Introduce the concept of a `game_aux_info' structure. This is
[sgt/puzzles] / net.c
1 /*
2 * net.c: Net game.
3 */
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <string.h>
8 #include <assert.h>
9 #include <ctype.h>
10 #include <math.h>
11
12 #include "puzzles.h"
13 #include "tree234.h"
14
15 #define PI 3.141592653589793238462643383279502884197169399
16
17 #define MATMUL(xr,yr,m,x,y) do { \
18 float rx, ry, xx = (x), yy = (y), *mat = (m); \
19 rx = mat[0] * xx + mat[2] * yy; \
20 ry = mat[1] * xx + mat[3] * yy; \
21 (xr) = rx; (yr) = ry; \
22 } while (0)
23
24 /* Direction and other bitfields */
25 #define R 0x01
26 #define U 0x02
27 #define L 0x04
28 #define D 0x08
29 #define LOCKED 0x10
30 #define ACTIVE 0x20
31 /* Corner flags go in the barriers array */
32 #define RU 0x10
33 #define UL 0x20
34 #define LD 0x40
35 #define DR 0x80
36
37 /* Rotations: Anticlockwise, Clockwise, Flip, general rotate */
38 #define A(x) ( (((x) & 0x07) << 1) | (((x) & 0x08) >> 3) )
39 #define C(x) ( (((x) & 0x0E) >> 1) | (((x) & 0x01) << 3) )
40 #define F(x) ( (((x) & 0x0C) >> 2) | (((x) & 0x03) << 2) )
41 #define ROT(x, n) ( ((n)&3) == 0 ? (x) : \
42 ((n)&3) == 1 ? A(x) : \
43 ((n)&3) == 2 ? F(x) : C(x) )
44
45 /* X and Y displacements */
46 #define X(x) ( (x) == R ? +1 : (x) == L ? -1 : 0 )
47 #define Y(x) ( (x) == D ? +1 : (x) == U ? -1 : 0 )
48
49 /* Bit count */
50 #define COUNT(x) ( (((x) & 0x08) >> 3) + (((x) & 0x04) >> 2) + \
51 (((x) & 0x02) >> 1) + ((x) & 0x01) )
52
53 #define TILE_SIZE 32
54 #define TILE_BORDER 1
55 #define WINDOW_OFFSET 16
56
57 #define ROTATE_TIME 0.13F
58 #define FLASH_FRAME 0.07F
59
60 enum {
61 COL_BACKGROUND,
62 COL_LOCKED,
63 COL_BORDER,
64 COL_WIRE,
65 COL_ENDPOINT,
66 COL_POWERED,
67 COL_BARRIER,
68 NCOLOURS
69 };
70
71 struct game_params {
72 int width;
73 int height;
74 int wrapping;
75 float barrier_probability;
76 };
77
78 struct game_state {
79 int width, height, cx, cy, wrapping, completed, last_rotate_dir;
80 unsigned char *tiles;
81 unsigned char *barriers;
82 };
83
84 #define OFFSET(x2,y2,x1,y1,dir,state) \
85 ( (x2) = ((x1) + (state)->width + X((dir))) % (state)->width, \
86 (y2) = ((y1) + (state)->height + Y((dir))) % (state)->height)
87
88 #define index(state, a, x, y) ( a[(y) * (state)->width + (x)] )
89 #define tile(state, x, y) index(state, (state)->tiles, x, y)
90 #define barrier(state, x, y) index(state, (state)->barriers, x, y)
91
92 struct xyd {
93 int x, y, direction;
94 };
95
96 static int xyd_cmp(void *av, void *bv) {
97 struct xyd *a = (struct xyd *)av;
98 struct xyd *b = (struct xyd *)bv;
99 if (a->x < b->x)
100 return -1;
101 if (a->x > b->x)
102 return +1;
103 if (a->y < b->y)
104 return -1;
105 if (a->y > b->y)
106 return +1;
107 if (a->direction < b->direction)
108 return -1;
109 if (a->direction > b->direction)
110 return +1;
111 return 0;
112 };
113
114 static struct xyd *new_xyd(int x, int y, int direction)
115 {
116 struct xyd *xyd = snew(struct xyd);
117 xyd->x = x;
118 xyd->y = y;
119 xyd->direction = direction;
120 return xyd;
121 }
122
123 /* ----------------------------------------------------------------------
124 * Manage game parameters.
125 */
126 static game_params *default_params(void)
127 {
128 game_params *ret = snew(game_params);
129
130 ret->width = 5;
131 ret->height = 5;
132 ret->wrapping = FALSE;
133 ret->barrier_probability = 0.0;
134
135 return ret;
136 }
137
138 static int game_fetch_preset(int i, char **name, game_params **params)
139 {
140 game_params *ret;
141 char str[80];
142 static const struct { int x, y, wrap; } values[] = {
143 {5, 5, FALSE},
144 {7, 7, FALSE},
145 {9, 9, FALSE},
146 {11, 11, FALSE},
147 {13, 11, FALSE},
148 {5, 5, TRUE},
149 {7, 7, TRUE},
150 {9, 9, TRUE},
151 {11, 11, TRUE},
152 {13, 11, TRUE},
153 };
154
155 if (i < 0 || i >= lenof(values))
156 return FALSE;
157
158 ret = snew(game_params);
159 ret->width = values[i].x;
160 ret->height = values[i].y;
161 ret->wrapping = values[i].wrap;
162 ret->barrier_probability = 0.0;
163
164 sprintf(str, "%dx%d%s", ret->width, ret->height,
165 ret->wrapping ? " wrapping" : "");
166
167 *name = dupstr(str);
168 *params = ret;
169 return TRUE;
170 }
171
172 static void free_params(game_params *params)
173 {
174 sfree(params);
175 }
176
177 static game_params *dup_params(game_params *params)
178 {
179 game_params *ret = snew(game_params);
180 *ret = *params; /* structure copy */
181 return ret;
182 }
183
184 static game_params *decode_params(char const *string)
185 {
186 game_params *ret = default_params();
187 char const *p = string;
188
189 ret->width = atoi(p);
190 while (*p && isdigit(*p)) p++;
191 if (*p == 'x') {
192 p++;
193 ret->height = atoi(p);
194 while (*p && isdigit(*p)) p++;
195 if ( (ret->wrapping = (*p == 'w')) != 0 )
196 p++;
197 if (*p == 'b')
198 ret->barrier_probability = atof(p+1);
199 } else {
200 ret->height = ret->width;
201 }
202
203 return ret;
204 }
205
206 static char *encode_params(game_params *params)
207 {
208 char ret[400];
209 int len;
210
211 len = sprintf(ret, "%dx%d", params->width, params->height);
212 if (params->wrapping)
213 ret[len++] = 'w';
214 if (params->barrier_probability)
215 len += sprintf(ret+len, "b%g", params->barrier_probability);
216 assert(len < lenof(ret));
217 ret[len] = '\0';
218
219 return dupstr(ret);
220 }
221
222 static config_item *game_configure(game_params *params)
223 {
224 config_item *ret;
225 char buf[80];
226
227 ret = snewn(5, config_item);
228
229 ret[0].name = "Width";
230 ret[0].type = C_STRING;
231 sprintf(buf, "%d", params->width);
232 ret[0].sval = dupstr(buf);
233 ret[0].ival = 0;
234
235 ret[1].name = "Height";
236 ret[1].type = C_STRING;
237 sprintf(buf, "%d", params->height);
238 ret[1].sval = dupstr(buf);
239 ret[1].ival = 0;
240
241 ret[2].name = "Walls wrap around";
242 ret[2].type = C_BOOLEAN;
243 ret[2].sval = NULL;
244 ret[2].ival = params->wrapping;
245
246 ret[3].name = "Barrier probability";
247 ret[3].type = C_STRING;
248 sprintf(buf, "%g", params->barrier_probability);
249 ret[3].sval = dupstr(buf);
250 ret[3].ival = 0;
251
252 ret[4].name = NULL;
253 ret[4].type = C_END;
254 ret[4].sval = NULL;
255 ret[4].ival = 0;
256
257 return ret;
258 }
259
260 static game_params *custom_params(config_item *cfg)
