state->map->ngraph; i++) {
1526 bestx[i] = besty[i] = -1;
1527 best[i] = 2*(w+h)+1;
1528 ax[i] = ay[i] = 0.0F;
1529 an[i] = 0;
1530 }
1531
1532 /*
1533 * We make two passes over the map, finding all the line
1534 * segments separating regions. In the first pass, we
1535 * compute the _average_ x and y coordinate of all the line
1536 * segments separating each pair of regions; in the second
1537 * pass, for each such average point, we find the line
1538 * segment closest to it and call that canonical.
1539 *
1540 * Line segments are considered to have coordinates in
1541 * their centre. Thus, at least one coordinate for any line
1542 * segment is always something-and-a-half; so we store our
1543 * coordinates as twice their normal value.
1544 */
1545 for (pass = 0; pass < 2; pass++) {
1546 int x, y;
1547
1548 for (y = 0; y < h; y++)
1549 for (x = 0; x < w; x++) {
1550 int ex[3], ey[3], ea[3], eb[3], en = 0;
1551
1552 /*
1553 * Look for an edge to the right of this
1554 * square, an edge below it, and an edge in the
1555 * middle of it.
1556 */
1557 if (x+1 < w) {
1558 /* right edge */
1559 ea[en] = state->map->map[RE * wh + y*w+x];
1560 eb[en] = state->map->map[LE * wh + y*w+(x+1)];
1561 if (ea[en] != eb[en]) {
1562 ex[en] = (x+1)*2;
1563 ey[en] = y*2+1;
1564 en++;
1565 }
1566 }
1567 if (y+1 < h) {
1568 /* bottom edge */
1569 ea[en] = state->map->map[BE * wh + y*w+x];
1570 eb[en] = state->map->map[TE * wh + (y+1)*w+x];
1571 if (ea[en] != eb[en]) {
1572 ex[en] = x*2+1;
1573 ey[en] = (y+1)*2;
1574 en++;
1575 }
1576 }
1577 /* diagonal edge */
1578 ea[en] = state->map->map[TE * wh + y*w+x];
1579 eb[en] = state->map->map[BE * wh + y*w+x];
1580 if (ea[en] != eb[en]) {
1581 ex[en] = x*2+1;
1582 ey[en] = y*2+1;
1583 en++;
1584 }
1585
1586 /*
1587 * Now process the edges we've found, one by
1588 * one.
1589 */
1590 for (i = 0; i < en; i++) {
1591 int emin = min(ea[i], eb[i]);
1592 int emax = max(ea[i], eb[i]);
1593 int gindex =
1594 graph_edge_index(state->map->graph, n,
1595 state->map->ngraph, emin, emax);
1596
1597 assert(gindex >= 0);
1598
1599 if (pass == 0) {
1600 /*
1601 * In pass 0, accumulate the values
1602 * we'll use to compute the average
1603 * positions.
1604 */
1605 ax[gindex] += ex[i];
1606 ay[gindex] += ey[i];
1607 an[gindex] += 1.0F;
1608 } else {
1609 /*
1610 * In pass 1, work out whether this
1611 * point is closer to the average than
1612 * the last one we've seen.
