HTML Help support for Puzzles, with the same kind of automatic
[sgt/puzzles] / sixteen.c
1 /*
2 * sixteen.c: `16-puzzle', a sliding-tiles jigsaw which differs
3 * from the 15-puzzle in that you toroidally rotate a row or column
4 * at a time.
5 */
6
7 #include <stdio.h>
8 #include <stdlib.h>
9 #include <string.h>
10 #include <assert.h>
11 #include <ctype.h>
12 #include <math.h>
13
14 #include "puzzles.h"
15
16 #define PREFERRED_TILE_SIZE 48
17 #define TILE_SIZE (ds->tilesize)
18 #define BORDER TILE_SIZE
19 #define HIGHLIGHT_WIDTH (TILE_SIZE / 20)
20 #define COORD(x) ( (x) * TILE_SIZE + BORDER )
21 #define FROMCOORD(x) ( ((x) - BORDER + 2*TILE_SIZE) / TILE_SIZE - 2 )
22
23 #define ANIM_TIME 0.13F
24 #define FLASH_FRAME 0.13F
25
26 #define X(state, i) ( (i) % (state)->w )
27 #define Y(state, i) ( (i) / (state)->w )
28 #define C(state, x, y) ( (y) * (state)->w + (x) )
29
30 enum {
31 COL_BACKGROUND,
32 COL_TEXT,
33 COL_HIGHLIGHT,
34 COL_LOWLIGHT,
35 NCOLOURS
36 };
37
38 struct game_params {
39 int w, h;
40 int movetarget;
41 };
42
43 struct game_state {
44 int w, h, n;
45 int *tiles;
46 int completed;
47 int used_solve; /* used to suppress completion flash */
48 int movecount, movetarget;
49 int last_movement_sense;
50 };
51
52 static game_params *default_params(void)
53 {
54 game_params *ret = snew(game_params);
55
56 ret->w = ret->h = 4;
57 ret->movetarget = 0;
58
59 return ret;
60 }
61
62 static int game_fetch_preset(int i, char **name, game_params **params)
63 {
64 game_params *ret;
65 int w, h;
66 char buf[80];
67
68 switch (i) {
69 case 0: w = 3, h = 3; break;
70 case 1: w = 4, h = 3; break;
71 case 2: w = 4, h = 4; break;
72 case 3: w = 5, h = 4; break;
73 case 4: w = 5, h = 5; break;
74 default: return FALSE;
75 }
76
77 sprintf(buf, "%dx%d", w, h);
78 *name = dupstr(buf);
79 *params = ret = snew(game_params);
80 ret->w = w;
81 ret->h = h;
82 ret->movetarget = 0;
83 return TRUE;
84 }
85
86 static void free_params(game_params *params)
87 {
88 sfree(params);
89 }
90
91 static game_params *dup_params(game_params *params)
92 {
93 game_params *ret = snew(game_params);
94 *ret = *params; /* structure copy */
95 return ret;
96 }
97
98 static void decode_params(game_params *ret, char const *string)
99 {
100 ret->w = ret->h = atoi(string);
101 ret->movetarget = 0;
102 while (*string && isdigit((unsigned char)*string)) string++;
103 if (*string == 'x') {
104 string++;
105 ret->h = atoi(string);
106 while (*string && isdigit((unsigned char)*string))
107 string++;
108 }
109 if (*string == 'm') {
110 string++;
111 ret->movetarget = atoi(string);
112 while (*string && isdigit((unsigned char)*string))
113 string++;
114 }
115 }
116
117 static char *encode_params(game_params *params, int full)
118 {
119 char data[256];
120
121 sprintf(data, "%dx%d", params->w, params->h);
122 /* Shuffle limit is part of the limited parameters, because we have to
123 * supply the target move count. */
124 if (params->movetarget)
125 sprintf(data + strlen(data), "m%d", params->movetarget);
126
127 return dupstr(data);
128 }
129
130 static config_item *game_configure(game_params *params)
131 {
132 config_item *ret;
133 char buf[80];
134
135 ret = snewn(4, config_item);
136
137 ret[0].name = "Width";
138 ret[0].type = C_STRING;
139 sprintf(buf, "%d", params->w);
140 ret[0].sval = dupstr(buf);
141 ret[0].ival = 0;
142
143 ret[1].name = "Height";
144 ret[1].type = C_STRING;
