Bridges solver fix: in map_update_possibles, collect values from
[sgt/puzzles] / bridges.c
1 /*
2 * bridges.c: Implementation of the Nikoli game 'Bridges'.
3 *
4 * Things still to do:
5 *
6 * * write a recursive solver?
7 */
8
9 #include <stdio.h>
10 #include <stdlib.h>
11 #include <string.h>
12 #include <assert.h>
13 #include <ctype.h>
14 #include <math.h>
15
16 #include "puzzles.h"
17
18 /* Turn this on for hints about which lines are considered possibilities. */
19 #undef DRAW_GRID
20 #undef DRAW_DSF
21
22 /* --- structures for params, state, etc. --- */
23
24 #define MAX_BRIDGES 4
25
26 #define PREFERRED_TILE_SIZE 24
27 #define TILE_SIZE (ds->tilesize)
28 #define BORDER (TILE_SIZE / 2)
29
30 #define COORD(x) ( (x) * TILE_SIZE + BORDER )
31 #define FROMCOORD(x) ( ((x) - BORDER + TILE_SIZE) / TILE_SIZE - 1 )
32
33 #define FLASH_TIME 0.50F
34
35 enum {
36 COL_BACKGROUND,
37 COL_FOREGROUND,
38 COL_HIGHLIGHT, COL_LOWLIGHT,
39 COL_SELECTED, COL_MARK,
40 COL_HINT, COL_GRID,
41 COL_WARNING,
42 COL_CURSOR,
43 NCOLOURS
44 };
45
46 struct game_params {
47 int w, h, maxb;
48 int islands, expansion; /* %age of island squares, %age chance of expansion */
49 int allowloops, difficulty;
50 };
51
52 /* general flags used by all structs */
53 #define G_ISLAND 0x0001
54 #define G_LINEV 0x0002 /* contains a vert. line */
55 #define G_LINEH 0x0004 /* contains a horiz. line (mutex with LINEV) */
56 #define G_LINE (G_LINEV|G_LINEH)
57 #define G_MARKV 0x0008
58 #define G_MARKH 0x0010
59 #define G_MARK (G_MARKV|G_MARKH)
60 #define G_NOLINEV 0x0020
61 #define G_NOLINEH 0x0040
62 #define G_NOLINE (G_NOLINEV|G_NOLINEH)
63
64 /* flags used by the drawstate */
65 #define G_ISSEL 0x0080
66 #define G_REDRAW 0x0100
67 #define G_FLASH 0x0200
68 #define G_WARN 0x0400
69 #define G_CURSOR 0x0800
70
71 /* flags used by the solver etc. */
72 #define G_SWEEP 0x1000
73
74 #define G_FLAGSH (G_LINEH|G_MARKH|G_NOLINEH)
75 #define G_FLAGSV (G_LINEV|G_MARKV|G_NOLINEV)
76
77 typedef unsigned int grid_type; /* change me later if we invent > 16 bits of flags. */
78
79 struct solver_state {
80 int *dsf, *tmpdsf;
81 int refcount;
82 };
83
84 /* state->gridi is an optimisation; it stores the pointer to the island
85 * structs indexed by (x,y). It's not strictly necessary (we could use
86 * find234 instead), but Purify showed that board generation (mostly the solver)
87 * was spending 60% of its time in find234. */
88
89 struct surrounds { /* cloned from lightup.c */
90 struct { int x, y, dx, dy, off; } points[4];
91 int npoints, nislands;
92 };
93
94 struct island {
95 game_state *state;
96 int x, y, count;
97 struct surrounds adj;
98 };
99
100 struct game_state {
101 int w, h, completed, solved, allowloops, maxb;
102 grid_type *grid, *scratch;
103 struct island *islands;
104 int n_islands, n_islands_alloc;
105 game_params params; /* used by the aux solver. */
106 #define N_WH_ARRAYS 5
107 char *wha, *possv, *possh, *lines, *maxv, *maxh;
108 struct island **gridi;
109 struct solver_state *solver; /* refcounted */
110 };
111
112 #define GRIDSZ(s) ((s)->w * (s)->h * sizeof(grid_type))
113
114 #define INGRID(s,x,y) ((x) >= 0 && (x) < (s)->w && (y) >= 0 && (y) < (s)->h)
115
116 #define DINDEX(x,y) ((y)*state->w + (x))
117
118 #define INDEX(s,g,x,y) ((s)->g[(y)*((s)->w) + (x)])
119 #define IDX(s,g,i) ((s)->g[(i)])
120 #define GRID(s,x,y) INDEX(s,grid,x,y)
121 #define SCRATCH(s,x,y) INDEX(s,scratch,x,y)
122 #define POSSIBLES(s,dx,x,y) ((dx) ? (INDEX(s,possh,x,y)) : (INDEX(s,possv,x,y)))
123 #define MAXIMUM(s,dx,x,y) ((dx) ? (INDEX(s,maxh,x,y)) : (INDEX(s,maxv,x,y)))
124
125 #define GRIDCOUNT(s,x,y,f) ((GRID(s,x,y) & (f)) ? (INDEX(s,lines,x,y)) : 0)
126
127 #define WITHIN2(x,min,max) (((x) < (min)) ? 0 : (((x) > (max)) ? 0 : 1))
128 #define WITHIN(x,min,max) ((min) > (max) ? \
129 WITHIN2(x,max,min) : WITHIN2(x,min,max))
130
131 /* --- island struct and tree support functions --- */
132
133 #define ISLAND_ORTH(is,j,f,df) \
134 (is->f + (is->adj.points[(j)].off*is->adj.points[(j)].df))
135
136 #define ISLAND_ORTHX(is,j) ISLAND_ORTH(is,j,x,dx)
137 #define ISLAND_ORTHY(is,j) ISLAND_ORTH(is,j,y,dy)
138
139 static void fixup_islands_for_realloc(game_state *state)
140 {
141 int i;
142
143 for (i = 0; i < state->w*state->h; i++) state->gridi[i] = NULL;
144 for (i = 0; i < state->n_islands; i++) {
145 struct island *is = &state->islands[i];
146 is->state = state;
147 INDEX(state, gridi, is->x, is->y) = is;
148 }
149 }
150
151 static int game_can_format_as_text_now(game_params *params)
152 {
153 return TRUE;
154 }
155
156 static char *game_text_format(game_state *state)
157 {
158 int x, y, len, nl;
159 char *ret, *p;
160 struct island *is;
161 grid_type grid;
162
163 len = (state->h) * (state->w+1) + 1;
164 ret = snewn(len, char);
165 p = ret;
166
167 for (y = 0; y < state->h; y++) {
168 for (x = 0; x < state->w; x++) {
169 grid = GRID(state,x,y);
170 nl = INDEX(state,lines,x,y);
171 is = INDEX(state, gridi, x, y);
172 if (is) {
173 *p++ = '0' + is->count;
174 } else if (grid & G_LINEV) {
175 *p++ = (nl > 1) ? '"' : (nl == 1) ? '|' : '!'; /* gaah, want a double-bar. */
176 } else if (grid & G_LINEH) {
177 *p++ = (nl > 1) ? '=' : (nl == 1) ? '-' : '~';
178 } else {
179 *p++ = '.';
180 }
181 }
182 *p++ = '\n';
183 }
184 *p++ = '\0';
185
186 assert(p - ret == len);
187 return ret;
188 }
189
190 static void debug_state(game_state *state)
191 {
192 char *textversion = game_text_format(state);
193 debug(("%s", textversion));
194 sfree(textversion);
195 }
196
197 /*static void debug_possibles(game_state *state)
198 {
199 int x, y;
200 debug(("possh followed by possv\n"));
201 for (y = 0; y < state->h; y++) {
202 for (x = 0; x < state->w; x++) {
203 debug(("%d", POSSIBLES(state, 1, x, y)));
204 }
205 debug((" "));
206 for (x = 0; x < state->w; x++) {
207 debug(("%d", POSSIBLES(state, 0, x, y)));
208 }
209 debug(("\n"));
210 }
211 debug(("\n"));
212 for (y = 0; y < state->h; y++) {
213 for (x = 0; x < state->w; x++) {
214 debug(("%d", MAXIMUM(state, 1, x, y)));
215 }
216 debug((" "));
217 for (x = 0; x < state->w; x++) {
218 debug(("%d", MAXIMUM(state, 0, x, y)));
219 }
220 debug(("\n"));
221 }
222 debug(("\n"));
223 }*/
224
225 static void island_set_surrounds(struct island *is)
226 {
227 assert(INGRID(is->state,is->x,is->y));
228 is->adj.npoints = is->adj.nislands = 0;
229 #define ADDPOINT(cond,ddx,ddy) do {\
230 if (cond) { \
231 is->adj.points[is->adj.npoints].x = is->x+(ddx); \
232 is->adj.points[is->adj.npoints].y = is->y+(ddy); \
233 is->adj.points[is->adj.npoints].dx = (ddx); \
234 is->adj.points[is->adj.npoints].dy = (ddy); \
235 is->adj.points[is->adj.npoints].off = 0; \
236 is->adj.npoints++; \
237 } } while(0)
238 ADDPOINT(is->x > 0, -1, 0);
239 ADDPOINT(is->x < (is->state->w-1), +1, 0);
240 ADDPOINT(is->y > 0, 0, -1);
241 ADDPOINT(is->y < (is->state->h-1), 0, +1);
242 }
243
244 static void island_find_orthogonal(struct island *is)
245 {
246 /* fills in the rest of the 'surrounds' structure, assuming
247 * all other islands are now in place. */
248 int i, x, y, dx, dy, off;
249
250 is->adj.nislands = 0;
251 for (i = 0; i < is->adj.npoints; i++) {
252 dx = is->adj.points[i].dx;
253 dy = is->adj.points[i].dy;
254 x = is->x + dx;
255 y = is->y + dy;
256 off = 1;
257 is->adj.points[i].off = 0;
258 while (INGRID(is->state, x, y)) {
259 if (GRID(is->state, x, y) & G_ISLAND) {
260 is->adj.points[i].off = off;
261 is->adj.nislands++;
262 /*debug(("island (%d,%d) has orth is. %d*(%d,%d) away at (%d,%d).\n",
263 is->x, is->y, off, dx, dy,
264 ISLAND_ORTHX(is,i), ISLAND_ORTHY(is,i)));*/
265 goto foundisland;
266 }
267 off++; x += dx; y += dy;
268 }
269 foundisland:
270 ;
271 }
272 }
273
274 static int island_hasbridge(struct island *is, int direction)
275 {
276 int x = is->adj.points[direction].x;
277 int y = is->adj.points[direction].y;
278 grid_type gline = is->adj.points[direction].dx ? G_LINEH : G_LINEV;
279
280 if (GRID(is->state, x, y) & gline) return 1;
281 return 0;
282 }
283
284 static struct island *island_find_connection(struct island *is, int adjpt)
285 {
286 struct island *is_r;
287
288 assert(adjpt < is->adj.npoints);
289 if (!is->adj.points[adjpt].off) return NULL;
290 if (!island_hasbridge(is, adjpt)) return NULL;
291
292 is_r = INDEX(is->state, gridi,
293 ISLAND_ORTHX(is, adjpt), ISLAND_ORTHY(is, adjpt));
294 assert(is_r);
295
296 return is_r;
297 }
298
299 static struct island *island_add(game_state *state, int x, int y, int count)
300 {
301 struct island *is;
302 int realloced = 0;
303
304 assert(!(GRID(state,x,y) & G_ISLAND));
305 GRID(state,x,y) |= G_ISLAND;
306
307 state->n_islands++;
308 if (state->n_islands > state->n_islands_alloc) {
309 state->n_islands_alloc = state->n_islands * 2;
310 state->islands =
311 sresize(state->islands, state->n_islands_alloc, struct island);
312 realloced = 1;
313 }
314 is = &state->islands[state->n_islands-1];
315
316 memset(is, 0, sizeof(struct island));
317 is->state = state;
318 is->x = x;
319 is->y = y;
320 is->count = count;
321 island_set_surrounds(is);
322
323 if (realloced)
324 fixup_islands_for_realloc(state);
325 else
326 INDEX(state, gridi, x, y) = is;
327
328 return is;
329 }
330
331
332 /* n = -1 means 'flip NOLINE flags [and set line to 0].' */
333 static void island_join(struct island *i1, struct island *i2, int n, int is_max)
334 {
335 game_state *state = i1->state;
336 int s, e, x, y;
337
338 assert(i1->state == i2->state);
339 assert(n >= -1 && n <= i1->state->maxb);
340
341 if (i1->x == i2->x) {
342 x = i1->x;
343 if (i1->y < i2->y) {
344 s = i1->y+1; e = i2->y-1;
345 } else {
346 s = i2->y+1; e = i1->y-1;
347 }
348 for (y = s; y <= e; y++) {
349 if (is_max) {
350 INDEX(state,maxv,x,y) = n;
351 } else {
352 if (n < 0) {
353 GRID(state,x,y) ^= G_NOLINEV;
354 } else if (n == 0) {
355 GRID(state,x,y) &= ~G_LINEV;
356 } else {
357 GRID(state,x,y) |= G_LINEV;
358 INDEX(state,lines,x,y) = n;
359 }
360 }
361 }
362 } else if (i1->y == i2->y) {
363 y = i1->y;
364 if (i1->x < i2->x) {
365 s = i1->x+1; e = i2->x-1;
366 } else {
367 s = i2->x+1; e = i1->x-1;
368 }
369 for (x = s; x <= e; x++) {
370 if (is_max) {
371 INDEX(state,maxh,x,y) = n;
372 } else {
373 if (n < 0) {
374 GRID(state,x,y) ^= G_NOLINEH;
375 } else if (n == 0) {
376 GRID(state,x,y) &= ~G_LINEH;
377 } else {
378 GRID(state,x,y) |= G_LINEH;
379 INDEX(state,lines,x,y) = n;
380 }
381 }
382 }
383 } else {
384 assert(!"island_join: islands not orthogonal.");
385 }
386 }
387