261 {
262 game_params *ret = snew(game_params);
263
264 ret->width = atoi(cfg[0].sval);
265 ret->height = atoi(cfg[1].sval);
266 ret->wrapping = cfg[2].ival;
267 ret->barrier_probability = (float)atof(cfg[3].sval);
268
269 return ret;
270 }
271
272 static char *validate_params(game_params *params)
273 {
274 if (params->width <= 0 && params->height <= 0)
275 return "Width and height must both be greater than zero";
276 if (params->width <= 0)
277 return "Width must be greater than zero";
278 if (params->height <= 0)
279 return "Height must be greater than zero";
280 if (params->width <= 1 && params->height <= 1)
281 return "At least one of width and height must be greater than one";
282 if (params->barrier_probability < 0)
283 return "Barrier probability may not be negative";
284 if (params->barrier_probability > 1)
285 return "Barrier probability may not be greater than 1";
286 return NULL;
287 }
288
289 /* ----------------------------------------------------------------------
290 * Randomly select a new game seed.
291 */
292
293 static char *new_game_seed(game_params *params, random_state *rs,
294 game_aux_info **aux)
295 {
296 /*
297 * The full description of a Net game is far too large to
298 * encode directly in the seed, so by default we'll have to go
299 * for the simple approach of providing a random-number seed.
300 *
301 * (This does not restrict me from _later on_ inventing a seed
302 * string syntax which can never be generated by this code -
303 * for example, strings beginning with a letter - allowing me
304 * to type in a precise game, and have new_game detect it and
305 * understand it and do something completely different.)
306 */
307 char buf[40];
308 sprintf(buf, "%lu", random_bits(rs, 32));
309 return dupstr(buf);
310 }
311
312 void game_free_aux_info(game_aux_info *aux)
313 {
314 assert(!"Shouldn't happen");
315 }
316
317 static char *validate_seed(game_params *params, char *seed)
318 {
319 /*
320 * Since any string at all will suffice to seed the RNG, there
321 * is no validation required.
322 */
323 return NULL;
324 }
325
326 /* ----------------------------------------------------------------------
327 * Construct an initial game state, given a seed and parameters.
328 */
329
330 static game_state *new_game(game_params *params, char *seed)
331 {
332 random_state *rs;
333 game_state *state;
334 tree234 *possibilities, *barriers;
335 int w, h, x, y, nbarriers;
336
337 assert(params->width > 0 && params->height > 0);
338 assert(params->width > 1 || params->height > 1);
339
340 /*
341 * Create a blank game state.
342 */
343 state = snew(game_state);
344 w = state->width = params->width;
345 h = state->height = params->height;
346 state->cx = state->width / 2;
347 state->cy = state->height / 2;
348 state->wrapping = params->wrapping;
349 state->last_rotate_dir = 0;
350 state->completed = FALSE;
351 state->tiles = snewn(state->width * state->height, unsigned char);
352 memset(state->tiles, 0, state->width * state->height);
353 state->barriers = snewn(state->width * state->height, unsigned char);
354 memset(state->barriers, 0, state->width * state->height);
355
356 /*
357 * Set up border barriers if this is a non-wrapping game.
358 */
359 if (!state->wrapping) {
360 for (x = 0; x < state->width; x++) {
361 barrier(state, x, 0) |= U;
362 barrier(state, x, state->height-1) |= D;
363 }
364 for (y = 0; y < state->height; y++) {
365 barrier(state, 0, y) |= L;
366 barrier(state, state->width-1, y) |= R;
367 }
368 }
369
370 /*
371 * Seed the internal random number generator.
372 */
373 rs = random_init(seed, strlen(seed));
374
375 /*
376 * Construct the unshuffled grid.
377 *
378 * To do this, we simply start at the centre point, repeatedly
379 * choose a random possibility out of the available ways to
380 * extend a used square into an unused one, and do it. After
381 * extending the third line out of a square, we remove the
382 * fourth from the possibilities list to avoid any full-cross
383 * squares (which would make the game too easy because they
384 * only have one orientation).
385 *
386 * The slightly worrying thing is the avoidance of full-cross
387 * squares. Can this cause our unsophisticated construction
388 * algorithm to paint itself into a corner, by getting into a
389 * situation where there are some unreached squares and the
390 * only way to reach any of them is to extend a T-piece into a
391 * full cross?
392 *
393 * Answer: no it can't, and here's a proof.
394 *
395 * Any contiguous group of such unreachable squares must be
396 * surrounded on _all_ sides by T-pieces pointing away from the
397 * group. (If not, then there is a square which can be extended
398 * into one of the `unreachable' ones, and so it wasn't
399 * unreachable after all.) In particular, this implies that
400 * each contiguous group of unreachable squares must be
401 * rectangular in shape (any deviation from that yields a
402 * non-T-piece next to an `unreachable' square).
403 *
404 * So we have a rectangle of unreachable squares, with T-pieces
405 * forming a solid border around the rectangle. The corners of
406 * that border must be connected (since every tile connects all
407 * the lines arriving in it), and therefore the border must
408 * form a closed loop around the rectangle.
409 *
410 * But this can't have happened in the first place, since we
411 * _know_ we've avoided creating closed loops! Hence, no such
412 * situation can ever arise, and the naive grid construction
413 * algorithm will guaranteeably result in a complete grid
414 * containing no unreached squares, no full crosses _and_ no
415 * closed loops. []
416 */
417 possibilities = newtree234(xyd_cmp);
418
419 if (state->cx+1 < state->width)
420 add234(possibilities, new_xyd(state->cx, state->cy, R));
421 if (state->cy-1 >= 0)
422 add234(possibilities, new_xyd(state->cx, state->cy, U));
423 if (state->cx-1 >= 0)
424 add234(possibilities, new_xyd(state->cx, state->cy, L));
425 if (state->cy+1 < state->height)
426 add234(possibilities, new_xyd(state->cx, state->cy, D));
427
428 while (count234(possibilities) > 0) {
429 int i;
430 struct xyd *xyd;
431 int x1, y1, d1, x2, y2, d2, d;
432
433 /*
434 * Extract a randomly chosen possibility from the list.