145 sprintf(buf, "%d", params->h);
146 ret[1].sval = dupstr(buf);
147 ret[1].ival = 0;
148
149 ret[2].name = "Number of shuffling moves";
150 ret[2].type = C_STRING;
151 sprintf(buf, "%d", params->movetarget);
152 ret[2].sval = dupstr(buf);
153 ret[2].ival = 0;
154
155 ret[3].name = NULL;
156 ret[3].type = C_END;
157 ret[3].sval = NULL;
158 ret[3].ival = 0;
159
160 return ret;
161 }
162
163 static game_params *custom_params(config_item *cfg)
164 {
165 game_params *ret = snew(game_params);
166
167 ret->w = atoi(cfg[0].sval);
168 ret->h = atoi(cfg[1].sval);
169 ret->movetarget = atoi(cfg[2].sval);
170
171 return ret;
172 }
173
174 static char *validate_params(game_params *params, int full)
175 {
176 if (params->w < 2 || params->h < 2)
177 return "Width and height must both be at least two";
178
179 return NULL;
180 }
181
182 static int perm_parity(int *perm, int n)
183 {
184 int i, j, ret;
185
186 ret = 0;
187
188 for (i = 0; i < n-1; i++)
189 for (j = i+1; j < n; j++)
190 if (perm[i] > perm[j])
191 ret = !ret;
192
193 return ret;
194 }
195
196 static char *new_game_desc(game_params *params, random_state *rs,
197 char **aux, int interactive)
198 {
199 int stop, n, i, x;
200 int x1, x2, p1, p2;
201 int *tiles, *used;
202 char *ret;
203 int retlen;
204
205 n = params->w * params->h;
206
207 tiles = snewn(n, int);
208
209 if (params->movetarget) {
210 int prevoffset = -1;
211 int max = (params->w > params->h ? params->w : params->h);
212 int *prevmoves = snewn(max, int);
213
214 /*
215 * Shuffle the old-fashioned way, by making a series of
216 * single moves on the grid.
217 */
218
219 for (i = 0; i < n; i++)
220 tiles[i] = i;
221
222 for (i = 0; i < params->movetarget; i++) {
223 int start, offset, len, direction, index;
224 int j, tmp;
225
226 /*
227 * Choose a move to make. We can choose from any row
228 * or any column.
229 */
230 while (1) {
231 j = random_upto(rs, params->w + params->h);
232
233 if (j < params->w) {
234 /* Column. */
235 index = j;
236 start = j;
237 offset = params->w;
238 len = params->h;
239 } else {
240 /* Row. */
241 index = j - params->w;
242 start = index * params->w;
243 offset = 1;
244 len = params->w;
245 }
246
247 direction = -1 + 2 * random_upto(rs, 2);
248
249 /*
250 * To at least _try_ to avoid boring cases, check
251 * that this move doesn't directly undo a previous
252 * one, or repeat it so many times as to turn it
253 * into fewer moves in the opposite direction. (For
254 * example, in a row of length 4, we're allowed to
255 * move it the same way twice, but not three
256 * times.)
257 *
258 * We track this for each individual row/column,
259 * and clear all the counters as soon as a
260 * perpendicular move is made. This isn't perfect
261 * (it _can't_ guaranteeably be perfect - there
262 * will always come a move count beyond which a
263 * shorter solution will be possible than the one
264 * which constructed the position) but it should
265 * sort out all the obvious cases.
266 */
267 if (offset == prevoffset) {
268 tmp = prevmoves[index] + direction;
269 if (abs(2*tmp) > len || abs(tmp) < abs(prevmoves[index]))
270 continue;
271 }
272
273 /* If we didn't `continue', we've found an OK move to make. */
274 if (offset != prevoffset) {
275 int i;
276 for (i = 0; i < max; i++)
277 prevmoves[i] = 0;
278 prevoffset = offset;
279 }
280 prevmoves[index] += direction;
281 break;
282 }
283
284 /*
285 * Make the move.
