Now we have the `dir' parameter, we should use it where it makes
[sgt/puzzles] / cube.c
1 /*
2 * cube.c: Cube game.
3 */
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <string.h>
8 #include <assert.h>
9 #include <ctype.h>
10 #include <math.h>
11
12 #include "puzzles.h"
13
14 const char *const game_name = "Cube";
15 const char *const game_winhelp_topic = "games.cube";
16 const int game_can_configure = TRUE;
17
18 #define MAXVERTICES 20
19 #define MAXFACES 20
20 #define MAXORDER 4
21 struct solid {
22 int nvertices;
23 float vertices[MAXVERTICES * 3]; /* 3*npoints coordinates */
24 int order;
25 int nfaces;
26 int faces[MAXFACES * MAXORDER]; /* order*nfaces point indices */
27 float normals[MAXFACES * 3]; /* 3*npoints vector components */
28 float shear; /* isometric shear for nice drawing */
29 float border; /* border required around arena */
30 };
31
32 static const struct solid tetrahedron = {
33 4,
34 {
35 0.0F, -0.57735026919F, -0.20412414523F,
36 -0.5F, 0.28867513459F, -0.20412414523F,
37 0.0F, -0.0F, 0.6123724357F,
38 0.5F, 0.28867513459F, -0.20412414523F,
39 },
40 3, 4,
41 {
42 0,2,1, 3,1,2, 2,0,3, 1,3,0
43 },
44 {
45 -0.816496580928F, -0.471404520791F, 0.333333333334F,
46 0.0F, 0.942809041583F, 0.333333333333F,
47 0.816496580928F, -0.471404520791F, 0.333333333334F,
48 0.0F, 0.0F, -1.0F,
49 },
50 0.0F, 0.3F
51 };
52
53 static const struct solid cube = {
54 8,
55 {
56 -0.5F,-0.5F,-0.5F, -0.5F,-0.5F,+0.5F,
57 -0.5F,+0.5F,-0.5F, -0.5F,+0.5F,+0.5F,
58 +0.5F,-0.5F,-0.5F, +0.5F,-0.5F,+0.5F,
59 +0.5F,+0.5F,-0.5F, +0.5F,+0.5F,+0.5F,
60 },
61 4, 6,
62 {
63 0,1,3,2, 1,5,7,3, 5,4,6,7, 4,0,2,6, 0,4,5,1, 3,7,6,2
64 },
65 {
66 -1.0F,0.0F,0.0F, 0.0F,0.0F,+1.0F,
67 +1.0F,0.0F,0.0F, 0.0F,0.0F,-1.0F,
68 0.0F,-1.0F,0.0F, 0.0F,+1.0F,0.0F
69 },
70 0.3F, 0.5F
71 };
72
73 static const struct solid octahedron = {
74 6,
75 {
76 -0.5F, -0.28867513459472505F, 0.4082482904638664F,
77 0.5F, 0.28867513459472505F, -0.4082482904638664F,
78 -0.5F, 0.28867513459472505F, -0.4082482904638664F,
79 0.5F, -0.28867513459472505F, 0.4082482904638664F,
80 0.0F, -0.57735026918945009F, -0.4082482904638664F,
81 0.0F, 0.57735026918945009F, 0.4082482904638664F,
82 },
83 3, 8,
84 {
85 4,0,2, 0,5,2, 0,4,3, 5,0,3, 1,4,2, 5,1,2, 4,1,3, 1,5,3
86 },
87 {
88 -0.816496580928F, -0.471404520791F, -0.333333333334F,
89 -0.816496580928F, 0.471404520791F, 0.333333333334F,
90 0.0F, -0.942809041583F, 0.333333333333F,
91 0.0F, 0.0F, 1.0F,
92 0.0F, 0.0F, -1.0F,
93 0.0F, 0.942809041583F, -0.333333333333F,
94 0.816496580928F, -0.471404520791F, -0.333333333334F,
95 0.816496580928F, 0.471404520791F, 0.333333333334F,
96 },
97 0.0F, 0.5F
98 };
99
100 static const struct solid icosahedron = {
101 12,
102 {
103 0.0F, 0.57735026919F, 0.75576131408F,
104 0.0F, -0.93417235896F, 0.17841104489F,
105 0.0F, 0.93417235896F, -0.17841104489F,
106 0.0F, -0.57735026919F, -0.75576131408F,
107 -0.5F, -0.28867513459F, 0.75576131408F,
108 -0.5F, 0.28867513459F, -0.75576131408F,
109 0.5F, -0.28867513459F, 0.75576131408F,
110 0.5F, 0.28867513459F, -0.75576131408F,
111 -0.80901699437F, 0.46708617948F, 0.17841104489F,
112 0.80901699437F, 0.46708617948F, 0.17841104489F,
113 -0.80901699437F, -0.46708617948F, -0.17841104489F,
114 0.80901699437F, -0.46708617948F, -0.17841104489F,
115 },
116 3, 20,
117 {
118 8,0,2, 0,9,2, 1,10,3, 11,1,3, 0,4,6,
119 4,1,6, 5,2,7, 3,5,7, 4,8,10, 8,5,10,
120 9,6,11, 7,9,11, 0,8,4, 9,0,6, 10,1,4,
121 1,11,6, 8,2,5, 2,9,7, 3,10,5, 11,3,7,
122 },
123 {
124 -0.356822089773F, 0.87267799625F, 0.333333333333F,
125 0.356822089773F, 0.87267799625F, 0.333333333333F,
126 -0.356822089773F, -0.87267799625F, -0.333333333333F,
127 0.356822089773F, -0.87267799625F, -0.333333333333F,
128 -0.0F, 0.0F, 1.0F,
129 0.0F, -0.666666666667F, 0.745355992501F,
130 0.0F, 0.666666666667F, -0.745355992501F,
131 0.0F, 0.0F, -1.0F,
132 -0.934172358963F, -0.12732200375F, 0.333333333333F,
133 -0.934172358963F, 0.12732200375F, -0.333333333333F,
134 0.934172358963F, -0.12732200375F, 0.333333333333F,
135 0.934172358963F, 0.12732200375F, -0.333333333333F,
136 -0.57735026919F, 0.333333333334F, 0.745355992501F,
137 0.57735026919F, 0.333333333334F, 0.745355992501F,
138 -0.57735026919F, -0.745355992501F, 0.333333333334F,
139 0.57735026919F, -0.745355992501F, 0.333333333334F,
140 -0.57735026919F, 0.745355992501F, -0.333333333334F,
141 0.57735026919F, 0.745355992501F, -0.333333333334F,
142 -0.57735026919F, -0.333333333334F, -0.745355992501F,
143 0.57735026919F, -0.333333333334F, -0.745355992501F,
144 },
145 0.0F, 0.8F
146 };
147
148 enum {
149 TETRAHEDRON, CUBE, OCTAHEDRON, ICOSAHEDRON
150 };
151 static const struct solid *solids[] = {
152 &tetrahedron, &cube, &octahedron, &icosahedron
153 };
154
155 enum {
156 COL_BACKGROUND,
157 COL_BORDER,
158 COL_BLUE,
159 NCOLOURS
160 };
161
