Introduce the concept of a `game_aux_info' structure. This is
[sgt/puzzles] / twiddle.c
1 /*
2 * twiddle.c: Puzzle involving rearranging a grid of squares by
3 * rotating subsquares. Adapted and generalised from a
4 * door-unlocking puzzle in Metroid Prime 2 (the one in the Main
5 * Gyro Chamber).
6 */
7
8 #include <stdio.h>
9 #include <stdlib.h>
10 #include <string.h>
11 #include <assert.h>
12 #include <ctype.h>
13 #include <math.h>
14
15 #include "puzzles.h"
16
17 #define TILE_SIZE 48
18 #define BORDER (TILE_SIZE / 2)
19 #define HIGHLIGHT_WIDTH (TILE_SIZE / 20)
20 #define COORD(x) ( (x) * TILE_SIZE + BORDER )
21 #define FROMCOORD(x) ( ((x) - BORDER + TILE_SIZE) / TILE_SIZE - 1 )
22
23 #define PI 3.141592653589793238462643383279502884197169399
24
25 #define ANIM_PER_RADIUS_UNIT 0.13F
26 #define FLASH_FRAME 0.13F
27
28 enum {
29 COL_BACKGROUND,
30 COL_TEXT,
31 COL_HIGHLIGHT,
32 COL_HIGHLIGHT_GENTLE,
33 COL_LOWLIGHT,
34 COL_LOWLIGHT_GENTLE,
35 NCOLOURS
36 };
37
38 struct game_params {
39 int w, h, n;
40 int rowsonly;
41 int orientable;
42 };
43
44 struct game_state {
45 int w, h, n;
46 int orientable;
47 int *grid;
48 int completed;
49 int movecount;
50 int lastx, lasty, lastr; /* coordinates of last rotation */
51 };
52
53 static game_params *default_params(void)
54 {
55 game_params *ret = snew(game_params);
56
57 ret->w = ret->h = 3;
58 ret->n = 2;
59 ret->rowsonly = ret->orientable = FALSE;
60
61 return ret;
62 }
63
64
65 static void free_params(game_params *params)
66 {
67 sfree(params);
68 }
69
70 static game_params *dup_params(game_params *params)
71 {
72 game_params *ret = snew(game_params);
73 *ret = *params; /* structure copy */
74 return ret;
75 }
76
77 static int game_fetch_preset(int i, char **name, game_params **params)
78 {
79 static struct {
80 char *title;
81 game_params params;
82 } presets[] = {
83 { "3x3 rows only", { 3, 3, 2, TRUE, FALSE } },
84 { "3x3 normal", { 3, 3, 2, FALSE, FALSE } },
85 { "3x3 orientable", { 3, 3, 2, FALSE, TRUE } },
86 { "4x4 normal", { 4, 4, 2, FALSE } },
87 { "4x4 orientable", { 4, 4, 2, FALSE, TRUE } },
88 { "4x4 radius 3", { 4, 4, 3, FALSE } },
89 { "5x5 radius 3", { 5, 5, 3, FALSE } },
90 { "6x6 radius 4", { 6, 6, 4, FALSE } },
91 };
92
93 if (i < 0 || i >= lenof(presets))
94 return FALSE;
95
96 *name = dupstr(presets[i].title);
97 *params = dup_params(&presets[i].params);
98
99 return TRUE;
100 }
101
102 static game_params *decode_params(char const *string)
103 {
104 game_params *ret = snew(game_params);
105
106 ret->w = ret->h = atoi(string);
107 ret->n = 2;
108 ret->rowsonly = ret->orientable = FALSE;
109 while (*string && isdigit(*string)) string++;
110 if (*string == 'x') {
111 string++;
112 ret->h = atoi(string);
113 while (*string && isdigit(*string)) string++;
114 }
115 if (*string == 'n') {
116 string++;
117 ret->n = atoi(string);
118 while (*string && isdigit(*string)) string++;
119 }
120 while (*string) {
121 if (*string == 'r') {
122 ret->rowsonly = TRUE;
123 } else if (*string == 'o') {
124 ret->orientable = TRUE;
125 }
126 string++;
127 }
128
129 return ret;
130 }
131
132 static char *encode_params(game_params *params)
133 {
134 char buf[256];
135 sprintf(buf, "%dx%dn%d%s%s", params->w, params->h, params->n,
136 params->rowsonly ? "r" : "",
137 params->orientable ? "o" : "");
138 return dupstr(buf);
139 }
140
141 static config_item *game_configure(game_params *params)
142 {
143 config_item *ret;
144 char buf[80];
145
146 ret = snewn(6, config_item);