435 */
436 i = random_upto(rs, count234(possibilities));
437 xyd = delpos234(possibilities, i);
438 x1 = xyd->x;
439 y1 = xyd->y;
440 d1 = xyd->direction;
441 sfree(xyd);
442
443 OFFSET(x2, y2, x1, y1, d1, state);
444 d2 = F(d1);
445 #ifdef DEBUG
446 printf("picked (%d,%d,%c) <-> (%d,%d,%c)\n",
447 x1, y1, "0RU3L567D9abcdef"[d1], x2, y2, "0RU3L567D9abcdef"[d2]);
448 #endif
449
450 /*
451 * Make the connection. (We should be moving to an as yet
452 * unused tile.)
453 */
454 tile(state, x1, y1) |= d1;
455 assert(tile(state, x2, y2) == 0);
456 tile(state, x2, y2) |= d2;
457
458 /*
459 * If we have created a T-piece, remove its last
460 * possibility.
461 */
462 if (COUNT(tile(state, x1, y1)) == 3) {
463 struct xyd xyd1, *xydp;
464
465 xyd1.x = x1;
466 xyd1.y = y1;
467 xyd1.direction = 0x0F ^ tile(state, x1, y1);
468
469 xydp = find234(possibilities, &xyd1, NULL);
470
471 if (xydp) {
472 #ifdef DEBUG
473 printf("T-piece; removing (%d,%d,%c)\n",
474 xydp->x, xydp->y, "0RU3L567D9abcdef"[xydp->direction]);
475 #endif
476 del234(possibilities, xydp);
477 sfree(xydp);
478 }
479 }
480
481 /*
482 * Remove all other possibilities that were pointing at the
483 * tile we've just moved into.
484 */
485 for (d = 1; d < 0x10; d <<= 1) {
486 int x3, y3, d3;
487 struct xyd xyd1, *xydp;
488
489 OFFSET(x3, y3, x2, y2, d, state);
490 d3 = F(d);
491
492 xyd1.x = x3;
493 xyd1.y = y3;
494 xyd1.direction = d3;
495
496 xydp = find234(possibilities, &xyd1, NULL);
497
498 if (xydp) {
499 #ifdef DEBUG
500 printf("Loop avoidance; removing (%d,%d,%c)\n",
501 xydp->x, xydp->y, "0RU3L567D9abcdef"[xydp->direction]);
502 #endif
503 del234(possibilities, xydp);
504 sfree(xydp);
505 }
506 }
507
508 /*
509 * Add new possibilities to the list for moving _out_ of
510 * the tile we have just moved into.
511 */
512 for (d = 1; d < 0x10; d <<= 1) {
513 int x3, y3;
514
515 if (d == d2)
516 continue; /* we've got this one already */
517
518 if (!state->wrapping) {
519 if (d == U && y2 == 0)
520 continue;
521 if (d == D && y2 == state->height-1)
522 continue;
523 if (d == L && x2 == 0)
524 continue;
525 if (d == R && x2 == state->width-1)
526 continue;
527 }
528
529 OFFSET(x3, y3, x2, y2, d, state);
530
531 if (tile(state, x3, y3))
532 continue; /* this would create a loop */
533
534 #ifdef DEBUG
535 printf("New frontier; adding (%d,%d,%c)\n",
536 x2, y2, "0RU3L567D9abcdef"[d]);
537 #endif
538 add234(possibilities, new_xyd(x2, y2, d));
539 }
540 }
541 /* Having done that, we should have no possibilities remaining. */
542 assert(count234(possibilities) == 0);
543 freetree234(possibilities);
544
545 /*
546 * Now compute a list of the possible barrier locations.
547 */
548 barriers = newtree234(xyd_cmp);
549 for (y = 0; y < state->height; y++) {
550 for (x = 0; x < state->width; x++) {
551
552 if (!(tile(state, x, y) & R) &&
553 (state->wrapping || x < state->width-1))
554 add234(barriers, new_xyd(x, y, R));
555 if (!(tile(state, x, y) & D) &&
556 (state->wrapping || y < state->height-1))
557 add234(barriers, new_xyd(x, y, D));
558 }
559 }
560
561 /*
562 * Now shuffle the grid.
563 */
564 for (y = 0; y < state->height; y++) {
565 for (x = 0; x < state->width; x++) {
566 int orig = tile(state, x, y);
567 int rot = random_upto(rs, 4);
568 tile(state, x, y) = ROT(orig, rot);
569 }
570 }
571
572 /*
573 * And now choose barrier locations. (We carefully do this
574 * _after_ shuffling, so that changing the barrier rate in the
575 * params while keeping the game seed the same will give the
576 * same shuffled grid and _only_ change the barrier locations.
577 * Also the way we choose barrier locations, by repeatedly
578 * choosing one possibility from the list until we have enough,
579 * is designed to ensure that raising the barrier rate while
580 * keeping the seed the same will provide a superset of the
581 * previous barrier set - i.e. if you ask for 10 barriers, and
582 * then decide that's still too hard and ask for 20, you'll get
583 * the original 10 plus 10 more, rather than getting 20 new
584 * ones and the chance of remembering your first 10.)
585 */
586 nbarriers = (int)(params->barrier_probability * count234(barriers));
587 assert(nbarriers >= 0 && nbarriers <= count234(barriers));
588
589 while (nbarriers > 0) {
590 int i;
591 struct xyd *xyd;
592 int x1, y1, d1, x2, y2, d2;
593
594 /*
595 * Extract a randomly chosen barrier from the list.
596 */
597 i = random_upto(rs, count234(barriers));
598 xyd = delpos234(barriers, i);
599
600 assert(xyd != NULL);
601
602 x1 = xyd->x;
603 y1 = xyd->y;
604 d1 = xyd->direction;
605 sfree(xyd);
606
607 OFFSET(x2, y2, x1, y1, d1, state);
608 d2 = F(d1);
609
610 barrier(state, x1, y1) |= d1;
611 barrier(state, x2, y2) |= d2;
612
613 nbarriers--;
614 }
615
616 /*
617 * Clean up the rest of the barrier list.
618 */
619 {
620 struct xyd *xyd;
621
622 while ( (xyd = delpos234(barriers, 0)) != NULL)
623 sfree(xyd);
624
625 freetree234(barriers);
626 }
627
628 /*
629 * Set up the barrier corner flags, for drawing barriers
630 * prettily when they meet.