162 enum { LEFT, RIGHT, UP, DOWN, UP_LEFT, UP_RIGHT, DOWN_LEFT, DOWN_RIGHT };
163
164 #define GRID_SCALE 48.0F
165 #define ROLLTIME 0.13F
166
167 #define SQ(x) ( (x) * (x) )
168
169 #define MATMUL(ra,m,a) do { \
170 float rx, ry, rz, xx = (a)[0], yy = (a)[1], zz = (a)[2], *mat = (m); \
171 rx = mat[0] * xx + mat[3] * yy + mat[6] * zz; \
172 ry = mat[1] * xx + mat[4] * yy + mat[7] * zz; \
173 rz = mat[2] * xx + mat[5] * yy + mat[8] * zz; \
174 (ra)[0] = rx; (ra)[1] = ry; (ra)[2] = rz; \
175 } while (0)
176
177 #define APPROXEQ(x,y) ( SQ(x-y) < 0.1 )
178
179 struct grid_square {
180 float x, y;
181 int npoints;
182 float points[8]; /* maximum */
183 int directions[8]; /* bit masks showing point pairs */
184 int flip;
185 int blue;
186 int tetra_class;
187 };
188
189 struct game_params {
190 int solid;
191 /*
192 * Grid dimensions. For a square grid these are width and
193 * height respectively; otherwise the grid is a hexagon, with
194 * the top side and the two lower diagonals having length d1
195 * and the remaining three sides having length d2 (so that
196 * d1==d2 gives a regular hexagon, and d2==0 gives a triangle).
197 */
198 int d1, d2;
199 };
200
201 struct game_state {
202 struct game_params params;
203 const struct solid *solid;
204 int *facecolours;
205 struct grid_square *squares;
206 int nsquares;
207 int current; /* index of current grid square */
208 int sgkey[2]; /* key-point indices into grid sq */
209 int dgkey[2]; /* key-point indices into grid sq */
210 int spkey[2]; /* key-point indices into polyhedron */
211 int dpkey[2]; /* key-point indices into polyhedron */
212 int previous;
213 float angle;
214 int completed;
215 int movecount;
216 };
217
218 game_params *default_params(void)
219 {
220 game_params *ret = snew(game_params);
221
222 ret->solid = CUBE;
223 ret->d1 = 4;
224 ret->d2 = 4;
225
226 return ret;
227 }
228
229 int game_fetch_preset(int i, char **name, game_params **params)
230 {
231 game_params *ret = snew(game_params);
232 char *str;
233
234 switch (i) {
235 case 0:
236 str = "Cube";
237 ret->solid = CUBE;
238 ret->d1 = 4;
239 ret->d2 = 4;
240 break;
241 case 1:
242 str = "Tetrahedron";
243 ret->solid = TETRAHEDRON;
244 ret->d1 = 1;
245 ret->d2 = 2;
246 break;
247 case 2:
248 str = "Octahedron";
249 ret->solid = OCTAHEDRON;
250 ret->d1 = 2;
251 ret->d2 = 2;
252 break;
253 case 3:
254 str = "Icosahedron";
255 ret->solid = ICOSAHEDRON;
256 ret->d1 = 3;
257 ret->d2 = 3;
258 break;
259 default:
260 sfree(ret);
261 return FALSE;
262 }
263
264 *name = dupstr(str);
265 *params = ret;
266 return TRUE;
267 }
268
269 void free_params(game_params *params)
270 {
271 sfree(params);
272 }
273
274 game_params *dup_params(game_params *params)
275 {
276 game_params *ret = snew(game_params);
277 *ret = *params; /* structure copy */
278 return ret;
279 }
280
281 game_params *decode_params(char const *string)
282 {
283 game_params *ret = default_params();
284
285 switch (*string) {
286 case 't': ret->solid = TETRAHEDRON; string++; break;
287 case 'c': ret->solid = CUBE; string++; break;
288 case 'o': ret->solid = OCTAHEDRON; string++; break;
289 case 'i': ret->solid = ICOSAHEDRON; string++; break;
290 default: break;
291 }
292 ret->d1 = ret->d2 = atoi(string);
293 while (*string && isdigit(*string)) string++;
294 if (*string == 'x') {
295 string++;
296 ret->d2 = atoi(string);
297 }
298
299 return ret;
300 }
301
302 char *encode_params(game_params *params)
303 {
304 char data[256];
305
306 assert(params->solid >= 0 && params->solid < 4);
307 sprintf(data, "%c%dx%d", "tcoi"[params->solid], params->d1, params->d2);
308
309 return dupstr(data);
310 }
311
312 static void enum_grid_squares(game_params *params,
313 void (*callback)(void *, struct grid_square *),
314 void *ctx)
315 {
316 const struct solid *solid = solids[params->solid];
317
318 if (solid->order == 4) {
319 int x, y;
320
321 for (y = 0; y < params->d2; y++)
322 for (x = 0; x < params->d1; x++) {
323 struct grid_square sq;
324
325 sq.x = (float)x;
326 sq.y = (float)y;
327 sq.points[0] = x - 0.5F;
328 sq.points[1] = y - 0.5F;
329 sq.points[2] = x - 0.5F;
330 sq.points[3] = y + 0.5F;
331 sq.points[4] = x + 0.5F;
332 sq.points[5] = y + 0.5F;
333 sq.points[6] = x + 0.5F;
334 sq.points[7] = y - 0.5F;
335 sq.npoints = 4;
336
337 sq.directions[LEFT] = 0x03; /* 0,1 */
338 sq.directions[RIGHT] = 0x0C; /* 2,3 */
339 sq.directions[UP] = 0x09; /* 0,3 */
340 sq.directions[DOWN] = 0x06; /* 1,2 */
341 sq.directions[UP_LEFT] = 0; /* no diagonals in a square */
342 sq.directions[UP_RIGHT] = 0; /* no diagonals in a square */
343 sq.directions[DOWN_LEFT] = 0; /* no diagonals in a square */
344 sq.directions[DOWN_RIGHT] = 0; /* no diagonals in a square */
345
346 sq.flip = FALSE;
347
348 /*
349 * This is supremely irrelevant, but just to avoid
350 * having any uninitialised structure members...