1613 */
1614 float dx, dy, d;
1615
1616 assert(an[gindex] > 0);
1617 dx = ex[i] - ax[gindex];
1618 dy = ey[i] - ay[gindex];
1619 d = sqrt(dx*dx + dy*dy);
1620 if (d < best[gindex]) {
1621 best[gindex] = d;
1622 bestx[gindex] = ex[i];
1623 besty[gindex] = ey[i];
1624 }
1625 }
1626 }
1627 }
1628
1629 if (pass == 0) {
1630 for (i = 0; i < state->map->ngraph; i++)
1631 if (an[i] > 0) {
1632 ax[i] /= an[i];
1633 ay[i] /= an[i];
1634 }
1635 }
1636 }
1637
1638 state->map->edgex = bestx;
1639 state->map->edgey = besty;
1640
1641 for (i = 0; i < state->map->ngraph; i++)
1642 if (state->map->edgex[i] < 0) {
1643 /* Find the other representation of this edge. */
1644 int e = state->map->graph[i];
1645 int iprime = graph_edge_index(state->map->graph, n,
1646 state->map->ngraph, e%n, e/n);
1647 assert(state->map->edgex[iprime] >= 0);
1648 state->map->edgex[i] = state->map->edgex[iprime];
1649 state->map->edgey[i] = state->map->edgey[iprime];
1650 }
1651
1652 sfree(ax);
1653 sfree(ay);
1654 sfree(an);
1655 sfree(best);
1656 }
1657
1658 return state;
1659 }
1660
1661 static game_state *dup_game(game_state *state)
1662 {
1663 game_state *ret = snew(game_state);
1664
1665 ret->p = state->p;
1666 ret->colouring = snewn(state->p.n, int);
1667 memcpy(ret->colouring, state->colouring, state->p.n * sizeof(int));
1668 ret->map = state->map;
1669 ret->map->refcount++;
1670 ret->completed = state->completed;
1671 ret->cheated = state->cheated;
1672
1673 return ret;
1674 }
1675
1676 static void free_game(game_state *state)
1677 {
1678 if (--state->map->refcount <= 0) {
1679 sfree(state->map->map);
1680 sfree(state->map->graph);
1681 sfree(state->map->immutable);
1682 sfree(state->map->edgex);
1683 sfree(state->map->edgey);
1684 sfree(state->map);
1685 }
1686 sfree(state->colouring);
1687 sfree(state);
1688 }
1689
1690 static char *solve_game(game_state *state, game_state *currstate,
1691 char *aux, char **error)
1692 {
1693 if (!aux) {
1694 /*
1695 * Use the solver.
1696 */
1697 int *colouring;
1698 struct solver_scratch *sc;
1699 int sret;
1700 int i;
1701 char *ret, buf[80];
1702 int retlen, retsize;
1703
1704 colouring = snewn(state->map->n, int);
1705 memcpy(colouring, state->colouring, state->map->n * sizeof(int));
1706
1707 sc = new_scratch(state->map->graph, state->map->n, state->map->ngraph);
1708 sret = map_solver(sc, state->map->graph, state->map->n,
1709 state->map->ngraph, colouring, DIFFCOUNT-1);
1710 free_scratch(sc);
1711
1712 if (sret != 1) {
1713 sfree(colouring);
1714 if (sret == 0)
1715 *error = "Puzzle is inconsistent";
1716 else
1717 *error = "Unable to find a unique solution for this puzzle";
1718 return NULL;
1719 }
1720
1721 retsize = 64;
1722 ret = snewn(retsize, char);
1723 strcpy(ret, "S");
1724 retlen = 1;
1725
1726 for (i = 0; i < state->map->n; i++) {
1727 int len;
1728
1729 assert(colouring[i] >= 0);
1730 if (colouring[i] == currstate->colouring[i])
1731 continue;
1732 assert(!state->map->immutable[i]);
1733
1734 len = sprintf(buf, ";%d:%d", colouring[i], i);
1735 if (retlen + len >= retsize) {
1736 retsize = retlen + len + 256;
1737 ret = sresize(ret, retsize, char);
1738 }
1739 strcpy(ret + retlen, buf);
1740 retlen += len;
1741 }
1742
1743 sfree(colouring);
1744
1745 return ret;
1746 }
1747 return dupstr(aux);
1748 }
1749
1750 static char *game_text_format(game_state *state)
1751 {
1752 return NULL;
1753 }
1754
1755 struct game_ui {
1756 int drag_colour; /* -1 means no drag active */
1757 int dragx, dragy;
1758 };
1759
1760 static game_ui *new_ui(game_state *state)
1761 {
1762 game_ui *ui = snew(game_ui);
1763 ui->dragx = ui->dragy = -1;
1764 ui->drag_colour = -2;
1765 return ui;
1766 }
1767
1768 static void free_ui(game_ui *ui)
1769 {
1770 sfree(ui);
1771 }
1772
1773 static char *encode_ui(game_ui *ui)
1774 {
1775 return NULL;
1776 }
1777
1778 static void decode_ui(game_ui *ui, char *encoding)