147
148 ret[0].name = "Width";
149 ret[0].type = C_STRING;
150 sprintf(buf, "%d", params->w);
151 ret[0].sval = dupstr(buf);
152 ret[0].ival = 0;
153
154 ret[1].name = "Height";
155 ret[1].type = C_STRING;
156 sprintf(buf, "%d", params->h);
157 ret[1].sval = dupstr(buf);
158 ret[1].ival = 0;
159
160 ret[2].name = "Rotation radius";
161 ret[2].type = C_STRING;
162 sprintf(buf, "%d", params->n);
163 ret[2].sval = dupstr(buf);
164 ret[2].ival = 0;
165
166 ret[3].name = "One number per row";
167 ret[3].type = C_BOOLEAN;
168 ret[3].sval = NULL;
169 ret[3].ival = params->rowsonly;
170
171 ret[4].name = "Orientation matters";
172 ret[4].type = C_BOOLEAN;
173 ret[4].sval = NULL;
174 ret[4].ival = params->orientable;
175
176 ret[5].name = NULL;
177 ret[5].type = C_END;
178 ret[5].sval = NULL;
179 ret[5].ival = 0;
180
181 return ret;
182 }
183
184 static game_params *custom_params(config_item *cfg)
185 {
186 game_params *ret = snew(game_params);
187
188 ret->w = atoi(cfg[0].sval);
189 ret->h = atoi(cfg[1].sval);
190 ret->n = atoi(cfg[2].sval);
191 ret->rowsonly = cfg[3].ival;
192 ret->orientable = cfg[4].ival;
193
194 return ret;
195 }
196
197 static char *validate_params(game_params *params)
198 {
199 if (params->n < 2)
200 return "Rotation radius must be at least two";
201 if (params->w < params->n)
202 return "Width must be at least the rotation radius";
203 if (params->h < params->n)
204 return "Height must be at least the rotation radius";
205 return NULL;
206 }
207
208 /*
209 * This function actually performs a rotation on a grid. The `x'
210 * and `y' coordinates passed in are the coordinates of the _top
211 * left corner_ of the rotated region. (Using the centre would have
212 * involved half-integers and been annoyingly fiddly. Clicking in
213 * the centre is good for a user interface, but too inconvenient to
214 * use internally.)
215 */
216 static void do_rotate(int *grid, int w, int h, int n, int orientable,
217 int x, int y, int dir)
218 {
219 int i, j;
220
221 assert(x >= 0 && x+n <= w);
222 assert(y >= 0 && y+n <= h);
223 dir &= 3;
224 if (dir == 0)
225 return; /* nothing to do */
226
227 grid += y*w+x; /* translate region to top corner */
228
229 /*
230 * If we were leaving the result of the rotation in a separate
231 * grid, the simple thing to do would be to loop over each
232 * square within the rotated region and assign it from its
233 * source square. However, to do it in place without taking
234 * O(n^2) memory, we need to be marginally more clever. What
235 * I'm going to do is loop over about one _quarter_ of the
236 * rotated region and permute each element within that quarter
237 * with its rotational coset.
238 *
239 * The size of the region I need to loop over is (n+1)/2 by
240 * n/2, which is an obvious exact quarter for even n and is a
241 * rectangle for odd n. (For odd n, this technique leaves out
242 * one element of the square, which is of course the central
243 * one that never moves anyway.)
244 */
245 for (i = 0; i < (n+1)/2; i++) {
246 for (j = 0; j < n/2; j++) {
247 int k;
248 int g[4];
249 int p[4] = {
250 j*w+i,
251 i*w+(n-j-1),
252 (n-j-1)*w+(n-i-1),
253 (n-i-1)*w+j
254 };
255
256 for (k = 0; k < 4; k++)
257 g[k] = grid[p[k]];
258
259 for (k = 0; k < 4; k++) {
260 int v = g[(k+dir) & 3];
261 if (orientable)
262 v ^= ((v+dir) ^ v) & 3; /* alter orientation */
263 grid[p[k]] = v;
264 }
265 }
266 }
267
268 /*
269 * Don't forget the orientation on the centre square, if n is
270 * odd.