631 */
632 for (y = 0; y < state->height; y++) {
633 for (x = 0; x < state->width; x++) {
634 int dir;
635
636 for (dir = 1; dir < 0x10; dir <<= 1) {
637 int dir2 = A(dir);
638 int x1, y1, x2, y2, x3, y3;
639 int corner = FALSE;
640
641 if (!(barrier(state, x, y) & dir))
642 continue;
643
644 if (barrier(state, x, y) & dir2)
645 corner = TRUE;
646
647 x1 = x + X(dir), y1 = y + Y(dir);
648 if (x1 >= 0 && x1 < state->width &&
649 y1 >= 0 && y1 < state->height &&
650 (barrier(state, x1, y1) & dir2))
651 corner = TRUE;
652
653 x2 = x + X(dir2), y2 = y + Y(dir2);
654 if (x2 >= 0 && x2 < state->width &&
655 y2 >= 0 && y2 < state->height &&
656 (barrier(state, x2, y2) & dir))
657 corner = TRUE;
658
659 if (corner) {
660 barrier(state, x, y) |= (dir << 4);
661 if (x1 >= 0 && x1 < state->width &&
662 y1 >= 0 && y1 < state->height)
663 barrier(state, x1, y1) |= (A(dir) << 4);
664 if (x2 >= 0 && x2 < state->width &&
665 y2 >= 0 && y2 < state->height)
666 barrier(state, x2, y2) |= (C(dir) << 4);
667 x3 = x + X(dir) + X(dir2), y3 = y + Y(dir) + Y(dir2);
668 if (x3 >= 0 && x3 < state->width &&
669 y3 >= 0 && y3 < state->height)
670 barrier(state, x3, y3) |= (F(dir) << 4);
671 }
672 }
673 }
674 }
675
676 random_free(rs);
677
678 return state;
679 }
680
681 static game_state *dup_game(game_state *state)
682 {
683 game_state *ret;
684
685 ret = snew(game_state);
686 ret->width = state->width;
687 ret->height = state->height;
688 ret->cx = state->cx;
689 ret->cy = state->cy;
690 ret->wrapping = state->wrapping;
691 ret->completed = state->completed;
692 ret->last_rotate_dir = state->last_rotate_dir;
693 ret->tiles = snewn(state->width * state->height, unsigned char);
694 memcpy(ret->tiles, state->tiles, state->width * state->height);
695 ret->barriers = snewn(state->width * state->height, unsigned char);
696 memcpy(ret->barriers, state->barriers, state->width * state->height);
697
698 return ret;
699 }
700
701 static void free_game(game_state *state)
702 {
703 sfree(state->tiles);
704 sfree(state->barriers);
705 sfree(state);
706 }
707
708 static char *game_text_format(game_state *state)
709 {
710 return NULL;
711 }
712
713 /* ----------------------------------------------------------------------
714 * Utility routine.
715 */
716
717 /*
718 * Compute which squares are reachable from the centre square, as a
719 * quick visual aid to determining how close the game is to
720 * completion. This is also a simple way to tell if the game _is_
721 * completed - just call this function and see whether every square
722 * is marked active.
723 */
724 static unsigned char *compute_active(game_state *state)
725 {
726 unsigned char *active;
727 tree234 *todo;
728 struct xyd *xyd;
729
730 active = snewn(state->width * state->height, unsigned char);
731 memset(active, 0, state->width * state->height);
732
733 /*
734 * We only store (x,y) pairs in todo, but it's easier to reuse
735 * xyd_cmp and just store direction 0 every time.
736 */
737 todo = newtree234(xyd_cmp);
738 index(state, active, state->cx, state->cy) = ACTIVE;
739 add234(todo, new_xyd(state->cx, state->cy, 0));
740
741 while ( (xyd = delpos234(todo, 0)) != NULL) {
742 int x1, y1, d1, x2, y2, d2;
743
744 x1 = xyd->x;
745 y1 = xyd->y;
746 sfree(xyd);
747
748 for (d1 = 1; d1 < 0x10; d1 <<= 1) {
749 OFFSET(x2, y2, x1, y1, d1, state);
750 d2 = F(d1);
751
752 /*
753 * If the next tile in this direction is connected to
754 * us, and there isn't a barrier in the way, and it
755 * isn't already marked active, then mark it active and
756 * add it to the to-examine list.
757 */
758 if ((tile(state, x1, y1) & d1) &&
759 (tile(state, x2, y2) & d2) &&
760 !(barrier(state, x1, y1) & d1) &&
761 !index(state, active, x2, y2)) {
762 index(state, active, x2, y2) = ACTIVE;
763 add234(todo, new_xyd(x2, y2, 0));
764 }
765 }
766 }
767 /* Now we expect the todo list to have shrunk to zero size. */
768 assert(count234(todo) == 0);
769 freetree234(todo);
770
771 return active;
772 }
773
774 struct game_ui {
775 int cur_x, cur_y;
776 int cur_visible;
777 random_state *rs; /* used for jumbling */
778 };
779
780 static game_ui *new_ui(game_state *state)
781 {
782 void *seed;
783 int seedsize;
784 game_ui *ui = snew(game_ui);
785 ui->cur_x = state->width / 2;
786 ui->cur_y = state->height / 2;
787 ui->cur_visible = FALSE;
788 get_random_seed(&seed, &seedsize);
789 ui->rs = random_init(seed, seedsize);
790 sfree(seed);
791
792 return ui;
793 }
794
795 static void free_ui(game_ui *ui)
796 {
797 random_free(ui->rs);
798 sfree(ui);
799 }
800
801 /* ----------------------------------------------------------------------
802 * Process a move.
803 */
804 static game_state *make_move(game_state *state, game_ui *ui,
805 int x, int y, int button)
806 {
807 game_state *ret, *nullret;
808 int tx, ty, orig;
809
810 nullret = NULL;
811
812 if (button == LEFT_BUTTON ||
813 button == MIDDLE_BUTTON ||
814 button == RIGHT_BUTTON) {
815
816 if (ui->cur_visible) {
817 ui->cur_visible = FALSE;
818 nullret = state;
819 }
820
821 /*
822 * The button must have been clicked on a valid tile.
823 */
824 x -= WINDOW_OFFSET + TILE_BORDER;
825 y -= WINDOW_OFFSET + TILE_BORDER;
826 if (x < 0 || y < 0)
827 return nullret;
828 tx = x / TILE_SIZE;
829 ty = y / TILE_SIZE;
830 if (tx >= state->width || ty >= state->height)
831 return nullret;
832 if (x % TILE_SIZE >= TILE_SIZE - TILE_BORDER ||
833 y % TILE_SIZE >= TILE_SIZE - TILE_BORDER)
834 return nullret;
835 } else if (button == CURSOR_UP || button == CURSOR_DOWN ||
836 button == CURSOR_RIGHT || button == CURSOR_LEFT) {
837 if (button == CURSOR_UP && ui->cur_y > 0)
838 ui->cur_y--;
839 else if (button == CURSOR_DOWN && ui->cur_y < state->height-1)
840 ui->cur_y++;
841 else if (button == CURSOR_LEFT && ui->cur_x > 0)
842 ui->cur_x--;
843 else if (button == CURSOR_RIGHT && ui->cur_x < state->width-1)
844 ui->cur_x++;
845 else
846 return nullret; /* no cursor movement */
847 ui->cur_visible = TRUE;
848 return state; /* UI activity has occurred */
849 } else if (button == 'a' || button == 's' || button == 'd' ||
850 button == 'A' || button == 'S' || button == 'D') {
851 tx = ui->cur_x;
852 ty = ui->cur_y;
853 if (button == 'a' || button == 'A')
854 button = LEFT_BUTTON;
855 else if (button == 's' || button == 'S')
856 button = MIDDLE_BUTTON;
857 else if (button == 'd' || button == 'D')
858 button = RIGHT_BUTTON;
859 ui->cur_visible = TRUE;
860 } else if (button == 'j' || button == 'J') {
861 /* XXX should we have some mouse control for this? */
862 button = 'J'; /* canonify */
863 tx = ty = -1; /* shut gcc up :( */
864 } else
865 return nullret;
866
867 /*
868 * The middle button locks or unlocks a tile. (A locked tile
869 * cannot be turned, and is visually marked as being locked.