1779 {
1780 }
1781
1782 static void game_changed_state(game_ui *ui, game_state *oldstate,
1783 game_state *newstate)
1784 {
1785 }
1786
1787 struct game_drawstate {
1788 int tilesize;
1789 unsigned short *drawn, *todraw;
1790 int started;
1791 int dragx, dragy, drag_visible;
1792 blitter *bl;
1793 };
1794
1795 /* Flags in `drawn'. */
1796 #define ERR_T 0x0100
1797 #define ERR_B 0x0200
1798 #define ERR_L 0x0400
1799 #define ERR_R 0x0800
1800 #define ERR_C 0x1000
1801 #define ERR_MASK 0x1F00
1802
1803 #define TILESIZE (ds->tilesize)
1804 #define BORDER (TILESIZE)
1805 #define COORD(x) ( (x) * TILESIZE + BORDER )
1806 #define FROMCOORD(x) ( ((x) - BORDER + TILESIZE) / TILESIZE - 1 )
1807
1808 static int region_from_coords(game_state *state, game_drawstate *ds,
1809 int x, int y)
1810 {
1811 int w = state->p.w, h = state->p.h, wh = w*h /*, n = state->p.n */;
1812 int tx = FROMCOORD(x), ty = FROMCOORD(y);
1813 int dx = x - COORD(tx), dy = y - COORD(ty);
1814 int quadrant;
1815
1816 if (tx < 0 || tx >= w || ty < 0 || ty >= h)
1817 return -1; /* border */
1818
1819 quadrant = 2 * (dx > dy) + (TILESIZE - dx > dy);
1820 quadrant = (quadrant == 0 ? BE :
1821 quadrant == 1 ? LE :
1822 quadrant == 2 ? RE : TE);
1823
1824 return state->map->map[quadrant * wh + ty*w+tx];
1825 }
1826
1827 static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
1828 int x, int y, int button)
1829 {
1830 char buf[80];
1831
1832 if (button == LEFT_BUTTON || button == RIGHT_BUTTON) {
1833 int r = region_from_coords(state, ds, x, y);
1834
1835 if (r >= 0)
1836 ui->drag_colour = state->colouring[r];
1837 else
1838 ui->drag_colour = -1;
1839 ui->dragx = x;
1840 ui->dragy = y;
1841 return "";
1842 }
1843
1844 if ((button == LEFT_DRAG || button == RIGHT_DRAG) &&
1845 ui->drag_colour > -2) {
1846 ui->dragx = x;
1847 ui->dragy = y;
1848 return "";
1849 }
1850
1851 if ((button == LEFT_RELEASE || button == RIGHT_RELEASE) &&
1852 ui->drag_colour > -2) {
1853 int r = region_from_coords(state, ds, x, y);
1854 int c = ui->drag_colour;
1855
1856 /*
1857 * Cancel the drag, whatever happens.
1858 */
1859 ui->drag_colour = -2;
1860 ui->dragx = ui->dragy = -1;
1861
1862 if (r < 0)
1863 return ""; /* drag into border; do nothing else */
1864
1865 if (state->map->immutable[r])
1866 return ""; /* can't change this region */
1867
1868 if (state->colouring[r] == c)
1869 return ""; /* don't _need_ to change this region */
1870
1871 sprintf(buf, "%c:%d", (int)(c < 0 ? 'C' : '0' + c), r);
1872 return dupstr(buf);
1873 }
1874
1875 return NULL;
1876 }
1877
1878 static game_state *execute_move(game_state *state, char *move)
1879 {
1880 int n = state->p.n;
1881 game_state *ret = dup_game(state);
1882 int c, k, adv, i;
1883
1884 while (*move) {
1885 c = *move;
1886 if ((c == 'C' || (c >= '0' && c < '0'+FOUR)) &&
1887 sscanf(move+1, ":%d%n", &k, &adv) == 1 &&
1888 k >= 0 && k < state->p.n) {
1889 move += 1 + adv;
1890 ret->colouring[k] = (c == 'C' ? -1 : c - '0');
1891 } else if (*move == 'S') {
1892 move++;
1893 ret->cheated = TRUE;
1894 } else {
1895 free_game(ret);
1896 return NULL;
1897 }
1898
1899 if (*move && *move != ';') {
1900 free_game(ret);
1901 return NULL;
1902 }
1903 if (*move)
1904 move++;
1905 }
1906
1907 /*
1908 * Check for completion.
1909 */
1910 if (!ret->completed) {
1911 int ok = TRUE;
1912
1913 for (i = 0; i < n; i++)
1914 if (ret->colouring[i] < 0) {
1915 ok = FALSE;
1916 break;
1917 }
1918
1919 if (ok) {
1920 for (i = 0; i < ret->map->ngraph; i++) {
1921 int j = ret->map->graph[i] / n;
1922 int k = ret->map->graph[i] % n;
1923 if (ret->colouring[j] == ret->colouring[k]) {
1924 ok = FALSE;
1925 break;
1926 }
1927 }
1928 }
1929
1930 if (ok)
1931 ret->completed = TRUE;
1932 }
1933
1934 return ret;
1935 }
1936
1937 /* ----------------------------------------------------------------------
1938 * Drawing routines.