271 */
272 if (orientable && (n & 1)) {
273 int v = grid[n/2*(w+1)];
274 v ^= ((v+dir) ^ v) & 3; /* alter orientation */
275 grid[n/2*(w+1)] = v;
276 }
277 }
278
279 static int grid_complete(int *grid, int wh, int orientable)
280 {
281 int ok = TRUE;
282 int i;
283 for (i = 1; i < wh; i++)
284 if (grid[i] < grid[i-1])
285 ok = FALSE;
286 if (orientable) {
287 for (i = 0; i < wh; i++)
288 if (grid[i] & 3)
289 ok = FALSE;
290 }
291 return ok;
292 }
293
294 static char *new_game_seed(game_params *params, random_state *rs,
295 game_aux_info **aux)
296 {
297 int *grid;
298 int w = params->w, h = params->h, n = params->n, wh = w*h;
299 int i;
300 char *ret;
301 int retlen;
302 int total_moves;
303
304 /*
305 * Set up a solved grid.
306 */
307 grid = snewn(wh, int);
308 for (i = 0; i < wh; i++)
309 grid[i] = ((params->rowsonly ? i/w : i) + 1) * 4;
310
311 /*
312 * Shuffle it. This game is complex enough that I don't feel up
313 * to analysing its full symmetry properties (particularly at
314 * n=4 and above!), so I'm going to do it the pedestrian way
315 * and simply shuffle the grid by making a long sequence of
316 * randomly chosen moves.
317 */
318 total_moves = w*h*n*n*2;
319 for (i = 0; i < total_moves; i++) {
320 int x, y;
321
322 x = random_upto(rs, w - n + 1);
323 y = random_upto(rs, h - n + 1);
324 do_rotate(grid, w, h, n, params->orientable,
325 x, y, 1 + random_upto(rs, 3));
326
327 /*
328 * Optionally one more move in case the entire grid has
329 * happened to come out solved.
330 */
331 if (i == total_moves - 1 && grid_complete(grid, wh,
332 params->orientable))
333 i--;
334 }
335
336 /*
337 * Now construct the game seed, by describing the grid as a
338 * simple sequence of integers. They're comma-separated, unless
339 * the puzzle is orientable in which case they're separated by
340 * orientation letters `u', `d', `l' and `r'.
341 */
342 ret = NULL;
343 retlen = 0;
344 for (i = 0; i < wh; i++) {
345 char buf[80];
346 int k;
347
348 k = sprintf(buf, "%d%c", grid[i] / 4,
349 params->orientable ? "uldr"[grid[i] & 3] : ',');
350
351 ret = sresize(ret, retlen + k + 1, char);
352 strcpy(ret + retlen, buf);
353 retlen += k;
354 }
355 if (!params->orientable)
356 ret[retlen-1] = '\0'; /* delete last comma */
357
358 sfree(grid);
359 return ret;
360 }
361
362 void game_free_aux_info(game_aux_info *aux)
363 {
364 assert(!"Shouldn't happen");
365 }
366
367 static char *validate_seed(game_params *params, char *seed)
368 {
369 char *p, *err;
370 int w = params->w, h = params->h, wh = w*h;
371 int i;
372
373 p = seed;
374 err = NULL;
375
376 for (i = 0; i < wh; i++) {
377 if (*p < '0' || *p > '9')
378 return "Not enough numbers in string";
379 while (*p >= '0' && *p <= '9')
380 p++;
381 if (!params->orientable && i < wh-1) {
382 if (*p != ',')
383 return "Expected comma after number";
384 } else if (params->orientable && i < wh) {
385 if (*p != 'l' && *p != 'r' && *p != 'u' && *p != 'd')
386 return "Expected orientation letter after number";
387 } else if (i == wh-1 && *p) {
388 return "Excess junk at end of string";
389 }
390
391 if (*p) p++; /* eat comma */
392 }
393
394 return NULL;
395 }
396
397 static game_state *new_game(game_params *params, char *seed)
398 {
399 game_state *state = snew(game_state);
400 int w = params->w, h = params->h, n = params->n, wh = w*h;
401 int i;
402 char *p;
403
404 state->w = w;
405 state->h = h;
406 state->n = n;
407 state->orientable = params->orientable;
408 state->completed = 0;
409 state->movecount = 0;
410 state->lastx = state->lasty = state->lastr = -1;
411
412 state->grid = snewn(wh, int);