870 * This is a convenience for the player, so that once they are
871 * sure which way round a tile goes, they can lock it and thus
872 * avoid forgetting later on that they'd already done that one;
873 * and the locking also prevents them turning the tile by
874 * accident. If they change their mind, another middle click
875 * unlocks it.)
876 */
877 if (button == MIDDLE_BUTTON) {
878
879 ret = dup_game(state);
880 tile(ret, tx, ty) ^= LOCKED;
881 ret->last_rotate_dir = 0;
882 return ret;
883
884 } else if (button == LEFT_BUTTON || button == RIGHT_BUTTON) {
885
886 /*
887 * The left and right buttons have no effect if clicked on a
888 * locked tile.
889 */
890 if (tile(state, tx, ty) & LOCKED)
891 return nullret;
892
893 /*
894 * Otherwise, turn the tile one way or the other. Left button
895 * turns anticlockwise; right button turns clockwise.
896 */
897 ret = dup_game(state);
898 orig = tile(ret, tx, ty);
899 if (button == LEFT_BUTTON) {
900 tile(ret, tx, ty) = A(orig);
901 ret->last_rotate_dir = +1;
902 } else {
903 tile(ret, tx, ty) = C(orig);
904 ret->last_rotate_dir = -1;
905 }
906
907 } else if (button == 'J') {
908
909 /*
910 * Jumble all unlocked tiles to random orientations.
911 */
912 int jx, jy;
913 ret = dup_game(state);
914 for (jy = 0; jy < ret->height; jy++) {
915 for (jx = 0; jx < ret->width; jx++) {
916 if (!(tile(ret, jx, jy) & LOCKED)) {
917 int rot = random_upto(ui->rs, 4);
918 orig = tile(ret, jx, jy);
919 tile(ret, jx, jy) = ROT(orig, rot);
920 }
921 }
922 }
923 ret->last_rotate_dir = 0; /* suppress animation */
924
925 } else assert(0);
926
927 /*
928 * Check whether the game has been completed.
929 */
930 {
931 unsigned char *active = compute_active(ret);
932 int x1, y1;
933 int complete = TRUE;
934
935 for (x1 = 0; x1 < ret->width; x1++)
936 for (y1 = 0; y1 < ret->height; y1++)
937 if (!index(ret, active, x1, y1)) {
938 complete = FALSE;
939 goto break_label; /* break out of two loops at once */
940 }
941 break_label:
942
943 sfree(active);
944
945 if (complete)
946 ret->completed = TRUE;
947 }
948
949 return ret;
950 }
951
952 /* ----------------------------------------------------------------------
953 * Routines for drawing the game position on the screen.
954 */
955
956 struct game_drawstate {
957 int started;
958 int width, height;
959 unsigned char *visible;
960 };
961
962 static game_drawstate *game_new_drawstate(game_state *state)
963 {
964 game_drawstate *ds = snew(game_drawstate);
965
966 ds->started = FALSE;
967 ds->width = state->width;
968 ds->height = state->height;
969 ds->visible = snewn(state->width * state->height, unsigned char);
970 memset(ds->visible, 0xFF, state->width * state->height);
971
972 return ds;
973 }
974
975 static void game_free_drawstate(game_drawstate *ds)
976 {
977 sfree(ds->visible);
978 sfree(ds);
979 }
980
981 static void game_size(game_params *params, int *x, int *y)
982 {
983 *x = WINDOW_OFFSET * 2 + TILE_SIZE * params->width + TILE_BORDER;
984 *y = WINDOW_OFFSET * 2 + TILE_SIZE * params->height + TILE_BORDER;
985 }
986
987 static float *game_colours(frontend *fe, game_state *state, int *ncolours)
988 {
989 float *ret;
990
991 ret = snewn(NCOLOURS * 3, float);
992 *ncolours = NCOLOURS;
993
994 /*
995 * Basic background colour is whatever the front end thinks is
996 * a sensible default.
997 */
998 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
999
1000 /*
1001 * Wires are black.
1002 */
1003 ret[COL_WIRE * 3 + 0] = 0.0F;
1004 ret[COL_WIRE * 3 + 1] = 0.0F;
1005 ret[COL_WIRE * 3 + 2] = 0.0F;
1006
1007 /*
1008 * Powered wires and powered endpoints are cyan.
1009 */
1010 ret[COL_POWERED * 3 + 0] = 0.0F;
1011 ret[COL_POWERED * 3 + 1] = 1.0F;
1012 ret[COL_POWERED * 3 + 2] = 1.0F;
1013
1014 /*
1015 * Barriers are red.
1016 */
1017 ret[COL_BARRIER * 3 + 0] = 1.0F;
1018 ret[COL_BARRIER * 3 + 1] = 0.0F;
1019 ret[COL_BARRIER * 3 + 2] = 0.0F;
1020
1021 /*
1022 * Unpowered endpoints are blue.
1023 */
1024 ret[COL_ENDPOINT * 3 + 0] = 0.0F;
1025 ret[COL_ENDPOINT * 3 + 1] = 0.0F;
1026 ret[COL_ENDPOINT * 3 + 2] = 1.0F;
1027
1028 /*
1029 * Tile borders are a darker grey than the background.
1030 */
1031 ret[COL_BORDER * 3 + 0] = 0.5F * ret[COL_BACKGROUND * 3 + 0];
1032 ret[COL_BORDER * 3 + 1] = 0.5F * ret[COL_BACKGROUND * 3 + 1];
1033 ret[COL_BORDER * 3 + 2] = 0.5F * ret[COL_BACKGROUND * 3 + 2];
1034
1035 /*
1036 * Locked tiles are a grey in between those two.