1939 */
1940
1941 static void game_compute_size(game_params *params, int tilesize,
1942 int *x, int *y)
1943 {
1944 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
1945 struct { int tilesize; } ads, *ds = &ads;
1946 ads.tilesize = tilesize;
1947
1948 *x = params->w * TILESIZE + 2 * BORDER + 1;
1949 *y = params->h * TILESIZE + 2 * BORDER + 1;
1950 }
1951
1952 static void game_set_size(drawing *dr, game_drawstate *ds,
1953 game_params *params, int tilesize)
1954 {
1955 ds->tilesize = tilesize;
1956
1957 if (ds->bl)
1958 blitter_free(dr, ds->bl);
1959 ds->bl = blitter_new(dr, TILESIZE+3, TILESIZE+3);
1960 }
1961
1962 const float map_colours[FOUR][3] = {
1963 {0.7F, 0.5F, 0.4F},
1964 {0.8F, 0.7F, 0.4F},
1965 {0.5F, 0.6F, 0.4F},
1966 {0.55F, 0.45F, 0.35F},
1967 };
1968 const int map_hatching[FOUR] = {
1969 HATCH_VERT, HATCH_SLASH, HATCH_HORIZ, HATCH_BACKSLASH
1970 };
1971
1972 static float *game_colours(frontend *fe, game_state *state, int *ncolours)
1973 {
1974 float *ret = snewn(3 * NCOLOURS, float);
1975
1976 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
1977
1978 ret[COL_GRID * 3 + 0] = 0.0F;
1979 ret[COL_GRID * 3 + 1] = 0.0F;
1980 ret[COL_GRID * 3 + 2] = 0.0F;
1981
1982 memcpy(ret + COL_0 * 3, map_colours[0], 3 * sizeof(float));
1983 memcpy(ret + COL_1 * 3, map_colours[1], 3 * sizeof(float));
1984 memcpy(ret + COL_2 * 3, map_colours[2], 3 * sizeof(float));
1985 memcpy(ret + COL_3 * 3, map_colours[3], 3 * sizeof(float));
1986
1987 ret[COL_ERROR * 3 + 0] = 1.0F;
1988 ret[COL_ERROR * 3 + 1] = 0.0F;
1989 ret[COL_ERROR * 3 + 2] = 0.0F;
1990
1991 ret[COL_ERRTEXT * 3 + 0] = 1.0F;
1992 ret[COL_ERRTEXT * 3 + 1] = 1.0F;
1993 ret[COL_ERRTEXT * 3 + 2] = 1.0F;
1994
1995 *ncolours = NCOLOURS;
1996 return ret;
1997 }
1998
1999 static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
2000 {
2001 struct game_drawstate *ds = snew(struct game_drawstate);
2002 int i;
2003
2004 ds->tilesize = 0;
2005 ds->drawn = snewn(state->p.w * state->p.h, unsigned short);
2006 for (i = 0; i < state->p.w * state->p.h; i++)
2007 ds->drawn[i] = 0xFFFF;
2008 ds->todraw = snewn(state->p.w * state->p.h, unsigned short);
2009 ds->started = FALSE;
2010 ds->bl = NULL;
2011 ds->drag_visible = FALSE;
2012 ds->dragx = ds->dragy = -1;
2013
2014 return ds;
2015 }
2016
2017 static void game_free_drawstate(drawing *dr, game_drawstate *ds)
2018 {
2019 sfree(ds->drawn);
2020 sfree(ds->todraw);
2021 if (ds->bl)
2022 blitter_free(dr, ds->bl);
2023 sfree(ds);
2024 }
2025
2026 static void draw_error(drawing *dr, game_drawstate *ds, int x, int y)
2027 {
2028 int coords[8];
2029 int yext, xext;
2030
2031 /*
2032 * Draw a diamond.