286 */
287 if (direction < 0) {
288 start += (len-1) * offset;
289 offset = -offset;
290 }
291 tmp = tiles[start];
292 for (j = 0; j+1 < len; j++)
293 tiles[start + j*offset] = tiles[start + (j+1)*offset];
294 tiles[start + (len-1) * offset] = tmp;
295 }
296
297 sfree(prevmoves);
298
299 } else {
300
301 used = snewn(n, int);
302
303 for (i = 0; i < n; i++) {
304 tiles[i] = -1;
305 used[i] = FALSE;
306 }
307
308 /*
309 * If both dimensions are odd, there is a parity
310 * constraint.
311 */
312 if (params->w & params->h & 1)
313 stop = 2;
314 else
315 stop = 0;
316
317 /*
318 * Place everything except (possibly) the last two tiles.
319 */
320 for (x = 0, i = n; i > stop; i--) {
321 int k = i > 1 ? random_upto(rs, i) : 0;
322 int j;
323
324 for (j = 0; j < n; j++)
325 if (!used[j] && (k-- == 0))
326 break;
327
328 assert(j < n && !used[j]);
329 used[j] = TRUE;
330
331 while (tiles[x] >= 0)
332 x++;
333 assert(x < n);
334 tiles[x] = j;
335 }
336
337 if (stop) {
338 /*
339 * Find the last two locations, and the last two
340 * pieces.
341 */
342 while (tiles[x] >= 0)
343 x++;
344 assert(x < n);
345 x1 = x;
346 x++;
347 while (tiles[x] >= 0)
348 x++;
349 assert(x < n);
350 x2 = x;
351
352 for (i = 0; i < n; i++)
353 if (!used[i])
354 break;
355 p1 = i;
356 for (i = p1+1; i < n; i++)
357 if (!used[i])
358 break;
359 p2 = i;
360
361 /*
362 * Try the last two tiles one way round. If that fails,
363 * swap them.
364 */
365 tiles[x1] = p1;
366 tiles[x2] = p2;
367 if (perm_parity(tiles, n) != 0) {
368 tiles[x1] = p2;
369 tiles[x2] = p1;
370 assert(perm_parity(tiles, n) == 0);
371 }
372 }
373
374 sfree(used);
375 }
376
377 /*
378 * Now construct the game description, by describing the tile
379 * array as a simple sequence of comma-separated integers.
380 */
381 ret = NULL;
382 retlen = 0;
383 for (i = 0; i < n; i++) {
384 char buf[80];
385 int k;
386
387 k = sprintf(buf, "%d,", tiles[i]+1);
388
389 ret = sresize(ret, retlen + k + 1, char);
390 strcpy(ret + retlen, buf);
391 retlen += k;
392 }
393 ret[retlen-1] = '\0'; /* delete last comma */
394
395 sfree(tiles);
396
397 return ret;
398 }
399
400
401 static char *validate_desc(game_params *params, char *desc)
402 {
403 char *p, *err;
404 int i, area;
405 int *used;
406
407 area = params->w * params->h;
408 p = desc;
409 err = NULL;
410
411 used = snewn(area, int);
412 for (i = 0; i < area; i++)
413 used[i] = FALSE;
414
415 for (i = 0; i < area; i++) {
416 char *q = p;
417 int n;
418
419 if (*p < '0' || *p > '9') {
420 err = "Not enough numbers in string";
421 goto leave;
422 }
423 while (*p >= '0' && *p <= '9')
424 p++;
425 if (i < area-1 && *p != ',') {
426 err = "Expected comma after number";
427 goto leave;
428 }
429 else if (i == area-1 && *p) {
430 err = "Excess junk at end of string";
431 goto leave;
432 }
433 n = atoi(q);
434 if (n < 1 || n > area) {
435 err = "Number out of range";
436 goto leave;
437 }
438 if (used[n-1]) {
439 err = "Number used twice";
440 goto leave;
441 }
442 used[n-1] = TRUE;
443
444 if (*p) p++; /* eat comma */
445 }
446
447 leave:
448 sfree(used);
449 return err;