1037 */
1038 ret[COL_LOCKED * 3 + 0] = 0.75F * ret[COL_BACKGROUND * 3 + 0];
1039 ret[COL_LOCKED * 3 + 1] = 0.75F * ret[COL_BACKGROUND * 3 + 1];
1040 ret[COL_LOCKED * 3 + 2] = 0.75F * ret[COL_BACKGROUND * 3 + 2];
1041
1042 return ret;
1043 }
1044
1045 static void draw_thick_line(frontend *fe, int x1, int y1, int x2, int y2,
1046 int colour)
1047 {
1048 draw_line(fe, x1-1, y1, x2-1, y2, COL_WIRE);
1049 draw_line(fe, x1+1, y1, x2+1, y2, COL_WIRE);
1050 draw_line(fe, x1, y1-1, x2, y2-1, COL_WIRE);
1051 draw_line(fe, x1, y1+1, x2, y2+1, COL_WIRE);
1052 draw_line(fe, x1, y1, x2, y2, colour);
1053 }
1054
1055 static void draw_rect_coords(frontend *fe, int x1, int y1, int x2, int y2,
1056 int colour)
1057 {
1058 int mx = (x1 < x2 ? x1 : x2);
1059 int my = (y1 < y2 ? y1 : y2);
1060 int dx = (x2 + x1 - 2*mx + 1);
1061 int dy = (y2 + y1 - 2*my + 1);
1062
1063 draw_rect(fe, mx, my, dx, dy, colour);
1064 }
1065
1066 static void draw_barrier_corner(frontend *fe, int x, int y, int dir, int phase)
1067 {
1068 int bx = WINDOW_OFFSET + TILE_SIZE * x;
1069 int by = WINDOW_OFFSET + TILE_SIZE * y;
1070 int x1, y1, dx, dy, dir2;
1071
1072 dir >>= 4;
1073
1074 dir2 = A(dir);
1075 dx = X(dir) + X(dir2);
1076 dy = Y(dir) + Y(dir2);
1077 x1 = (dx > 0 ? TILE_SIZE+TILE_BORDER-1 : 0);
1078 y1 = (dy > 0 ? TILE_SIZE+TILE_BORDER-1 : 0);
1079
1080 if (phase == 0) {
1081 draw_rect_coords(fe, bx+x1, by+y1,
1082 bx+x1-TILE_BORDER*dx, by+y1-(TILE_BORDER-1)*dy,
1083 COL_WIRE);
1084 draw_rect_coords(fe, bx+x1, by+y1,
1085 bx+x1-(TILE_BORDER-1)*dx, by+y1-TILE_BORDER*dy,
1086 COL_WIRE);
1087 } else {
1088 draw_rect_coords(fe, bx+x1, by+y1,
1089 bx+x1-(TILE_BORDER-1)*dx, by+y1-(TILE_BORDER-1)*dy,
1090 COL_BARRIER);
1091 }
1092 }
1093
1094 static void draw_barrier(frontend *fe, int x, int y, int dir, int phase)
1095 {
1096 int bx = WINDOW_OFFSET + TILE_SIZE * x;
1097 int by = WINDOW_OFFSET + TILE_SIZE * y;
1098 int x1, y1, w, h;
1099
1100 x1 = (X(dir) > 0 ? TILE_SIZE : X(dir) == 0 ? TILE_BORDER : 0);
1101 y1 = (Y(dir) > 0 ? TILE_SIZE : Y(dir) == 0 ? TILE_BORDER : 0);
1102 w = (X(dir) ? TILE_BORDER : TILE_SIZE - TILE_BORDER);
1103 h = (Y(dir) ? TILE_BORDER : TILE_SIZE - TILE_BORDER);
1104
1105 if (phase == 0) {
1106 draw_rect(fe, bx+x1-X(dir), by+y1-Y(dir), w, h, COL_WIRE);
1107 } else {
1108 draw_rect(fe, bx+x1, by+y1, w, h, COL_BARRIER);
1109 }
1110 }
1111
1112 static void draw_tile(frontend *fe, game_state *state, int x, int y, int tile,
1113 float angle, int cursor)
1114 {
1115 int bx = WINDOW_OFFSET + TILE_SIZE * x;
1116 int by = WINDOW_OFFSET + TILE_SIZE * y;
1117 float matrix[4];
1118 float cx, cy, ex, ey, tx, ty;
1119 int dir, col, phase;
1120
1121 /*
1122 * When we draw a single tile, we must draw everything up to
1123 * and including the borders around the tile. This means that
1124 * if the neighbouring tiles have connections to those borders,
1125 * we must draw those connections on the borders themselves.
1126 *
1127 * This would be terribly fiddly if we ever had to draw a tile
1128 * while its neighbour was in mid-rotate, because we'd have to
1129 * arrange to _know_ that the neighbour was being rotated and
1130 * hence had an anomalous effect on the redraw of this tile.
1131 * Fortunately, the drawing algorithm avoids ever calling us in
1132 * this circumstance: we're either drawing lots of straight
1133 * tiles at game start or after a move is complete, or we're
1134 * repeatedly drawing only the rotating tile. So no problem.
1135 */
1136
1137 /*
1138 * So. First blank the tile out completely: draw a big
1139 * rectangle in border colour, and a smaller rectangle in
1140 * background colour to fill it in.
1141 */
1142 draw_rect(fe, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER,
1143 COL_BORDER);
1144 draw_rect(fe, bx+TILE_BORDER, by+TILE_BORDER,
1145 TILE_SIZE-TILE_BORDER, TILE_SIZE-TILE_BORDER,
1146 tile & LOCKED ? COL_LOCKED : COL_BACKGROUND);
1147
1148 /*
1149 * Draw an inset outline rectangle as a cursor, in whichever of
1150 * COL_LOCKED and COL_BACKGROUND we aren't currently drawing
1151 * in.
1152 */
1153 if (cursor) {
1154 draw_line(fe, bx+TILE_SIZE/8, by+TILE_SIZE/8,
1155 bx+TILE_SIZE/8, by+TILE_SIZE-TILE_SIZE/8,
1156 tile & LOCKED ? COL_BACKGROUND : COL_LOCKED);
1157 draw_line(fe, bx+TILE_SIZE/8, by+TILE_SIZE/8,
1158 bx+TILE_SIZE-TILE_SIZE/8, by+TILE_SIZE/8,
1159 tile & LOCKED ? COL_BACKGROUND : COL_LOCKED);
1160 draw_line(fe, bx+TILE_SIZE-TILE_SIZE/8, by+TILE_SIZE/8,
1161 bx+TILE_SIZE-TILE_SIZE/8, by+TILE_SIZE-TILE_SIZE/8,
1162 tile & LOCKED ? COL_BACKGROUND : COL_LOCKED);
1163 draw_line(fe, bx+TILE_SIZE/8, by+TILE_SIZE-TILE_SIZE/8,
1164 bx+TILE_SIZE-TILE_SIZE/8, by+TILE_SIZE-TILE_SIZE/8,
1165 tile & LOCKED ? COL_BACKGROUND : COL_LOCKED);
1166 }
1167
1168 /*
1169 * Set up the rotation matrix.
