This game requires the numpad.
[sgt/puzzles] / filling.c
1 /* -*- tab-width: 8; indent-tabs-mode: t -*-
2 * filling.c: An implementation of the Nikoli game fillomino.
3 * Copyright (C) 2007 Jonas Kölker. See LICENSE for the license.
4 */
5
6 /* TODO:
7 *
8 * - use a typedef instead of int for numbers on the board
9 * + replace int with something else (signed char?)
10 * - the type should be signed (I use -board[i] temporarily)
11 * - problems are small (<= 9?): type can be char?
12 *
13 * - make a somewhat more clever solver
14 *
15 * - make the solver do recursion/backtracking.
16 * + This is for user-submitted puzzles, not for puzzle
17 * generation (on the other hand, never say never).
18 *
19 * - prove that only w=h=2 needs a special case
20 *
21 * - solo-like pencil marks?
22 *
23 * - speed up generation of puzzles of size >= 11x11
24 *
25 * - Allow square contents > 9?
26 * + I could use letters for digits (solo does this), but
27 * letters don't have numeric significance (normal people hate
28 * base36), which is relevant here (much more than in solo).
29 * + How much information is needed to solve? Does one need to
30 * know the algorithm by which the largest number is set?
31 *
32 * - eliminate puzzle instances with done chunks (1's in particular)?
33 * + that's what the qsort call is all about.
34 * + the 1's don't bother me that much.
35 * + but this takes a LONG time (not always possible)?
36 * - this may be affected by solver (lack of) quality.
37 * - weed them out by construction instead of post-cons check
38 * + but that interleaves make_board and new_game_desc: you
39 * have to alternate between changing the board and
40 * changing the hint set (instead of just creating the
41 * board once, then changing the hint set once -> done).
42 *
43 * - use binary search when discovering the minimal sovable point
44 * + profile to show a need (but when the solver gets slower...)
45 * + avg 0.1s per 9x9, which _is_ human-patience noticable.
46 */
47
48 #include <assert.h>
49 #include <ctype.h>
50 #include <math.h>
51 #include <stdio.h>
52 #include <stdlib.h>
53 #include <string.h>
54
55 #include "puzzles.h"
56
57 struct game_params {
58 int w, h;
59 };
60
61 struct shared_state {
62 struct game_params params;
63 int *clues;
64 int refcnt;
65 };
66
67 struct game_state {
68 int *board;
69 struct shared_state *shared;
70 int completed, cheated;
71 };
72
73 static const struct game_params defaults[3] = {{5, 5}, {7, 7}, {9, 9}};
74
75 static game_params *default_params(void)
76 {
77 game_params *ret = snew(game_params);
78
79 *ret = defaults[1]; /* struct copy */
80
81 return ret;
82 }
83
84 static int game_fetch_preset(int i, char **name, game_params **params)
85 {
86 char buf[64];
87
88 if (i < 0 || i >= lenof(defaults)) return FALSE;
89 *params = snew(game_params);
90 **params = defaults[i]; /* struct copy */
91 sprintf(buf, "%dx%d", defaults[i].w, defaults[i].h);
92 *name = dupstr(buf);
93
94 return TRUE;
95 }
96
97 static void free_params(game_params *params)
98 {
99 sfree(params);
100 }
101
102 static game_params *dup_params(game_params *params)
103 {
104 game_params *ret = snew(game_params);
105 *ret = *params; /* struct copy */
106 return ret;
107 }
108
109 static void decode_params(game_params *ret, char const *string)
110 {
111 ret->w = ret->h = atoi(string);
112 while (*string && isdigit((unsigned char) *string)) ++string;
113 if (*string == 'x') ret->h = atoi(++string);
114 }
115
116 static char *encode_params(game_params *params, int full)
117 {
118 char buf[64];
119 sprintf(buf, "%dx%d", params->w, params->h);
120 return dupstr(buf);
121 }
122
123 static config_item *game_configure(game_params *params)
124 {
125 config_item *ret;
126 char buf[64];
127
128 ret = snewn(3, config_item);
129
130 ret[0].name = "Width";
131 ret[0].type = C_STRING;
132 sprintf(buf, "%d", params->w);
133 ret[0].sval = dupstr(buf);
134 ret[0].ival = 0;
135
136 ret[1].name = "Height";
137 ret[1].type = C_STRING;
138 sprintf(buf, "%d", params->h);
139 ret[1].sval = dupstr(buf);
140 ret[1].ival = 0;
141
142 ret[2].name = NULL;
143 ret[2].type = C_END;
144 ret[2].sval = NULL;
145 ret[2].ival = 0;
146
147 return ret;
148 }
149
150 static game_params *custom_params(config_item *cfg)
151 {
152 game_params *ret = snew(game_params);
153
154 ret->w = atoi(cfg[0].sval);
155 ret->h = atoi(cfg[1].sval);
156
157 return ret;
158 }
159
160 static char *validate_params(game_params *params, int full)
161 {
162 if (params->w < 1) return "Width must be at least one";
163 if (params->h < 1) return "Height must be at least one";
164
165 return NULL;
166 }
167
168 /*****************************************************************************
169 * STRINGIFICATION OF GAME STATE *
170 *****************************************************************************/
171
172 #define EMPTY 0
173
174 /* Example of plaintext rendering:
175 * +---+---+---+---+---+---+---+
176 * | 6 | | | 2 | | | 2 |
177 * +---+---+---+---+---+---+---+
178 * | | 3 | | 6 | | 3 | |
179 * +---+---+---+---+---+---+---+
180 * | 3 | | | | | | 1 |
181 * +---+---+---+---+---+---+---+
182 * | | 2 | 3 | | 4 | 2 | |
183 * +---+---+---+---+---+---+---+
184 * | 2 | | | | | | 3 |
185 * +---+---+---+---+---+---+---+
186 * | | 5 | | 1 | | 4 | |
187 * +---+---+---+---+---+---+---+