388 /* Counts the number of bridges currently attached to the island. */
389 static int island_countbridges(struct island *is)
390 {
391 int i, c = 0;
392
393 for (i = 0; i < is->adj.npoints; i++) {
394 c += GRIDCOUNT(is->state,
395 is->adj.points[i].x, is->adj.points[i].y,
396 is->adj.points[i].dx ? G_LINEH : G_LINEV);
397 }
398 /*debug(("island count for (%d,%d) is %d.\n", is->x, is->y, c));*/
399 return c;
400 }
401
402 static int island_adjspace(struct island *is, int marks, int missing,
403 int direction)
404 {
405 int x, y, poss, curr, dx;
406 grid_type gline, mline;
407
408 x = is->adj.points[direction].x;
409 y = is->adj.points[direction].y;
410 dx = is->adj.points[direction].dx;
411 gline = dx ? G_LINEH : G_LINEV;
412
413 if (marks) {
414 mline = dx ? G_MARKH : G_MARKV;
415 if (GRID(is->state,x,y) & mline) return 0;
416 }
417 poss = POSSIBLES(is->state, dx, x, y);
418 poss = min(poss, missing);
419
420 curr = GRIDCOUNT(is->state, x, y, gline);
421 poss = min(poss, MAXIMUM(is->state, dx, x, y) - curr);
422
423 return poss;
424 }
425
426 /* Counts the number of bridge spaces left around the island;
427 * expects the possibles to be up-to-date. */
428 static int island_countspaces(struct island *is, int marks)
429 {
430 int i, c = 0, missing;
431
432 missing = is->count - island_countbridges(is);
433 if (missing < 0) return 0;
434
435 for (i = 0; i < is->adj.npoints; i++) {
436 c += island_adjspace(is, marks, missing, i);
437 }
438 return c;
439 }
440
441 static int island_isadj(struct island *is, int direction)
442 {
443 int x, y;
444 grid_type gline, mline;
445
446 x = is->adj.points[direction].x;
447 y = is->adj.points[direction].y;
448
449 mline = is->adj.points[direction].dx ? G_MARKH : G_MARKV;
450 gline = is->adj.points[direction].dx ? G_LINEH : G_LINEV;
451 if (GRID(is->state, x, y) & mline) {
452 /* If we're marked (i.e. the thing to attach to is complete)
453 * only count an adjacency if we're already attached. */
454 return GRIDCOUNT(is->state, x, y, gline);
455 } else {
456 /* If we're unmarked, count possible adjacency iff it's
457 * flagged as POSSIBLE. */
458 return POSSIBLES(is->state, is->adj.points[direction].dx, x, y);
459 }
460 return 0;
461 }
462
463 /* Counts the no. of possible adjacent islands (including islands
464 * we're already connected to). */
465 static int island_countadj(struct island *is)
466 {
467 int i, nadj = 0;
468
469 for (i = 0; i < is->adj.npoints; i++) {
470 if (island_isadj(is, i)) nadj++;
471 }
472 return nadj;
473 }
474
475 static void island_togglemark(struct island *is)
476 {
477 int i, j, x, y, o;
478 struct island *is_loop;
479
480 /* mark the island... */
481 GRID(is->state, is->x, is->y) ^= G_MARK;
482
483 /* ...remove all marks on non-island squares... */
484 for (x = 0; x < is->state->w; x++) {
485 for (y = 0; y < is->state->h; y++) {
486 if (!(GRID(is->state, x, y) & G_ISLAND))
487 GRID(is->state, x, y) &= ~G_MARK;
488 }
489 }
490
491 /* ...and add marks to squares around marked islands. */
492 for (i = 0; i < is->state->n_islands; i++) {
493 is_loop = &is->state->islands[i];
494 if (!(GRID(is_loop->state, is_loop->x, is_loop->y) & G_MARK))
495 continue;
496
497 for (j = 0; j < is_loop->adj.npoints; j++) {
498 /* if this direction takes us to another island, mark all
499 * squares between the two islands. */
500 if (!is_loop->adj.points[j].off) continue;
501 assert(is_loop->adj.points[j].off > 1);
502 for (o = 1; o < is_loop->adj.points[j].off; o++) {
503 GRID(is_loop->state,
504 is_loop->x + is_loop->adj.points[j].dx*o,
505 is_loop->y + is_loop->adj.points[j].dy*o) |=
506 is_loop->adj.points[j].dy ? G_MARKV : G_MARKH;
507 }
508 }
509 }
510 }
511
512 static int island_impossible(struct island *is, int strict)
513 {
514 int curr = island_countbridges(is), nspc = is->count - curr, nsurrspc;
515 int i, poss;
516 struct island *is_orth;
517
518 if (nspc < 0) {
519 debug(("island at (%d,%d) impossible because full.\n", is->x, is->y));
520 return 1; /* too many bridges */
521 } else if ((curr + island_countspaces(is, 0)) < is->count) {
522 debug(("island at (%d,%d) impossible because not enough spaces.\n", is->x, is->y));
523 return 1; /* impossible to create enough bridges */
524 } else if (strict && curr < is->count) {
525 debug(("island at (%d,%d) impossible because locked.\n", is->x, is->y));
526 return 1; /* not enough bridges and island is locked */
527 }
528
529 /* Count spaces in surrounding islands. */
530 nsurrspc = 0;
531 for (i = 0; i < is->adj.npoints; i++) {
532 int ifree, dx = is->adj.points[i].dx;
533
534 if (!is->adj.points[i].off) continue;
535 poss = POSSIBLES(is->state, dx,
536 is->adj.points[i].x, is->adj.points[i].y);
537 if (poss == 0) continue;
538 is_orth = INDEX(is->state, gridi,
539 ISLAND_ORTHX(is,i), ISLAND_ORTHY(is,i));
540 assert(is_orth);
541
542 ifree = is_orth->count - island_countbridges(is_orth);
543 if (ifree > 0) {
544 /*
545 * ifree is the number of bridges unfilled in the other
546 * island, which is clearly an upper bound on the number
547 * of extra bridges this island may run to it.
548 *
549 * Another upper bound is the number of bridges unfilled
550 * on the specific line between here and there. We must
551 * take the minimum of both.
552 */
553 int bmax = MAXIMUM(is->state, dx,
554 is->adj.points[i].x, is->adj.points[i].y);
555 int bcurr = GRIDCOUNT(is->state,
556 is->adj.points[i].x, is->adj.points[i].y,
557 dx ? G_LINEH : G_LINEV);
558 assert(bcurr <= bmax);
559 nsurrspc += min(ifree, bmax - bcurr);
560 }
561 }
562 if (nsurrspc < nspc) {
563 debug(("island at (%d,%d) impossible: surr. islands %d spc, need %d.\n",
564 is->x, is->y, nsurrspc, nspc));
565 return 1; /* not enough spaces around surrounding islands to fill this one. */
566 }
567
568 return 0;
569 }
570
571 /* --- Game parameter functions --- */
572
573 #define DEFAULT_PRESET 0
574
575 const struct game_params bridges_presets[] = {
576 { 7, 7, 2, 30, 10, 1, 0 },
577 { 7, 7, 2, 30, 10, 1, 1 },
578 { 7, 7, 2, 30, 10, 1, 2 },
579 { 10, 10, 2, 30, 10, 1, 0 },
580 { 10, 10, 2, 30, 10, 1, 1 },
581 { 10, 10, 2, 30, 10, 1, 2 },
582 { 15, 15, 2, 30, 10, 1, 0 },
583 { 15, 15, 2, 30, 10, 1, 1 },
584 { 15, 15, 2, 30, 10, 1, 2 },
585 };
586
587 static game_params *default_params(void)
588 {
589 game_params *ret = snew(game_params);
590 *ret = bridges_presets[DEFAULT_PRESET];
591
592 return ret;
593 }
594
595 static int game_fetch_preset(int i, char **name, game_params **params)
596 {
597 game_params *ret;
598 char buf[80];
599
600 if (i < 0 || i >= lenof(bridges_presets))
601 return FALSE;
602
603 ret = default_params();
604 *ret = bridges_presets[i];
605 *params = ret;
606
607 sprintf(buf, "%dx%d %s", ret->w, ret->h,
608 ret->difficulty == 0 ? "easy" :
609 ret->difficulty == 1 ? "medium" : "hard");
610 *name = dupstr(buf);
611
612 return TRUE;
613 }
614
615 static void free_params(game_params *params)
616 {
617 sfree(params);
618 }
619
620 static game_params *dup_params(game_params *params)
621 {
622 game_params *ret = snew(game_params);
623 *ret = *params; /* structure copy */
624 return ret;
625 }
626
627 #define EATNUM(x) do { \
628 (x) = atoi(string); \
629 while (*string && isdigit((unsigned char)*string)) string++; \
630 } while(0)
631
632 static void decode_params(game_params *params, char const *string)
633 {
634 EATNUM(params->w);
635 params->h = params->w;
636 if (*string == 'x') {
637 string++;
638 EATNUM(params->h);
639 }
640 if (*string == 'i') {
641 string++;
642 EATNUM(params->islands);
643 }
644 if (*string == 'e') {
645 string++;
646 EATNUM(params->expansion);
647 }
648 if (*string == 'm') {
649 string++;
650 EATNUM(params->maxb);
651 }
652 params->allowloops = 1;
653 if (*string == 'L') {
654 string++;
655 params->allowloops = 0;
656 }
657 if (*string == 'd') {
658 string++;
659 EATNUM(params->difficulty);
660 }
661 }
662
663 static char *encode_params(game_params *params, int full)
664 {
665 char buf[80];
666
667 if (full) {
668 sprintf(buf, "%dx%di%de%dm%d%sd%d",
669 params->w, params->h, params->islands, params->expansion,
670 params->maxb, params->allowloops ? "" : "L",
671 params->difficulty);
672 } else {
673 sprintf(buf, "%dx%dm%d%s", params->w, params->h,
674 params->maxb, params->allowloops ? "" : "L");
675 }
676 return dupstr(buf);
677 }
678
679 static config_item *game_configure(game_params *params)
680 {
681 config_item *ret;
682 char buf[80];
683
684 ret = snewn(8, config_item);
685
686 ret[0].name = "Width";
687 ret[0].type = C_STRING;
688 sprintf(buf, "%d", params->w);
689 ret[0].sval = dupstr(buf);
690 ret[0].ival = 0;
691
692 ret[1].name = "Height";
693 ret[1].type = C_STRING;
694 sprintf(buf, "%d", params->h);
695 ret[1].sval = dupstr(buf);
696 ret[1].ival = 0;
697
698 ret[2].name = "Difficulty";
699 ret[2].type = C_CHOICES;
700 ret[2].sval = ":Easy:Medium:Hard";
701 ret[2].ival = params->difficulty;
702
703 ret[3].name = "Allow loops";
704 ret[3].type = C_BOOLEAN;
705 ret[3].sval = NULL;
706 ret[3].ival = params->allowloops;
707
708 ret[4].name = "Max. bridges per direction";
709 ret[4].type = C_CHOICES;
710 ret[4].sval = ":1:2:3:4"; /* keep up-to-date with MAX_BRIDGES */
711 ret[4].ival = params->maxb - 1;
712
713 ret[5].name = "%age of island squares";
714 ret[5].type = C_CHOICES;
715 ret[5].sval = ":5%:10%:15%:20%:25%:30%";
716 ret[5].ival = (params->islands / 5)-1;
717
718 ret[6].name = "Expansion factor (%age)";
719 ret[6].type = C_CHOICES;
720 ret[6].sval = ":0%:10%:20%:30%:40%:50%:60%:70%:80%:90%:100%";
721 ret[6].ival = params->expansion / 10;
722
723 ret[7].name = NULL;
724 ret[7].type = C_END;
725 ret[7].sval = NULL;
726 ret[7].ival = 0;
727
728 return ret;
729 }
730
731 static game_params *custom_params(config_item *cfg)
732 {
733 game_params *ret = snew(game_params);
734
735 ret->w = atoi(cfg[0].sval);
736 ret->h = atoi(cfg[1].sval);
737 ret->difficulty = cfg[2].ival;
738 ret->allowloops = cfg[3].ival;
739 ret->maxb = cfg[4].ival + 1;
740 ret->islands = (cfg[5].ival + 1) * 5;
741 ret->expansion = cfg[6].ival * 10;
742
743 return ret;
744 }
745
746 static char *validate_params(game_params *params, int full)
747 {
748 if (params->w < 3 || params->h < 3)
749 return "Width and height must be at least 3";
750 if (params->maxb < 1 || params->maxb > MAX_BRIDGES)
751 return "Too many bridges.";
752 if (full) {
753 if (params->islands <= 0 || params->islands > 30)
754 return "%age of island squares must be between 1% and 30%";
755 if (params->expansion < 0 || params->expansion > 100)