413
414 p = seed;
415
416 for (i = 0; i < wh; i++) {
417 state->grid[i] = 4 * atoi(p);
418 while (*p >= '0' && *p <= '9')
419 p++;
420 if (*p) {
421 if (params->orientable) {
422 switch (*p) {
423 case 'l': state->grid[i] |= 1; break;
424 case 'd': state->grid[i] |= 2; break;
425 case 'r': state->grid[i] |= 3; break;
426 }
427 }
428 p++;
429 }
430 }
431
432 return state;
433 }
434
435 static game_state *dup_game(game_state *state)
436 {
437 game_state *ret = snew(game_state);
438
439 ret->w = state->w;
440 ret->h = state->h;
441 ret->n = state->n;
442 ret->orientable = state->orientable;
443 ret->completed = state->completed;
444 ret->movecount = state->movecount;
445 ret->lastx = state->lastx;
446 ret->lasty = state->lasty;
447 ret->lastr = state->lastr;
448
449 ret->grid = snewn(ret->w * ret->h, int);
450 memcpy(ret->grid, state->grid, ret->w * ret->h * sizeof(int));
451
452 return ret;
453 }
454
455 static void free_game(game_state *state)
456 {
457 sfree(state->grid);
458 sfree(state);
459 }
460
461 static char *game_text_format(game_state *state)
462 {
463 char *ret, *p, buf[80];
464 int i, x, y, col, o, maxlen;
465
466 /*
467 * First work out how many characters we need to display each
468 * number. We're pretty flexible on grid contents here, so we
469 * have to scan the entire grid.
470 */
471 col = 0;
472 for (i = 0; i < state->w * state->h; i++) {
473 x = sprintf(buf, "%d", state->grid[i] / 4);
474 if (col < x) col = x;
475 }
476 o = (state->orientable ? 1 : 0);
477
478 /*
479 * Now we know the exact total size of the grid we're going to
480 * produce: it's got h rows, each containing w lots of col+o,
481 * w-1 spaces and a trailing newline.
482 */
483 maxlen = state->h * state->w * (col+o+1);
484
485 ret = snewn(maxlen, char);
486 p = ret;
487
488 for (y = 0; y < state->h; y++) {
489 for (x = 0; x < state->w; x++) {
490 int v = state->grid[state->w*y+x];
491 sprintf(buf, "%*d", col, v/4);
492 memcpy(p, buf, col);
493 p += col;
494 if (o)
495 *p++ = "^<v>"[v & 3];
496 if (x+1 == state->w)
497 *p++ = '\n';
498 else
499 *p++ = ' ';
500 }
501 }
502
503 assert(p - ret == maxlen);
504 *p = '\0';
505 return ret;
506 }
507
508 static game_ui *new_ui(game_state *state)
509 {
510 return NULL;
511 }
512
513 static void free_ui(game_ui *ui)
514 {
515 }
516
517 static game_state *make_move(game_state *from, game_ui *ui, int x, int y,
518 int button)
519 {
520 int w = from->w, h = from->h, n = from->n, wh = w*h;
521 game_state *ret;
522 int dir;
523
524 if (button == LEFT_BUTTON || button == RIGHT_BUTTON) {
525 /*
526 * Determine the coordinates of the click. We offset by n-1
527 * half-blocks so that the user must click at the centre of
528 * a rotation region rather than at the corner.
529 */
530 x -= (n-1) * TILE_SIZE / 2;
531 y -= (n-1) * TILE_SIZE / 2;
532 x = FROMCOORD(x);
533 y = FROMCOORD(y);
534 if (x < 0 || x > w-n || y < 0 || y > w-n)
535 return NULL;
536
537 /*
538 * This is a valid move. Make it.
539 */
540 ret = dup_game(from);
541 ret->movecount++;
542 dir = (button == LEFT_BUTTON ? 1 : -1);
543 do_rotate(ret->grid, w, h, n, ret->orientable, x, y, dir);
544 ret->lastx = x;
545 ret->lasty = y;
546 ret->lastr = dir;
547
548 /*
549 * See if the game has been completed. To do this we simply
550 * test that the grid contents are in increasing order.
551 */
552 if (!ret->completed && grid_complete(ret->grid, wh, ret->orientable))
553 ret->completed = ret->movecount;
554 return ret;
555 }
556 return NULL;
557 }
558
559 /* ----------------------------------------------------------------------
560 * Drawing routines.