188 * | 4 | | | 3 | | | 3 |
189 * +---+---+---+---+---+---+---+
190 *
191 * This puzzle instance is taken from the nikoli website
192 * Encoded (unsolved and solved), the strings are these:
193 * 7x7:6002002030603030000010230420200000305010404003003
194 * 7x7:6662232336663232331311235422255544325413434443313
195 */
196 static char *board_to_string(int *board, int w, int h) {
197 const int sz = w * h;
198 const int chw = (4*w + 2); /* +2 for trailing '+' and '\n' */
199 const int chh = (2*h + 1); /* +1: n fence segments, n+1 posts */
200 const int chlen = chw * chh;
201 char *repr = snewn(chlen + 1, char);
202 int i;
203
204 assert(board);
205
206 /* build the first line ("^(\+---){n}\+$") */
207 for (i = 0; i < w; ++i) {
208 repr[4*i + 0] = '+';
209 repr[4*i + 1] = '-';
210 repr[4*i + 2] = '-';
211 repr[4*i + 3] = '-';
212 }
213 repr[4*i + 0] = '+';
214 repr[4*i + 1] = '\n';
215
216 /* ... and copy it onto the odd-numbered lines */
217 for (i = 0; i < h; ++i) memcpy(repr + (2*i + 2) * chw, repr, chw);
218
219 /* build the second line ("^(\|\t){n}\|$") */
220 for (i = 0; i < w; ++i) {
221 repr[chw + 4*i + 0] = '|';
222 repr[chw + 4*i + 1] = ' ';
223 repr[chw + 4*i + 2] = ' ';
224 repr[chw + 4*i + 3] = ' ';
225 }
226 repr[chw + 4*i + 0] = '|';
227 repr[chw + 4*i + 1] = '\n';
228
229 /* ... and copy it onto the even-numbered lines */
230 for (i = 1; i < h; ++i) memcpy(repr + (2*i + 1) * chw, repr + chw, chw);
231
232 /* fill in the numbers */
233 for (i = 0; i < sz; ++i) {
234 const int x = i % w;
235 const int y = i / w;
236 if (board[i] == EMPTY) continue;
237 repr[chw*(2*y + 1) + (4*x + 2)] = board[i] + '0';
238 }
239
240 repr[chlen] = '\0';
241 return repr;
242 }
243
244 static char *game_text_format(game_state *state)
245 {
246 const int w = state->shared->params.w;
247 const int h = state->shared->params.h;
248 return board_to_string(state->board, w, h);
249 }
250
251 /*****************************************************************************
252 * GAME GENERATION AND SOLVER *
253 *****************************************************************************/
254
255 static const int dx[4] = {-1, 1, 0, 0};
256 static const int dy[4] = {0, 0, -1, 1};
257
258 /*
259 static void print_board(int *board, int w, int h) {
260 char *repr = board_to_string(board, w, h);
261 fputs(repr, stdout);
262 free(repr);
263 }
264 */
265
266 #define SENTINEL sz
267
268 /* determines whether a board (in dsf form) is valid. If possible,
269 * return a conflicting pair in *a and *b and a non-*b neighbour of *a
270 * in *c. If not possible, leave them unmodified. */
271 static void
272 validate_board(int *dsf, int w, int h, int *sq, int *a, int *b, int *c) {
273 const int sz = w * h;
274 int i;
275 assert(*a == SENTINEL);
276 assert(*b == SENTINEL);
277 assert(*c == SENTINEL);
278 for (i = 0; i < sz && *a == sz; ++i) {
279 const int aa = dsf_canonify(dsf, sq[i]);
280 int cc = sz;
281 int j;
282 for (j = 0; j < 4; ++j) {
283 const int x = (sq[i] % w) + dx[j];
284 const int y = (sq[i] / w) + dy[j];
285 int bb;
286 if (x < 0 || x >= w || y < 0 || y >= h) continue;
287 bb = dsf_canonify(dsf, w*y + x);
288 if (aa == bb) continue;
289 else if (dsf_size(dsf, aa) == dsf_size(dsf, bb)) {
290 *a = aa;
291 *b = bb;
292 *c = cc;
293 } else if (cc == sz) *c = cc = bb;
294 }
295 }
296 }
297
298 static game_state *new_game(midend *, game_params *, char *);
299 static void free_game(game_state *);
300
301 /* generate a random valid board; uses validate_board. */
302 void make_board(int *board, int w, int h, random_state *rs) {
303 int *dsf;
304
305 const unsigned int sz = w * h;
306
307 /* w=h=2 is a special case which requires a number > max(w, h) */
308 /* TODO prove that this is the case ONLY for w=h=2. */
309 const int maxsize = min(max(max(w, h), 3), 9);
310
311 /* Note that if 1 in {w, h} then it's impossible to have a region
312 * of size > w*h, so the special case only affects w=h=2. */
313
314 int nboards = 0;
315
316 int i;
317
318 assert(w >= 1);
319 assert(h >= 1);
320
321 assert(board);
322
323 dsf = snew_dsf(sz); /* implicit dsf_init */
324
325 /* I abuse the board variable: when generating the puzzle, it
326 * contains a shuffled list of numbers {0, ..., nsq-1}. */
327 for (i = 0; i < sz; ++i) board[i] = i;
328
329 while (1) {
330 ++nboards;
331 shuffle(board, sz, sizeof (int), rs);
332 /* while the board can in principle be fixed */
333 while (1) {
334 int a = SENTINEL;
335 int b = SENTINEL;
336 int c = SENTINEL;
337 validate_board(dsf, w, h, board, &a, &b, &c);
338 if (a == SENTINEL /* meaning the board is valid */) {
339 int i;
340 for (i = 0; i < sz; ++i) board[i] = dsf_size(dsf, i);
341 sfree(dsf);
342 /* printf("returning board number %d\n", nboards); */
343 return;
344 } else {
345 /* try to repair the invalid board */
346 a = dsf_canonify(dsf, a);
347 assert(a != dsf_canonify(dsf, b));
348 if (c != sz) assert(a != dsf_canonify(dsf, c));
349 dsf_merge(dsf, a, c == sz? b: c);
350 /* if repair impossible; make a new board */
351 if (dsf_size(dsf, a) > maxsize) break;
352 }
353 }
354 dsf_init(dsf, sz); /* re-init the dsf */
355 }
356 assert(FALSE); /* unreachable */
357 }
358
359 static int rhofree(int *hop, int start) {
360 int turtle = start, rabbit = hop[start];