756 return "Expansion factor must be between 0 and 100";
757 }
758 return NULL;
759 }
760
761 /* --- Game encoding and differences --- */
762
763 static char *encode_game(game_state *state)
764 {
765 char *ret, *p;
766 int wh = state->w*state->h, run, x, y;
767 struct island *is;
768
769 ret = snewn(wh + 1, char);
770 p = ret;
771 run = 0;
772 for (y = 0; y < state->h; y++) {
773 for (x = 0; x < state->w; x++) {
774 is = INDEX(state, gridi, x, y);
775 if (is) {
776 if (run) {
777 *p++ = ('a'-1) + run;
778 run = 0;
779 }
780 if (is->count < 10)
781 *p++ = '0' + is->count;
782 else
783 *p++ = 'A' + (is->count - 10);
784 } else {
785 if (run == 26) {
786 *p++ = ('a'-1) + run;
787 run = 0;
788 }
789 run++;
790 }
791 }
792 }
793 if (run) {
794 *p++ = ('a'-1) + run;
795 run = 0;
796 }
797 *p = '\0';
798 assert(p - ret <= wh);
799
800 return ret;
801 }
802
803 static char *game_state_diff(game_state *src, game_state *dest)
804 {
805 int movesize = 256, movelen = 0;
806 char *move = snewn(movesize, char), buf[80];
807 int i, d, x, y, len;
808 grid_type gline, nline;
809 struct island *is_s, *is_d, *is_orth;
810
811 #define APPEND do { \
812 if (movelen + len >= movesize) { \
813 movesize = movelen + len + 256; \
814 move = sresize(move, movesize, char); \
815 } \
816 strcpy(move + movelen, buf); \
817 movelen += len; \
818 } while(0)
819
820 move[movelen++] = 'S';
821 move[movelen] = '\0';
822
823 assert(src->n_islands == dest->n_islands);
824
825 for (i = 0; i < src->n_islands; i++) {
826 is_s = &src->islands[i];
827 is_d = &dest->islands[i];
828 assert(is_s->x == is_d->x);
829 assert(is_s->y == is_d->y);
830 assert(is_s->adj.npoints == is_d->adj.npoints); /* more paranoia */
831
832 for (d = 0; d < is_s->adj.npoints; d++) {
833 if (is_s->adj.points[d].dx == -1 ||
834 is_s->adj.points[d].dy == -1) continue;
835
836 x = is_s->adj.points[d].x;
837 y = is_s->adj.points[d].y;
838 gline = is_s->adj.points[d].dx ? G_LINEH : G_LINEV;
839 nline = is_s->adj.points[d].dx ? G_NOLINEH : G_NOLINEV;
840 is_orth = INDEX(dest, gridi,
841 ISLAND_ORTHX(is_d, d), ISLAND_ORTHY(is_d, d));
842
843 if (GRIDCOUNT(src, x, y, gline) != GRIDCOUNT(dest, x, y, gline)) {
844 assert(is_orth);
845 len = sprintf(buf, ";L%d,%d,%d,%d,%d",
846 is_s->x, is_s->y, is_orth->x, is_orth->y,
847 GRIDCOUNT(dest, x, y, gline));
848 APPEND;
849 }
850 if ((GRID(src,x,y) & nline) != (GRID(dest, x, y) & nline)) {
851 assert(is_orth);
852 len = sprintf(buf, ";N%d,%d,%d,%d",
853 is_s->x, is_s->y, is_orth->x, is_orth->y);
854 APPEND;
855 }
856 }
857 if ((GRID(src, is_s->x, is_s->y) & G_MARK) !=
858 (GRID(dest, is_d->x, is_d->y) & G_MARK)) {
859 len = sprintf(buf, ";M%d,%d", is_s->x, is_s->y);
860 APPEND;
861 }
862 }
863 return move;
864 }
865
866 /* --- Game setup and solving utilities --- */
867
868 /* This function is optimised; a Quantify showed that lots of grid-generation time
869 * (>50%) was spent in here. Hence the IDX() stuff. */
870
871 static void map_update_possibles(game_state *state)
872 {
873 int x, y, s, e, bl, i, np, maxb, w = state->w, idx;
874 struct island *is_s = NULL, *is_f = NULL;
875
876 /* Run down vertical stripes [un]setting possv... */
877 for (x = 0; x < state->w; x++) {
878 idx = x;
879 s = e = -1;
880 bl = 0;
881 /* Unset possible flags until we find an island. */
882 for (y = 0; y < state->h; y++) {
883 is_s = IDX(state, gridi, idx);
884 if (is_s) {
885 maxb = is_s->count;
886 break;
887 }
888
889 IDX(state, possv, idx) = 0;
890 idx += w;
891 }
892 for (; y < state->h; y++) {
893 maxb = min(maxb, IDX(state, maxv, idx));
894 is_f = IDX(state, gridi, idx);
895 if (is_f) {
896 assert(is_s);
897 np = min(maxb, is_f->count);
898
899 if (s != -1) {
900 for (i = s; i <= e; i++) {
901 INDEX(state, possv, x, i) = bl ? 0 : np;
902 }
903 }
904 s = y+1;
905 bl = 0;
906 is_s = is_f;
907 maxb = is_s->count;
908 } else {
909 e = y;
910 if (IDX(state,grid,idx) & (G_LINEH|G_NOLINEV)) bl = 1;
911 }
912 idx += w;
913 }
914 if (s != -1) {
915 for (i = s; i <= e; i++)
916 INDEX(state, possv, x, i) = 0;
917 }
918 }
919
920 /* ...and now do horizontal stripes [un]setting possh. */
921 /* can we lose this clone'n'hack? */
922 for (y = 0; y < state->h; y++) {
923 idx = y*w;
924 s = e = -1;
925 bl = 0;
926 for (x = 0; x < state->w; x++) {
927 is_s = IDX(state, gridi, idx);
928 if (is_s) {
929 maxb = is_s->count;
930 break;
931 }
932
933 IDX(state, possh, idx) = 0;
934 idx += 1;
935 }
936 for (; x < state->w; x++) {
937 maxb = min(maxb, IDX(state, maxh, idx));
938 is_f = IDX(state, gridi, idx);
939 if (is_f) {
940 assert(is_s);
941 np = min(maxb, is_f->count);
942
943 if (s != -1) {
944 for (i = s; i <= e; i++) {
945 INDEX(state, possh, i, y) = bl ? 0 : np;
946 }
947 }
948 s = x+1;
949 bl = 0;
950 is_s = is_f;
951 maxb = is_s->count;
952 } else {
953 e = x;
954 if (IDX(state,grid,idx) & (G_LINEV|G_NOLINEH)) bl = 1;
955 }
956 idx += 1;
957 }
958 if (s != -1) {
959 for (i = s; i <= e; i++)
960 INDEX(state, possh, i, y) = 0;
961 }
962 }
963 }
964
965 static void map_count(game_state *state)
966 {
967 int i, n, ax, ay;
968 grid_type flag, grid;
969 struct island *is;
970
971 for (i = 0; i < state->n_islands; i++) {
972 is = &state->islands[i];
973 is->count = 0;
974 for (n = 0; n < is->adj.npoints; n++) {
975 ax = is->adj.points[n].x;
976 ay = is->adj.points[n].y;
977 flag = (ax == is->x) ? G_LINEV : G_LINEH;
978 grid = GRID(state,ax,ay);
979 if (grid & flag) {
980 is->count += INDEX(state,lines,ax,ay);
981 }
982 }
983 }
984 }
985
986 static void map_find_orthogonal(game_state *state)
987 {
988 int i;
989
990 for (i = 0; i < state->n_islands; i++) {
991 island_find_orthogonal(&state->islands[i]);
992 }
993 }
994
995 static int grid_degree(game_state *state, int x, int y, int *nx_r, int *ny_r)
996 {
997 grid_type grid = SCRATCH(state, x, y), gline = grid & G_LINE;
998 struct island *is;
999 int x1, y1, x2, y2, c = 0, i, nx, ny;
1000
1001 nx = ny = -1; /* placate optimiser */
1002 is = INDEX(state, gridi, x, y);
1003 if (is) {
1004 for (i = 0; i < is->adj.npoints; i++) {
1005 gline = is->adj.points[i].dx ? G_LINEH : G_LINEV;
1006 if (SCRATCH(state,
1007 is->adj.points[i].x,
1008 is->adj.points[i].y) & gline) {
1009 nx = is->adj.points[i].x;
1010 ny = is->adj.points[i].y;
1011 c++;
1012 }
1013 }
1014 } else if (gline) {
1015 if (gline & G_LINEV) {
1016 x1 = x2 = x;
1017 y1 = y-1; y2 = y+1;
1018 } else {
1019 x1 = x-1; x2 = x+1;
1020 y1 = y2 = y;
1021 }
1022 /* Non-island squares with edges in should never be pointing off the
1023 * edge of the grid. */
1024 assert(INGRID(state, x1, y1));
1025 assert(INGRID(state, x2, y2));
1026 if (SCRATCH(state, x1, y1) & (gline | G_ISLAND)) {
1027 nx = x1; ny = y1; c++;
1028 }
1029 if (SCRATCH(state, x2, y2) & (gline | G_ISLAND)) {
1030 nx = x2; ny = y2; c++;
1031 }
1032 }
1033 if (c == 1) {
1034 assert(nx != -1 && ny != -1); /* paranoia */
1035 *nx_r = nx; *ny_r = ny;
1036 }
1037 return c;
1038 }
1039
1040 static int map_hasloops(game_state *state, int mark)
1041 {
1042 int x, y, ox, oy, nx = 0, ny = 0, loop = 0;
1043
1044 memcpy(state->scratch, state->grid, GRIDSZ(state));
1045
1046 /* This algorithm is actually broken; if there are two loops connected
1047 * by bridges this will also highlight bridges. The correct algorithm
1048 * uses a dsf and a two-pass edge-detection algorithm (see check_correct
1049 * in slant.c); this is BALGE for now, especially since disallow-loops
1050 * is not the default for this puzzle. If we want to fix this later then
1051 * copy the alg in slant.c to the empty statement in map_group. */
1052
1053 /* Remove all 1-degree edges. */
1054 for (y = 0; y < state->h; y++) {
1055 for (x = 0; x < state->w; x++) {
1056 ox = x; oy = y;
1057 while (grid_degree(state, ox, oy, &nx, &ny) == 1) {
1058 /*debug(("hasloops: removing 1-degree at (%d,%d).\n", ox, oy));*/
1059 SCRATCH(state, ox, oy) &= ~(G_LINE|G_ISLAND);
1060 ox = nx; oy = ny;
1061 }
1062 }
1063 }
1064 /* Mark any remaining edges as G_WARN, if required. */
1065 for (x = 0; x < state->w; x++) {
1066 for (y = 0; y < state->h; y++) {
1067 if (GRID(state,x,y) & G_ISLAND) continue;
1068
1069 if (SCRATCH(state, x, y) & G_LINE) {
1070 if (mark) {
1071 /*debug(("hasloops: marking loop square at (%d,%d).\n",
1072 x, y));*/
1073 GRID(state,x,y) |= G_WARN;
1074 loop = 1;
1075 } else
1076 return 1; /* short-cut as soon as we find one */
1077 } else {
1078 if (mark)
1079 GRID(state,x,y) &= ~G_WARN;
1080 }
1081 }
1082 }
1083 return loop;
1084 }
1085
1086 static void map_group(game_state *state)
1087 {
1088 int i, wh = state->w*state->h, d1, d2;
1089 int x, y, x2, y2;
1090 int *dsf = state->solver->dsf;
1091 struct island *is, *is_join;
1092
1093 /* Initialise dsf. */
1094 dsf_init(dsf, wh);
1095
1096 /* For each island, find connected islands right or down
1097 * and merge the dsf for the island squares as well as the
1098 * bridge squares. */
1099 for (x = 0; x < state->w; x++) {
1100 for (y = 0; y < state->h; y++) {
1101 GRID(state,x,y) &= ~(G_SWEEP|G_WARN); /* for group_full. */
1102
1103 is = INDEX(state, gridi, x, y);
1104 if (!is) continue;
1105 d1 = DINDEX(x,y);
1106 for (i = 0; i < is->adj.npoints; i++) {
1107 /* only want right/down */
1108 if (is->adj.points[i].dx == -1 ||
1109 is->adj.points[i].dy == -1) continue;
1110
1111 is_join = island_find_connection(is, i);
1112 if (!is_join) continue;
1113
1114 d2 = DINDEX(is_join->x, is_join->y);
1115 if (dsf_canonify(dsf,d1) == dsf_canonify(dsf,d2)) {
1116 ; /* we have a loop. See comment in map_hasloops. */
1117 /* However, we still want to merge all squares joining
1118 * this side-that-makes-a-loop. */
1119 }
1120 /* merge all squares between island 1 and island 2. */
1121 for (x2 = x; x2 <= is_join->x; x2++) {
1122 for (y2 = y; y2 <= is_join->y; y2++) {
1123 d2 = DINDEX(x2,y2);
1124 if (d1 != d2) dsf_merge(dsf,d1,d2);
1125 }
1126 }
1127 }
1128 }
1129 }
1130 }
1131
1132 static int map_group_check(game_state *state, int canon, int warn,
1133 int *nislands_r)
1134 {
1135 int *dsf = state->solver->dsf, nislands = 0;
1136 int x, y, i, allfull = 1;
1137 struct island *is;
1138
1139 for (i = 0; i < state->n_islands; i++) {
1140 is = &state->islands[i];
1141 if (dsf_canonify(dsf, DINDEX(is->x,is->y)) != canon) continue;
1142
1143 GRID(state, is->x, is->y) |= G_SWEEP;
1144 nislands++;
1145 if (island_countbridges(is) != is->count)
1146 allfull = 0;
1147 }
1148 if (warn && allfull && nislands != state->n_islands) {
1149 /* we're full and this island group isn't the whole set.