450 }
451
452 static game_state *new_game(midend *me, game_params *params, char *desc)
453 {
454 game_state *state = snew(game_state);
455 int i;
456 char *p;
457
458 state->w = params->w;
459 state->h = params->h;
460 state->n = params->w * params->h;
461 state->tiles = snewn(state->n, int);
462
463 p = desc;
464 i = 0;
465 for (i = 0; i < state->n; i++) {
466 assert(*p);
467 state->tiles[i] = atoi(p);
468 while (*p && *p != ',')
469 p++;
470 if (*p) p++; /* eat comma */
471 }
472 assert(!*p);
473
474 state->completed = state->movecount = 0;
475 state->movetarget = params->movetarget;
476 state->used_solve = FALSE;
477 state->last_movement_sense = 0;
478
479 return state;
480 }
481
482 static game_state *dup_game(game_state *state)
483 {
484 game_state *ret = snew(game_state);
485
486 ret->w = state->w;
487 ret->h = state->h;
488 ret->n = state->n;
489 ret->tiles = snewn(state->w * state->h, int);
490 memcpy(ret->tiles, state->tiles, state->w * state->h * sizeof(int));
491 ret->completed = state->completed;
492 ret->movecount = state->movecount;
493 ret->movetarget = state->movetarget;
494 ret->used_solve = state->used_solve;
495 ret->last_movement_sense = state->last_movement_sense;
496
497 return ret;
498 }
499
500 static void free_game(game_state *state)
501 {
502 sfree(state->tiles);
503 sfree(state);
504 }
505
506 static char *solve_game(game_state *state, game_state *currstate,
507 char *aux, char **error)
508 {
509 return dupstr("S");
510 }
511
512 static char *game_text_format(game_state *state)
513 {
514 char *ret, *p, buf[80];
515 int x, y, col, maxlen;
516
517 /*
518 * First work out how many characters we need to display each
519 * number.
520 */
521 col = sprintf(buf, "%d", state->n);
522
523 /*
524 * Now we know the exact total size of the grid we're going to
525 * produce: it's got h rows, each containing w lots of col, w-1
526 * spaces and a trailing newline.
527 */
528 maxlen = state->h * state->w * (col+1);
529
530 ret = snewn(maxlen+1, char);
531 p = ret;
532
533 for (y = 0; y < state->h; y++) {
534 for (x = 0; x < state->w; x++) {
535 int v = state->tiles[state->w*y+x];
536 sprintf(buf, "%*d", col, v);
537 memcpy(p, buf, col);
538 p += col;
539 if (x+1 == state->w)
540 *p++ = '\n';
541 else
542 *p++ = ' ';
543 }
544 }
545
546 assert(p - ret == maxlen);
547 *p = '\0';
548 return ret;
549 }
550
551 static game_ui *new_ui(game_state *state)
552 {
553 return NULL;
554 }
555
556 static void free_ui(game_ui *ui)
557 {
558 }
559
560 static char *encode_ui(game_ui *ui)
561 {
562 return NULL;
563 }
564
565 static void decode_ui(game_ui *ui, char *encoding)
566 {
567 }
568
569 static void game_changed_state(game_ui *ui, game_state *oldstate,
570 game_state *newstate)
571 {
572 }
573
574 struct game_drawstate {
575 int started;
576 int w, h, bgcolour;
577 int *tiles;
578 int tilesize;
579 };
580
581 static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
582 int x, int y, int button)
583 {
584 int cx, cy, dx, dy;
585 char buf[80];
586
587 button &= ~MOD_MASK;
588 if (button != LEFT_BUTTON && button != RIGHT_BUTTON)