361 while (rabbit != turtle) { /* find a cycle */
362 turtle = hop[turtle];
363 rabbit = hop[hop[rabbit]];
364 }
365 do { /* check that start is in the cycle */
366 rabbit = hop[rabbit];
367 if (start == rabbit) return 1;
368 } while (rabbit != turtle);
369 return 0;
370 }
371
372 static void merge(int *dsf, int *connected, int a, int b) {
373 int c;
374 assert(dsf);
375 assert(connected);
376 assert(rhofree(connected, a));
377 assert(rhofree(connected, b));
378 a = dsf_canonify(dsf, a);
379 b = dsf_canonify(dsf, b);
380 if (a == b) return;
381 dsf_merge(dsf, a, b);
382 c = connected[a];
383 connected[a] = connected[b];
384 connected[b] = c;
385 assert(rhofree(connected, a));
386 assert(rhofree(connected, b));
387 }
388
389 static void *memdup(const void *ptr, size_t len, size_t esz) {
390 void *dup = smalloc(len * esz);
391 assert(ptr);
392 memcpy(dup, ptr, len * esz);
393 return dup;
394 }
395
396 static void expand(int *board, int *connected, int *dsf, int w, int h,
397 int dst, int src, int *empty, int *learn) {
398 int j;
399 assert(board);
400 assert(connected);
401 assert(dsf);
402 assert(empty);
403 assert(learn);
404 assert(board[dst] == EMPTY);
405 assert(board[src] != EMPTY);
406 board[dst] = board[src];
407 for (j = 0; j < 4; ++j) {
408 const int x = (dst % w) + dx[j];
409 const int y = (dst / w) + dy[j];
410 const int idx = w*y + x;
411 if (x < 0 || x >= w || y < 0 || y >= h) continue;
412 if (board[idx] != board[dst]) continue;
413 merge(dsf, connected, dst, idx);
414 }
415 /* printf("set board[%d] = board[%d], which is %d; size(%d) = %d\n", dst, src, board[src], src, dsf[dsf_canonify(dsf, src)] >> 2); */
416 --*empty;
417 *learn = TRUE;
418 }
419
420 static void flood(int *board, int w, int h, int i, int n) {
421 const int sz = w * h;
422 int k;
423
424 if (board[i] == EMPTY) board[i] = -SENTINEL;
425 else if (board[i] == n) board[i] = -board[i];
426 else return;
427
428 for (k = 0; k < 4; ++k) {
429 const int x = (i % w) + dx[k];
430 const int y = (i / w) + dy[k];
431 const int idx = w*y + x;
432 if (x < 0 || x >= w || y < 0 || y >= h) continue;
433 flood(board, w, h, idx, n);
434 }
435 }
436
437 static int count_and_clear(int *board, int sz) {
438 int count = -1;
439 int i;
440 for (i = 0; i < sz; ++i) {
441 if (board[i] >= 0) continue;
442 ++count;
443 if (board[i] == -SENTINEL) board[i] = EMPTY;
444 else board[i] = -board[i];
445 }
446 return count;
447 }
448
449 static int count(int *board, int w, int h, int i) {
450 flood(board, w, h, i, board[i]);
451 return count_and_clear(board, w * h);
452 }
453
454 static int expandsize(const int *board, int *dsf, int w, int h, int i, int n) {
455 int j;
456 int nhits = 0;
457 int hits[4];
458 int size = 1;
459 for (j = 0; j < 4; ++j) {
460 const int x = (i % w) + dx[j];
461 const int y = (i / w) + dy[j];
462 const int idx = w*y + x;
463 int root;
464 int m;
465 if (x < 0 || x >= w || y < 0 || y >= h) continue;
466 if (board[idx] != n) continue;
467 root = dsf_canonify(dsf, idx);
468 for (m = 0; m < nhits && root != hits[m]; ++m);
469 if (m < nhits) continue;
470 /* printf("\t (%d, %d) contributed %d to size\n", lx, ly, dsf[root] >> 2); */
471 size += dsf_size(dsf, root);
472 assert(dsf_size(dsf, root) >= 1);
473 hits[nhits++] = root;
474 }
475 return size;
476 }
477
478 /*
479 * +---+---+---+---+---+---+---+
480 * | 6 | | | 2 | | | 2 |
481 * +---+---+---+---+---+---+---+
482 * | | 3 | | 6 | | 3 | |
483 * +---+---+---+---+---+---+---+
484 * | 3 | | | | | | 1 |
485 * +---+---+---+---+---+---+---+
486 * | | 2 | 3 | | 4 | 2 | |
487 * +---+---+---+---+---+---+---+
488 * | 2 | | | | | | 3 |
489 * +---+---+---+---+---+---+---+
490 * | | 5 | | 1 | | 4 | |
491 * +---+---+---+---+---+---+---+
492 * | 4 | | | 3 | | | 3 |
493 * +---+---+---+---+---+---+---+
494 */
495
496 /* Solving techniques:
497 *
498 * CONNECTED COMPONENT FORCED EXPANSION (too big):
499 * When a CC can only be expanded in one direction, because all the
500 * other ones would make the CC too big.
501 * +---+---+---+---+---+
502 * | 2 | 2 | | 2 | _ |
503 * +---+---+---+---+---+
504 *
505 * CONNECTED COMPONENT FORCED EXPANSION (too small):
506 * When a CC must include a particular square, because otherwise there
507 * would not be enough room to complete it.
508 * +---+---+
509 * | 2 | _ |
510 * +---+---+
511 *
512 * DROPPING IN A ONE:
513 * When an empty square has no neighbouring empty squares and only a 1
514 * will go into the square (or other CCs would be too big).
515 * +---+---+---+
516 * | 2 | 2 | _ |
517 * +---+---+---+
518 *
519 * TODO: generalise DROPPING IN A ONE: find the size of the CC of
520 * empty squares and a list of all adjacent numbers. See if only one
521 * number in {1, ..., size} u {all adjacent numbers} is possible.
522 * Probably this is only effective for a CC size < n for some n (4?)
523 *
524 * TODO: backtracking.
525 */
526 #define EXPAND(a, b)\
527 expand(board, connected, dsf, w, h, a, b, &nempty, &learn)
528
529 static int solver(const int *orig, int w, int h, char **solution) {
530 const int sz = w * h;
531
532 int *board = memdup(orig, sz, sizeof (int));
533 int *dsf = snew_dsf(sz); /* eqv classes: connected components */
534 int *connected = snewn(sz, int); /* connected[n] := n.next; */
535 /* cyclic disjoint singly linked lists, same partitioning as dsf.