1150 * Mark all squares with this dsf canon as ERR. */
1151 for (x = 0; x < state->w; x++) {
1152 for (y = 0; y < state->h; y++) {
1153 if (dsf_canonify(dsf, DINDEX(x,y)) == canon) {
1154 GRID(state,x,y) |= G_WARN;
1155 }
1156 }
1157 }
1158
1159 }
1160 if (nislands_r) *nislands_r = nislands;
1161 return allfull;
1162 }
1163
1164 static int map_group_full(game_state *state, int *ngroups_r)
1165 {
1166 int *dsf = state->solver->dsf, ngroups = 0;
1167 int i, anyfull = 0;
1168 struct island *is;
1169
1170 /* NB this assumes map_group (or sth else) has cleared G_SWEEP. */
1171
1172 for (i = 0; i < state->n_islands; i++) {
1173 is = &state->islands[i];
1174 if (GRID(state,is->x,is->y) & G_SWEEP) continue;
1175
1176 ngroups++;
1177 if (map_group_check(state, dsf_canonify(dsf, DINDEX(is->x,is->y)),
1178 1, NULL))
1179 anyfull = 1;
1180 }
1181
1182 *ngroups_r = ngroups;
1183 return anyfull;
1184 }
1185
1186 static int map_check(game_state *state)
1187 {
1188 int ngroups;
1189
1190 /* Check for loops, if necessary. */
1191 if (!state->allowloops) {
1192 if (map_hasloops(state, 1))
1193 return 0;
1194 }
1195
1196 /* Place islands into island groups and check for early
1197 * satisfied-groups. */
1198 map_group(state); /* clears WARN and SWEEP */
1199 if (map_group_full(state, &ngroups)) {
1200 if (ngroups == 1) return 1;
1201 }
1202 return 0;
1203 }
1204
1205 static void map_clear(game_state *state)
1206 {
1207 int x, y;
1208
1209 for (x = 0; x < state->w; x++) {
1210 for (y = 0; y < state->h; y++) {
1211 /* clear most flags; might want to be slightly more careful here. */
1212 GRID(state,x,y) &= G_ISLAND;
1213 }
1214 }
1215 }
1216
1217 static void solve_join(struct island *is, int direction, int n, int is_max)
1218 {
1219 struct island *is_orth;
1220 int d1, d2, *dsf = is->state->solver->dsf;
1221 game_state *state = is->state; /* for DINDEX */
1222
1223 is_orth = INDEX(is->state, gridi,
1224 ISLAND_ORTHX(is, direction),
1225 ISLAND_ORTHY(is, direction));
1226 assert(is_orth);
1227 /*debug(("...joining (%d,%d) to (%d,%d) with %d bridge(s).\n",
1228 is->x, is->y, is_orth->x, is_orth->y, n));*/
1229 island_join(is, is_orth, n, is_max);
1230
1231 if (n > 0 && !is_max) {
1232 d1 = DINDEX(is->x, is->y);
1233 d2 = DINDEX(is_orth->x, is_orth->y);
1234 if (dsf_canonify(dsf, d1) != dsf_canonify(dsf, d2))
1235 dsf_merge(dsf, d1, d2);
1236 }
1237 }
1238
1239 static int solve_fillone(struct island *is)
1240 {
1241 int i, nadded = 0;
1242
1243 debug(("solve_fillone for island (%d,%d).\n", is->x, is->y));
1244
1245 for (i = 0; i < is->adj.npoints; i++) {
1246 if (island_isadj(is, i)) {
1247 if (island_hasbridge(is, i)) {
1248 /* already attached; do nothing. */;
1249 } else {
1250 solve_join(is, i, 1, 0);
1251 nadded++;
1252 }
1253 }
1254 }
1255 return nadded;
1256 }
1257
1258 static int solve_fill(struct island *is)
1259 {
1260 /* for each unmarked adjacent, make sure we convert every possible bridge
1261 * to a real one, and then work out the possibles afresh. */
1262 int i, nnew, ncurr, nadded = 0, missing;
1263
1264 debug(("solve_fill for island (%d,%d).\n", is->x, is->y));
1265
1266 missing = is->count - island_countbridges(is);
1267 if (missing < 0) return 0;
1268
1269 /* very like island_countspaces. */
1270 for (i = 0; i < is->adj.npoints; i++) {
1271 nnew = island_adjspace(is, 1, missing, i);
1272 if (nnew) {
1273 ncurr = GRIDCOUNT(is->state,
1274 is->adj.points[i].x, is->adj.points[i].y,
1275 is->adj.points[i].dx ? G_LINEH : G_LINEV);
1276
1277 solve_join(is, i, nnew + ncurr, 0);
1278 nadded += nnew;
1279 }
1280 }
1281 return nadded;
1282 }
1283
1284 static int solve_island_stage1(struct island *is, int *didsth_r)
1285 {
1286 int bridges = island_countbridges(is);
1287 int nspaces = island_countspaces(is, 1);
1288 int nadj = island_countadj(is);
1289 int didsth = 0;
1290
1291 assert(didsth_r);
1292
1293 /*debug(("island at (%d,%d) filled %d/%d (%d spc) nadj %d\n",
1294 is->x, is->y, bridges, is->count, nspaces, nadj));*/
1295 if (bridges > is->count) {
1296 /* We only ever add bridges when we're sure they fit, or that's
1297 * the only place they can go. If we've added bridges such that
1298 * another island has become wrong, the puzzle must not have had
1299 * a solution. */
1300 debug(("...island at (%d,%d) is overpopulated!\n", is->x, is->y));
1301 return 0;
1302 } else if (bridges == is->count) {
1303 /* This island is full. Make sure it's marked (and update
1304 * possibles if we did). */
1305 if (!(GRID(is->state, is->x, is->y) & G_MARK)) {
1306 debug(("...marking island (%d,%d) as full.\n", is->x, is->y));
1307 island_togglemark(is);
1308 didsth = 1;
1309 }
1310 } else if (GRID(is->state, is->x, is->y) & G_MARK) {
1311 debug(("...island (%d,%d) is marked but unfinished!\n",
1312 is->x, is->y));
1313 return 0; /* island has been marked unfinished; no solution from here. */
1314 } else {
1315 /* This is the interesting bit; we try and fill in more information
1316 * about this island. */
1317 if (is->count == bridges + nspaces) {
1318 if (solve_fill(is) > 0) didsth = 1;
1319 } else if (is->count > ((nadj-1) * is->state->maxb)) {
1320 /* must have at least one bridge in each possible direction. */
1321 if (solve_fillone(is) > 0) didsth = 1;
1322 }
1323 }
1324 if (didsth) {
1325 map_update_possibles(is->state);
1326 *didsth_r = 1;
1327 }
1328 return 1;
1329 }
1330
1331 /* returns non-zero if a new line here would cause a loop. */
1332 static int solve_island_checkloop(struct island *is, int direction)
1333 {
1334 struct island *is_orth;
1335 int *dsf = is->state->solver->dsf, d1, d2;
1336 game_state *state = is->state;
1337
1338 if (is->state->allowloops) return 0; /* don't care anyway */
1339 if (island_hasbridge(is, direction)) return 0; /* already has a bridge */
1340 if (island_isadj(is, direction) == 0) return 0; /* no adj island */
1341
1342 is_orth = INDEX(is->state, gridi,
1343 ISLAND_ORTHX(is,direction),
1344 ISLAND_ORTHY(is,direction));
1345 if (!is_orth) return 0;
1346
1347 d1 = DINDEX(is->x, is->y);
1348 d2 = DINDEX(is_orth->x, is_orth->y);
1349 if (dsf_canonify(dsf, d1) == dsf_canonify(dsf, d2)) {
1350 /* two islands are connected already; don't join them. */
1351 return 1;
1352 }
1353 return 0;
1354 }
1355
1356 static int solve_island_stage2(struct island *is, int *didsth_r)
1357 {
1358 int added = 0, removed = 0, navail = 0, nadj, i;
1359
1360 assert(didsth_r);
1361
1362 for (i = 0; i < is->adj.npoints; i++) {
1363 if (solve_island_checkloop(is, i)) {
1364 debug(("removing possible loop at (%d,%d) direction %d.\n",
1365 is->x, is->y, i));
1366 solve_join(is, i, -1, 0);
1367 map_update_possibles(is->state);
1368 removed = 1;
1369 } else {
1370 navail += island_isadj(is, i);
1371 /*debug(("stage2: navail for (%d,%d) direction (%d,%d) is %d.\n",
1372 is->x, is->y,
1373 is->adj.points[i].dx, is->adj.points[i].dy,
1374 island_isadj(is, i)));*/
1375 }
1376 }
1377
1378 /*debug(("island at (%d,%d) navail %d: checking...\n", is->x, is->y, navail));*/
1379
1380 for (i = 0; i < is->adj.npoints; i++) {
1381 if (!island_hasbridge(is, i)) {
1382 nadj = island_isadj(is, i);
1383 if (nadj > 0 && (navail - nadj) < is->count) {
1384 /* we couldn't now complete the island without at
1385 * least one bridge here; put it in. */
1386 /*debug(("nadj %d, navail %d, is->count %d.\n",
1387 nadj, navail, is->count));*/
1388 debug(("island at (%d,%d) direction (%d,%d) must have 1 bridge\n",
1389 is->x, is->y,
1390 is->adj.points[i].dx, is->adj.points[i].dy));
1391 solve_join(is, i, 1, 0);
1392 added = 1;
1393 /*debug_state(is->state);
1394 debug_possibles(is->state);*/
1395 }
1396 }
1397 }
1398 if (added) map_update_possibles(is->state);
1399 if (added || removed) *didsth_r = 1;
1400 return 1;
1401 }
1402
1403 static int solve_island_subgroup(struct island *is, int direction, int n)
1404 {
1405 struct island *is_join;
1406 int nislands, *dsf = is->state->solver->dsf;
1407 game_state *state = is->state;
1408
1409 debug(("..checking subgroups.\n"));
1410
1411 /* if is isn't full, return 0. */
1412 if (n < is->count) {
1413 debug(("...orig island (%d,%d) not full.\n", is->x, is->y));
1414 return 0;
1415 }
1416
1417 is_join = INDEX(state, gridi,
1418 ISLAND_ORTHX(is, direction),
1419 ISLAND_ORTHY(is, direction));
1420 assert(is_join);
1421
1422 /* if is_join isn't full, return 0. */
1423 if (island_countbridges(is_join) < is_join->count) {
1424 debug(("...dest island (%d,%d) not full.\n", is_join->x, is_join->y));
1425 return 0;
1426 }
1427
1428 /* Check group membership for is->dsf; if it's full return 1. */
1429 if (map_group_check(state, dsf_canonify(dsf, DINDEX(is->x,is->y)),
1430 0, &nislands)) {
1431 if (nislands < state->n_islands) {
1432 /* we have a full subgroup that isn't the whole set.