589 return NULL;
590
591 cx = FROMCOORD(x);
592 cy = FROMCOORD(y);
593 if (cx == -1 && cy >= 0 && cy < state->h)
594 dx = -1, dy = 0;
595 else if (cx == state->w && cy >= 0 && cy < state->h)
596 dx = +1, dy = 0;
597 else if (cy == -1 && cx >= 0 && cx < state->w)
598 dy = -1, dx = 0;
599 else if (cy == state->h && cx >= 0 && cx < state->w)
600 dy = +1, dx = 0;
601 else
602 return NULL; /* invalid click location */
603
604 /* reverse direction if right hand button is pressed */
605 if (button == RIGHT_BUTTON) {
606 dx = -dx;
607 dy = -dy;
608 }
609
610 if (dx)
611 sprintf(buf, "R%d,%d", cy, dx);
612 else
613 sprintf(buf, "C%d,%d", cx, dy);
614 return dupstr(buf);
615 }
616
617 static game_state *execute_move(game_state *from, char *move)
618 {
619 int cx, cy, dx, dy;
620 int tx, ty, n;
621 game_state *ret;
622
623 if (!strcmp(move, "S")) {
624 int i;
625
626 ret = dup_game(from);
627
628 /*
629 * Simply replace the grid with a solved one. For this game,
630 * this isn't a useful operation for actually telling the user
631 * what they should have done, but it is useful for
632 * conveniently being able to get hold of a clean state from
633 * which to practise manoeuvres.
634 */
635 for (i = 0; i < ret->n; i++)
636 ret->tiles[i] = i+1;
637 ret->used_solve = TRUE;
638 ret->completed = ret->movecount = 1;
639
640 return ret;
641 }
642
643 if (move[0] == 'R' && sscanf(move+1, "%d,%d", &cy, &dx) == 2 &&
644 cy >= 0 && cy < from->h) {
645 cx = dy = 0;
646 n = from->w;
647 } else if (move[0] == 'C' && sscanf(move+1, "%d,%d", &cx, &dy) == 2 &&
648 cx >= 0 && cx < from->w) {
649 cy = dx = 0;
650 n = from->h;
651 } else
652 return NULL;
653
654 ret = dup_game(from);
655
656 do {
657 tx = (cx - dx + from->w) % from->w;
658 ty = (cy - dy + from->h) % from->h;
659 ret->tiles[C(ret, cx, cy)] = from->tiles[C(from, tx, ty)];
660 cx = tx;
661 cy = ty;
662 } while (--n > 0);
663
664 ret->movecount++;
665
666 ret->last_movement_sense = dx+dy;
667
668 /*
669 * See if the game has been completed.
670 */
671 if (!ret->completed) {
672 ret->completed = ret->movecount;
673 for (n = 0; n < ret->n; n++)
674 if (ret->tiles[n] != n+1)
675 ret->completed = FALSE;
676 }
677
678 return ret;
679 }
680
681 /* ----------------------------------------------------------------------
682 * Drawing routines.
683 */
684
685 static void game_compute_size(game_params *params, int tilesize,
686 int *x, int *y)
687 {
688 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
689 struct { int tilesize; } ads, *ds = &ads;
690 ads.tilesize = tilesize;
691
692 *x = TILE_SIZE * params->w + 2 * BORDER;
693 *y = TILE_SIZE * params->h + 2 * BORDER;
694 }
695
696 static void game_set_size(drawing *dr, game_drawstate *ds,
697 game_params *params, int tilesize)
698 {
699 ds->tilesize = tilesize;
700 }
701
702 static float *game_colours(frontend *fe, int *ncolours)
703 {
704 float *ret = snewn(3 * NCOLOURS, float);
705 int i;
706
707 game_mkhighlight(fe, ret, COL_BACKGROUND, COL_HIGHLIGHT, COL_LOWLIGHT);
708
709 for (i = 0; i < 3; i++)
710 ret[COL_TEXT * 3 + i] = 0.0;
711
712 *ncolours = NCOLOURS;