536 * The lists lets you iterate over a partition given any member */
537
538 int nempty = 0;
539
540 int learn;
541
542 int i;
543 for (i = 0; i < sz; i++) connected[i] = i;
544
545 for (i = 0; i < sz; ++i) {
546 int j;
547 if (board[i] == EMPTY) ++nempty;
548 else for (j = 0; j < 4; ++j) {
549 const int x = (i % w) + dx[j];
550 const int y = (i / w) + dy[j];
551 const int idx = w*y + x;
552 if (x < 0 || x >= w || y < 0 || y >= h) continue;
553 if (board[i] == board[idx]) merge(dsf, connected, i, idx);
554 }
555 }
556
557 /* puts("trying to solve this:");
558 print_board(board, w, h); */
559
560 /* TODO: refactor this code, it's too long */
561 do {
562 int i;
563 learn = FALSE;
564
565 /* for every connected component */
566 for (i = 0; i < sz; ++i) {
567 int exp = SENTINEL;
568 int j;
569
570 /* If the component consists of empty squares */
571 if (board[i] == EMPTY) {
572 int k;
573 int one = TRUE;
574 for (k = 0; k < 4; ++k) {
575 const int x = (i % w) + dx[k];
576 const int y = (i / w) + dy[k];
577 const int idx = w*y + x;
578 int n;
579 if (x < 0 || x >= w || y < 0 || y >= h) continue;
580 if (board[idx] == EMPTY) {
581 one = FALSE;
582 continue;
583 }
584 if (one &&
585 (board[idx] == 1 ||
586 (board[idx] >= expandsize(board, dsf, w, h,
587 i, board[idx]))))
588 one = FALSE;
589 assert(board[i] == EMPTY);
590 board[i] = -SENTINEL;
591 n = count(board, w, h, idx);
592 assert(board[i] == EMPTY);
593 if (n >= board[idx]) continue;
594 EXPAND(i, idx);
595 break;
596 }
597 if (k == 4 && one) {
598 assert(board[i] == EMPTY);
599 board[i] = 1;
600 assert(nempty);
601 --nempty;
602 learn = TRUE;
603 }
604 continue;
605 }
606 /* printf("expanding blob of (%d, %d)\n", i % w, i / w); */
607
608 j = dsf_canonify(dsf, i);
609
610 /* (but only for each connected component) */
611 if (i != j) continue;
612
613 /* (and not if it's already complete) */
614 if (dsf_size(dsf, j) == board[j]) continue;
615
616 /* for each square j _in_ the connected component */
617 do {
618 int k;
619 /* printf(" looking at (%d, %d)\n", j % w, j / w); */
620
621 /* for each neighbouring square (idx) */
622 for (k = 0; k < 4; ++k) {
623 const int x = (j % w) + dx[k];
624 const int y = (j / w) + dy[k];
625 const int idx = w*y + x;
626 int size;
627 /* int l;
628 int nhits = 0;
629 int hits[4]; */
630 if (x < 0 || x >= w || y < 0 || y >= h) continue;
631 if (board[idx] != EMPTY) continue;
632 if (exp == idx) continue;
633 /* printf("\ttrying to expand onto (%d, %d)\n", x, y); */
634
635 /* find out the would-be size of the new connected
636 * component if we actually expanded into idx */
637 /*
638 size = 1;
639 for (l = 0; l < 4; ++l) {
640 const int lx = x + dx[l];
641 const int ly = y + dy[l];
642 const int idxl = w*ly + lx;
643 int root;
644 int m;
645 if (lx < 0 || lx >= w || ly < 0 || ly >= h) continue;
646 if (board[idxl] != board[j]) continue;
647 root = dsf_canonify(dsf, idxl);
648 for (m = 0; m < nhits && root != hits[m]; ++m);
649 if (m != nhits) continue;
650 // printf("\t (%d, %d) contributed %d to size\n", lx, ly, dsf[root] >> 2);
651 size += dsf_size(dsf, root);
652 assert(dsf_size(dsf, root) >= 1);
653 hits[nhits++] = root;
654 }
655 */
656
657 size = expandsize(board, dsf, w, h, idx, board[j]);
658
659 /* ... and see if that size is too big, or if we
660 * have other expansion candidates. Otherwise
661 * remember the (so far) only candidate. */
662
663 /* printf("\tthat would give a size of %d\n", size); */
664 if (size > board[j]) continue;
665 /* printf("\tnow knowing %d expansions\n", nexpand + 1); */
666 if (exp != SENTINEL) goto next_i;
667 assert(exp != idx);
668 exp = idx;
669 }
670
671 j = connected[j]; /* next square in the same CC */
672 assert(board[i] == board[j]);
673 } while (j != i);
674 /* end: for each square j _in_ the connected component */
675
676 if (exp == SENTINEL) continue;
677 /* printf("expand b: %d -> %d\n", i, exp); */
678 EXPAND(exp, i);
679
680 next_i:
681 ;
682 }
683 /* end: for each connected component */
684 } while (learn && nempty);
685
686 /* puts("best guess:");
687 print_board(board, w, h); */
688
689 if (solution) {
690 int i;
691 assert(*solution == NULL);
692 *solution = snewn(sz + 2, char);
693 **solution = 's';
694 for (i = 0; i < sz; ++i) (*solution)[i + 1] = board[i] + '0';
695 (*solution)[sz + 1] = '\0';
696 /* We don't need the \0 for execute_move (the only user)
697 * I'm just being printf-friendly in case I wanna print */
698 }
699
700 sfree(dsf);
701 sfree(board);
702 sfree(connected);
703
704 return !nempty;
705 }
706
707 static int *make_dsf(int *dsf, int *board, const int w, const int h) {
708 const int sz = w * h;
709 int i;
710
711 if (!dsf)
712 dsf = snew_dsf(w * h);
713 else
714 dsf_init(dsf, w * h);
715
716 for (i = 0; i < sz; ++i) {
717 int j;
718 for (j = 0; j < 4; ++j) {
719 const int x = (i % w) + dx[j];
720 const int y = (i / w) + dy[j];
721 const int k = w*y + x;
722 if (x < 0 || x >= w || y < 0 || y >= h) continue;
723 if (board[i] == board[k]) dsf_merge(dsf, i, k);
724 }
725 }
726 return dsf;
727 }
728
729 /*
730 static int filled(int *board, int *randomize, int k, int n) {
731 int i;
732 if (board == NULL) return FALSE;
733 if (randomize == NULL) return FALSE;
734 if (k > n) return FALSE;
735 for (i = 0; i < k; ++i) if (board[randomize[i]] == 0) return FALSE;
736 for (; i < n; ++i) if (board[randomize[i]] != 0) return FALSE;
737 return TRUE;
738 }
739 */
740
741 static int *g_board;
742 static int compare(const void *pa, const void *pb) {
743 if (!g_board) return 0;
744 return g_board[*(const int *)pb] - g_board[*(const int *)pa];
745 }
746
747 static char *new_game_desc(game_params *params, random_state *rs,
748 char **aux, int interactive)
749 {
750 const int w = params->w;
751 const int h = params->h;
752 const int sz = w * h;
753 int *board = snewn(sz, int);
754 int *randomize = snewn(sz, int);
755 int *solver_board = snewn(sz, int);
756 char *game_description = snewn(sz + 1, char);
757 int i;
758
759 for (i = 0; i < sz; ++i) {
760 board[i] = EMPTY;
761 randomize[i] = i;
762 }
763
764 make_board(board, w, h, rs);
765 memcpy(solver_board, board, sz * sizeof (int));
766
767 g_board = board;
768 qsort(randomize, sz, sizeof (int), compare);
769
770 /* since more clues only helps and never hurts, one pass will do
771 * just fine: if we can remove clue n with k clues of index > n,
772 * we could have removed clue n with >= k clues of index > n.