351 */
352 sq.tetra_class = 0;
353
354 callback(ctx, &sq);
355 }
356 } else {
357 int row, rowlen, other, i, firstix = -1;
358 float theight = (float)(sqrt(3) / 2.0);
359
360 for (row = 0; row < params->d1 + params->d2; row++) {
361 if (row < params->d2) {
362 other = +1;
363 rowlen = row + params->d1;
364 } else {
365 other = -1;
366 rowlen = 2*params->d2 + params->d1 - row;
367 }
368
369 /*
370 * There are `rowlen' down-pointing triangles.
371 */
372 for (i = 0; i < rowlen; i++) {
373 struct grid_square sq;
374 int ix;
375 float x, y;
376
377 ix = (2 * i - (rowlen-1));
378 x = ix * 0.5F;
379 y = theight * row;
380 sq.x = x;
381 sq.y = y + theight / 3;
382 sq.points[0] = x - 0.5F;
383 sq.points[1] = y;
384 sq.points[2] = x;
385 sq.points[3] = y + theight;
386 sq.points[4] = x + 0.5F;
387 sq.points[5] = y;
388 sq.npoints = 3;
389
390 sq.directions[LEFT] = 0x03; /* 0,1 */
391 sq.directions[RIGHT] = 0x06; /* 1,2 */
392 sq.directions[UP] = 0x05; /* 0,2 */
393 sq.directions[DOWN] = 0; /* invalid move */
394
395 /*
396 * Down-pointing triangle: both the up diagonals go
397 * up, and the down ones go left and right.
398 */
399 sq.directions[UP_LEFT] = sq.directions[UP_RIGHT] =
400 sq.directions[UP];
401 sq.directions[DOWN_LEFT] = sq.directions[LEFT];
402 sq.directions[DOWN_RIGHT] = sq.directions[RIGHT];
403
404 sq.flip = TRUE;
405
406 if (firstix < 0)
407 firstix = ix & 3;
408 ix -= firstix;
409 sq.tetra_class = ((row+(ix&1)) & 2) ^ (ix & 3);
410
411 callback(ctx, &sq);
412 }
413
414 /*
415 * There are `rowlen+other' up-pointing triangles.
416 */
417 for (i = 0; i < rowlen+other; i++) {
418 struct grid_square sq;
419 int ix;
420 float x, y;
421
422 ix = (2 * i - (rowlen+other-1));
423 x = ix * 0.5F;
424 y = theight * row;
425 sq.x = x;
426 sq.y = y + 2*theight / 3;
427 sq.points[0] = x + 0.5F;
428 sq.points[1] = y + theight;
429 sq.points[2] = x;
430 sq.points[3] = y;
431 sq.points[4] = x - 0.5F;
432 sq.points[5] = y + theight;
433 sq.npoints = 3;
434
435 sq.directions[LEFT] = 0x06; /* 1,2 */
436 sq.directions[RIGHT] = 0x03; /* 0,1 */
437 sq.directions[DOWN] = 0x05; /* 0,2 */
438 sq.directions[UP] = 0; /* invalid move */
439
440 /*
441 * Up-pointing triangle: both the down diagonals go
442 * down, and the up ones go left and right.
443 */
444 sq.directions[DOWN_LEFT] = sq.directions[DOWN_RIGHT] =
445 sq.directions[DOWN];
446 sq.directions[UP_LEFT] = sq.directions[LEFT];
447 sq.directions[UP_RIGHT] = sq.directions[RIGHT];
448
449 sq.flip = FALSE;
450
451 if (firstix < 0)
452 firstix = (ix - 1) & 3;
453 ix -= firstix;
454 sq.tetra_class = ((row+(ix&1)) & 2) ^ (ix & 3);
455
456 callback(ctx, &sq);
457 }
458 }
459 }
460 }
461
462 static int grid_area(int d1, int d2, int order)
463 {
464 /*
465 * An NxM grid of squares has NM squares in it.
466 *
467 * A grid of triangles with dimensions A and B has a total of
468 * A^2 + B^2 + 4AB triangles in it. (You can divide it up into
469 * a side-A triangle containing A^2 subtriangles, a side-B
470 * triangle containing B^2, and two congruent parallelograms,
471 * each with side lengths A and B, each therefore containing AB
472 * two-triangle rhombuses.)
473 */
474 if (order == 4)
475 return d1 * d2;
476 else
477 return d1*d1 + d2*d2 + 4*d1*d2;
478 }
479
480 config_item *game_configure(game_params *params)
481 {
482 config_item *ret = snewn(4, config_item);
483 char buf[80];
484
485 ret[0].name = "Type of solid";
486 ret[0].type = C_CHOICES;
487 ret[0].sval = ":Tetrahedron:Cube:Octahedron:Icosahedron";
488 ret[0].ival = params->solid;
489
490 ret[1].name = "Width / top";
491 ret[1].type = C_STRING;
492 sprintf(buf, "%d", params->d1);
493 ret[1].sval = dupstr(buf);
494 ret[1].ival = 0;
495
496 ret[2].name = "Height / bottom";
497 ret[2].type = C_STRING;
498 sprintf(buf, "%d", params->d2);
499 ret[2].sval = dupstr(buf);
500 ret[2].ival = 0;
501
502 ret[3].name = NULL;
503 ret[3].type = C_END;
504 ret[3].sval = NULL;
505 ret[3].ival = 0;
506
507 return ret;
508 }
509
510 game_params *custom_params(config_item *cfg)
511 {
512 game_params *ret = snew(game_params);
513
514 ret->solid = cfg[0].ival;
515 ret->d1 = atoi(cfg[1].sval);
516 ret->d2 = atoi(cfg[2].sval);
517
518 return ret;
519 }
520
521 static void count_grid_square_callback(void *ctx, struct grid_square *sq)
522 {
523 int *classes = (int *)ctx;
524 int thisclass;
525
526 if (classes[4] == 4)
527 thisclass = sq->tetra_class;
528 else if (classes[4] == 2)
529 thisclass = sq->flip;
530 else
531 thisclass = 0;
532
533 classes[thisclass]++;
534 }
535
536 char *validate_params(game_params *params)
537 {
538 int classes[5];
539 int i;
540
541 if (params->solid < 0 || params->solid >= lenof(solids))
542 return "Unrecognised solid type";
543
544 if (solids[params->solid]->order == 4) {
545 if (params->d1 <= 0 || params->d2 <= 0)
546 return "Both grid dimensions must be greater than zero";
547 } else {
548 if (params->d1 <= 0 && params->d2 <= 0)
549 return "At least one grid dimension must be greater than zero";
550 }
551
552 for (i = 0; i < 4; i++)
553 classes[i] = 0;
554 if (params->solid == TETRAHEDRON)
555 classes[4] = 4;
556 else if (params->solid == OCTAHEDRON)
557 classes[4] = 2;
558 else
559 classes[4] = 1;
560 enum_grid_squares(params, count_grid_square_callback, classes);
561
562 for (i = 0; i < classes[4]; i++)
563 if (classes[i] < solids[params->solid]->nfaces / classes[4])
564 return "Not enough grid space to place all blue faces";
565
566 if (grid_area(params->d1, params->d2, solids[params->solid]->order) <
567 solids[params->solid]->nfaces + 1)
568 return "Not enough space to place the solid on an empty square";
569
570 return NULL;
571 }
572
573 struct grid_data {
574 int *gridptrs[4];
575 int nsquares[4];
576 int nclasses;
577 int squareindex;
578 };
579
580 static void classify_grid_square_callback(void *ctx, struct grid_square *sq)
581 {
582 struct grid_data *data = (struct grid_data *)ctx;
583 int thisclass;
584
585 if (data->nclasses == 4)
586 thisclass = sq->tetra_class;
587 else if (data->nclasses == 2)
588 thisclass = sq->flip;
589 else
590 thisclass = 0;
591
592 data->gridptrs[thisclass][data->nsquares[thisclass]++] =
593 data->squareindex++;
594 }
595
596 char *new_game_seed(game_params *params, random_state *rs)
597 {
598 struct grid_data data;
599 int i, j, k, m, area, facesperclass;
600 int *flags;
601 char *seed, *p;
602
603 /*
604 * Enumerate the grid squares, dividing them into equivalence
605 * classes as appropriate. (For the tetrahedron, there is one
606 * equivalence class for each face; for the octahedron there
607 * are two classes; for the other two solids there's only one.)