713 return ret;
714 }
715
716 static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
717 {
718 struct game_drawstate *ds = snew(struct game_drawstate);
719 int i;
720
721 ds->started = FALSE;
722 ds->w = state->w;
723 ds->h = state->h;
724 ds->bgcolour = COL_BACKGROUND;
725 ds->tiles = snewn(ds->w*ds->h, int);
726 ds->tilesize = 0; /* haven't decided yet */
727 for (i = 0; i < ds->w*ds->h; i++)
728 ds->tiles[i] = -1;
729
730 return ds;
731 }
732
733 static void game_free_drawstate(drawing *dr, game_drawstate *ds)
734 {
735 sfree(ds->tiles);
736 sfree(ds);
737 }
738
739 static void draw_tile(drawing *dr, game_drawstate *ds,
740 game_state *state, int x, int y,
741 int tile, int flash_colour)
742 {
743 if (tile == 0) {
744 draw_rect(dr, x, y, TILE_SIZE, TILE_SIZE,
745 flash_colour);
746 } else {
747 int coords[6];
748 char str[40];
749
750 coords[0] = x + TILE_SIZE - 1;
751 coords[1] = y + TILE_SIZE - 1;
752 coords[2] = x + TILE_SIZE - 1;
753 coords[3] = y;
754 coords[4] = x;
755 coords[5] = y + TILE_SIZE - 1;
756 draw_polygon(dr, coords, 3, COL_LOWLIGHT, COL_LOWLIGHT);
757
758 coords[0] = x;
759 coords[1] = y;
760 draw_polygon(dr, coords, 3, COL_HIGHLIGHT, COL_HIGHLIGHT);
761
762 draw_rect(dr, x + HIGHLIGHT_WIDTH, y + HIGHLIGHT_WIDTH,
763 TILE_SIZE - 2*HIGHLIGHT_WIDTH, TILE_SIZE - 2*HIGHLIGHT_WIDTH,
764 flash_colour);
765
766 sprintf(str, "%d", tile);
767 draw_text(dr, x + TILE_SIZE/2, y + TILE_SIZE/2,
768 FONT_VARIABLE, TILE_SIZE/3, ALIGN_VCENTRE | ALIGN_HCENTRE,
769 COL_TEXT, str);
770 }
771 draw_update(dr, x, y, TILE_SIZE, TILE_SIZE);
772 }
773
774 static void draw_arrow(drawing *dr, game_drawstate *ds,
775 int x, int y, int xdx, int xdy)
776 {
777 int coords[14];
778 int ydy = -xdx, ydx = xdy;
779
780 #define POINT(n, xx, yy) ( \
781 coords[2*(n)+0] = x + (xx)*xdx + (yy)*ydx, \
782 coords[2*(n)+1] = y + (xx)*xdy + (yy)*ydy)
783
784 POINT(0, TILE_SIZE / 2, 3 * TILE_SIZE / 4); /* top of arrow */
785 POINT(1, 3 * TILE_SIZE / 4, TILE_SIZE / 2); /* right corner */
786 POINT(2, 5 * TILE_SIZE / 8, TILE_SIZE / 2); /* right concave */
787 POINT(3, 5 * TILE_SIZE / 8, TILE_SIZE / 4); /* bottom right */
788 POINT(4, 3 * TILE_SIZE / 8, TILE_SIZE / 4); /* bottom left */
789 POINT(5, 3 * TILE_SIZE / 8, TILE_SIZE / 2); /* left concave */
790 POINT(6, TILE_SIZE / 4, TILE_SIZE / 2); /* left corner */
791
792 draw_polygon(dr, coords, 7, COL_LOWLIGHT, COL_TEXT);
793 }
794
795 static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
796 game_state *state, int dir, game_ui *ui,
797 float animtime, float flashtime)
798 {
799 int i, bgcolour;
800
801 if (flashtime > 0) {
802 int frame = (int)(flashtime / FLASH_FRAME);
803 bgcolour = (frame % 2 ? COL_LOWLIGHT : COL_HIGHLIGHT);
804 } else
805 bgcolour = COL_BACKGROUND;
806
807 if (!ds->started) {
808 int coords[10];
809
810 draw_rect(dr, 0, 0,
811 TILE_SIZE * state->w + 2 * BORDER,
812 TILE_SIZE * state->h + 2 * BORDER, COL_BACKGROUND);
813 draw_update(dr, 0, 0,
814 TILE_SIZE * state->w + 2 * BORDER,
815 TILE_SIZE * state->h + 2 * BORDER);
816
817 /*
818 * Recessed area containing the whole puzzle.