1170 */
1171 matrix[0] = (float)cos(angle * PI / 180.0);
1172 matrix[1] = (float)-sin(angle * PI / 180.0);
1173 matrix[2] = (float)sin(angle * PI / 180.0);
1174 matrix[3] = (float)cos(angle * PI / 180.0);
1175
1176 /*
1177 * Draw the wires.
1178 */
1179 cx = cy = TILE_BORDER + (TILE_SIZE-TILE_BORDER) / 2.0F - 0.5F;
1180 col = (tile & ACTIVE ? COL_POWERED : COL_WIRE);
1181 for (dir = 1; dir < 0x10; dir <<= 1) {
1182 if (tile & dir) {
1183 ex = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * X(dir);
1184 ey = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * Y(dir);
1185 MATMUL(tx, ty, matrix, ex, ey);
1186 draw_thick_line(fe, bx+(int)cx, by+(int)cy,
1187 bx+(int)(cx+tx), by+(int)(cy+ty),
1188 COL_WIRE);
1189 }
1190 }
1191 for (dir = 1; dir < 0x10; dir <<= 1) {
1192 if (tile & dir) {
1193 ex = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * X(dir);
1194 ey = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * Y(dir);
1195 MATMUL(tx, ty, matrix, ex, ey);
1196 draw_line(fe, bx+(int)cx, by+(int)cy,
1197 bx+(int)(cx+tx), by+(int)(cy+ty), col);
1198 }
1199 }
1200
1201 /*
1202 * Draw the box in the middle. We do this in blue if the tile
1203 * is an unpowered endpoint, in cyan if the tile is a powered
1204 * endpoint, in black if the tile is the centrepiece, and
1205 * otherwise not at all.
1206 */
1207 col = -1;
1208 if (x == state->cx && y == state->cy)
1209 col = COL_WIRE;
1210 else if (COUNT(tile) == 1) {
1211 col = (tile & ACTIVE ? COL_POWERED : COL_ENDPOINT);
1212 }
1213 if (col >= 0) {
1214 int i, points[8];
1215
1216 points[0] = +1; points[1] = +1;
1217 points[2] = +1; points[3] = -1;
1218 points[4] = -1; points[5] = -1;
1219 points[6] = -1; points[7] = +1;
1220
1221 for (i = 0; i < 8; i += 2) {
1222 ex = (TILE_SIZE * 0.24F) * points[i];
1223 ey = (TILE_SIZE * 0.24F) * points[i+1];
1224 MATMUL(tx, ty, matrix, ex, ey);
1225 points[i] = bx+(int)(cx+tx);
1226 points[i+1] = by+(int)(cy+ty);
1227 }
1228
1229 draw_polygon(fe, points, 4, TRUE, col);
1230 draw_polygon(fe, points, 4, FALSE, COL_WIRE);
1231 }
1232
1233 /*
1234 * Draw the points on the border if other tiles are connected
1235 * to us.
1236 */
1237 for (dir = 1; dir < 0x10; dir <<= 1) {
1238 int dx, dy, px, py, lx, ly, vx, vy, ox, oy;
1239
1240 dx = X(dir);
1241 dy = Y(dir);
1242
1243 ox = x + dx;
1244 oy = y + dy;
1245
1246 if (ox < 0 || ox >= state->width || oy < 0 || oy >= state->height)
1247 continue;
1248
1249 if (!(tile(state, ox, oy) & F(dir)))
1250 continue;
1251
1252 px = bx + (int)(dx>0 ? TILE_SIZE + TILE_BORDER - 1 : dx<0 ? 0 : cx);
1253 py = by + (int)(dy>0 ? TILE_SIZE + TILE_BORDER - 1 : dy<0 ? 0 : cy);
1254 lx = dx * (TILE_BORDER-1);
1255 ly = dy * (TILE_BORDER-1);
1256 vx = (dy ? 1 : 0);
1257 vy = (dx ? 1 : 0);
1258
1259 if (angle == 0.0 && (tile & dir)) {
1260 /*
1261 * If we are fully connected to the other tile, we must
1262 * draw right across the tile border. (We can use our
1263 * own ACTIVE state to determine what colour to do this
1264 * in: if we are fully connected to the other tile then
1265 * the two ACTIVE states will be the same.)
1266 */
1267 draw_rect_coords(fe, px-vx, py-vy, px+lx+vx, py+ly+vy, COL_WIRE);
1268 draw_rect_coords(fe, px, py, px+lx, py+ly,
1269 (tile & ACTIVE) ? COL_POWERED : COL_WIRE);
1270 } else {
1271 /*
1272 * The other tile extends into our border, but isn't
1273 * actually connected to us. Just draw a single black
1274 * dot.
1275 */
1276 draw_rect_coords(fe, px, py, px, py, COL_WIRE);
1277 }
1278 }
1279
1280 /*
1281 * Draw barrier corners, and then barriers.
1282 */
1283 for (phase = 0; phase < 2; phase++) {
1284 for (dir = 1; dir < 0x10; dir <<= 1)
1285 if (barrier(state, x, y) & (dir << 4))
1286 draw_barrier_corner(fe, x, y, dir << 4, phase);
1287 for (dir = 1; dir < 0x10; dir <<= 1)
1288 if (barrier(state, x, y) & dir)
1289 draw_barrier(fe, x, y, dir, phase);
1290 }
1291
1292 draw_update(fe, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER);
1293 }
1294
1295 static void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate,
1296 game_state *state, int dir, game_ui *ui, float t, float ft)
1297 {
1298 int x, y, tx, ty, frame, last_rotate_dir;
1299 unsigned char *active;
1300 float angle = 0.0;
1301
1302 /*
1303 * Clear the screen and draw the exterior barrier lines if this
1304 * is our first call.
1305 */
1306 if (!ds->started) {
1307 int phase;
1308
1309 ds->started = TRUE;
1310
1311 draw_rect(fe, 0, 0,
1312 WINDOW_OFFSET * 2 + TILE_SIZE * state->width + TILE_BORDER,
1313 WINDOW_OFFSET * 2 + TILE_SIZE * state->height + TILE_BORDER,
1314 COL_BACKGROUND);
1315 draw_update(fe, 0, 0,
1316 WINDOW_OFFSET*2 + TILE_SIZE*state->width + TILE_BORDER,
1317 WINDOW_OFFSET*2 + TILE_SIZE*state->height + TILE_BORDER);
1318
1319 for (phase = 0; phase < 2; phase++) {
1320
1321 for (x = 0; x < ds->width; x++) {
1322 if (barrier(state, x, 0) & UL)
1323 draw_barrier_corner(fe, x, -1, LD, phase);
1324 if (barrier(state, x, 0) & RU)
1325 draw_barrier_corner(fe, x, -1, DR, phase);
1326 if (barrier(state, x, 0) & U)
1327 draw_barrier(fe, x, -1, D, phase);
1328 if (barrier(state, x, ds->height-1) & DR)
1329 draw_barrier_corner(fe, x, ds->height, RU, phase);
1330 if (barrier(state, x, ds->height-1) & LD)
1331 draw_barrier_corner(fe, x, ds->height, UL, phase);
1332 if (barrier(state, x, ds->height-1) & D)
1333 draw_barrier(fe, x, ds->height, U, phase);
1334 }
1335
1336 for (y = 0; y < ds->height; y++) {
1337 if (barrier(state, 0, y) & UL)
1338 draw_barrier_corner(fe, -1, y, RU, phase);
1339 if (barrier(state, 0, y) & LD)
1340 draw_barrier_corner(fe, -1, y, DR, phase);
1341 if (barrier(state, 0, y) & L)
1342 draw_barrier(fe, -1, y, R, phase);
1343 if (barrier(state, ds->width-1, y) & RU)
1344 draw_barrier_corner(fe, ds->width, y, UL, phase);
1345 if (barrier(state, ds->width-1, y) & DR)
1346 draw_barrier_corner(fe, ds->width, y, LD, phase);
1347 if (barrier(state, ds->width-1, y) & R)
1348 draw_barrier(fe, ds->width, y, L, phase);
1349 }
1350 }
1351 }
1352
1353 tx = ty = -1;
1354 last_rotate_dir = dir==-1 ? oldstate->last_rotate_dir :
1355 state->last_rotate_dir;
1356 if (oldstate && (t < ROTATE_TIME) && last_rotate_dir) {
1357 /*
1358 * We're animating a single tile rotation. Find the turning tile,
1359 * if any.