608 */
609
610 area = grid_area(params->d1, params->d2, solids[params->solid]->order);
611 if (params->solid == TETRAHEDRON)
612 data.nclasses = 4;
613 else if (params->solid == OCTAHEDRON)
614 data.nclasses = 2;
615 else
616 data.nclasses = 1;
617 data.gridptrs[0] = snewn(data.nclasses * area, int);
618 for (i = 0; i < data.nclasses; i++) {
619 data.gridptrs[i] = data.gridptrs[0] + i * area;
620 data.nsquares[i] = 0;
621 }
622 data.squareindex = 0;
623 enum_grid_squares(params, classify_grid_square_callback, &data);
624
625 facesperclass = solids[params->solid]->nfaces / data.nclasses;
626
627 for (i = 0; i < data.nclasses; i++)
628 assert(data.nsquares[i] >= facesperclass);
629 assert(data.squareindex == area);
630
631 /*
632 * So now we know how many faces to allocate in each class. Get
633 * on with it.
634 */
635 flags = snewn(area, int);
636 for (i = 0; i < area; i++)
637 flags[i] = FALSE;
638
639 for (i = 0; i < data.nclasses; i++) {
640 for (j = 0; j < facesperclass; j++) {
641 int n = random_upto(rs, data.nsquares[i]);
642
643 assert(!flags[data.gridptrs[i][n]]);
644 flags[data.gridptrs[i][n]] = TRUE;
645
646 /*
647 * Move everything else up the array. I ought to use a
648 * better data structure for this, but for such small
649 * numbers it hardly seems worth the effort.
650 */
651 while (n < data.nsquares[i]-1) {
652 data.gridptrs[i][n] = data.gridptrs[i][n+1];
653 n++;
654 }
655 data.nsquares[i]--;
656 }
657 }
658
659 /*
660 * Now we know precisely which squares are blue. Encode this
661 * information in hex. While we're looping over this, collect
662 * the non-blue squares into a list in the now-unused gridptrs
663 * array.
664 */
665 seed = snewn(area / 4 + 40, char);
666 p = seed;
667 j = 0;
668 k = 8;
669 m = 0;
670 for (i = 0; i < area; i++) {
671 if (flags[i]) {
672 j |= k;
673 } else {
674 data.gridptrs[0][m++] = i;
675 }
676 k >>= 1;
677 if (!k) {
678 *p++ = "0123456789ABCDEF"[j];
679 k = 8;
680 j = 0;
681 }
682 }
683 if (k != 8)
684 *p++ = "0123456789ABCDEF"[j];
685
686 /*
687 * Choose a non-blue square for the polyhedron.
688 */
689 sprintf(p, ",%d", data.gridptrs[0][random_upto(rs, m)]);
690
691 sfree(data.gridptrs[0]);
692 sfree(flags);
693
694 return seed;
695 }
696
697 static void add_grid_square_callback(void *ctx, struct grid_square *sq)
698 {
699 game_state *state = (game_state *)ctx;
700
701 state->squares[state->nsquares] = *sq; /* structure copy */
702 state->squares[state->nsquares].blue = FALSE;
703 state->nsquares++;
704 }
705
706 static int lowest_face(const struct solid *solid)
707 {
708 int i, j, best;
709 float zmin;
710
711 best = 0;
712 zmin = 0.0;
713 for (i = 0; i < solid->nfaces; i++) {
714 float z = 0;
715
716 for (j = 0; j < solid->order; j++) {
717 int f = solid->faces[i*solid->order + j];
718 z += solid->vertices[f*3+2];
719 }
720
721 if (i == 0 || zmin > z) {
722 zmin = z;
723 best = i;
724 }
725 }
726
727 return best;
728 }
729
730 static int align_poly(const struct solid *solid, struct grid_square *sq,
731 int *pkey)
732 {
733 float zmin;
734 int i, j;
735 int flip = (sq->flip ? -1 : +1);
736
737 /*
738 * First, find the lowest z-coordinate present in the solid.
739 */
740 zmin = 0.0;
741 for (i = 0; i < solid->nvertices; i++)
742 if (zmin > solid->vertices[i*3+2])
743 zmin = solid->vertices[i*3+2];
744
745 /*
746 * Now go round the grid square. For each point in the grid
747 * square, we're looking for a point of the polyhedron with the
748 * same x- and y-coordinates (relative to the square's centre),
749 * and z-coordinate equal to zmin (near enough).