1433 * This isn't allowed. */
1434 debug(("island at (%d,%d) makes full subgroup, disallowing.\n",
1435 is->x, is->y, n));
1436 return 1;
1437 } else {
1438 debug(("...has finished puzzle.\n"));
1439 }
1440 }
1441 return 0;
1442 }
1443
1444 static int solve_island_impossible(game_state *state)
1445 {
1446 struct island *is;
1447 int i;
1448
1449 /* If any islands are impossible, return 1. */
1450 for (i = 0; i < state->n_islands; i++) {
1451 is = &state->islands[i];
1452 if (island_impossible(is, 0)) {
1453 debug(("island at (%d,%d) has become impossible, disallowing.\n",
1454 is->x, is->y));
1455 return 1;
1456 }
1457 }
1458 return 0;
1459 }
1460
1461 /* Bear in mind that this function is really rather inefficient. */
1462 static int solve_island_stage3(struct island *is, int *didsth_r)
1463 {
1464 int i, n, x, y, missing, spc, curr, maxb, didsth = 0;
1465 int wh = is->state->w * is->state->h;
1466 struct solver_state *ss = is->state->solver;
1467
1468 assert(didsth_r);
1469
1470 missing = is->count - island_countbridges(is);
1471 if (missing <= 0) return 1;
1472
1473 for (i = 0; i < is->adj.npoints; i++) {
1474 /* We only do right- or down-pointing bridges. */
1475 if (is->adj.points[i].dx == -1 ||
1476 is->adj.points[i].dy == -1) continue;
1477
1478 x = is->adj.points[i].x;
1479 y = is->adj.points[i].y;
1480 spc = island_adjspace(is, 1, missing, i);
1481 if (spc == 0) continue;
1482
1483 curr = GRIDCOUNT(is->state, x, y,
1484 is->adj.points[i].dx ? G_LINEH : G_LINEV);
1485 debug(("island at (%d,%d) s3, trying %d - %d bridges.\n",
1486 is->x, is->y, curr+1, curr+spc));
1487
1488 /* Now we know that this island could have more bridges,
1489 * to bring the total from curr+1 to curr+spc. */
1490 maxb = -1;
1491 /* We have to squirrel the dsf away and restore it afterwards;
1492 * it is additive only, and can't be removed from. */
1493 memcpy(ss->tmpdsf, ss->dsf, wh*sizeof(int));
1494 for (n = curr+1; n <= curr+spc; n++) {
1495 solve_join(is, i, n, 0);
1496 map_update_possibles(is->state);
1497
1498 if (solve_island_subgroup(is, i, n) ||
1499 solve_island_impossible(is->state)) {
1500 maxb = n-1;
1501 debug(("island at (%d,%d) d(%d,%d) new max of %d bridges:\n",
1502 is->x, is->y,
1503 is->adj.points[i].dx, is->adj.points[i].dy,
1504 maxb));
1505 break;
1506 }
1507 }
1508 solve_join(is, i, curr, 0); /* put back to before. */
1509 memcpy(ss->dsf, ss->tmpdsf, wh*sizeof(int));
1510
1511 if (maxb != -1) {
1512 /*debug_state(is->state);*/
1513 if (maxb == 0) {
1514 debug(("...adding NOLINE.\n"));
1515 solve_join(is, i, -1, 0); /* we can't have any bridges here. */
1516 } else {
1517 debug(("...setting maximum\n"));
1518 solve_join(is, i, maxb, 1);
1519 }
1520 didsth = 1;
1521 }
1522 map_update_possibles(is->state);
1523 }
1524 if (didsth) *didsth_r = didsth;
1525 return 1;
1526 }
1527
1528 #define CONTINUE_IF_FULL do { \
1529 if (GRID(state, is->x, is->y) & G_MARK) { \
1530 /* island full, don't try fixing it */ \
1531 continue; \
1532 } } while(0)
1533
1534 static int solve_sub(game_state *state, int difficulty, int depth)
1535 {
1536 struct island *is;
1537 int i, didsth;
1538
1539 while (1) {
1540 didsth = 0;
1541
1542 /* First island iteration: things we can work out by looking at
1543 * properties of the island as a whole. */
1544 for (i = 0; i < state->n_islands; i++) {
1545 is = &state->islands[i];
1546 if (!solve_island_stage1(is, &didsth)) return 0;
1547 }
1548 if (didsth) continue;
1549 else if (difficulty < 1) break;
1550
1551 /* Second island iteration: thing we can work out by looking at
1552 * properties of individual island connections. */
1553 for (i = 0; i < state->n_islands; i++) {
1554 is = &state->islands[i];
1555 CONTINUE_IF_FULL;
1556 if (!solve_island_stage2(is, &didsth)) return 0;
1557 }
1558 if (didsth) continue;
1559 else if (difficulty < 2) break;
1560
1561 /* Third island iteration: things we can only work out by looking
1562 * at groups of islands. */
1563 for (i = 0; i < state->n_islands; i++) {
1564 is = &state->islands[i];
1565 if (!solve_island_stage3(is, &didsth)) return 0;
1566 }
1567 if (didsth) continue;
1568 else if (difficulty < 3) break;
1569
1570 /* If we can be bothered, write a recursive solver to finish here. */
1571 break;
1572 }
1573 if (map_check(state)) return 1; /* solved it */
1574 return 0;
1575 }
1576
1577 static void solve_for_hint(game_state *state)
1578 {
1579 map_group(state);
1580 solve_sub(state, 10, 0);
1581 }
1582
1583 static int solve_from_scratch(game_state *state, int difficulty)
1584 {
1585 map_clear(state);
1586 map_group(state);
1587 map_update_possibles(state);
1588 return solve_sub(state, difficulty, 0);
1589 }
1590
1591 /* --- New game functions --- */
1592
1593 static game_state *new_state(game_params *params)
1594 {
1595 game_state *ret = snew(game_state);
1596 int wh = params->w * params->h, i;
1597
1598 ret->w = params->w;
1599 ret->h = params->h;
1600 ret->allowloops = params->allowloops;
1601 ret->maxb = params->maxb;
1602 ret->params = *params;
1603
1604 ret->grid = snewn(wh, grid_type);
1605 memset(ret->grid, 0, GRIDSZ(ret));
1606 ret->scratch = snewn(wh, grid_type);
1607 memset(ret->scratch, 0, GRIDSZ(ret));
1608
1609 ret->wha = snewn(wh*N_WH_ARRAYS, char);
1610 memset(ret->wha, 0, wh*N_WH_ARRAYS*sizeof(char));
1611
1612 ret->possv = ret->wha;
1613 ret->possh = ret->wha + wh;
1614 ret->lines = ret->wha + wh*2;
1615 ret->maxv = ret->wha + wh*3;
1616 ret->maxh = ret->wha + wh*4;
1617
1618 memset(ret->maxv, ret->maxb, wh*sizeof(char));
1619 memset(ret->maxh, ret->maxb, wh*sizeof(char));
1620
1621 ret->islands = NULL;
1622 ret->n_islands = 0;
1623 ret->n_islands_alloc = 0;
1624
1625 ret->gridi = snewn(wh, struct island *);
1626 for (i = 0; i < wh; i++) ret->gridi[i] = NULL;
1627
1628 ret->solved = ret->completed = 0;
1629
1630 ret->solver = snew(struct solver_state);
1631 ret->solver->dsf = snew_dsf(wh);
1632 ret->solver->tmpdsf = snewn(wh, int);
1633
1634 ret->solver->refcount = 1;
1635
1636 return ret;
1637 }
1638
1639 static game_state *dup_game(game_state *state)
1640 {
1641 game_state *ret = snew(game_state);
1642 int wh = state->w*state->h;
1643
1644 ret->w = state->w;
1645 ret->h = state->h;
1646 ret->allowloops = state->allowloops;
1647 ret->maxb = state->maxb;
1648 ret->params = state->params;
1649
1650 ret->grid = snewn(wh, grid_type);
1651 memcpy(ret->grid, state->grid, GRIDSZ(ret));
1652 ret->scratch = snewn(wh, grid_type);
1653 memcpy(ret->scratch, state->scratch, GRIDSZ(ret));
1654
1655 ret->wha = snewn(wh*N_WH_ARRAYS, char);
1656 memcpy(ret->wha, state->wha, wh*N_WH_ARRAYS*sizeof(char));
1657
1658 ret->possv = ret->wha;
1659 ret->possh = ret->wha + wh;
1660 ret->lines = ret->wha + wh*2;
1661 ret->maxv = ret->wha + wh*3;
1662 ret->maxh = ret->wha + wh*4;
1663
1664 ret->islands = snewn(state->n_islands, struct island);
1665 memcpy(ret->islands, state->islands, state->n_islands * sizeof(struct island));
1666 ret->n_islands = ret->n_islands_alloc = state->n_islands;
1667
1668 ret->gridi = snewn(wh, struct island *);
1669 fixup_islands_for_realloc(ret);
1670
1671 ret->solved = state->solved;
1672 ret->completed = state->completed;
1673
1674 ret->solver = state->solver;
1675 ret->solver->refcount++;
1676
1677 return ret;
1678 }
1679
1680 static void free_game(game_state *state)
1681 {
1682 if (--state->solver->refcount <= 0) {
1683 sfree(state->solver->dsf);
1684 sfree(state->solver->tmpdsf);
1685 sfree(state->solver);
1686 }
1687
1688 sfree(state->islands);
1689 sfree(state->gridi);
1690
1691 sfree(state->wha);
1692
1693 sfree(state->scratch);
1694 sfree(state->grid);
1695 sfree(state);
1696 }
1697
1698 #define MAX_NEWISLAND_TRIES 50
1699 #define MIN_SENSIBLE_ISLANDS 3
1700
1701 #define ORDER(a,b) do { if (a < b) { int tmp=a; int a=b; int b=tmp; } } while(0)
1702
1703 static char *new_game_desc(game_params *params, random_state *rs,
1704 char **aux, int interactive)
1705 {
1706 game_state *tobuild = NULL;
1707 int i, j, wh = params->w * params->h, x, y, dx, dy;
1708 int minx, miny, maxx, maxy, joinx, joiny, newx, newy, diffx, diffy;
1709 int ni_req = max((params->islands * wh) / 100, MIN_SENSIBLE_ISLANDS), ni_curr, ni_bad;
1710 struct island *is, *is2;
1711 char *ret;
1712 unsigned int echeck;
1713
1714 /* pick a first island position randomly. */
1715 generate:
1716 if (tobuild) free_game(tobuild);
1717 tobuild = new_state(params);
1718
1719 x = random_upto(rs, params->w);
1720 y = random_upto(rs, params->h);
1721 island_add(tobuild, x, y, 0);
1722 ni_curr = 1;
1723 ni_bad = 0;
1724 debug(("Created initial island at (%d,%d).\n", x, y));
1725
1726 while (ni_curr < ni_req) {
1727 /* Pick a random island to try and extend from. */
1728 i = random_upto(rs, tobuild->n_islands);
1729 is = &tobuild->islands[i];
1730
1731 /* Pick a random direction to extend in. */
1732 j = random_upto(rs, is->adj.npoints);
1733 dx = is->adj.points[j].x - is->x;
1734 dy = is->adj.points[j].y - is->y;
1735
1736 /* Find out limits of where we could put a new island. */
1737 joinx = joiny = -1;
1738 minx = is->x + 2*dx; miny = is->y + 2*dy; /* closest is 2 units away. */
1739 x = is->x+dx; y = is->y+dy;
1740 if (GRID(tobuild,x,y) & (G_LINEV|G_LINEH)) {
1741 /* already a line next to the island, continue. */
1742 goto bad;
1743 }
1744 while (1) {
1745 if (x < 0 || x >= params->w || y < 0 || y >= params->h) {
1746 /* got past the edge; put a possible at the island
1747 * and exit. */
1748 maxx = x-dx; maxy = y-dy;
1749 goto foundmax;
1750 }
1751 if (GRID(tobuild,x,y) & G_ISLAND) {
1752 /* could join up to an existing island... */
1753 joinx = x; joiny = y;
1754 /* ... or make a new one 2 spaces away. */
1755 maxx = x - 2*dx; maxy = y - 2*dy;
1756 goto foundmax;
1757 } else if (GRID(tobuild,x,y) & (G_LINEV|G_LINEH)) {
1758 /* could make a new one 1 space away from the line. */
1759 maxx = x - dx; maxy = y - dy;
1760 goto foundmax;
1761 }
1762 x += dx; y += dy;
1763 }
1764
1765 foundmax:
1766 debug(("Island at (%d,%d) with d(%d,%d) has new positions "
1767 "(%d,%d) -> (%d,%d), join (%d,%d).\n",
1768 is->x, is->y, dx, dy, minx, miny, maxx, maxy, joinx, joiny));
1769 /* Now we know where we could either put a new island
1770 * (between min and max), or (if loops are allowed) could join on
1771 * to an existing island (at join). */
1772 if (params->allowloops && joinx != -1 && joiny != -1) {
1773 if (random_upto(rs, 100) < (unsigned long)params->expansion) {
1774 is2 = INDEX(tobuild, gridi, joinx, joiny);
1775 debug(("Joining island at (%d,%d) to (%d,%d).\n",
1776 is->x, is->y, is2->x, is2->y));
1777 goto join;
1778 }
1779 }
1780 diffx = (maxx - minx) * dx;
1781 diffy = (maxy - miny) * dy;
1782 if (diffx < 0 || diffy < 0) goto bad;
1783 if (random_upto(rs,100) < (unsigned long)params->expansion) {
1784 newx = maxx; newy = maxy;
1785 debug(("Creating new island at (%d,%d) (expanded).\n", newx, newy));
1786 } else {
1787 newx = minx + random_upto(rs,diffx+1)*dx;
1788 newy = miny + random_upto(rs,diffy+1)*dy;
1789 debug(("Creating new island at (%d,%d).\n", newx, newy));
1790 }
1791 /* check we're not next to island in the other orthogonal direction. */
1792 if ((INGRID(tobuild,newx+dy,newy+dx) && (GRID(tobuild,newx+dy,newy+dx) & G_ISLAND)) ||
1793 (INGRID(tobuild,newx-dy,newy-dx) && (GRID(tobuild,newx-dy,newy-dx) & G_ISLAND))) {
1794 debug(("New location is adjacent to island, skipping.\n"));
1795 goto bad;
1796 }
1797 is2 = island_add(tobuild, newx, newy, 0);