2033 */
2034 coords[0] = x - TILESIZE*2/5;
2035 coords[1] = y;
2036 coords[2] = x;
2037 coords[3] = y - TILESIZE*2/5;
2038 coords[4] = x + TILESIZE*2/5;
2039 coords[5] = y;
2040 coords[6] = x;
2041 coords[7] = y + TILESIZE*2/5;
2042 draw_polygon(dr, coords, 4, COL_ERROR, COL_GRID);
2043
2044 /*
2045 * Draw an exclamation mark in the diamond. This turns out to
2046 * look unpleasantly off-centre if done via draw_text, so I do
2047 * it by hand on the basis that exclamation marks aren't that
2048 * difficult to draw...
2049 */
2050 xext = TILESIZE/16;
2051 yext = TILESIZE*2/5 - (xext*2+2);
2052 draw_rect(dr, x-xext, y-yext, xext*2+1, yext*2+1 - (xext*3+1),
2053 COL_ERRTEXT);
2054 draw_rect(dr, x-xext, y+yext-xext*2, xext*2+1, xext*2+1, COL_ERRTEXT);
2055 }
2056
2057 static void draw_square(drawing *dr, game_drawstate *ds,
2058 game_params *params, struct map *map,
2059 int x, int y, int v)
2060 {
2061 int w = params->w, h = params->h, wh = w*h;
2062 int tv, bv, errs;
2063
2064 errs = v & ERR_MASK;
2065 v &= ~ERR_MASK;
2066 tv = v / FIVE;
2067 bv = v % FIVE;
2068
2069 clip(dr, COORD(x), COORD(y), TILESIZE, TILESIZE);
2070
2071 /*
2072 * Draw the region colour.
2073 */
2074 draw_rect(dr, COORD(x), COORD(y), TILESIZE, TILESIZE,
2075 (tv == FOUR ? COL_BACKGROUND : COL_0 + tv));
2076 /*
2077 * Draw the second region colour, if this is a diagonally
2078 * divided square.
2079 */
2080 if (map->map[TE * wh + y*w+x] != map->map[BE * wh + y*w+x]) {
2081 int coords[6];
2082 coords[0] = COORD(x)-1;
2083 coords[1] = COORD(y+1)+1;
2084 if (map->map[LE * wh + y*w+x] == map->map[TE * wh + y*w+x])
2085 coords[2] = COORD(x+1)+1;
2086 else
2087 coords[2] = COORD(x)-1;
2088 coords[3] = COORD(y)-1;
2089 coords[4] = COORD(x+1)+1;
2090 coords[5] = COORD(y+1)+1;
2091 draw_polygon(dr, coords, 3,
2092 (bv == FOUR ? COL_BACKGROUND : COL_0 + bv), COL_GRID);
2093 }
2094
2095 /*
2096 * Draw the grid lines, if required.
2097 */
2098 if (x <= 0 || map->map[RE*wh+y*w+(x-1)] != map->map[LE*wh+y*w+x])
2099 draw_rect(dr, COORD(x), COORD(y), 1, TILESIZE, COL_GRID);
2100 if (y <= 0 || map->map[BE*wh+(y-1)*w+x] != map->map[TE*wh+y*w+x])
2101 draw_rect(dr, COORD(x), COORD(y), TILESIZE, 1, COL_GRID);
2102 if (x <= 0 || y <= 0 ||
2103 map->map[RE*wh+(y-1)*w+(x-1)] != map->map[TE*wh+y*w+x] ||
2104 map->map[BE*wh+(y-1)*w+(x-1)] != map->map[LE*wh+y*w+x])
2105 draw_rect(dr, COORD(x), COORD(y), 1, 1, COL_GRID);
2106
2107 /*
2108 * Draw error markers.
2109 */
2110 if (errs & ERR_T)
2111 draw_error(dr, ds, COORD(x)+TILESIZE/2, COORD(y));
2112 if (errs & ERR_L)
2113 draw_error(dr, ds, COORD(x), COORD(y)+TILESIZE/2);
2114 if (errs & ERR_B)
2115 draw_error(dr, ds, COORD(x)+TILESIZE/2, COORD(y+1));
2116 if (errs & ERR_R)
2117 draw_error(dr, ds, COORD(x+1), COORD(y)+TILESIZE/2);
2118 if (errs & ERR_C)
2119 draw_error(dr, ds, COORD(x)+TILESIZE/2, COORD(y)+TILESIZE/2);
2120
2121 unclip(dr);
2122
2123 draw_update(dr, COORD(x), COORD(y), TILESIZE, TILESIZE);
2124 }
2125
2126 static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
2127 game_state *state, int dir, game_ui *ui,
2128 float animtime, float flashtime)
2129 {
2130 int w = state->p.w, h = state->p.h, wh = w*h, n = state->p.n;
2131 int x, y, i;
2132 int flash;
2133
2134 if (ds->drag_visible) {
2135 blitter_load(dr, ds->bl, ds->dragx, ds->dragy);
2136 draw_update(dr, ds->dragx, ds->dragy, TILESIZE + 3, TILESIZE + 3);
2137 ds->drag_visible = FALSE;
2138 }
2139
2140 /*
2141 * The initial contents of the window are not guaranteed and
2142 * can vary with front ends. To be on the safe side, all games
2143 * should start by drawing a big background-colour rectangle
2144 * covering the whole window.