561 */
562
563 struct game_drawstate {
564 int started;
565 int w, h, bgcolour;
566 int *grid;
567 };
568
569 static void game_size(game_params *params, int *x, int *y)
570 {
571 *x = TILE_SIZE * params->w + 2 * BORDER;
572 *y = TILE_SIZE * params->h + 2 * BORDER;
573 }
574
575 static float *game_colours(frontend *fe, game_state *state, int *ncolours)
576 {
577 float *ret = snewn(3 * NCOLOURS, float);
578 int i;
579 float max;
580
581 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
582
583 /*
584 * Drop the background colour so that the highlight is
585 * noticeably brighter than it while still being under 1.
586 */
587 max = ret[COL_BACKGROUND*3];
588 for (i = 1; i < 3; i++)
589 if (ret[COL_BACKGROUND*3+i] > max)
590 max = ret[COL_BACKGROUND*3+i];
591 if (max * 1.2F > 1.0F) {
592 for (i = 0; i < 3; i++)
593 ret[COL_BACKGROUND*3+i] /= (max * 1.2F);
594 }
595
596 for (i = 0; i < 3; i++) {
597 ret[COL_HIGHLIGHT * 3 + i] = ret[COL_BACKGROUND * 3 + i] * 1.2F;
598 ret[COL_HIGHLIGHT_GENTLE * 3 + i] = ret[COL_BACKGROUND * 3 + i] * 1.1F;
599 ret[COL_LOWLIGHT * 3 + i] = ret[COL_BACKGROUND * 3 + i] * 0.8F;
600 ret[COL_LOWLIGHT_GENTLE * 3 + i] = ret[COL_BACKGROUND * 3 + i] * 0.9F;
601 ret[COL_TEXT * 3 + i] = 0.0;
602 }
603
604 *ncolours = NCOLOURS;
605 return ret;
606 }
607
608 static game_drawstate *game_new_drawstate(game_state *state)
609 {
610 struct game_drawstate *ds = snew(struct game_drawstate);
611 int i;
612
613 ds->started = FALSE;
614 ds->w = state->w;
615 ds->h = state->h;
616 ds->bgcolour = COL_BACKGROUND;
617 ds->grid = snewn(ds->w*ds->h, int);
618 for (i = 0; i < ds->w*ds->h; i++)
619 ds->grid[i] = -1;
620
621 return ds;
622 }
623
624 static void game_free_drawstate(game_drawstate *ds)
625 {
626 sfree(ds);
627 }
628
629 struct rotation {
630 int cx, cy, cw, ch; /* clip region */
631 int ox, oy; /* rotation origin */
632 float c, s; /* cos and sin of rotation angle */
633 int lc, rc, tc, bc; /* colours of tile edges */
634 };
635
636 static void rotate(int *xy, struct rotation *rot)
637 {
638 if (rot) {
639 float xf = xy[0] - rot->ox, yf = xy[1] - rot->oy;
640 float xf2, yf2;
641
642 xf2 = rot->c * xf + rot->s * yf;
643 yf2 = - rot->s * xf + rot->c * yf;
644
645 xy[0] = xf2 + rot->ox + 0.5; /* round to nearest */
646 xy[1] = yf2 + rot->oy + 0.5; /* round to nearest */
647 }
648 }
649
650 static void draw_tile(frontend *fe, game_state *state, int x, int y,
651 int tile, int flash_colour, struct rotation *rot)
652 {
653 int coords[8];
654 char str[40];
655
656 if (rot)
657 clip(fe, rot->cx, rot->cy, rot->cw, rot->ch);
658
659 /*
660 * We must draw each side of the tile's highlight separately,
661 * because in some cases (during rotation) they will all need
662 * to be different colours.