1798 /* Must get is again at this point; the array might have
1799 * been realloced by island_add... */
1800 is = &tobuild->islands[i]; /* ...but order will not change. */
1801
1802 ni_curr++; ni_bad = 0;
1803 join:
1804 island_join(is, is2, random_upto(rs, tobuild->maxb)+1, 0);
1805 debug_state(tobuild);
1806 continue;
1807
1808 bad:
1809 ni_bad++;
1810 if (ni_bad > MAX_NEWISLAND_TRIES) {
1811 debug(("Unable to create any new islands after %d tries; "
1812 "created %d [%d%%] (instead of %d [%d%%] requested).\n",
1813 MAX_NEWISLAND_TRIES,
1814 ni_curr, ni_curr * 100 / wh,
1815 ni_req, ni_req * 100 / wh));
1816 goto generated;
1817 }
1818 }
1819
1820 generated:
1821 if (ni_curr == 1) {
1822 debug(("Only generated one island (!), retrying.\n"));
1823 goto generate;
1824 }
1825 /* Check we have at least one island on each extremity of the grid. */
1826 echeck = 0;
1827 for (x = 0; x < params->w; x++) {
1828 if (INDEX(tobuild, gridi, x, 0)) echeck |= 1;
1829 if (INDEX(tobuild, gridi, x, params->h-1)) echeck |= 2;
1830 }
1831 for (y = 0; y < params->h; y++) {
1832 if (INDEX(tobuild, gridi, 0, y)) echeck |= 4;
1833 if (INDEX(tobuild, gridi, params->w-1, y)) echeck |= 8;
1834 }
1835 if (echeck != 15) {
1836 debug(("Generated grid doesn't fill to sides, retrying.\n"));
1837 goto generate;
1838 }
1839
1840 map_count(tobuild);
1841 map_find_orthogonal(tobuild);
1842
1843 if (params->difficulty > 0) {
1844 if ((ni_curr > MIN_SENSIBLE_ISLANDS) &&
1845 (solve_from_scratch(tobuild, params->difficulty-1) > 0)) {
1846 debug(("Grid is solvable at difficulty %d (too easy); retrying.\n",
1847 params->difficulty-1));
1848 goto generate;
1849 }
1850 }
1851
1852 if (solve_from_scratch(tobuild, params->difficulty) == 0) {
1853 debug(("Grid not solvable at difficulty %d, (too hard); retrying.\n",
1854 params->difficulty));
1855 goto generate;
1856 }
1857
1858 /* ... tobuild is now solved. We rely on this making the diff for aux. */
1859 debug_state(tobuild);
1860 ret = encode_game(tobuild);
1861 {
1862 game_state *clean = dup_game(tobuild);
1863 map_clear(clean);
1864 map_update_possibles(clean);
1865 *aux = game_state_diff(clean, tobuild);
1866 free_game(clean);
1867 }
1868 free_game(tobuild);
1869
1870 return ret;
1871 }
1872
1873 static char *validate_desc(game_params *params, char *desc)
1874 {
1875 int i, wh = params->w * params->h;
1876
1877 for (i = 0; i < wh; i++) {
1878 if (*desc >= '1' && *desc <= '9')
1879 /* OK */;
1880 else if (*desc >= 'a' && *desc <= 'z')
1881 i += *desc - 'a'; /* plus the i++ */
1882 else if (*desc >= 'A' && *desc <= 'G')
1883 /* OK */;
1884 else if (*desc == 'V' || *desc == 'W' ||
1885 *desc == 'X' || *desc == 'Y' ||
1886 *desc == 'H' || *desc == 'I' ||
1887 *desc == 'J' || *desc == 'K')
1888 /* OK */;
1889 else if (!*desc)
1890 return "Game description shorter than expected";
1891 else
1892 return "Game description containers unexpected character";
1893 desc++;
1894 }
1895 if (*desc || i > wh)
1896 return "Game description longer than expected";
1897
1898 return NULL;
1899 }
1900
1901 static game_state *new_game_sub(game_params *params, char *desc)
1902 {
1903 game_state *state = new_state(params);
1904 int x, y, run = 0;
1905
1906 debug(("new_game[_sub]: desc = '%s'.\n", desc));
1907
1908 for (y = 0; y < params->h; y++) {
1909 for (x = 0; x < params->w; x++) {
1910 char c = '\0';
1911
1912 if (run == 0) {
1913 c = *desc++;
1914 assert(c != 'S');
1915 if (c >= 'a' && c <= 'z')
1916 run = c - 'a' + 1;
1917 }
1918
1919 if (run > 0) {
1920 c = 'S';
1921 run--;
1922 }
1923
1924 switch (c) {
1925 case '1': case '2': case '3': case '4':
1926 case '5': case '6': case '7': case '8': case '9':
1927 island_add(state, x, y, (c - '0'));
1928 break;
1929
1930 case 'A': case 'B': case 'C': case 'D':
1931 case 'E': case 'F': case 'G':
1932 island_add(state, x, y, (c - 'A') + 10);
1933 break;
1934
1935 case 'S':
1936 /* empty square */
1937 break;
1938
1939 default:
1940 assert(!"Malformed desc.");
1941 break;
1942 }
1943 }
1944 }
1945 if (*desc) assert(!"Over-long desc.");
1946
1947 map_find_orthogonal(state);
1948 map_update_possibles(state);
1949
1950 return state;
1951 }
1952
1953 static game_state *new_game(midend *me, game_params *params, char *desc)
1954 {
1955 return new_game_sub(params, desc);
1956 }
1957
1958 struct game_ui {
1959 int dragx_src, dragy_src; /* source; -1 means no drag */
1960 int dragx_dst, dragy_dst; /* src's closest orth island. */
1961 grid_type todraw;
1962 int dragging, drag_is_noline, nlines;
1963
1964 int cur_x, cur_y, cur_visible; /* cursor position */
1965 int show_hints;
1966 };
1967
1968 static char *ui_cancel_drag(game_ui *ui)
1969 {
1970 ui->dragx_src = ui->dragy_src = -1;
1971 ui->dragx_dst = ui->dragy_dst = -1;
1972 ui->dragging = 0;
1973 return "";
1974 }
1975
1976 static game_ui *new_ui(game_state *state)
1977 {
1978 game_ui *ui = snew(game_ui);
1979 ui_cancel_drag(ui);
1980 ui->cur_x = state->islands[0].x;
1981 ui->cur_y = state->islands[0].y;
1982 ui->cur_visible = 0;
1983 ui->show_hints = 0;
1984 return ui;
1985 }
1986
1987 static void free_ui(game_ui *ui)
1988 {
1989 sfree(ui);
1990 }
1991
1992 static char *encode_ui(game_ui *ui)
1993 {
1994 return NULL;
1995 }
1996
1997 static void decode_ui(game_ui *ui, char *encoding)
1998 {
1999 }
2000
2001 static void game_changed_state(game_ui *ui, game_state *oldstate,
2002 game_state *newstate)
2003 {
2004 }
2005
2006 struct game_drawstate {
2007 int tilesize;
2008 int w, h;
2009 grid_type *grid;
2010 int *lv, *lh;
2011 int started, dragging;
2012 int show_hints;
2013 };
2014
2015 static char *update_drag_dst(game_state *state, game_ui *ui, game_drawstate *ds,
2016 int nx, int ny)
2017 {
2018 int ox, oy, dx, dy, i, currl, maxb;
2019 struct island *is;
2020 grid_type gtype, ntype, mtype, curr;
2021
2022 if (ui->dragx_src == -1 || ui->dragy_src == -1) return NULL;
2023
2024 ui->dragx_dst = -1;
2025 ui->dragy_dst = -1;
2026
2027 /* work out which of the four directions we're closest to... */
2028 ox = COORD(ui->dragx_src) + TILE_SIZE/2;
2029 oy = COORD(ui->dragy_src) + TILE_SIZE/2;
2030
2031 if (abs(nx-ox) < abs(ny-oy)) {
2032 dx = 0;
2033 dy = (ny-oy) < 0 ? -1 : 1;
2034 gtype = G_LINEV; ntype = G_NOLINEV; mtype = G_MARKV;
2035 maxb = INDEX(state, maxv, ui->dragx_src+dx, ui->dragy_src+dy);
2036 } else {
2037 dy = 0;
2038 dx = (nx-ox) < 0 ? -1 : 1;
2039 gtype = G_LINEH; ntype = G_NOLINEH; mtype = G_MARKH;
2040 maxb = INDEX(state, maxh, ui->dragx_src+dx, ui->dragy_src+dy);
2041 }
2042 if (ui->drag_is_noline) {
2043 ui->todraw = ntype;
2044 } else {
2045 curr = GRID(state, ui->dragx_src+dx, ui->dragy_src+dy);
2046 currl = INDEX(state, lines, ui->dragx_src+dx, ui->dragy_src+dy);
2047
2048 if (curr & gtype) {
2049 if (currl == maxb) {
2050 ui->todraw = 0;
2051 ui->nlines = 0;
2052 } else {
2053 ui->todraw = gtype;
2054 ui->nlines = currl + 1;
2055 }
2056 } else {
2057 ui->todraw = gtype;
2058 ui->nlines = 1;
2059 }
2060 }
2061
2062 /* ... and see if there's an island off in that direction. */
2063 is = INDEX(state, gridi, ui->dragx_src, ui->dragy_src);
2064 for (i = 0; i < is->adj.npoints; i++) {
2065 if (is->adj.points[i].off == 0) continue;
2066 curr = GRID(state, is->x+dx, is->y+dy);
2067 if (curr & mtype) continue; /* don't allow changes to marked lines. */
2068 if (ui->drag_is_noline) {
2069 if (curr & gtype) continue; /* no no-line where already a line */
2070 } else {
2071 if (POSSIBLES(state, dx, is->x+dx, is->y+dy) == 0) continue; /* no line if !possible. */
2072 if (curr & ntype) continue; /* can't have a bridge where there's a no-line. */
2073 }
2074
2075 if (is->adj.points[i].dx == dx &&
2076 is->adj.points[i].dy == dy) {
2077 ui->dragx_dst = ISLAND_ORTHX(is,i);
2078 ui->dragy_dst = ISLAND_ORTHY(is,i);
2079 }
2080 }
2081 /*debug(("update_drag src (%d,%d) d(%d,%d) dst (%d,%d)\n",
2082 ui->dragx_src, ui->dragy_src, dx, dy,
2083 ui->dragx_dst, ui->dragy_dst));*/
2084 return "";
2085 }
2086
2087 static char *finish_drag(game_state *state, game_ui *ui)
2088 {
2089 char buf[80];
2090
2091 if (ui->dragx_src == -1 || ui->dragy_src == -1)
2092 return NULL;
2093 if (ui->dragx_dst == -1 || ui->dragy_dst == -1)
2094 return ui_cancel_drag(ui);
2095
2096 if (ui->drag_is_noline) {
2097 sprintf(buf, "N%d,%d,%d,%d",
2098 ui->dragx_src, ui->dragy_src,
2099 ui->dragx_dst, ui->dragy_dst);
2100 } else {
2101 sprintf(buf, "L%d,%d,%d,%d,%d",
2102 ui->dragx_src, ui->dragy_src,
2103 ui->dragx_dst, ui->dragy_dst, ui->nlines);
2104 }
2105
2106 ui_cancel_drag(ui);
2107
2108 return dupstr(buf);
2109 }
2110
2111 static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
2112 int x, int y, int button)
2113 {
2114 int gx = FROMCOORD(x), gy = FROMCOORD(y);
2115 char buf[80], *ret;
2116 grid_type ggrid = INGRID(state,gx,gy) ? GRID(state,gx,gy) : 0;
2117
2118 if (button == LEFT_BUTTON || button == RIGHT_BUTTON) {
2119 if (!INGRID(state, gx, gy)) return NULL;
2120 ui->cur_visible = 0;
2121 if ((ggrid & G_ISLAND) && !(ggrid & G_MARK)) {
2122 ui->dragx_src = gx;
2123 ui->dragy_src = gy;
2124 return "";
2125 } else
2126 return ui_cancel_drag(ui);
2127 } else if (button == LEFT_DRAG || button == RIGHT_DRAG) {
2128 if (gx != ui->dragx_src || gy != ui->dragy_src) {
2129 ui->dragging = 1;
2130 ui->drag_is_noline = (button == RIGHT_DRAG) ? 1 : 0;
2131 return update_drag_dst(state, ui, ds, x, y);
2132 } else {
2133 /* cancel a drag when we go back to the starting point */
2134 ui->dragx_dst = -1;
2135 ui->dragy_dst = -1;
2136 return "";
2137 }
2138 } else if (button == LEFT_RELEASE || button == RIGHT_RELEASE) {
2139 if (ui->dragging) {
2140 return finish_drag(state, ui);
2141 } else {
2142 ui_cancel_drag(ui);
2143 if (!INGRID(state, gx, gy)) return NULL;
2144 if (!(GRID(state, gx, gy) & G_ISLAND)) return NULL;
2145 sprintf(buf, "M%d,%d", gx, gy);
2146 return dupstr(buf);
2147 }
2148 } else if (button == 'h' || button == 'H') {
2149 game_state *solved = dup_game(state);
2150 solve_for_hint(solved);
2151 ret = game_state_diff(state, solved);
2152 free_game(solved);
2153 return ret;
2154 } else if (IS_CURSOR_MOVE(button)) {
2155 ui->cur_visible = 1;
2156 if (ui->dragging) {
2157 int nx = ui->cur_x, ny = ui->cur_y;
2158
2159 move_cursor(button, &nx, &ny, state->w, state->h, 0);
2160 update_drag_dst(state, ui, ds,
2161 COORD(nx)+TILE_SIZE/2,
2162 COORD(ny)+TILE_SIZE/2);
2163 return finish_drag(state, ui);
2164 } else {
2165 int dx = (button == CURSOR_RIGHT) ? +1 : (button == CURSOR_LEFT) ? -1 : 0;
2166 int dy = (button == CURSOR_DOWN) ? +1 : (button == CURSOR_UP) ? -1 : 0;
2167 int dorthx = 1 - abs(dx), dorthy = 1 - abs(dy);
2168 int dir, orth, nx = x, ny = y;
2169
2170 /* 'orthorder' is a tweak to ensure that if you press RIGHT and
2171 * happen to move upwards, when you press LEFT you then tend
2172 * downwards (rather than upwards again). */
2173 int orthorder = (button == CURSOR_LEFT || button == CURSOR_UP) ? 1 : -1;
2174
2175 /* This attempts to find an island in the direction you're
2176 * asking for, broadly speaking. If you ask to go right, for
2177 * example, it'll look for islands to the right and slightly
2178 * above or below your current horiz. position, allowing
2179 * further above/below the further away it searches. */
2180
2181 assert(GRID(state, ui->cur_x, ui->cur_y) & G_ISLAND);
2182 /* currently this is depth-first (so orthogonally-adjacent
2183 * islands across the other side of the grid will be moved to
2184 * before closer islands slightly offset). Swap the order of