2145 */
2146 if (!ds->started) {
2147 int ww, wh;
2148
2149 game_compute_size(&state->p, TILESIZE, &ww, &wh);
2150 draw_rect(dr, 0, 0, ww, wh, COL_BACKGROUND);
2151 draw_rect(dr, COORD(0), COORD(0), w*TILESIZE+1, h*TILESIZE+1,
2152 COL_GRID);
2153
2154 draw_update(dr, 0, 0, ww, wh);
2155 ds->started = TRUE;
2156 }
2157
2158 if (flashtime) {
2159 if (flash_type == 1)
2160 flash = (int)(flashtime * FOUR / flash_length);
2161 else
2162 flash = 1 + (int)(flashtime * THREE / flash_length);
2163 } else
2164 flash = -1;
2165
2166 /*
2167 * Set up the `todraw' array.
2168 */
2169 for (y = 0; y < h; y++)
2170 for (x = 0; x < w; x++) {
2171 int tv = state->colouring[state->map->map[TE * wh + y*w+x]];
2172 int bv = state->colouring[state->map->map[BE * wh + y*w+x]];
2173 int v;
2174
2175 if (tv < 0)
2176 tv = FOUR;
2177 if (bv < 0)
2178 bv = FOUR;
2179
2180 if (flash >= 0) {
2181 if (flash_type == 1) {
2182 if (tv == flash)
2183 tv = FOUR;
2184 if (bv == flash)
2185 bv = FOUR;
2186 } else if (flash_type == 2) {
2187 if (flash % 2)
2188 tv = bv = FOUR;
2189 } else {
2190 if (tv != FOUR)
2191 tv = (tv + flash) % FOUR;
2192 if (bv != FOUR)
2193 bv = (bv + flash) % FOUR;
2194 }
2195 }
2196
2197 v = tv * FIVE + bv;
2198
2199 ds->todraw[y*w+x] = v;
2200 }
2201
2202 /*
2203 * Add error markers to the `todraw' array.
2204 */
2205 for (i = 0; i < state->map->ngraph; i++) {
2206 int v1 = state->map->graph[i] / n;
2207 int v2 = state->map->graph[i] % n;
2208
2209 if (state->colouring[v1] < 0 || state->colouring[v2] < 0)
2210 continue;
2211 if (state->colouring[v1] != state->colouring[v2])
2212 continue;
2213
2214 x = state->map->edgex[i];
2215 y = state->map->edgey[i];
2216
2217 if (x % 2 && y % 2) {
2218 ds->todraw[(y/2)*w+(x/2)] |= ERR_C;
2219 } else if (x % 2) {
2220 ds->todraw[(y/2-1)*w+(x/2)] |= ERR_B;
2221 ds->todraw[(y/2)*w+(x/2)] |= ERR_T;
2222 } else {
2223 assert(y % 2);
2224 ds->todraw[(y/2)*w+(x/2-1)] |= ERR_R;
2225 ds->todraw[(y/2)*w+(x/2)] |= ERR_L;
2226 }
2227 }
2228
2229 /*
2230 * Now actually draw everything.
2231 */
2232 for (y = 0; y < h; y++)
2233 for (x = 0; x < w; x++) {
2234 int v = ds->todraw[y*w+x];
2235 if (ds->drawn[y*w+x] != v) {
2236 draw_square(dr, ds, &state->p, state->map, x, y, v);
2237 ds->drawn[y*w+x] = v;
2238 }
2239 }
2240
2241 /*
2242 * Draw the dragged colour blob if any.