663 */
664
665 /* The centre point is common to all sides. */
666 coords[4] = x + TILE_SIZE / 2;
667 coords[5] = y + TILE_SIZE / 2;
668 rotate(coords+4, rot);
669
670 /* Right side. */
671 coords[0] = x + TILE_SIZE - 1;
672 coords[1] = y + TILE_SIZE - 1;
673 rotate(coords+0, rot);
674 coords[2] = x + TILE_SIZE - 1;
675 coords[3] = y;
676 rotate(coords+2, rot);
677 draw_polygon(fe, coords, 3, TRUE, rot ? rot->rc : COL_LOWLIGHT);
678 draw_polygon(fe, coords, 3, FALSE, rot ? rot->rc : COL_LOWLIGHT);
679
680 /* Bottom side. */
681 coords[2] = x;
682 coords[3] = y + TILE_SIZE - 1;
683 rotate(coords+2, rot);
684 draw_polygon(fe, coords, 3, TRUE, rot ? rot->bc : COL_LOWLIGHT);
685 draw_polygon(fe, coords, 3, FALSE, rot ? rot->bc : COL_LOWLIGHT);
686
687 /* Left side. */
688 coords[0] = x;
689 coords[1] = y;
690 rotate(coords+0, rot);
691 draw_polygon(fe, coords, 3, TRUE, rot ? rot->lc : COL_HIGHLIGHT);
692 draw_polygon(fe, coords, 3, FALSE, rot ? rot->lc : COL_HIGHLIGHT);
693
694 /* Top side. */
695 coords[2] = x + TILE_SIZE - 1;
696 coords[3] = y;
697 rotate(coords+2, rot);
698 draw_polygon(fe, coords, 3, TRUE, rot ? rot->tc : COL_HIGHLIGHT);
699 draw_polygon(fe, coords, 3, FALSE, rot ? rot->tc : COL_HIGHLIGHT);
700
701 /*
702 * Now the main blank area in the centre of the tile.
703 */
704 if (rot) {
705 coords[0] = x + HIGHLIGHT_WIDTH;
706 coords[1] = y + HIGHLIGHT_WIDTH;
707 rotate(coords+0, rot);
708 coords[2] = x + HIGHLIGHT_WIDTH;
709 coords[3] = y + TILE_SIZE - 1 - HIGHLIGHT_WIDTH;
710 rotate(coords+2, rot);
711 coords[4] = x + TILE_SIZE - 1 - HIGHLIGHT_WIDTH;
712 coords[5] = y + TILE_SIZE - 1 - HIGHLIGHT_WIDTH;
713 rotate(coords+4, rot);
714 coords[6] = x + TILE_SIZE - 1 - HIGHLIGHT_WIDTH;
715 coords[7] = y + HIGHLIGHT_WIDTH;
716 rotate(coords+6, rot);
717 draw_polygon(fe, coords, 4, TRUE, flash_colour);
718 draw_polygon(fe, coords, 4, FALSE, flash_colour);
719 } else {
720 draw_rect(fe, x + HIGHLIGHT_WIDTH, y + HIGHLIGHT_WIDTH,
721 TILE_SIZE - 2*HIGHLIGHT_WIDTH, TILE_SIZE - 2*HIGHLIGHT_WIDTH,
722 flash_colour);
723 }
724
725 /*
726 * Next, the colour bars for orientation.
727 */
728 if (state->orientable) {
729 int xdx, xdy, ydx, ydy;
730 int cx, cy, displ, displ2;
731 switch (tile & 3) {
732 case 0:
733 xdx = 1, xdy = 0;
734 ydx = 0, ydy = 1;
735 break;
736 case 1:
737 xdx = 0, xdy = -1;
738 ydx = 1, ydy = 0;
739 break;
740 case 2:
741 xdx = -1, xdy = 0;
742 ydx = 0, ydy = -1;
743 break;
744 default /* case 3 */:
745 xdx = 0, xdy = 1;
746 ydx = -1, ydy = 0;
747 break;
748 }
749
750 cx = x + TILE_SIZE / 2;
751 cy = y + TILE_SIZE / 2;
752 displ = TILE_SIZE / 2 - HIGHLIGHT_WIDTH - 2;
753 displ2 = TILE_SIZE / 3 - HIGHLIGHT_WIDTH;
754
755 coords[0] = cx - displ * xdx + displ2 * ydx;
756 coords[1] = cy - displ * xdy + displ2 * ydy;
757 rotate(coords+0, rot);
758 coords[2] = cx + displ * xdx + displ2 * ydx;
759 coords[3] = cy + displ * xdy + displ2 * ydy;
760 rotate(coords+2, rot);
761 coords[4] = cx - displ * ydx;
762 coords[5] = cy - displ * ydy;
763 rotate(coords+4, rot);
764 draw_polygon(fe, coords, 3, TRUE, COL_LOWLIGHT_GENTLE);
765 draw_polygon(fe, coords, 3, FALSE, COL_LOWLIGHT_GENTLE);
766 }
767