819 */
820 coords[0] = COORD(state->w) + HIGHLIGHT_WIDTH - 1;
821 coords[1] = COORD(state->h) + HIGHLIGHT_WIDTH - 1;
822 coords[2] = COORD(state->w) + HIGHLIGHT_WIDTH - 1;
823 coords[3] = COORD(0) - HIGHLIGHT_WIDTH;
824 coords[4] = coords[2] - TILE_SIZE;
825 coords[5] = coords[3] + TILE_SIZE;
826 coords[8] = COORD(0) - HIGHLIGHT_WIDTH;
827 coords[9] = COORD(state->h) + HIGHLIGHT_WIDTH - 1;
828 coords[6] = coords[8] + TILE_SIZE;
829 coords[7] = coords[9] - TILE_SIZE;
830 draw_polygon(dr, coords, 5, COL_HIGHLIGHT, COL_HIGHLIGHT);
831
832 coords[1] = COORD(0) - HIGHLIGHT_WIDTH;
833 coords[0] = COORD(0) - HIGHLIGHT_WIDTH;
834 draw_polygon(dr, coords, 5, COL_LOWLIGHT, COL_LOWLIGHT);
835
836 /*
837 * Arrows for making moves.
838 */
839 for (i = 0; i < state->w; i++) {
840 draw_arrow(dr, ds, COORD(i), COORD(0), +1, 0);
841 draw_arrow(dr, ds, COORD(i+1), COORD(state->h), -1, 0);
842 }
843 for (i = 0; i < state->h; i++) {
844 draw_arrow(dr, ds, COORD(state->w), COORD(i), 0, +1);
845 draw_arrow(dr, ds, COORD(0), COORD(i+1), 0, -1);
846 }
847
848 ds->started = TRUE;
849 }
850
851 /*
852 * Now draw each tile.
853 */
854
855 clip(dr, COORD(0), COORD(0), TILE_SIZE*state->w, TILE_SIZE*state->h);
856
857 for (i = 0; i < state->n; i++) {
858 int t, t0;
859 /*
860 * Figure out what should be displayed at this
861 * location. It's either a simple tile, or it's a
862 * transition between two tiles (in which case we say
863 * -1 because it must always be drawn).
864 */
865
866 if (oldstate && oldstate->tiles[i] != state->tiles[i])
867 t = -1;
868 else
869 t = state->tiles[i];
870
871 t0 = t;
872
873 if (ds->bgcolour != bgcolour || /* always redraw when flashing */
874 ds->tiles[i] != t || ds->tiles[i] == -1 || t == -1) {
875 int x, y, x2, y2;
876
877 /*
878 * Figure out what to _actually_ draw, and where to
879 * draw it.
880 */
881 if (t == -1) {
882 int x0, y0, x1, y1, dx, dy;
883 int j;
884 float c;
885 int sense;
886
887 if (dir < 0) {
888 assert(oldstate);
889 sense = -oldstate->last_movement_sense;
890 } else {
891 sense = state->last_movement_sense;
892 }
893
894 t = state->tiles[i];
895
896 /*
897 * FIXME: must be prepared to draw a double
898 * tile in some situations.
899 */
900
901 /*
902 * Find the coordinates of this tile in the old and
903 * new states.