2243 */
2244 if (ui->drag_colour > -2) {
2245 ds->dragx = ui->dragx - TILESIZE/2 - 2;
2246 ds->dragy = ui->dragy - TILESIZE/2 - 2;
2247 blitter_save(dr, ds->bl, ds->dragx, ds->dragy);
2248 draw_circle(dr, ui->dragx, ui->dragy, TILESIZE/2,
2249 (ui->drag_colour < 0 ? COL_BACKGROUND :
2250 COL_0 + ui->drag_colour), COL_GRID);
2251 draw_update(dr, ds->dragx, ds->dragy, TILESIZE + 3, TILESIZE + 3);
2252 ds->drag_visible = TRUE;
2253 }
2254 }
2255
2256 static float game_anim_length(game_state *oldstate, game_state *newstate,
2257 int dir, game_ui *ui)
2258 {
2259 return 0.0F;
2260 }
2261
2262 static float game_flash_length(game_state *oldstate, game_state *newstate,
2263 int dir, game_ui *ui)
2264 {
2265 if (!oldstate->completed && newstate->completed &&
2266 !oldstate->cheated && !newstate->cheated) {
2267 if (flash_type < 0) {
2268 char *env = getenv("MAP_ALTERNATIVE_FLASH");
2269 if (env)
2270 flash_type = atoi(env);
2271 else
2272 flash_type = 0;
2273 flash_length = (flash_type == 1 ? 0.50 : 0.30);
2274 }
2275 return flash_length;
2276 } else
2277 return 0.0F;
2278 }
2279
2280 static int game_wants_statusbar(void)
2281 {
2282 return FALSE;
2283 }
2284
2285 static int game_timing_state(game_state *state, game_ui *ui)
2286 {
2287 return TRUE;
2288 }
2289
2290 static void game_print_size(game_params *params, float *x, float *y)
2291 {
2292 int pw, ph;
2293
2294 /*
2295 * I'll use 4mm squares by default, I think. Simplest way to
2296 * compute this size is to compute the pixel puzzle size at a
2297 * given tile size and then scale.
2298 */
2299 game_compute_size(params, 400, &pw, &ph);
2300 *x = pw / 100.0;
2301 *y = ph / 100.0;
2302 }
2303
2304 static void game_print(drawing *dr, game_state *state, int tilesize)
2305 {
2306 int w = state->p.w, h = state->p.h, wh = w*h, n = state->p.n;
2307 int ink, c[FOUR], i;
2308 int x, y, r;
2309 int *coords, ncoords, coordsize;
2310
2311 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
2312 struct { int tilesize; } ads, *ds = &ads;
2313 ads.tilesize = tilesize;
2314
2315 ink = print_mono_colour(dr, 0);
2316 for (i = 0; i < FOUR; i++)
2317 c[i] = print_rgb_colour(dr, map_hatching[i], map_colours[i][0],
2318 map_colours[i][1], map_colours[i][2]);
2319
2320 coordsize = 0;
2321 coords = NULL;
2322
2323 print_line_width(dr, TILESIZE / 16);
2324
2325 /*
2326 * Draw a single filled polygon around each region.
2327 */
2328 for (r = 0; r < n; r++) {
2329 int octants[8], lastdir, d1, d2, ox, oy;
2330
2331 /*
2332 * Start by finding a point on the region boundary. Any
2333 * point will do. To do this, we'll search for a square
2334 * containing the region and then decide which corner of it
2335 * to use.
2336 */
2337 x = w;
2338 for (y = 0; y < h; y++) {
2339 for (x = 0; x < w; x++) {
2340 if (state->map->map[wh*0+y*w+x] == r ||
2341 state->map->map[wh*1+y*w+x] == r ||
2342 state->map->map[wh*2+y*w+x] == r ||
2343 state->map->map[wh*3+y*w+x] == r)
2344 break;
2345 }
2346 if (x < w)
2347 break;
2348 }
2349 assert(y < h && x < w); /* we must have found one somewhere */
2350 /*
2351 * This is the first square in lexicographic order which
2352 * contains part of this region. Therefore, one of the top
2353 * two corners of the square must be what we're after. The
2354 * only case in which it isn't the top left one is if the
2355 * square is diagonally divided and the region is in the
2356 * bottom right half.
2357 */
2358 if (state->map->map[wh*TE+y*w+x] != r &&
2359 state->map->map[wh*LE+y*w+x] != r)
2360 x++; /* could just as well have done y++ */
2361
2362 /*
2363 * Now we have a point on the region boundary. Trace around
2364 * the region until we come back to this point,
2365 * accumulating coordinates for a polygon draw operation as
2366 * we go.