773 * So an additional pass wouldn't do anything [use induction]. */
774 for (i = 0; i < sz; ++i) {
775 solver_board[randomize[i]] = EMPTY;
776 if (!solver(solver_board, w, h, NULL))
777 solver_board[randomize[i]] = board[randomize[i]];
778 }
779
780 for (i = 0; i < sz; ++i) {
781 assert(solver_board[i] >= 0);
782 assert(solver_board[i] < 10);
783 game_description[i] = solver_board[i] + '0';
784 }
785 game_description[sz] = '\0';
786
787 /*
788 solver(solver_board, w, h, aux);
789 print_board(solver_board, w, h);
790 */
791
792 sfree(randomize);
793 sfree(solver_board);
794 sfree(board);
795
796 return game_description;
797 }
798
799 static char *validate_desc(game_params *params, char *desc)
800 {
801 int i;
802 const int sz = params->w * params->h;
803 const char m = '0' + max(max(params->w, params->h), 3);
804
805 /* printf("desc = '%s'; sz = %d\n", desc, sz); */
806
807 for (i = 0; desc[i] && i < sz; ++i)
808 if (!isdigit((unsigned char) *desc))
809 return "non-digit in string";
810 else if (desc[i] > m)
811 return "too large digit in string";
812 if (desc[i]) return "string too long";
813 else if (i < sz) return "string too short";
814 return NULL;
815 }
816
817 static game_state *new_game(midend *me, game_params *params, char *desc)
818 {
819 game_state *state = snew(game_state);
820 int sz = params->w * params->h;
821 int i;
822
823 state->cheated = state->completed = FALSE;
824 state->shared = snew(struct shared_state);
825 state->shared->refcnt = 1;
826 state->shared->params = *params; /* struct copy */
827 state->shared->clues = snewn(sz, int);
828 for (i = 0; i < sz; ++i) state->shared->clues[i] = desc[i] - '0';
829 state->board = memdup(state->shared->clues, sz, sizeof (int));
830
831 return state;
832 }
833
834 static game_state *dup_game(game_state *state)
835 {
836 const int sz = state->shared->params.w * state->shared->params.h;
837 game_state *ret = snew(game_state);
838
839 ret->board = memdup(state->board, sz, sizeof (int));
840 ret->shared = state->shared;
841 ret->cheated = state->cheated;
842 ret->completed = state->completed;
843 ++ret->shared->refcnt;
844
845 return ret;
846 }
847
848 static void free_game(game_state *state)
849 {
850 assert(state);
851 sfree(state->board);
852 if (--state->shared->refcnt == 0) {
853 sfree(state->shared->clues);
854 sfree(state->shared);
855 }
856 sfree(state);
857 }
858
859 static char *solve_game(game_state *state, game_state *currstate,
860 char *aux, char **error)
861 {
862 if (aux == NULL) {
863 const int w = state->shared->params.w;
864 const int h = state->shared->params.h;
865 if (!solver(state->board, w, h, &aux))
866 *error = "Sorry, I couldn't find a solution";
867 }
868 return aux;
869 }
870
871 /*****************************************************************************
872 * USER INTERFACE STATE AND ACTION *
873 *****************************************************************************/
874
875 struct game_ui {
876 int x, y; /* highlighted square, or (-1, -1) if none */
877 };
878
879 static game_ui *new_ui(game_state *state)
880 {
881 game_ui *ui = snew(game_ui);
882
883 ui->x = ui->y = -1;
884
885 return ui;
886 }
887
888 static void free_ui(game_ui *ui)
889 {
890 sfree(ui);
891 }
892
893 static char *encode_ui(game_ui *ui)
894 {
895 return NULL;
896 }
897
898 static void decode_ui(game_ui *ui, char *encoding)
899 {
900 }
901
902 static void game_changed_state(game_ui *ui, game_state *oldstate,
903 game_state *newstate)
904 {
905 }
906
907 #define PREFERRED_TILE_SIZE 32
908 #define TILE_SIZE (ds->tilesize)
909 #define BORDER (TILE_SIZE / 2)
910 #define BORDER_WIDTH (TILE_SIZE / 32)
911
912 struct game_drawstate {
913 struct game_params params;
914 int tilesize;
915 int started;
916 int *v, *flags;
917 int *dsf_scratch, *border_scratch;
918 };
919
920 static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
921 int x, int y, int button)
922 {
923 const int w = state->shared->params.w;
924 const int h = state->shared->params.h;
925
926 const int tx = (x + TILE_SIZE - BORDER) / TILE_SIZE - 1;
927 const int ty = (y + TILE_SIZE - BORDER) / TILE_SIZE - 1;
928
929 assert(ui);
930 assert(ds);
931
932 button &= ~MOD_MASK;
933
934 if (tx >= 0 && tx < w && ty >= 0 && ty < h) {
935 if (button == LEFT_BUTTON) {
936 if ((tx == ui->x && ty == ui->y) || state->shared->clues[w*ty+tx])
937 ui->x = ui->y = -1;
938 else ui->x = tx, ui->y = ty;
939 return ""; /* redraw */
940 }
941 }
942
943 assert((ui->x == -1) == (ui->y == -1));
944 if (ui->x == -1) return NULL;
945 assert(state->shared->clues[w*ui->y + ui->x] == 0);
946
947 switch (button) {
948 case ' ':
949 case '\r':
950 case '\n':
951 case '\b':
952 case '\177':
953 button = 0;
954 break;
955 default:
956 if (!isdigit(button)) return NULL;
957 button -= '0';
958 if (button > (w == 2 && h == 2? 3: max(w, h))) return NULL;
959 }
960
961 {
962 const int i = w*ui->y + ui->x;
963 char buf[64];
964 ui->x = ui->y = -1;
965 if (state->board[i] == button) {
966 return ""; /* no change - just update ui */
967 } else {
968 sprintf(buf, "%d_%d", i, button);
969 return dupstr(buf);
970 }
971 }
972 }
973
974 static game_state *execute_move(game_state *state, char *move)
975 {
976 game_state *new_state;
977
978 if (*move == 's') {
979 const int sz = state->shared->params.w * state->shared->params.h;
980 int i = 0;
981 new_state = dup_game(state);
982 for (++move; i < sz; ++i) new_state->board[i] = move[i] - '0';
983 new_state->cheated = TRUE;
984 } else {
985 char *endptr;
986 const int i = strtol(move, &endptr, 0);
987 int value;
988 if (endptr == move) return NULL;
989 if (*endptr != '_') return NULL;
990 move = endptr + 1;
991 value = strtol(move, &endptr, 0);
992 if (endptr == move) return NULL;
993 if (*endptr != '\0') return NULL;
994 new_state = dup_game(state);
995 new_state->board[i] = value;
996 }
997
998 /*
999 * Check for completion.
1000 */
1001 if (!new_state->completed) {
1002 const int w = new_state->shared->params.w;
1003 const int h = new_state->shared->params.h;
1004 const int sz = w * h;
1005 int *dsf = make_dsf(NULL, new_state->board, w, h);
1006 int i;
1007 for (i = 0; i < sz && new_state->board[i] == dsf_size(dsf, i); ++i);
1008 sfree(dsf);
1009 if (i == sz)
1010 new_state->completed = TRUE;
1011 }
1012
1013 return new_state;
1014 }
1015
1016 /* ----------------------------------------------------------------------
1017 * Drawing routines.