750 */
751 for (j = 0; j < sq->npoints; j++) {
752 int matches, index;
753
754 matches = 0;
755 index = -1;
756
757 for (i = 0; i < solid->nvertices; i++) {
758 float dist = 0;
759
760 dist += SQ(solid->vertices[i*3+0] * flip - sq->points[j*2+0] + sq->x);
761 dist += SQ(solid->vertices[i*3+1] * flip - sq->points[j*2+1] + sq->y);
762 dist += SQ(solid->vertices[i*3+2] - zmin);
763
764 if (dist < 0.1) {
765 matches++;
766 index = i;
767 }
768 }
769
770 if (matches != 1 || index < 0)
771 return FALSE;
772 pkey[j] = index;
773 }
774
775 return TRUE;
776 }
777
778 static void flip_poly(struct solid *solid, int flip)
779 {
780 int i;
781
782 if (flip) {
783 for (i = 0; i < solid->nvertices; i++) {
784 solid->vertices[i*3+0] *= -1;
785 solid->vertices[i*3+1] *= -1;
786 }
787 for (i = 0; i < solid->nfaces; i++) {
788 solid->normals[i*3+0] *= -1;
789 solid->normals[i*3+1] *= -1;
790 }
791 }
792 }
793
794 static struct solid *transform_poly(const struct solid *solid, int flip,
795 int key0, int key1, float angle)
796 {
797 struct solid *ret = snew(struct solid);
798 float vx, vy, ax, ay;
799 float vmatrix[9], amatrix[9], vmatrix2[9];
800 int i;
801
802 *ret = *solid; /* structure copy */
803
804 flip_poly(ret, flip);
805
806 /*
807 * Now rotate the polyhedron through the given angle. We must
808 * rotate about the Z-axis to bring the two vertices key0 and
809 * key1 into horizontal alignment, then rotate about the
810 * X-axis, then rotate back again.
811 */
812 vx = ret->vertices[key1*3+0] - ret->vertices[key0*3+0];
813 vy = ret->vertices[key1*3+1] - ret->vertices[key0*3+1];
814 assert(APPROXEQ(vx*vx + vy*vy, 1.0));
815
816 vmatrix[0] = vx; vmatrix[3] = vy; vmatrix[6] = 0;
817 vmatrix[1] = -vy; vmatrix[4] = vx; vmatrix[7] = 0;
818 vmatrix[2] = 0; vmatrix[5] = 0; vmatrix[8] = 1;
819
820 ax = (float)cos(angle);
821 ay = (float)sin(angle);
822
823 amatrix[0] = 1; amatrix[3] = 0; amatrix[6] = 0;
824 amatrix[1] = 0; amatrix[4] = ax; amatrix[7] = ay;
825 amatrix[2] = 0; amatrix[5] = -ay; amatrix[8] = ax;
826
827 memcpy(vmatrix2, vmatrix, sizeof(vmatrix));
828 vmatrix2[1] = vy;
829 vmatrix2[3] = -vy;
830
831 for (i = 0; i < ret->nvertices; i++) {
832 MATMUL(ret->vertices + 3*i, vmatrix, ret->vertices + 3*i);
833 MATMUL(ret->vertices + 3*i, amatrix, ret->vertices + 3*i);
834 MATMUL(ret->vertices + 3*i, vmatrix2, ret->vertices + 3*i);
835 }
836 for (i = 0; i < ret->nfaces; i++) {
837 MATMUL(ret->normals + 3*i, vmatrix, ret->normals + 3*i);
838 MATMUL(ret->normals + 3*i, amatrix, ret->normals + 3*i);
839 MATMUL(ret->normals + 3*i, vmatrix2, ret->normals + 3*i);
840 }
841
842 return ret;
843 }
844
845 char *validate_seed(game_params *params, char *seed)
846 {
847 int area = grid_area(params->d1, params->d2, solids[params->solid]->order);
848 int i, j;
849
850 i = (area + 3) / 4;
851 for (j = 0; j < i; j++) {
852 int c = seed[j];
853 if (c >= '0' && c <= '9') continue;
854 if (c >= 'A' && c <= 'F') continue;
855 if (c >= 'a' && c <= 'f') continue;
856 return "Not enough hex digits at start of string";
857 /* NB if seed[j]=='\0' that will also be caught here, so we're safe */
858 }
859
860 if (seed[i] != ',')
861 return "Expected ',' after hex digits";
862
863 i++;
864 do {
865 if (seed[i] < '0' || seed[i] > '9')
866 return "Expected decimal integer after ','";
867 i++;
868 } while (seed[i]);
869
870 return NULL;
871 }
872
873 game_state *new_game(game_params *params, char *seed)
874 {
875 game_state *state = snew(game_state);
876 int area;
877
878 state->params = *params; /* structure copy */
879 state->solid = solids[params->solid];
880
881 area = grid_area(params->d1, params->d2, state->solid->order);
882 state->squares = snewn(area, struct grid_square);
883 state->nsquares = 0;
884 enum_grid_squares(params, add_grid_square_callback, state);
885 assert(state->nsquares == area);
886
887 state->facecolours = snewn(state->solid->nfaces, int);
888 memset(state->facecolours, 0, state->solid->nfaces * sizeof(int));
889
890 /*
891 * Set up the blue squares and polyhedron position according to
892 * the game seed.
893 */
894 {
895 char *p = seed;
896 int i, j, v;
897
898 j = 8;
899 v = 0;
900 for (i = 0; i < state->nsquares; i++) {
901 if (j == 8) {
902 v = *p++;
903 if (v >= '0' && v <= '9')
904 v -= '0';
905 else if (v >= 'A' && v <= 'F')
906 v -= 'A' - 10;
907 else if (v >= 'a' && v <= 'f')
908 v -= 'a' - 10;
909 else
910 break;
911 }
912 if (v & j)
913 state->squares[i].blue = TRUE;
914 j >>= 1;
915 if (j == 0)
916 j = 8;
917 }
918
919 if (*p == ',')
920 p++;
921
922 state->current = atoi(p);
923 if (state->current < 0 || state->current >= state->nsquares)
924 state->current = 0; /* got to do _something_ */
925 }
926
927 /*
928 * Align the polyhedron with its grid square and determine
929 * initial key points.