2367 */
2368 lastdir = -1;
2369 ox = x;
2370 oy = y;
2371 ncoords = 0;
2372
2373 do {
2374 /*
2375 * There are eight possible directions we could head in
2376 * from here. We identify them by octant numbers, and
2377 * we also use octant numbers to identify the spaces
2378 * between them:
2379 *
2380 * 6 7 0
2381 * \ 7|0 /
2382 * \ | /
2383 * 6 \|/ 1
2384 * 5-----+-----1
2385 * 5 /|\ 2
2386 * / | \
2387 * / 4|3 \
2388 * 4 3 2
2389 */
2390 octants[0] = x<w && y>0 ? state->map->map[wh*LE+(y-1)*w+x] : -1;
2391 octants[1] = x<w && y>0 ? state->map->map[wh*BE+(y-1)*w+x] : -1;
2392 octants[2] = x<w && y<h ? state->map->map[wh*TE+y*w+x] : -1;
2393 octants[3] = x<w && y<h ? state->map->map[wh*LE+y*w+x] : -1;
2394 octants[4] = x>0 && y<h ? state->map->map[wh*RE+y*w+(x-1)] : -1;
2395 octants[5] = x>0 && y<h ? state->map->map[wh*TE+y*w+(x-1)] : -1;
2396 octants[6] = x>0 && y>0 ? state->map->map[wh*BE+(y-1)*w+(x-1)] :-1;
2397 octants[7] = x>0 && y>0 ? state->map->map[wh*RE+(y-1)*w+(x-1)] :-1;
2398
2399 d1 = d2 = -1;
2400 for (i = 0; i < 8; i++)
2401 if ((octants[i] == r) ^ (octants[(i+1)%8] == r)) {
2402 assert(d2 == -1);
2403 if (d1 == -1)
2404 d1 = i;
2405 else
2406 d2 = i;
2407 }
2408 /* printf("%% %d,%d r=%d: d1=%d d2=%d lastdir=%d\n", x, y, r, d1, d2, lastdir); */
2409 assert(d1 != -1 && d2 != -1);
2410 if (d1 == lastdir)
2411 d1 = d2;
2412
2413 /*
2414 * Now we're heading in direction d1. Save the current
2415 * coordinates.
2416 */
2417 if (ncoords + 2 > coordsize) {
2418 coordsize += 128;
2419 coords = sresize(coords, coordsize, int);
2420 }
2421 coords[ncoords++] = COORD(x);
2422 coords[ncoords++] = COORD(y);
2423
2424 /*
2425 * Compute the new coordinates.
2426 */
2427 x += (d1 % 4 == 3 ? 0 : d1 < 4 ? +1 : -1);
2428 y += (d1 % 4 == 1 ? 0 : d1 > 1 && d1 < 5 ? +1 : -1);
2429 assert(x >= 0 && x <= w && y >= 0 && y <= h);
2430
2431 lastdir = d1 ^ 4;
2432 } while (x != ox || y != oy);
2433
2434 draw_polygon(dr, coords, ncoords/2,
2435 state->colouring[r] >= 0 ?
2436 c[state->colouring[r]] : -1, ink);
2437 }
2438 sfree(coords);
2439 }
2440
2441 #ifdef COMBINED
2442 #define thegame map
2443 #endif
2444
2445 const struct game thegame = {
2446 "Map", "games.map",
2447 default_params,
2448 game_fetch_preset,
2449 decode_params,
2450 encode_params,
2451 free_params,
2452 dup_params,
2453 TRUE, game_configure, custom_params,
2454 validate_params,
2455 new_game_desc,
2456 validate_desc,
2457 new_game,
2458 dup_game,
2459 free_game,
2460 TRUE, solve_game,
2461 FALSE, game_text_format,
2462 new_ui,
2463 free_ui,
2464 encode_ui,
2465 decode_ui,
2466 game_changed_state,
2467 interpret_move,
2468 execute_move,
2469 20, game_compute_size, game_set_size,
2470 game_colours,
2471 game_new_drawstate,
2472 game_free_drawstate,
2473 game_redraw,
2474 game_anim_length,
2475 game_flash_length,
2476 TRUE, TRUE, game_print_size, game_print,
2477 game_wants_statusbar,
2478 FALSE, game_timing_state,
2479 0, /* mouse_priorities */
2480 };