1018 */
1019
1020 #define FLASH_TIME 0.4F
1021
1022 #define COL_CLUE COL_GRID
1023 enum {
1024 COL_BACKGROUND,
1025 COL_GRID,
1026 COL_HIGHLIGHT,
1027 COL_CORRECT,
1028 COL_ERROR,
1029 COL_USER,
1030 NCOLOURS
1031 };
1032
1033 static void game_compute_size(game_params *params, int tilesize,
1034 int *x, int *y)
1035 {
1036 *x = (params->w + 1) * tilesize;
1037 *y = (params->h + 1) * tilesize;
1038 }
1039
1040 static void game_set_size(drawing *dr, game_drawstate *ds,
1041 game_params *params, int tilesize)
1042 {
1043 ds->tilesize = tilesize;
1044 }
1045
1046 static float *game_colours(frontend *fe, int *ncolours)
1047 {
1048 float *ret = snewn(3 * NCOLOURS, float);
1049
1050 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
1051
1052 ret[COL_GRID * 3 + 0] = 0.0F;
1053 ret[COL_GRID * 3 + 1] = 0.0F;
1054 ret[COL_GRID * 3 + 2] = 0.0F;
1055
1056 ret[COL_HIGHLIGHT * 3 + 0] = 0.85F * ret[COL_BACKGROUND * 3 + 0];
1057 ret[COL_HIGHLIGHT * 3 + 1] = 0.85F * ret[COL_BACKGROUND * 3 + 1];
1058 ret[COL_HIGHLIGHT * 3 + 2] = 0.85F * ret[COL_BACKGROUND * 3 + 2];
1059
1060 ret[COL_CORRECT * 3 + 0] = 0.9F * ret[COL_BACKGROUND * 3 + 0];
1061 ret[COL_CORRECT * 3 + 1] = 0.9F * ret[COL_BACKGROUND * 3 + 1];
1062 ret[COL_CORRECT * 3 + 2] = 0.9F * ret[COL_BACKGROUND * 3 + 2];
1063
1064 ret[COL_ERROR * 3 + 0] = 1.0F;
1065 ret[COL_ERROR * 3 + 1] = 0.85F * ret[COL_BACKGROUND * 3 + 1];
1066 ret[COL_ERROR * 3 + 2] = 0.85F * ret[COL_BACKGROUND * 3 + 2];
1067
1068 ret[COL_USER * 3 + 0] = 0.0F;
1069 ret[COL_USER * 3 + 1] = 0.6F * ret[COL_BACKGROUND * 3 + 1];
1070 ret[COL_USER * 3 + 2] = 0.0F;
1071
1072 *ncolours = NCOLOURS;
1073 return ret;
1074 }
1075
1076 static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
1077 {
1078 struct game_drawstate *ds = snew(struct game_drawstate);
1079 int i;
1080
1081 ds->tilesize = PREFERRED_TILE_SIZE;
1082 ds->started = 0;
1083 ds->params = state->shared->params;
1084 ds->v = snewn(ds->params.w * ds->params.h, int);
1085 ds->flags = snewn(ds->params.w * ds->params.h, int);
1086 for (i = 0; i < ds->params.w * ds->params.h; i++)
1087 ds->v[i] = ds->flags[i] = -1;
1088 ds->border_scratch = snewn(ds->params.w * ds->params.h, int);
1089 ds->dsf_scratch = NULL;
1090
1091 return ds;
1092 }
1093
1094 static void game_free_drawstate(drawing *dr, game_drawstate *ds)
1095 {
1096 sfree(ds->v);
1097 sfree(ds->flags);
1098 sfree(ds->border_scratch);
1099 sfree(ds->dsf_scratch);
1100 sfree(ds);
1101 }
1102
1103 #define BORDER_U 0x001
1104 #define BORDER_D 0x002
1105 #define BORDER_L 0x004
1106 #define BORDER_R 0x008
1107 #define BORDER_UR 0x010
1108 #define BORDER_DR 0x020
1109 #define BORDER_UL 0x040
1110 #define BORDER_DL 0x080
1111 #define CURSOR_BG 0x100
1112 #define CORRECT_BG 0x200
1113 #define ERROR_BG 0x400
1114 #define USER_COL 0x800
1115
1116 static void draw_square(drawing *dr, game_drawstate *ds, int x, int y,
1117 int n, int flags)
1118 {
1119 assert(dr);
1120 assert(ds);
1121
1122 /*
1123 * Clip to the grid square.
1124 */
1125 clip(dr, BORDER + x*TILE_SIZE, BORDER + y*TILE_SIZE,
1126 TILE_SIZE, TILE_SIZE);
1127
1128 /*
1129 * Clear the square.
1130 */
1131 draw_rect(dr,
1132 BORDER + x*TILE_SIZE,
1133 BORDER + y*TILE_SIZE,
1134 TILE_SIZE,
1135 TILE_SIZE,
1136 (flags & CURSOR_BG ? COL_HIGHLIGHT :
1137 flags & ERROR_BG ? COL_ERROR :
1138 flags & CORRECT_BG ? COL_CORRECT : COL_BACKGROUND));
1139
1140 /*
1141 * Draw the grid lines.
1142 */
1143 draw_line(dr, BORDER + x*TILE_SIZE, BORDER + y*TILE_SIZE,
1144 BORDER + (x+1)*TILE_SIZE, BORDER + y*TILE_SIZE, COL_GRID);
1145 draw_line(dr, BORDER + x*TILE_SIZE, BORDER + y*TILE_SIZE,
1146 BORDER + x*TILE_SIZE, BORDER + (y+1)*TILE_SIZE, COL_GRID);
1147
1148 /*
1149 * Draw the number.
1150 */
1151 if (n) {
1152 char buf[2];
1153 buf[0] = n + '0';
1154 buf[1] = '\0';
1155 draw_text(dr,
1156 (x + 1) * TILE_SIZE,
1157 (y + 1) * TILE_SIZE,
1158 FONT_VARIABLE,
1159 TILE_SIZE / 2,
1160 ALIGN_VCENTRE | ALIGN_HCENTRE,
1161 flags & USER_COL ? COL_USER : COL_CLUE,
1162 buf);
1163 }
1164
1165 /*
1166 * Draw bold lines around the borders.