768 coords[0] = x + TILE_SIZE/2;
769 coords[1] = y + TILE_SIZE/2;
770 rotate(coords+0, rot);
771 sprintf(str, "%d", tile / 4);
772 draw_text(fe, coords[0], coords[1],
773 FONT_VARIABLE, TILE_SIZE/3, ALIGN_VCENTRE | ALIGN_HCENTRE,
774 COL_TEXT, str);
775
776 if (rot)
777 unclip(fe);
778
779 draw_update(fe, x, y, TILE_SIZE, TILE_SIZE);
780 }
781
782 static int highlight_colour(float angle)
783 {
784 int colours[32] = {
785 COL_LOWLIGHT,
786 COL_LOWLIGHT_GENTLE,
787 COL_LOWLIGHT_GENTLE,
788 COL_LOWLIGHT_GENTLE,
789 COL_HIGHLIGHT_GENTLE,
790 COL_HIGHLIGHT_GENTLE,
791 COL_HIGHLIGHT_GENTLE,
792 COL_HIGHLIGHT,
793 COL_HIGHLIGHT,
794 COL_HIGHLIGHT,
795 COL_HIGHLIGHT,
796 COL_HIGHLIGHT,
797 COL_HIGHLIGHT,
798 COL_HIGHLIGHT,
799 COL_HIGHLIGHT,
800 COL_HIGHLIGHT,
801 COL_HIGHLIGHT,
802 COL_HIGHLIGHT_GENTLE,
803 COL_HIGHLIGHT_GENTLE,
804 COL_HIGHLIGHT_GENTLE,
805 COL_LOWLIGHT_GENTLE,
806 COL_LOWLIGHT_GENTLE,
807 COL_LOWLIGHT_GENTLE,
808 COL_LOWLIGHT,
809 COL_LOWLIGHT,
810 COL_LOWLIGHT,
811 COL_LOWLIGHT,
812 COL_LOWLIGHT,
813 COL_LOWLIGHT,
814 COL_LOWLIGHT,
815 COL_LOWLIGHT,
816 COL_LOWLIGHT,
817 };
818
819 return colours[(int)((angle + 2*PI) / (PI/16)) & 31];
820 }
821
822 static float game_anim_length(game_state *oldstate, game_state *newstate,
823 int dir)
824 {
825 return ANIM_PER_RADIUS_UNIT * sqrt(newstate->n-1);
826 }
827
828 static float game_flash_length(game_state *oldstate, game_state *newstate,
829 int dir)
830 {
831 if (!oldstate->completed && newstate->completed)
832 return 2 * FLASH_FRAME;
833 else
834 return 0.0F;
835 }
836
837 static void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate,
838 game_state *state, int dir, game_ui *ui,
839 float animtime, float flashtime)
840 {
841 int i, bgcolour;
842 struct rotation srot, *rot;
843 int lastx = -1, lasty = -1, lastr = -1;
844
845 if (flashtime > 0) {
846 int frame = (int)(flashtime / FLASH_FRAME);
847 bgcolour = (frame % 2 ? COL_LOWLIGHT : COL_HIGHLIGHT);
848 } else
849 bgcolour = COL_BACKGROUND;
850
851 if (!ds->started) {
852 int coords[6];
853
854 draw_rect(fe, 0, 0,
855 TILE_SIZE * state->w + 2 * BORDER,
856 TILE_SIZE * state->h + 2 * BORDER, COL_BACKGROUND);
857 draw_update(fe, 0, 0,
858 TILE_SIZE * state->w + 2 * BORDER,
859 TILE_SIZE * state->h + 2 * BORDER);
860
861 /*
862 * Recessed area containing the whole puzzle.
863 */
864 coords[0] = COORD(state->w) + HIGHLIGHT_WIDTH - 1;
865 coords[1] = COORD(state->h) + HIGHLIGHT_WIDTH - 1;
866 coords[2] = COORD(state->w) + HIGHLIGHT_WIDTH - 1;
867 coords[3] = COORD(0) - HIGHLIGHT_WIDTH;
868 coords[4] = COORD(0) - HIGHLIGHT_WIDTH;
869 coords[5] = COORD(state->h) + HIGHLIGHT_WIDTH - 1;
870 draw_polygon(fe, coords, 3, TRUE, COL_HIGHLIGHT);
871 draw_polygon(fe, coords, 3, FALSE, COL_HIGHLIGHT);
872
873 coords[1] = COORD(0) - HIGHLIGHT_WIDTH;
874 coords[0] = COORD(0) - HIGHLIGHT_WIDTH;
875 draw_polygon(fe, coords, 3, TRUE, COL_LOWLIGHT);
876 draw_polygon(fe, coords, 3, FALSE, COL_LOWLIGHT);
877
878 ds->started = TRUE;
879 }
880
881 /*
882 * If we're drawing any rotated tiles, sort out the rotation
883 * parameters, and also zap the rotation region to the
884 * background colour before doing anything else.