2185 * these two loops to change to breadth-first search. */
2186 for (orth = 0; ; orth++) {
2187 int oingrid = 0;
2188 for (dir = 1; ; dir++) {
2189 int dingrid = 0;
2190
2191 if (orth > dir) continue; /* only search in cone outwards. */
2192
2193 nx = ui->cur_x + dir*dx + orth*dorthx*orthorder;
2194 ny = ui->cur_y + dir*dy + orth*dorthy*orthorder;
2195 if (INGRID(state, nx, ny)) {
2196 dingrid = oingrid = 1;
2197 if (GRID(state, nx, ny) & G_ISLAND) goto found;
2198 }
2199
2200 nx = ui->cur_x + dir*dx - orth*dorthx*orthorder;
2201 ny = ui->cur_y + dir*dy - orth*dorthy*orthorder;
2202 if (INGRID(state, nx, ny)) {
2203 dingrid = oingrid = 1;
2204 if (GRID(state, nx, ny) & G_ISLAND) goto found;
2205 }
2206
2207 if (!dingrid) break;
2208 }
2209 if (!oingrid) return "";
2210 }
2211 /* not reached */
2212
2213 found:
2214 ui->cur_x = nx;
2215 ui->cur_y = ny;
2216 return "";
2217 }
2218 } else if (IS_CURSOR_SELECT(button)) {
2219 if (!ui->cur_visible) {
2220 ui->cur_visible = 1;
2221 return "";
2222 }
2223 if (ui->dragging) {
2224 ui_cancel_drag(ui);
2225 if (ui->dragx_dst == -1 && ui->dragy_dst == -1) {
2226 sprintf(buf, "M%d,%d", ui->cur_x, ui->cur_y);
2227 return dupstr(buf);
2228 } else
2229 return "";
2230 } else {
2231 grid_type v = GRID(state, ui->cur_x, ui->cur_y);
2232 if (v & G_ISLAND) {
2233 ui->dragging = 1;
2234 ui->dragx_src = ui->cur_x;
2235 ui->dragy_src = ui->cur_y;
2236 ui->dragx_dst = ui->dragy_dst = -1;
2237 ui->drag_is_noline = (button == CURSOR_SELECT2) ? 1 : 0;
2238 return "";
2239 }
2240 }
2241 } else if (button == 'g' || button == 'G') {
2242 ui->show_hints = 1 - ui->show_hints;
2243 return "";
2244 }
2245
2246 return NULL;
2247 }
2248
2249 static game_state *execute_move(game_state *state, char *move)
2250 {
2251 game_state *ret = dup_game(state);
2252 int x1, y1, x2, y2, nl, n;
2253 struct island *is1, *is2;
2254 char c;
2255
2256 debug(("execute_move: %s\n", move));
2257
2258 if (!*move) goto badmove;
2259 while (*move) {
2260 c = *move++;
2261 if (c == 'S') {
2262 ret->solved = TRUE;
2263 n = 0;
2264 } else if (c == 'L') {
2265 if (sscanf(move, "%d,%d,%d,%d,%d%n",
2266 &x1, &y1, &x2, &y2, &nl, &n) != 5)
2267 goto badmove;
2268 if (!INGRID(ret, x1, y1) || !INGRID(ret, x2, y2))
2269 goto badmove;
2270 is1 = INDEX(ret, gridi, x1, y1);
2271 is2 = INDEX(ret, gridi, x2, y2);
2272 if (!is1 || !is2) goto badmove;
2273 if (nl < 0 || nl > state->maxb) goto badmove;
2274 island_join(is1, is2, nl, 0);
2275 } else if (c == 'N') {
2276 if (sscanf(move, "%d,%d,%d,%d%n",
2277 &x1, &y1, &x2, &y2, &n) != 4)
2278 goto badmove;
2279 if (!INGRID(ret, x1, y1) || !INGRID(ret, x2, y2))
2280 goto badmove;
2281 is1 = INDEX(ret, gridi, x1, y1);
2282 is2 = INDEX(ret, gridi, x2, y2);
2283 if (!is1 || !is2) goto badmove;
2284 island_join(is1, is2, -1, 0);
2285 } else if (c == 'M') {
2286 if (sscanf(move, "%d,%d%n",
2287 &x1, &y1, &n) != 2)
2288 goto badmove;
2289 if (!INGRID(ret, x1, y1))
2290 goto badmove;
2291 is1 = INDEX(ret, gridi, x1, y1);
2292 if (!is1) goto badmove;
2293 island_togglemark(is1);
2294 } else
2295 goto badmove;
2296
2297 move += n;
2298 if (*move == ';')
2299 move++;
2300 else if (*move) goto badmove;
2301 }
2302
2303 map_update_possibles(ret);
2304 if (map_check(ret)) {
2305 debug(("Game completed.\n"));
2306 ret->completed = 1;
2307 }
2308 return ret;
2309
2310 badmove:
2311 debug(("%s: unrecognised move.\n", move));
2312 free_game(ret);
2313 return NULL;
2314 }
2315
2316 static char *solve_game(game_state *state, game_state *currstate,
2317 char *aux, char **error)
2318 {
2319 char *ret;
2320 game_state *solved;
2321
2322 if (aux) {
2323 debug(("solve_game: aux = %s\n", aux));
2324 solved = execute_move(state, aux);
2325 if (!solved) {
2326 *error = "Generated aux string is not a valid move (!).";
2327 return NULL;
2328 }
2329 } else {
2330 solved = dup_game(state);
2331 /* solve with max strength... */
2332 if (solve_from_scratch(solved, 10) == 0) {
2333 free_game(solved);
2334 *error = "Game does not have a (non-recursive) solution.";
2335 return NULL;
2336 }
2337 }
2338 ret = game_state_diff(currstate, solved);
2339 free_game(solved);
2340 debug(("solve_game: ret = %s\n", ret));
2341 return ret;
2342 }
2343
2344 /* ----------------------------------------------------------------------
2345 * Drawing routines.
2346 */
2347
2348 static void game_compute_size(game_params *params, int tilesize,
2349 int *x, int *y)
2350 {
2351 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
2352 struct { int tilesize; } ads, *ds = &ads;
2353 ads.tilesize = tilesize;
2354
2355 *x = TILE_SIZE * params->w + 2 * BORDER;
2356 *y = TILE_SIZE * params->h + 2 * BORDER;
2357 }
2358
2359 static void game_set_size(drawing *dr, game_drawstate *ds,
2360 game_params *params, int tilesize)
2361 {
2362 ds->tilesize = tilesize;
2363 }
2364
2365 static float *game_colours(frontend *fe, int *ncolours)
2366 {
2367 float *ret = snewn(3 * NCOLOURS, float);
2368 int i;
2369
2370 game_mkhighlight(fe, ret, COL_BACKGROUND, COL_HIGHLIGHT, COL_LOWLIGHT);
2371
2372 for (i = 0; i < 3; i++) {
2373 ret[COL_FOREGROUND * 3 + i] = 0.0F;
2374 ret[COL_HINT * 3 + i] = ret[COL_LOWLIGHT * 3 + i];
2375 ret[COL_GRID * 3 + i] =
2376 (ret[COL_HINT * 3 + i] + ret[COL_BACKGROUND * 3 + i]) * 0.5F;
2377 ret[COL_MARK * 3 + i] = ret[COL_HIGHLIGHT * 3 + i];
2378 }
2379 ret[COL_WARNING * 3 + 0] = 1.0F;
2380 ret[COL_WARNING * 3 + 1] = 0.25F;
2381 ret[COL_WARNING * 3 + 2] = 0.25F;
2382
2383 ret[COL_SELECTED * 3 + 0] = 0.25F;
2384 ret[COL_SELECTED * 3 + 1] = 1.00F;
2385 ret[COL_SELECTED * 3 + 2] = 0.25F;
2386
2387 ret[COL_CURSOR * 3 + 0] = min(ret[COL_BACKGROUND * 3 + 0] * 1.4F, 1.0F);
2388 ret[COL_CURSOR * 3 + 1] = ret[COL_BACKGROUND * 3 + 1] * 0.8F;
2389 ret[COL_CURSOR * 3 + 2] = ret[COL_BACKGROUND * 3 + 2] * 0.8F;
2390
2391 *ncolours = NCOLOURS;
2392 return ret;
2393 }
2394
2395 static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
2396 {
2397 struct game_drawstate *ds = snew(struct game_drawstate);
2398 int wh = state->w*state->h;
2399
2400 ds->tilesize = 0;
2401 ds->w = state->w;
2402 ds->h = state->h;
2403 ds->started = 0;
2404 ds->grid = snewn(wh, grid_type);
2405 memset(ds->grid, -1, wh*sizeof(grid_type));
2406 ds->lv = snewn(wh, int);
2407 ds->lh = snewn(wh, int);
2408 memset(ds->lv, 0, wh*sizeof(int));
2409 memset(ds->lh, 0, wh*sizeof(int));
2410 ds->show_hints = 0;
2411
2412 return ds;
2413 }
2414
2415 static void game_free_drawstate(drawing *dr, game_drawstate *ds)
2416 {
2417 sfree(ds->lv);
2418 sfree(ds->lh);
2419 sfree(ds->grid);
2420 sfree(ds);
2421 }
2422
2423 #define LINE_WIDTH (TILE_SIZE/8)
2424 #define TS8(x) (((x)*TILE_SIZE)/8)
2425
2426 #define OFFSET(thing) ((TILE_SIZE/2) - ((thing)/2))
2427
2428 static void lines_vert(drawing *dr, game_drawstate *ds,
2429 int ox, int oy, int lv, int col, grid_type v)
2430 {
2431 int lw = LINE_WIDTH, gw = LINE_WIDTH, bw, i, loff;
2432 while ((bw = lw * lv + gw * (lv+1)) > TILE_SIZE)
2433 gw--;
2434 loff = OFFSET(bw);
2435 if (v & G_MARKV)
2436 draw_rect(dr, ox + loff, oy, bw, TILE_SIZE, COL_MARK);
2437 for (i = 0; i < lv; i++, loff += lw + gw)
2438 draw_rect(dr, ox + loff + gw, oy, lw, TILE_SIZE, col);
2439 }
2440
2441 static void lines_horiz(drawing *dr, game_drawstate *ds,
2442 int ox, int oy, int lh, int col, grid_type v)
2443 {
2444 int lw = LINE_WIDTH, gw = LINE_WIDTH, bw, i, loff;
2445 while ((bw = lw * lh + gw * (lh+1)) > TILE_SIZE)
2446 gw--;
2447 loff = OFFSET(bw);
2448 if (v & G_MARKH)
2449 draw_rect(dr, ox, oy + loff, TILE_SIZE, bw, COL_MARK);
2450 for (i = 0; i < lh; i++, loff += lw + gw)
2451 draw_rect(dr, ox, oy + loff + gw, TILE_SIZE, lw, col);
2452 }
2453
2454 static void line_cross(drawing *dr, game_drawstate *ds,
2455 int ox, int oy, int col, grid_type v)
2456 {
2457 int off = TS8(2);
2458 draw_line(dr, ox, oy, ox+off, oy+off, col);
2459 draw_line(dr, ox+off, oy, ox, oy+off, col);
2460 }
2461
2462 static int between_island(game_state *state, int sx, int sy, int dx, int dy)
2463 {
2464 int x = sx - dx, y = sy - dy;
2465
2466 while (INGRID(state, x, y)) {
2467 if (GRID(state, x, y) & G_ISLAND) goto found;
2468 x -= dx; y -= dy;
2469 }
2470 return 0;
2471 found:
2472 x = sx + dx, y = sy + dy;
2473 while (INGRID(state, x, y)) {
2474 if (GRID(state, x, y) & G_ISLAND) return 1;
2475 x += dx; y += dy;
2476 }
2477 return 0;
2478 }
2479
2480 static void lines_lvlh(game_state *state, game_ui *ui, int x, int y, grid_type v,
2481 int *lv_r, int *lh_r)
2482 {
2483 int lh = 0, lv = 0;
2484
2485 if (v & G_LINEV) lv = INDEX(state,lines,x,y);
2486 if (v & G_LINEH) lh = INDEX(state,lines,x,y);
2487
2488 if (ui->show_hints) {
2489 if (between_island(state, x, y, 0, 1) && !lv) lv = 1;
2490 if (between_island(state, x, y, 1, 0) && !lh) lh = 1;
2491 }
2492 /*debug(("lvlh: (%d,%d) v 0x%x lv %d lh %d.\n", x, y, v, lv, lh));*/
2493 *lv_r = lv; *lh_r = lh;
2494 }
2495
2496 static void dsf_debug_draw(drawing *dr,
2497 game_state *state, game_drawstate *ds,
2498 int x, int y)
2499 {
2500 #ifdef DRAW_DSF
2501 int ts = TILE_SIZE/2;
2502 int ox = COORD(x) + ts/2, oy = COORD(y) + ts/2;
2503 char str[32];
2504
2505 sprintf(str, "%d", dsf_canonify(state->solver->dsf, DINDEX(x,y)));
2506 draw_text(dr, ox, oy, FONT_VARIABLE, ts,
2507 ALIGN_VCENTRE | ALIGN_HCENTRE, COL_WARNING, str);
2508 #endif
2509 }
2510
2511 static void lines_redraw(drawing *dr,
2512 game_state *state, game_drawstate *ds, game_ui *ui,
2513 int x, int y, grid_type v, int lv, int lh)
2514 {
2515 int ox = COORD(x), oy = COORD(y);
2516 int vcol = (v & G_FLASH) ? COL_HIGHLIGHT :
2517 (v & G_WARN) ? COL_WARNING : COL_FOREGROUND, hcol = vcol;
2518 grid_type todraw = v & G_NOLINE;
2519
2520 if (v & G_ISSEL) {
2521 if (ui->todraw & G_FLAGSH) hcol = COL_SELECTED;
2522 if (ui->todraw & G_FLAGSV) vcol = COL_SELECTED;
2523 todraw |= ui->todraw;
2524 }
2525
2526 draw_rect(dr, ox, oy, TILE_SIZE, TILE_SIZE, COL_BACKGROUND);
2527 /*if (v & G_CURSOR)
2528 draw_rect(dr, ox+TILE_SIZE/4, oy+TILE_SIZE/4,
2529 TILE_SIZE/2, TILE_SIZE/2, COL_CURSOR);*/
2530
2531
2532 if (ui->show_hints) {
2533 if (between_island(state, x, y, 0, 1) && !(v & G_LINEV))
2534 vcol = COL_HINT;
2535 if (between_island(state, x, y, 1, 0) && !(v & G_LINEH))
2536 hcol = COL_HINT;
2537 }
2538 #ifdef DRAW_GRID
2539 draw_rect_outline(dr, ox, oy, TILE_SIZE, TILE_SIZE, COL_GRID);
2540 #endif
2541
2542 if (todraw & G_NOLINEV) {
2543 line_cross(dr, ds, ox + TS8(3), oy + TS8(1), vcol, todraw);
2544 line_cross(dr, ds, ox + TS8(3), oy + TS8(5), vcol, todraw);
2545 }
2546 if (todraw & G_NOLINEH) {
2547 line_cross(dr, ds, ox + TS8(1), oy + TS8(3), hcol, todraw);
2548 line_cross(dr, ds, ox + TS8(5), oy + TS8(3), hcol, todraw);
2549 }
2550 /* if we're drawing a real line and a hint, make sure we draw the real
2551 * line on top. */
2552 if (lv && vcol == COL_HINT) lines_vert(dr, ds, ox, oy, lv, vcol, v);
2553 if (lh) lines_horiz(dr, ds, ox, oy, lh, hcol, v);
2554 if (lv && vcol != COL_HINT) lines_vert(dr, ds, ox, oy, lv, vcol, v);
2555
2556 dsf_debug_draw(dr, state, ds, x, y);
2557 draw_update(dr, ox, oy, TILE_SIZE, TILE_SIZE);
2558 }
2559
2560 #define ISLAND_RADIUS ((TILE_SIZE*12)/20)
2561 #define ISLAND_NUMSIZE(is) \
2562 (((is)->count < 10) ? (TILE_SIZE*7)/10 : (TILE_SIZE*5)/10)
2563
2564 static void island_redraw(drawing *dr,
2565 game_state *state, game_drawstate *ds,
2566 struct island *is, grid_type v)
2567 {
2568 /* These overlap the edges of their squares, which is why they're drawn later.