1167 */
1168 if (flags & BORDER_L)
1169 draw_rect(dr,
1170 BORDER + x*TILE_SIZE + 1,
1171 BORDER + y*TILE_SIZE + 1,
1172 BORDER_WIDTH,
1173 TILE_SIZE - 1,
1174 COL_GRID);
1175 if (flags & BORDER_U)
1176 draw_rect(dr,
1177 BORDER + x*TILE_SIZE + 1,
1178 BORDER + y*TILE_SIZE + 1,
1179 TILE_SIZE - 1,
1180 BORDER_WIDTH,
1181 COL_GRID);
1182 if (flags & BORDER_R)
1183 draw_rect(dr,
1184 BORDER + (x+1)*TILE_SIZE - BORDER_WIDTH,
1185 BORDER + y*TILE_SIZE + 1,
1186 BORDER_WIDTH,
1187 TILE_SIZE - 1,
1188 COL_GRID);
1189 if (flags & BORDER_D)
1190 draw_rect(dr,
1191 BORDER + x*TILE_SIZE + 1,
1192 BORDER + (y+1)*TILE_SIZE - BORDER_WIDTH,
1193 TILE_SIZE - 1,
1194 BORDER_WIDTH,
1195 COL_GRID);
1196 if (flags & BORDER_UL)
1197 draw_rect(dr,
1198 BORDER + x*TILE_SIZE + 1,
1199 BORDER + y*TILE_SIZE + 1,
1200 BORDER_WIDTH,
1201 BORDER_WIDTH,
1202 COL_GRID);
1203 if (flags & BORDER_UR)
1204 draw_rect(dr,
1205 BORDER + (x+1)*TILE_SIZE - BORDER_WIDTH,
1206 BORDER + y*TILE_SIZE + 1,
1207 BORDER_WIDTH,
1208 BORDER_WIDTH,
1209 COL_GRID);
1210 if (flags & BORDER_DL)
1211 draw_rect(dr,
1212 BORDER + x*TILE_SIZE + 1,
1213 BORDER + (y+1)*TILE_SIZE - BORDER_WIDTH,
1214 BORDER_WIDTH,
1215 BORDER_WIDTH,
1216 COL_GRID);
1217 if (flags & BORDER_DR)
1218 draw_rect(dr,
1219 BORDER + (x+1)*TILE_SIZE - BORDER_WIDTH,
1220 BORDER + (y+1)*TILE_SIZE - BORDER_WIDTH,
1221 BORDER_WIDTH,
1222 BORDER_WIDTH,
1223 COL_GRID);
1224
1225 unclip(dr);
1226
1227 draw_update(dr,
1228 BORDER + x*TILE_SIZE,
1229 BORDER + y*TILE_SIZE,
1230 TILE_SIZE,
1231 TILE_SIZE);
1232 }
1233
1234 static void draw_grid(drawing *dr, game_drawstate *ds, game_state *state,
1235 game_ui *ui, int flashy, int borders, int shading)
1236 {
1237 const int w = state->shared->params.w;
1238 const int h = state->shared->params.h;
1239 int x;
1240 int y;
1241
1242 /*
1243 * Build a dsf for the board in its current state, to use for
1244 * highlights and hints.
1245 */
1246 ds->dsf_scratch = make_dsf(ds->dsf_scratch, state->board, w, h);
1247
1248 /*
1249 * Work out where we're putting borders between the cells.
1250 */
1251 for (y = 0; y < w*h; y++)
1252 ds->border_scratch[y] = 0;
1253
1254 for (y = 0; y < h; y++)
1255 for (x = 0; x < w; x++) {
1256 int dx, dy;
1257 int v1, s1, v2, s2;
1258
1259 for (dx = 0; dx <= 1; dx++) {
1260 int border = FALSE;
1261
1262 dy = 1 - dx;
1263
1264 if (x+dx >= w || y+dy >= h)
1265 continue;
1266
1267 v1 = state->board[y*w+x];
1268 v2 = state->board[(y+dy)*w+(x+dx)];
1269 s1 = dsf_size(ds->dsf_scratch, y*w+x);
1270 s2 = dsf_size(ds->dsf_scratch, (y+dy)*w+(x+dx));
1271
1272 /*
1273 * We only ever draw a border between two cells if
1274 * they don't have the same contents.
1275 */
1276 if (v1 != v2) {
1277 /*
1278 * But in that situation, we don't always draw
1279 * a border. We do if the two cells both
1280 * contain actual numbers...
1281 */
1282 if (v1 && v2)
1283 border = TRUE;
1284
1285 /*
1286 * ... or if at least one of them is a
1287 * completed or overfull omino.
1288 */
1289 if (v1 && s1 >= v1)
1290 border = TRUE;
1291 if (v2 && s2 >= v2)
1292 border = TRUE;
1293 }
1294
1295 if (border)
1296 ds->border_scratch[y*w+x] |= (dx ? 1 : 2);
1297 }
1298 }
1299
1300 /*
1301 * Actually do the drawing.
1302 */
1303 for (y = 0; y < h; ++y)
1304 for (x = 0; x < w; ++x) {
1305 /*
1306 * Determine what we need to draw in this square.
1307 */
1308 int v = state->board[y*w+x];
1309 int flags = 0;
1310
1311 if (flashy || !shading) {
1312 /* clear all background flags */
1313 } else if (x == ui->x && y == ui->y) {
1314 flags |= CURSOR_BG;
1315 } else if (v) {
1316 int size = dsf_size(ds->dsf_scratch, y*w+x);
1317 if (size == v)
1318 flags |= CORRECT_BG;
1319 else if (size > v)
1320 flags |= ERROR_BG;
1321 }
1322
1323 /*
1324 * Borders at the very edges of the grid are
1325 * independent of the `borders' flag.
1326 */
1327 if (x == 0)
1328 flags |= BORDER_L;
1329 if (y == 0)
1330 flags |= BORDER_U;
1331 if (x == w-1)
1332 flags |= BORDER_R;
1333 if (y == h-1)
1334 flags |= BORDER_D;
1335
1336 if (borders) {
1337 if (x == 0 || (ds->border_scratch[y*w+(x-1)] & 1))
1338 flags |= BORDER_L;
1339 if (y == 0 || (ds->border_scratch[(y-1)*w+x] & 2))
1340 flags |= BORDER_U;
1341 if (x == w-1 || (ds->border_scratch[y*w+x] & 1))
1342 flags |= BORDER_R;
1343 if (y == h-1 || (ds->border_scratch[y*w+x] & 2))
1344 flags |= BORDER_D;
1345
1346 if (y > 0 && x > 0 && (ds->border_scratch[(y-1)*w+(x-1)]))
1347 flags |= BORDER_UL;
1348 if (y > 0 && x < w-1 &&
1349 ((ds->border_scratch[(y-1)*w+x] & 1) ||
1350 (ds->border_scratch[(y-1)*w+(x+1)] & 2)))
1351 flags |= BORDER_UR;
1352 if (y < h-1 && x > 0 &&
1353 ((ds->border_scratch[y*w+(x-1)] & 2) ||
1354 (ds->border_scratch[(y+1)*w+(x-1)] & 1)))
1355 flags |= BORDER_DL;
1356 if (y < h-1 && x < w-1 &&
1357 ((ds->border_scratch[y*w+(x+1)] & 2) ||
1358 (ds->border_scratch[(y+1)*w+x] & 1)))
1359 flags |= BORDER_DR;
1360 }
1361
1362 if (!state->shared->clues[y*w+x])
1363 flags |= USER_COL;
1364
1365 if (ds->v[y*w+x] != v || ds->flags[y*w+x] != flags) {
1366 draw_square(dr, ds, x, y, v, flags);
1367 ds->v[y*w+x] = v;
1368 ds->flags[y*w+x] = flags;
1369 }
1370 }
1371 }
1372
1373 static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
1374 game_state *state, int dir, game_ui *ui,
1375 float animtime, float flashtime)
1376 {
1377 const int w = state->shared->params.w;
1378 const int h = state->shared->params.h;
1379
1380 const int flashy =
1381 flashtime > 0 &&
1382 (flashtime <= FLASH_TIME/3 || flashtime >= FLASH_TIME*2/3);
1383
1384 if (!ds->started) {
1385 /*
1386 * The initial contents of the window are not guaranteed and
1387 * can vary with front ends. To be on the safe side, all games
1388 * should start by drawing a big background-colour rectangle
1389 * covering the whole window.