930 */
931 {
932 int pkey[4];
933 int ret;
934
935 ret = align_poly(state->solid, &state->squares[state->current], pkey);
936 assert(ret);
937
938 state->dpkey[0] = state->spkey[0] = pkey[0];
939 state->dpkey[1] = state->spkey[0] = pkey[1];
940 state->dgkey[0] = state->sgkey[0] = 0;
941 state->dgkey[1] = state->sgkey[0] = 1;
942 }
943
944 state->previous = state->current;
945 state->angle = 0.0;
946 state->completed = 0;
947 state->movecount = 0;
948
949 return state;
950 }
951
952 game_state *dup_game(game_state *state)
953 {
954 game_state *ret = snew(game_state);
955
956 ret->params = state->params; /* structure copy */
957 ret->solid = state->solid;
958 ret->facecolours = snewn(ret->solid->nfaces, int);
959 memcpy(ret->facecolours, state->facecolours,
960 ret->solid->nfaces * sizeof(int));
961 ret->nsquares = state->nsquares;
962 ret->squares = snewn(ret->nsquares, struct grid_square);
963 memcpy(ret->squares, state->squares,
964 ret->nsquares * sizeof(struct grid_square));
965 ret->dpkey[0] = state->dpkey[0];
966 ret->dpkey[1] = state->dpkey[1];
967 ret->dgkey[0] = state->dgkey[0];
968 ret->dgkey[1] = state->dgkey[1];
969 ret->spkey[0] = state->spkey[0];
970 ret->spkey[1] = state->spkey[1];
971 ret->sgkey[0] = state->sgkey[0];
972 ret->sgkey[1] = state->sgkey[1];
973 ret->previous = state->previous;
974 ret->angle = state->angle;
975 ret->completed = state->completed;
976 ret->movecount = state->movecount;
977
978 return ret;
979 }
980
981 void free_game(game_state *state)
982 {
983 sfree(state);
984 }
985
986 game_ui *new_ui(game_state *state)
987 {
988 return NULL;
989 }
990
991 void free_ui(game_ui *ui)
992 {
993 }
994
995 game_state *make_move(game_state *from, game_ui *ui, int x, int y, int button)
996 {
997 int direction;
998 int pkey[2], skey[2], dkey[2];
999 float points[4];
1000 game_state *ret;
1001 float angle;
1002 int i, j, dest, mask;
1003 struct solid *poly;
1004
1005 /*
1006 * All moves are made with the cursor keys.
1007 */
1008 if (button == CURSOR_UP)
1009 direction = UP;
1010 else if (button == CURSOR_DOWN)
1011 direction = DOWN;
1012 else if (button == CURSOR_LEFT)
1013 direction = LEFT;
1014 else if (button == CURSOR_RIGHT)
1015 direction = RIGHT;
1016 else if (button == CURSOR_UP_LEFT)
1017 direction = UP_LEFT;
1018 else if (button == CURSOR_DOWN_LEFT)
1019 direction = DOWN_LEFT;
1020 else if (button == CURSOR_UP_RIGHT)
1021 direction = UP_RIGHT;
1022 else if (button == CURSOR_DOWN_RIGHT)
1023 direction = DOWN_RIGHT;
1024 else
1025 return NULL;
1026
1027 /*
1028 * Find the two points in the current grid square which
1029 * correspond to this move.
1030 */
1031 mask = from->squares[from->current].directions[direction];
1032 if (mask == 0)
1033 return NULL;
1034 for (i = j = 0; i < from->squares[from->current].npoints; i++)
1035 if (mask & (1 << i)) {
1036 points[j*2] = from->squares[from->current].points[i*2];
1037 points[j*2+1] = from->squares[from->current].points[i*2+1];
1038 skey[j] = i;
1039 j++;
1040 }
1041 assert(j == 2);
1042
1043 /*
1044 * Now find the other grid square which shares those points.
1045 * This is our move destination.
1046 */
1047 dest = -1;
1048 for (i = 0; i < from->nsquares; i++)
1049 if (i != from->current) {
1050 int match = 0;
1051 float dist;
1052
1053 for (j = 0; j < from->squares[i].npoints; j++) {
1054 dist = (SQ(from->squares[i].points[j*2] - points[0]) +
1055 SQ(from->squares[i].points[j*2+1] - points[1]));
1056 if (dist < 0.1)
1057 dkey[match++] = j;
1058 dist = (SQ(from->squares[i].points[j*2] - points[2]) +
1059 SQ(from->squares[i].points[j*2+1] - points[3]));
1060 if (dist < 0.1)
1061 dkey[match++] = j;
1062 }
1063
1064 if (match == 2) {
1065 dest = i;
1066 break;
1067 }
1068 }
1069
1070 if (dest < 0)
1071 return NULL;
1072
1073 ret = dup_game(from);
1074 ret->current = i;
1075
1076 /*
1077 * So we know what grid square we're aiming for, and we also
1078 * know the two key points (as indices in both the source and
1079 * destination grid squares) which are invariant between source
1080 * and destination.
1081 *
1082 * Next we must roll the polyhedron on to that square. So we
1083 * find the indices of the key points within the polyhedron's
1084 * vertex array, then use those in a call to transform_poly,
1085 * and align the result on the new grid square.
1086 */
1087 {
1088 int all_pkey[4];
1089 align_poly(from->solid, &from->squares[from->current], all_pkey);
1090 pkey[0] = all_pkey[skey[0]];
1091 pkey[1] = all_pkey[skey[1]];
1092 /*
1093 * Now pkey[0] corresponds to skey[0] and dkey[0], and
1094 * likewise [1].
1095 */
1096 }
1097
1098 /*
1099 * Now find the angle through which to rotate the polyhedron.
1100 * Do this by finding the two faces that share the two vertices
1101 * we've found, and taking the dot product of their normals.
1102 */
1103 {
1104 int f[2], nf = 0;
1105 float dp;
1106
1107 for (i = 0; i < from->solid->nfaces; i++) {
1108 int match = 0;
1109 for (j = 0; j < from->solid->order; j++)
1110 if (from->solid->faces[i*from->solid->order + j] == pkey[0] ||
1111 from->solid->faces[i*from->solid->order + j] == pkey[1])
1112 match++;
1113 if (match == 2) {
1114 assert(nf < 2);
1115 f[nf++] = i;
1116 }
1117 }
1118
1119 assert(nf == 2);
1120
1121 dp = 0;
1122 for (i = 0; i < 3; i++)
1123 dp += (from->solid->normals[f[0]*3+i] *
1124 from->solid->normals[f[1]*3+i]);
1125 angle = (float)acos(dp);
1126 }
1127
1128 /*
1129 * Now transform the polyhedron. We aren't entirely sure
1130 * whether we need to rotate through angle or -angle, and the
1131 * simplest way round this is to try both and see which one
1132 * aligns successfully!