2569 * We know they can't overlap each other because they're not allowed within 2
2570 * squares of each other. */
2571 int half = TILE_SIZE/2;
2572 int ox = COORD(is->x) + half, oy = COORD(is->y) + half;
2573 int orad = ISLAND_RADIUS, irad = orad - LINE_WIDTH;
2574 int updatesz = orad*2+1;
2575 int tcol = (v & G_FLASH) ? COL_HIGHLIGHT :
2576 (v & G_WARN) ? COL_WARNING : COL_FOREGROUND;
2577 int col = (v & G_ISSEL) ? COL_SELECTED : tcol;
2578 int bg = (v & G_CURSOR) ? COL_CURSOR :
2579 (v & G_MARK) ? COL_MARK : COL_BACKGROUND;
2580 char str[32];
2581
2582 #ifdef DRAW_GRID
2583 draw_rect_outline(dr, COORD(is->x), COORD(is->y),
2584 TILE_SIZE, TILE_SIZE, COL_GRID);
2585 #endif
2586
2587 /* draw a thick circle */
2588 draw_circle(dr, ox, oy, orad, col, col);
2589 draw_circle(dr, ox, oy, irad, bg, bg);
2590
2591 sprintf(str, "%d", is->count);
2592 draw_text(dr, ox, oy, FONT_VARIABLE, ISLAND_NUMSIZE(is),
2593 ALIGN_VCENTRE | ALIGN_HCENTRE, tcol, str);
2594
2595 dsf_debug_draw(dr, state, ds, is->x, is->y);
2596 draw_update(dr, ox - orad, oy - orad, updatesz, updatesz);
2597 }
2598
2599 static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
2600 game_state *state, int dir, game_ui *ui,
2601 float animtime, float flashtime)
2602 {
2603 int x, y, force = 0, i, j, redraw, lv, lh;
2604 grid_type v, dsv, flash = 0;
2605 struct island *is, *is_drag_src = NULL, *is_drag_dst = NULL;
2606
2607 if (flashtime) {
2608 int f = (int)(flashtime * 5 / FLASH_TIME);
2609 if (f == 1 || f == 3) flash = G_FLASH;
2610 }
2611
2612 /* Clear screen, if required. */
2613 if (!ds->started) {
2614 draw_rect(dr, 0, 0,
2615 TILE_SIZE * ds->w + 2 * BORDER,
2616 TILE_SIZE * ds->h + 2 * BORDER, COL_BACKGROUND);
2617 #ifdef DRAW_GRID
2618 draw_rect_outline(dr,
2619 COORD(0)-1, COORD(0)-1,
2620 TILE_SIZE * ds->w + 2, TILE_SIZE * ds->h + 2,
2621 COL_GRID);
2622 #endif
2623 draw_update(dr, 0, 0,
2624 TILE_SIZE * ds->w + 2 * BORDER,
2625 TILE_SIZE * ds->h + 2 * BORDER);
2626 ds->started = 1;
2627 force = 1;
2628 }
2629
2630 if (ui->dragx_src != -1 && ui->dragy_src != -1) {
2631 ds->dragging = 1;
2632 is_drag_src = INDEX(state, gridi, ui->dragx_src, ui->dragy_src);
2633 assert(is_drag_src);
2634 if (ui->dragx_dst != -1 && ui->dragy_dst != -1) {
2635 is_drag_dst = INDEX(state, gridi, ui->dragx_dst, ui->dragy_dst);
2636 assert(is_drag_dst);
2637 }
2638 } else
2639 ds->dragging = 0;
2640
2641 if (ui->show_hints != ds->show_hints) {
2642 force = 1;
2643 ds->show_hints = ui->show_hints;
2644 }
2645
2646 /* Draw all lines (and hints, if we want), but *not* islands. */
2647 for (x = 0; x < ds->w; x++) {
2648 for (y = 0; y < ds->h; y++) {
2649 v = GRID(state, x, y) | flash;
2650 dsv = GRID(ds,x,y) & ~G_REDRAW;
2651
2652 if (v & G_ISLAND) continue;
2653
2654 if (is_drag_dst) {
2655 if (WITHIN(x,is_drag_src->x, is_drag_dst->x) &&
2656 WITHIN(y,is_drag_src->y, is_drag_dst->y))
2657 v |= G_ISSEL;
2658 }
2659 lines_lvlh(state, ui, x, y, v, &lv, &lh);
2660
2661 /*if (ui->cur_visible && ui->cur_x == x && ui->cur_y == y)
2662 v |= G_CURSOR;*/
2663
2664 if (v != dsv ||
2665 lv != INDEX(ds,lv,x,y) ||
2666 lh != INDEX(ds,lh,x,y) ||
2667 force) {
2668 GRID(ds, x, y) = v | G_REDRAW;
2669 INDEX(ds,lv,x,y) = lv;
2670 INDEX(ds,lh,x,y) = lh;
2671 lines_redraw(dr, state, ds, ui, x, y, v, lv, lh);
2672 } else
2673 GRID(ds,x,y) &= ~G_REDRAW;
2674 }
2675 }
2676
2677 /* Draw islands. */
2678 for (i = 0; i < state->n_islands; i++) {
2679 is = &state->islands[i];
2680 v = GRID(state, is->x, is->y) | flash;
2681
2682 redraw = 0;
2683 for (j = 0; j < is->adj.npoints; j++) {
2684 if (GRID(ds,is->adj.points[j].x,is->adj.points[j].y) & G_REDRAW) {
2685 redraw = 1;
2686 }
2687 }
2688
2689 if (is_drag_src) {
2690 if (is == is_drag_src)
2691 v |= G_ISSEL;
2692 else if (is_drag_dst && is == is_drag_dst)
2693 v |= G_ISSEL;
2694 }
2695
2696 if (island_impossible(is, v & G_MARK)) v |= G_WARN;
2697
2698 if (ui->cur_visible && ui->cur_x == is->x && ui->cur_y == is->y)
2699 v |= G_CURSOR;
2700
2701 if ((v != GRID(ds, is->x, is->y)) || force || redraw) {
2702 GRID(ds,is->x,is->y) = v;
2703 island_redraw(dr, state, ds, is, v);
2704 }
2705 }
2706 }
2707
2708 static float game_anim_length(game_state *oldstate, game_state *newstate,
2709 int dir, game_ui *ui)
2710 {
2711 return 0.0F;
2712 }
2713
2714 static float game_flash_length(game_state *oldstate, game_state *newstate,
2715 int dir, game_ui *ui)
2716 {
2717 if (!oldstate->completed && newstate->completed &&
2718 !oldstate->solved && !newstate->solved)
2719 return FLASH_TIME;
2720
2721 return 0.0F;
2722 }
2723
2724 static int game_status(game_state *state)
2725 {
2726 return state->completed ? +1 : 0;
2727 }
2728
2729 static int game_timing_state(game_state *state, game_ui *ui)
2730 {
2731 return TRUE;
2732 }
2733
2734 static void game_print_size(game_params *params, float *x, float *y)
2735 {
2736 int pw, ph;
2737
2738 /* 10mm squares by default. */
2739 game_compute_size(params, 1000, &pw, &ph);
2740 *x = pw / 100.0F;
2741 *y = ph / 100.0F;
2742 }
2743
2744 static void game_print(drawing *dr, game_state *state, int ts)
2745 {
2746 int ink = print_mono_colour(dr, 0);
2747 int paper = print_mono_colour(dr, 1);
2748 int x, y, cx, cy, i, nl;
2749 int loff;
2750 grid_type grid;
2751
2752 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
2753 game_drawstate ads, *ds = &ads;
2754 ads.tilesize = ts;
2755
2756 /* I don't think this wants a border. */
2757
2758 /* Bridges */
2759 loff = ts / (8 * sqrt((state->params.maxb - 1)));
2760 print_line_width(dr, ts / 12);
2761 for (x = 0; x < state->w; x++) {
2762 for (y = 0; y < state->h; y++) {
2763 cx = COORD(x); cy = COORD(y);
2764 grid = GRID(state,x,y);
2765 nl = INDEX(state,lines,x,y);
2766
2767 if (grid & G_ISLAND) continue;
2768 if (grid & G_LINEV) {
2769 for (i = 0; i < nl; i++)
2770 draw_line(dr, cx+ts/2+(2*i-nl+1)*loff, cy,
2771 cx+ts/2+(2*i-nl+1)*loff, cy+ts, ink);
2772 }
2773 if (grid & G_LINEH) {
2774 for (i = 0; i < nl; i++)
2775 draw_line(dr, cx, cy+ts/2+(2*i-nl+1)*loff,
2776 cx+ts, cy+ts/2+(2*i-nl+1)*loff, ink);
2777 }
2778 }
2779 }
2780
2781 /* Islands */
2782 for (i = 0; i < state->n_islands; i++) {
2783 char str[32];
2784 struct island *is = &state->islands[i];
2785 grid = GRID(state, is->x, is->y);
2786 cx = COORD(is->x) + ts/2;
2787 cy = COORD(is->y) + ts/2;
2788
2789 draw_circle(dr, cx, cy, ISLAND_RADIUS, paper, ink);
2790
2791 sprintf(str, "%d", is->count);
2792 draw_text(dr, cx, cy, FONT_VARIABLE, ISLAND_NUMSIZE(is),
2793 ALIGN_VCENTRE | ALIGN_HCENTRE, ink, str);
2794 }
2795 }
2796
2797 #ifdef COMBINED
2798 #define thegame bridges
2799 #endif
2800
2801 const struct game thegame = {
2802 "Bridges", "games.bridges", "bridges",
2803 default_params,
2804 game_fetch_preset,
2805 decode_params,
2806 encode_params,
2807 free_params,
2808 dup_params,
2809 TRUE, game_configure, custom_params,
2810 validate_params,
2811 new_game_desc,
2812 validate_desc,
2813 new_game,
2814 dup_game,
2815 free_game,
2816 TRUE, solve_game,
2817 TRUE, game_can_format_as_text_now, game_text_format,
2818 new_ui,
2819 free_ui,
2820 encode_ui,
2821 decode_ui,
2822 game_changed_state,
2823 interpret_move,
2824 execute_move,
2825 PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
2826 game_colours,
2827 game_new_drawstate,
2828 game_free_drawstate,
2829 game_redraw,
2830 game_anim_length,
2831 game_flash_length,
2832 game_status,
2833 TRUE, FALSE, game_print_size, game_print,
2834 FALSE, /* wants_statusbar */
2835 FALSE, game_timing_state,
2836 REQUIRE_RBUTTON, /* flags */
2837 };
2838
2839 /* vim: set shiftwidth=4 tabstop=8: */