1390 */
1391 draw_rect(dr, 0, 0, 10*ds->tilesize, 10*ds->tilesize, COL_BACKGROUND);
1392
1393 /*
1394 * Smaller black rectangle which is the main grid.
1395 */
1396 draw_rect(dr, BORDER - BORDER_WIDTH, BORDER - BORDER_WIDTH,
1397 w*TILE_SIZE + 2*BORDER_WIDTH + 1,
1398 h*TILE_SIZE + 2*BORDER_WIDTH + 1,
1399 COL_GRID);
1400
1401 ds->started = TRUE;
1402 }
1403
1404 draw_grid(dr, ds, state, ui, flashy, TRUE, TRUE);
1405 }
1406
1407 static float game_anim_length(game_state *oldstate, game_state *newstate,
1408 int dir, game_ui *ui)
1409 {
1410 return 0.0F;
1411 }
1412
1413 static float game_flash_length(game_state *oldstate, game_state *newstate,
1414 int dir, game_ui *ui)
1415 {
1416 assert(oldstate);
1417 assert(newstate);
1418 assert(newstate->shared);
1419 assert(oldstate->shared == newstate->shared);
1420 if (!oldstate->completed && newstate->completed &&
1421 !oldstate->cheated && !newstate->cheated)
1422 return FLASH_TIME;
1423 return 0.0F;
1424 }
1425
1426 static int game_timing_state(game_state *state, game_ui *ui)
1427 {
1428 return TRUE;
1429 }
1430
1431 static void game_print_size(game_params *params, float *x, float *y)
1432 {
1433 int pw, ph;
1434
1435 /*
1436 * I'll use 6mm squares by default.
1437 */
1438 game_compute_size(params, 600, &pw, &ph);
1439 *x = pw / 100.0;
1440 *y = ph / 100.0;
1441 }
1442
1443 static void game_print(drawing *dr, game_state *state, int tilesize)
1444 {
1445 const int w = state->shared->params.w;
1446 const int h = state->shared->params.h;
1447 int c, i, borders;
1448
1449 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
1450 game_drawstate *ds = game_new_drawstate(dr, state);
1451 game_set_size(dr, ds, NULL, tilesize);
1452
1453 c = print_mono_colour(dr, 1); assert(c == COL_BACKGROUND);
1454 c = print_mono_colour(dr, 0); assert(c == COL_GRID);
1455 c = print_mono_colour(dr, 1); assert(c == COL_HIGHLIGHT);
1456 c = print_mono_colour(dr, 1); assert(c == COL_CORRECT);
1457 c = print_mono_colour(dr, 1); assert(c == COL_ERROR);
1458 c = print_mono_colour(dr, 0); assert(c == COL_USER);
1459
1460 /*
1461 * Border.
1462 */
1463 draw_rect(dr, BORDER - BORDER_WIDTH, BORDER - BORDER_WIDTH,
1464 w*TILE_SIZE + 2*BORDER_WIDTH + 1,
1465 h*TILE_SIZE + 2*BORDER_WIDTH + 1,
1466 COL_GRID);
1467
1468 /*
1469 * We'll draw borders between the ominoes iff the grid is not
1470 * pristine. So scan it to see if it is.
1471 */
1472 borders = FALSE;
1473 for (i = 0; i < w*h; i++)
1474 if (state->board[i] && !state->shared->clues[i])
1475 borders = TRUE;
1476
1477 /*
1478 * Draw grid.
1479 */
1480 print_line_width(dr, TILE_SIZE / 64);
1481 draw_grid(dr, ds, state, NULL, FALSE, borders, FALSE);
1482
1483 /*
1484 * Clean up.
1485 */
1486 game_free_drawstate(dr, ds);
1487 }
1488
1489 #ifdef COMBINED
1490 #define thegame filling
1491 #endif
1492
1493 const struct game thegame = {
1494 "Filling", "games.filling", "filling",
1495 default_params,
1496 game_fetch_preset,
1497 decode_params,
1498 encode_params,
1499 free_params,
1500 dup_params,
1501 TRUE, game_configure, custom_params,
1502 validate_params,
1503 new_game_desc,
1504 validate_desc,
1505 new_game,
1506 dup_game,
1507 free_game,
1508 TRUE, solve_game,
1509 TRUE, game_text_format,
1510 new_ui,
1511 free_ui,
1512 encode_ui,
1513 decode_ui,
1514 game_changed_state,
1515 interpret_move,
1516 execute_move,
1517 PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
1518 game_colours,
1519 game_new_drawstate,
1520 game_free_drawstate,
1521 game_redraw,
1522 game_anim_length,
1523 game_flash_length,
1524 TRUE, FALSE, game_print_size, game_print,
1525 FALSE, /* wants_statusbar */
1526 FALSE, game_timing_state,
1527 REQUIRE_NUMPAD, /* flags */
1528 };
1529
1530 #ifdef STANDALONE_SOLVER /* solver? hah! */
1531
1532 int main(int argc, char **argv) {
1533 while (*++argv) {
1534 game_params *params;
1535 game_state *state;
1536 char *par;
1537 char *desc;
1538
1539 for (par = desc = *argv; *desc != '\0' && *desc != ':'; ++desc);
1540 if (*desc == '\0') {
1541 fprintf(stderr, "bad puzzle id: %s", par);
1542 continue;
1543 }
1544
1545 *desc++ = '\0';
1546
1547 params = snew(game_params);
1548 decode_params(params, par);
1549 state = new_game(NULL, params, desc);
1550 if (solver(state->board, params->w, params->h, NULL))
1551 printf("%s:%s: solvable\n", par, desc);
1552 else
1553 printf("%s:%s: not solvable\n", par, desc);
1554 }
1555 return 0;
1556 }
1557
1558 #endif