904 */
905 x1 = COORD(X(state, i));
906 y1 = COORD(Y(state, i));
907 for (j = 0; j < oldstate->n; j++)
908 if (oldstate->tiles[j] == state->tiles[i])
909 break;
910 assert(j < oldstate->n);
911 x0 = COORD(X(state, j));
912 y0 = COORD(Y(state, j));
913
914 dx = (x1 - x0);
915 if (dx != 0 &&
916 dx != TILE_SIZE * sense) {
917 dx = (dx < 0 ? dx + TILE_SIZE * state->w :
918 dx - TILE_SIZE * state->w);
919 assert(abs(dx) == TILE_SIZE);
920 }
921 dy = (y1 - y0);
922 if (dy != 0 &&
923 dy != TILE_SIZE * sense) {
924 dy = (dy < 0 ? dy + TILE_SIZE * state->h :
925 dy - TILE_SIZE * state->h);
926 assert(abs(dy) == TILE_SIZE);
927 }
928
929 c = (animtime / ANIM_TIME);
930 if (c < 0.0F) c = 0.0F;
931 if (c > 1.0F) c = 1.0F;
932
933 x = x0 + (int)(c * dx);
934 y = y0 + (int)(c * dy);
935 x2 = x1 - dx + (int)(c * dx);
936 y2 = y1 - dy + (int)(c * dy);
937 } else {
938 x = COORD(X(state, i));
939 y = COORD(Y(state, i));
940 x2 = y2 = -1;
941 }
942
943 draw_tile(dr, ds, state, x, y, t, bgcolour);
944 if (x2 != -1 || y2 != -1)
945 draw_tile(dr, ds, state, x2, y2, t, bgcolour);
946 }
947 ds->tiles[i] = t0;
948 }
949
950 unclip(dr);
951
952 ds->bgcolour = bgcolour;
953
954 /*
955 * Update the status bar.
956 */
957 {
958 char statusbuf[256];
959
960 /*
961 * Don't show the new status until we're also showing the
962 * new _state_ - after the game animation is complete.
963 */
964 if (oldstate)
965 state = oldstate;
966
967 if (state->used_solve)
968 sprintf(statusbuf, "Moves since auto-solve: %d",
969 state->movecount - state->completed);
970 else {
971 sprintf(statusbuf, "%sMoves: %d",
972 (state->completed ? "COMPLETED! " : ""),
973 (state->completed ? state->completed : state->movecount));
974 if (state->movetarget)
975 sprintf(statusbuf+strlen(statusbuf), " (target %d)",
976 state->movetarget);
977 }
978
979 status_bar(dr, statusbuf);
980 }
981 }
982
983 static float game_anim_length(game_state *oldstate,
984 game_state *newstate, int dir, game_ui *ui)
985 {
986 return ANIM_TIME;
987 }
988
989 static float game_flash_length(game_state *oldstate,
990 game_state *newstate, int dir, game_ui *ui)
991 {
992 if (!oldstate->completed && newstate->completed &&
993 !oldstate->used_solve && !newstate->used_solve)
994 return 2 * FLASH_FRAME;
995 else
996 return 0.0F;
997 }
998
999 static int game_timing_state(game_state *state, game_ui *ui)
1000 {
1001 return TRUE;
1002 }
1003
1004 static void game_print_size(game_params *params, float *x, float *y)
1005 {
1006 }
1007
1008 static void game_print(drawing *dr, game_state *state, int tilesize)
1009 {
1010 }
1011
1012 #ifdef COMBINED
1013 #define thegame sixteen
1014 #endif
1015
1016 const struct game thegame = {
1017 "Sixteen", "games.sixteen", "sixteen",
1018 default_params,
1019 game_fetch_preset,
1020 decode_params,
1021 encode_params,
1022 free_params,
1023 dup_params,
1024 TRUE, game_configure, custom_params,
1025 validate_params,
1026 new_game_desc,
1027 validate_desc,
1028 new_game,
1029 dup_game,
1030 free_game,
1031 TRUE, solve_game,
1032 TRUE, game_text_format,
1033 new_ui,
1034 free_ui,
1035 encode_ui,
1036 decode_ui,
1037 game_changed_state,
1038 interpret_move,
1039 execute_move,
1040 PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
1041 game_colours,
1042 game_new_drawstate,
1043 game_free_drawstate,
1044 game_redraw,
1045 game_anim_length,
1046 game_flash_length,
1047 FALSE, FALSE, game_print_size, game_print,
1048 TRUE, /* wants_statusbar */
1049 FALSE, game_timing_state,
1050 0, /* flags */
1051 };