1133 *
1134 * Unfortunately, _both_ will align successfully if this is a
1135 * cube, which won't tell us anything much. So for that
1136 * particular case, I resort to gross hackery: I simply negate
1137 * the angle before trying the alignment, depending on the
1138 * direction. Which directions work which way is determined by
1139 * pure trial and error. I said it was gross :-/
1140 */
1141 {
1142 int all_pkey[4];
1143 int success;
1144
1145 if (from->solid->order == 4 && direction == UP)
1146 angle = -angle; /* HACK */
1147
1148 poly = transform_poly(from->solid,
1149 from->squares[from->current].flip,
1150 pkey[0], pkey[1], angle);
1151 flip_poly(poly, from->squares[ret->current].flip);
1152 success = align_poly(poly, &from->squares[ret->current], all_pkey);
1153
1154 if (!success) {
1155 angle = -angle;
1156 poly = transform_poly(from->solid,
1157 from->squares[from->current].flip,
1158 pkey[0], pkey[1], angle);
1159 flip_poly(poly, from->squares[ret->current].flip);
1160 success = align_poly(poly, &from->squares[ret->current], all_pkey);
1161 }
1162
1163 assert(success);
1164 }
1165
1166 /*
1167 * Now we have our rotated polyhedron, which we expect to be
1168 * exactly congruent to the one we started with - but with the
1169 * faces permuted. So we map that congruence and thereby figure
1170 * out how to permute the faces as a result of the polyhedron
1171 * having rolled.
1172 */
1173 {
1174 int *newcolours = snewn(from->solid->nfaces, int);
1175
1176 for (i = 0; i < from->solid->nfaces; i++)
1177 newcolours[i] = -1;
1178
1179 for (i = 0; i < from->solid->nfaces; i++) {
1180 int nmatch = 0;
1181
1182 /*
1183 * Now go through the transformed polyhedron's faces
1184 * and figure out which one's normal is approximately
1185 * equal to this one.
1186 */
1187 for (j = 0; j < poly->nfaces; j++) {
1188 float dist;
1189 int k;
1190
1191 dist = 0;
1192
1193 for (k = 0; k < 3; k++)
1194 dist += SQ(poly->normals[j*3+k] -
1195 from->solid->normals[i*3+k]);
1196
1197 if (APPROXEQ(dist, 0)) {
1198 nmatch++;
1199 newcolours[i] = ret->facecolours[j];
1200 }
1201 }
1202
1203 assert(nmatch == 1);
1204 }
1205
1206 for (i = 0; i < from->solid->nfaces; i++)
1207 assert(newcolours[i] != -1);
1208
1209 sfree(ret->facecolours);
1210 ret->facecolours = newcolours;
1211 }
1212
1213 ret->movecount++;
1214
1215 /*
1216 * And finally, swap the colour between the bottom face of the
1217 * polyhedron and the face we've just landed on.
1218 *
1219 * We don't do this if the game is already complete, since we
1220 * allow the user to roll the fully blue polyhedron around the
1221 * grid as a feeble reward.
1222 */
1223 if (!ret->completed) {
1224 i = lowest_face(from->solid);
1225 j = ret->facecolours[i];
1226 ret->facecolours[i] = ret->squares[ret->current].blue;
1227 ret->squares[ret->current].blue = j;
1228
1229 /*
1230 * Detect game completion.
1231 */
1232 j = 0;
1233 for (i = 0; i < ret->solid->nfaces; i++)
1234 if (ret->facecolours[i])
1235 j++;
1236 if (j == ret->solid->nfaces)
1237 ret->completed = ret->movecount;
1238 }
1239
1240 sfree(poly);
1241
1242 /*
1243 * Align the normal polyhedron with its grid square, to get key
1244 * points for non-animated display.
1245 */
1246 {
1247 int pkey[4];
1248 int success;
1249
1250 success = align_poly(ret->solid, &ret->squares[ret->current], pkey);
1251 assert(success);
1252
1253 ret->dpkey[0] = pkey[0];
1254 ret->dpkey[1] = pkey[1];
1255 ret->dgkey[0] = 0;
1256 ret->dgkey[1] = 1;
1257 }
1258
1259
1260 ret->spkey[0] = pkey[0];
1261 ret->spkey[1] = pkey[1];
1262 ret->sgkey[0] = skey[0];
1263 ret->sgkey[1] = skey[1];
1264 ret->previous = from->current;
1265 ret->angle = angle;
1266
1267 return ret;
1268 }
1269
1270 /* ----------------------------------------------------------------------
1271 * Drawing routines.
1272 */
1273
1274 struct bbox {
1275 float l, r, u, d;
1276 };
1277
1278 struct game_drawstate {
1279 int ox, oy; /* pixel position of float origin */
1280 };
1281
1282 static void find_bbox_callback(void *ctx, struct grid_square *sq)
1283 {
1284 struct bbox *bb = (struct bbox *)ctx;
1285 int i;
1286
1287 for (i = 0; i < sq->npoints; i++) {
1288 if (bb->l > sq->points[i*2]) bb->l = sq->points[i*2];
1289 if (bb->r < sq->points[i*2]) bb->r = sq->points[i*2];
1290 if (bb->u > sq->points[i*2+1]) bb->u = sq->points[i*2+1];
1291 if (bb->d < sq->points[i*2+1]) bb->d = sq->points[i*2+1];
1292 }
1293 }
1294
1295 static struct bbox find_bbox(game_params *params)
1296 {
1297 struct bbox bb;
1298
1299 /*
1300 * These should be hugely more than the real bounding box will
1301 * be.
1302 */
1303 bb.l = 2.0F * (params->d1 + params->d2);
1304 bb.r = -2.0F * (params->d1 + params->d2);
1305 bb.u = 2.0F * (params->d1 + params->d2);
1306 bb.d = -2.0F * (params->d1 + params->d2);
1307 enum_grid_squares(params, find_bbox_callback, &bb);
1308
1309 return bb;
1310 }
1311
1312 void game_size(game_params *params, int *x, int *y)
1313 {
1314 struct bbox bb = find_bbox(params);
1315 *x = (int)((bb.r - bb.l + 2*solids[params->solid]->border) * GRID_SCALE);
1316 *y = (int)((bb.d - bb.u + 2*solids[params->solid]->border) * GRID_SCALE);
1317 }
1318
1319 float *game_colours(frontend *fe, game_state *state, int *ncolours)
1320 {
1321 float *ret = snewn(3 * NCOLOURS, float);
1322
1323 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
1324
1325 ret[COL_BORDER * 3 + 0] = 0.0;
1326 ret[COL_BORDER * 3 + 1] = 0.0;
1327 ret[COL_BORDER * 3 + 2] = 0.0;
1328
1329 ret[COL_BLUE * 3 + 0] = 0.0;
1330 ret[COL_BLUE * 3 + 1] = 0.0;
1331 ret[COL_BLUE * 3 + 2] = 1.0;
1332
1333 *ncolours = NCOLOURS;
1334 return ret;
1335 }
1336
1337 game_drawstate *game_new_drawstate(game_state *state)
1338 {
1339 struct game_drawstate *ds = snew(struct game_drawstate);
1340 struct bbox bb = find_bbox(&state->params);
1341
1342 ds->ox = (int)(-(bb.l - state->solid->border) * GRID_SCALE);
1343 ds->oy = (int)(-(bb.u - state->solid->border) * GRID_SCALE);
1344
1345 return ds;
1346 }
1347
1348 void game_free_drawstate(game_drawstate *ds)
1349 {
1350 sfree(ds);
1351 }
1352
1353 void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate,
1354 game_state *state, int dir, game_ui *ui,
1355 float animtime, float flashtime)
1356 {
1357 int i, j;
1358 struct bbox bb = find_bbox(&state->params);
1359 struct solid *poly;
1360 int *pkey, *gkey;
1361 float t[3];
1362 float angle;
1363 game_state *newstate;
1364 int square;
1365
1366 draw_rect(fe, 0, 0, (int)((bb.r-bb.l+2.0F) * GRID_SCALE),
1367 (int)((bb.d-bb.u+2.0F) * GRID_SCALE), COL_BACKGROUND);
1368
1369 if (dir < 0) {
1370 game_state *t;
1371
1372 /*
1373 * This is an Undo. So reverse the order of the states, and
1374 * run the roll timer backwards.