1360 */
1361 for (x = 0; x < oldstate->width; x++)
1362 for (y = 0; y < oldstate->height; y++)
1363 if ((tile(oldstate, x, y) ^ tile(state, x, y)) & 0xF) {
1364 tx = x, ty = y;
1365 goto break_label; /* leave both loops at once */
1366 }
1367 break_label:
1368
1369 if (tx >= 0) {
1370 angle = last_rotate_dir * dir * 90.0F * (t / ROTATE_TIME);
1371 state = oldstate;
1372 }
1373 }
1374
1375 frame = -1;
1376 if (ft > 0) {
1377 /*
1378 * We're animating a completion flash. Find which frame
1379 * we're at.
1380 */
1381 frame = (int)(ft / FLASH_FRAME);
1382 }
1383
1384 /*
1385 * Draw any tile which differs from the way it was last drawn.
1386 */
1387 active = compute_active(state);
1388
1389 for (x = 0; x < ds->width; x++)
1390 for (y = 0; y < ds->height; y++) {
1391 unsigned char c = tile(state, x, y) | index(state, active, x, y);
1392
1393 /*
1394 * In a completion flash, we adjust the LOCKED bit
1395 * depending on our distance from the centre point and
1396 * the frame number.
1397 */
1398 if (frame >= 0) {
1399 int xdist, ydist, dist;
1400 xdist = (x < state->cx ? state->cx - x : x - state->cx);
1401 ydist = (y < state->cy ? state->cy - y : y - state->cy);
1402 dist = (xdist > ydist ? xdist : ydist);
1403
1404 if (frame >= dist && frame < dist+4) {
1405 int lock = (frame - dist) & 1;
1406 lock = lock ? LOCKED : 0;
1407 c = (c &~ LOCKED) | lock;
1408 }
1409 }
1410
1411 if (index(state, ds->visible, x, y) != c ||
1412 index(state, ds->visible, x, y) == 0xFF ||
1413 (x == tx && y == ty) ||
1414 (ui->cur_visible && x == ui->cur_x && y == ui->cur_y)) {
1415 draw_tile(fe, state, x, y, c,
1416 (x == tx && y == ty ? angle : 0.0F),
1417 (ui->cur_visible && x == ui->cur_x && y == ui->cur_y));
1418 if ((x == tx && y == ty) ||
1419 (ui->cur_visible && x == ui->cur_x && y == ui->cur_y))
1420 index(state, ds->visible, x, y) = 0xFF;
1421 else
1422 index(state, ds->visible, x, y) = c;
1423 }
1424 }
1425
1426 /*
1427 * Update the status bar.
1428 */
1429 {
1430 char statusbuf[256];
1431 int i, n, a;
1432
1433 n = state->width * state->height;
1434 for (i = a = 0; i < n; i++)
1435 if (active[i])
1436 a++;
1437
1438 sprintf(statusbuf, "%sActive: %d/%d",
1439 (state->completed ? "COMPLETED! " : ""), a, n);
1440
1441 status_bar(fe, statusbuf);
1442 }
1443
1444 sfree(active);
1445 }
1446
1447 static float game_anim_length(game_state *oldstate,
1448 game_state *newstate, int dir)
1449 {
1450 int x, y, last_rotate_dir;
1451
1452 /*
1453 * Don't animate if last_rotate_dir is zero.
1454 */
1455 last_rotate_dir = dir==-1 ? oldstate->last_rotate_dir :
1456 newstate->last_rotate_dir;
1457 if (last_rotate_dir) {
1458
1459 /*
1460 * If there's a tile which has been rotated, allow time to
1461 * animate its rotation.
1462 */
1463 for (x = 0; x < oldstate->width; x++)
1464 for (y = 0; y < oldstate->height; y++)
1465 if ((tile(oldstate, x, y) ^ tile(newstate, x, y)) & 0xF) {
1466 return ROTATE_TIME;
1467 }
1468
1469 }
1470
1471 return 0.0F;
1472 }
1473
1474 static float game_flash_length(game_state *oldstate,
1475 game_state *newstate, int dir)
1476 {
1477 /*
1478 * If the game has just been completed, we display a completion
1479 * flash.
1480 */
1481 if (!oldstate->completed && newstate->completed) {
1482 int size;
1483 size = 0;
1484 if (size < newstate->cx+1)
1485 size = newstate->cx+1;
1486 if (size < newstate->cy+1)
1487 size = newstate->cy+1;
1488 if (size < newstate->width - newstate->cx)
1489 size = newstate->width - newstate->cx;
1490 if (size < newstate->height - newstate->cy)
1491 size = newstate->height - newstate->cy;
1492 return FLASH_FRAME * (size+4);
1493 }
1494
1495 return 0.0F;
1496 }
1497
1498 static int game_wants_statusbar(void)
1499 {
1500 return TRUE;
1501 }
1502
1503 #ifdef COMBINED
1504 #define thegame net
1505 #endif
1506
1507 const struct game thegame = {
1508 "Net", "games.net",
1509 default_params,
1510 game_fetch_preset,
1511 decode_params,
1512 encode_params,
1513 free_params,
1514 dup_params,
1515 TRUE, game_configure, custom_params,
1516 validate_params,
1517 new_game_seed,
1518 game_free_aux_info,
1519 validate_seed,
1520 new_game,
1521 dup_game,
1522 free_game,
1523 FALSE, game_text_format,
1524 new_ui,
1525 free_ui,
1526 make_move,
1527 game_size,
1528 game_colours,
1529 game_new_drawstate,
1530 game_free_drawstate,
1531 game_redraw,
1532 game_anim_length,
1533 game_flash_length,
1534 game_wants_statusbar,
1535 };