885 */
886 if (oldstate) {
887 float angle;
888 float anim_max = game_anim_length(oldstate, state, dir);
889
890 if (dir > 0) {
891 lastx = state->lastx;
892 lasty = state->lasty;
893 lastr = state->lastr;
894 } else {
895 lastx = oldstate->lastx;
896 lasty = oldstate->lasty;
897 lastr = -oldstate->lastr;
898 }
899
900 rot = &srot;
901 rot->cx = COORD(lastx);
902 rot->cy = COORD(lasty);
903 rot->cw = rot->ch = TILE_SIZE * state->n;
904 rot->ox = rot->cx + rot->cw/2;
905 rot->oy = rot->cy + rot->ch/2;
906 angle = (-PI/2 * lastr) * (1.0 - animtime / anim_max);
907 rot->c = cos(angle);
908 rot->s = sin(angle);
909
910 /*
911 * Sort out the colours of the various sides of the tile.
912 */
913 rot->lc = highlight_colour(PI + angle);
914 rot->rc = highlight_colour(angle);
915 rot->tc = highlight_colour(PI/2 + angle);
916 rot->bc = highlight_colour(-PI/2 + angle);
917
918 draw_rect(fe, rot->cx, rot->cy, rot->cw, rot->ch, bgcolour);
919 } else
920 rot = NULL;
921
922 /*
923 * Now draw each tile.
924 */
925 for (i = 0; i < state->w * state->h; i++) {
926 int t;
927 int tx = i % state->w, ty = i / state->w;
928
929 /*
930 * Figure out what should be displayed at this location.
931 * Usually it will be state->grid[i], unless we're in the
932 * middle of animating an actual rotation and this cell is
933 * within the rotation region, in which case we set -1
934 * (always display).
935 */
936 if (oldstate && lastx >= 0 && lasty >= 0 &&
937 tx >= lastx && tx < lastx + state->n &&
938 ty >= lasty && ty < lasty + state->n)
939 t = -1;
940 else
941 t = state->grid[i];
942
943 if (ds->bgcolour != bgcolour || /* always redraw when flashing */
944 ds->grid[i] != t || ds->grid[i] == -1 || t == -1) {
945 int x = COORD(tx), y = COORD(ty);
946
947 draw_tile(fe, state, x, y, state->grid[i], bgcolour, rot);
948 ds->grid[i] = t;
949 }
950 }
951 ds->bgcolour = bgcolour;
952
953 /*
954 * Update the status bar.
955 */
956 {
957 char statusbuf[256];
958
959 /*
960 * Don't show the new status until we're also showing the
961 * new _state_ - after the game animation is complete.
962 */
963 if (oldstate)
964 state = oldstate;
965
966 sprintf(statusbuf, "%sMoves: %d",
967 (state->completed ? "COMPLETED! " : ""),
968 (state->completed ? state->completed : state->movecount));
969
970 status_bar(fe, statusbuf);
971 }
972 }
973
974 static int game_wants_statusbar(void)
975 {
976 return TRUE;
977 }
978
979 #ifdef COMBINED
980 #define thegame twiddle
981 #endif
982
983 const struct game thegame = {
984 "Twiddle", "games.twiddle",
985 default_params,
986 game_fetch_preset,
987 decode_params,
988 encode_params,
989 free_params,
990 dup_params,
991 TRUE, game_configure, custom_params,
992 validate_params,
993 new_game_seed,
994 game_free_aux_info,
995 validate_seed,
996 new_game,
997 dup_game,
998 free_game,
999 TRUE, game_text_format,
1000 new_ui,
1001 free_ui,
1002 make_move,
1003 game_size,
1004 game_colours,
1005 game_new_drawstate,
1006 game_free_drawstate,
1007 game_redraw,
1008 game_anim_length,
1009 game_flash_length,
1010 game_wants_statusbar,
1011 };