1375 */
1376 assert(oldstate);
1377
1378 t = oldstate;
1379 oldstate = state;
1380 state = t;
1381
1382 animtime = ROLLTIME - animtime;
1383 }
1384
1385 if (!oldstate) {
1386 oldstate = state;
1387 angle = 0.0;
1388 square = state->current;
1389 pkey = state->dpkey;
1390 gkey = state->dgkey;
1391 } else {
1392 angle = state->angle * animtime / ROLLTIME;
1393 square = state->previous;
1394 pkey = state->spkey;
1395 gkey = state->sgkey;
1396 }
1397 newstate = state;
1398 state = oldstate;
1399
1400 for (i = 0; i < state->nsquares; i++) {
1401 int coords[8];
1402
1403 for (j = 0; j < state->squares[i].npoints; j++) {
1404 coords[2*j] = ((int)(state->squares[i].points[2*j] * GRID_SCALE)
1405 + ds->ox);
1406 coords[2*j+1] = ((int)(state->squares[i].points[2*j+1]*GRID_SCALE)
1407 + ds->oy);
1408 }
1409
1410 draw_polygon(fe, coords, state->squares[i].npoints, TRUE,
1411 state->squares[i].blue ? COL_BLUE : COL_BACKGROUND);
1412 draw_polygon(fe, coords, state->squares[i].npoints, FALSE, COL_BORDER);
1413 }
1414
1415 /*
1416 * Now compute and draw the polyhedron.
1417 */
1418 poly = transform_poly(state->solid, state->squares[square].flip,
1419 pkey[0], pkey[1], angle);
1420
1421 /*
1422 * Compute the translation required to align the two key points
1423 * on the polyhedron with the same key points on the current
1424 * face.
1425 */
1426 for (i = 0; i < 3; i++) {
1427 float tc = 0.0;
1428
1429 for (j = 0; j < 2; j++) {
1430 float grid_coord;
1431
1432 if (i < 2) {
1433 grid_coord =
1434 state->squares[square].points[gkey[j]*2+i];
1435 } else {
1436 grid_coord = 0.0;
1437 }
1438
1439 tc += (grid_coord - poly->vertices[pkey[j]*3+i]);
1440 }
1441
1442 t[i] = tc / 2;
1443 }
1444 for (i = 0; i < poly->nvertices; i++)
1445 for (j = 0; j < 3; j++)
1446 poly->vertices[i*3+j] += t[j];
1447
1448 /*
1449 * Now actually draw each face.
1450 */
1451 for (i = 0; i < poly->nfaces; i++) {
1452 float points[8];
1453 int coords[8];
1454
1455 for (j = 0; j < poly->order; j++) {
1456 int f = poly->faces[i*poly->order + j];
1457 points[j*2] = (poly->vertices[f*3+0] -
1458 poly->vertices[f*3+2] * poly->shear);
1459 points[j*2+1] = (poly->vertices[f*3+1] -
1460 poly->vertices[f*3+2] * poly->shear);
1461 }
1462
1463 for (j = 0; j < poly->order; j++) {
1464 coords[j*2] = (int)floor(points[j*2] * GRID_SCALE) + ds->ox;
1465 coords[j*2+1] = (int)floor(points[j*2+1] * GRID_SCALE) + ds->oy;
1466 }
1467
1468 /*
1469 * Find out whether these points are in a clockwise or
1470 * anticlockwise arrangement. If the latter, discard the
1471 * face because it's facing away from the viewer.
1472 *
1473 * This would involve fiddly winding-number stuff for a
1474 * general polygon, but for the simple parallelograms we'll
1475 * be seeing here, all we have to do is check whether the
1476 * corners turn right or left. So we'll take the vector
1477 * from point 0 to point 1, turn it right 90 degrees,
1478 * and check the sign of the dot product with that and the
1479 * next vector (point 1 to point 2).
1480 */
1481 {
1482 float v1x = points[2]-points[0];
1483 float v1y = points[3]-points[1];
1484 float v2x = points[4]-points[2];
1485 float v2y = points[5]-points[3];
1486 float dp = v1x * v2y - v1y * v2x;
1487
1488 if (dp <= 0)
1489 continue;
1490 }
1491
1492 draw_polygon(fe, coords, poly->order, TRUE,
1493 state->facecolours[i] ? COL_BLUE : COL_BACKGROUND);
1494 draw_polygon(fe, coords, poly->order, FALSE, COL_BORDER);
1495 }
1496 sfree(poly);
1497
1498 draw_update(fe, 0, 0, (int)((bb.r-bb.l+2.0F) * GRID_SCALE),
1499 (int)((bb.d-bb.u+2.0F) * GRID_SCALE));
1500
1501 /*
1502 * Update the status bar.
1503 */
1504 {
1505 char statusbuf[256];
1506
1507 sprintf(statusbuf, "%sMoves: %d",
1508 (state->completed ? "COMPLETED! " : ""),
1509 (state->completed ? state->completed : state->movecount));
1510
1511 status_bar(fe, statusbuf);
1512 }
1513 }
1514
1515 float game_anim_length(game_state *oldstate, game_state *newstate, int dir)
1516 {
1517 return ROLLTIME;
1518 }
1519
1520 float game_flash_length(game_state *oldstate, game_state *newstate, int dir)
1521 {
1522 return 0.0F;
1523 }
1524
1525 int game_wants_statusbar(void)
1526 {
1527 return TRUE;
1528 }