GNUstep compatibility: add a missing #include.
[sgt/puzzles] / pearl.c
1 /*
2 * pearl.c: Nikoli's `Masyu' puzzle.
3 */
4
5 /*
6 * TODO:
7 *
8 * - The current keyboard cursor mechanism works well on ordinary PC
9 * keyboards, but for platforms with only arrow keys and a select
10 * button or two, we may at some point need a simpler one which can
11 * handle 'x' markings without needing shift keys. For instance, a
12 * cursor with twice the grid resolution, so that it can range
13 * across face centres, edge centres and vertices; 'clicks' on face
14 * centres begin a drag as currently, clicks on edges toggle
15 * markings, and clicks on vertices are ignored (but it would be
16 * too confusing not to let the cursor rest on them). But I'm
17 * pretty sure that would be less pleasant to play on a full
18 * keyboard, so probably a #ifdef would be the thing.
19 *
20 * - Generation is still pretty slow, due to difficulty coming up in
21 * the first place with a loop that makes a soluble puzzle even
22 * with all possible clues filled in.
23 * + A possible alternative strategy to further tuning of the
24 * existing loop generator would be to throw the entire
25 * mechanism out and instead write a different generator from
26 * scratch which evolves the solution along with the puzzle:
27 * place a few clues, nail down a bit of the loop, place another
28 * clue, nail down some more, etc. However, I don't have a
29 * detailed plan for any such mechanism, so it may be a pipe
30 * dream.
31 */
32
33 #include <stdio.h>
34 #include <stdlib.h>
35 #include <string.h>
36 #include <assert.h>
37 #include <ctype.h>
38 #include <math.h>
39
40 #include "puzzles.h"
41 #include "grid.h"
42 #include "loopgen.h"
43
44 #define SWAP(i,j) do { int swaptmp = (i); (i) = (j); (j) = swaptmp; } while (0)
45
46 #define NOCLUE 0
47 #define CORNER 1
48 #define STRAIGHT 2
49
50 #define R 1
51 #define U 2
52 #define L 4
53 #define D 8
54
55 #define DX(d) ( ((d)==R) - ((d)==L) )
56 #define DY(d) ( ((d)==D) - ((d)==U) )
57
58 #define F(d) (((d << 2) | (d >> 2)) & 0xF)
59 #define C(d) (((d << 3) | (d >> 1)) & 0xF)
60 #define A(d) (((d << 1) | (d >> 3)) & 0xF)
61
62 #define LR (L | R)
63 #define RL (R | L)
64 #define UD (U | D)
65 #define DU (D | U)
66 #define LU (L | U)
67 #define UL (U | L)
68 #define LD (L | D)
69 #define DL (D | L)
70 #define RU (R | U)
71 #define UR (U | R)
72 #define RD (R | D)
73 #define DR (D | R)
74 #define BLANK 0
75 #define UNKNOWN 15
76
77 #define bLR (1 << LR)
78 #define bRL (1 << RL)
79 #define bUD (1 << UD)
80 #define bDU (1 << DU)
81 #define bLU (1 << LU)
82 #define bUL (1 << UL)
83 #define bLD (1 << LD)
84 #define bDL (1 << DL)
85 #define bRU (1 << RU)
86 #define bUR (1 << UR)
87 #define bRD (1 << RD)
88 #define bDR (1 << DR)
89 #define bBLANK (1 << BLANK)
90
91 enum {
92 COL_BACKGROUND, COL_HIGHLIGHT, COL_LOWLIGHT,
93 COL_CURSOR_BACKGROUND = COL_LOWLIGHT,
94 COL_BLACK, COL_WHITE,
95 COL_ERROR, COL_GRID, COL_FLASH,
96 COL_DRAGON, COL_DRAGOFF,
97 NCOLOURS
98 };
99
100 /* Macro ickery copied from slant.c */
101 #define DIFFLIST(A) \
102 A(EASY,Easy,e) \
103 A(TRICKY,Tricky,t)
104 #define ENUM(upper,title,lower) DIFF_ ## upper,
105 #define TITLE(upper,title,lower) #title,
106 #define ENCODE(upper,title,lower) #lower
107 #define CONFIG(upper,title,lower) ":" #title
108 enum { DIFFLIST(ENUM) DIFFCOUNT };
109 static char const *const pearl_diffnames[] = { DIFFLIST(TITLE) "(count)" };
110 static char const pearl_diffchars[] = DIFFLIST(ENCODE);
111 #define DIFFCONFIG DIFFLIST(CONFIG)
112
113 struct game_params {
114 int w, h;
115 int difficulty;
116 int nosolve; /* XXX remove me! */
117 };
118
119 struct shared_state {
120 int w, h, sz;
121 char *clues; /* size w*h */
122 int refcnt;
123 };
124
125 #define INGRID(state, gx, gy) ((gx) >= 0 && (gx) < (state)->shared->w && \
126 (gy) >= 0 && (gy) < (state)->shared->h)
127 struct game_state {
128 struct shared_state *shared;
129 char *lines; /* size w*h: lines placed */
130 char *errors; /* size w*h: errors detected */
131 char *marks; /* size w*h: 'no line here' marks placed. */
132 int completed, used_solve;
133 int loop_length; /* filled in by check_completion when complete. */
134 };
135
136 #define DEFAULT_PRESET 3
137
138 static const struct game_params pearl_presets[] = {
139 {6, 6, DIFF_EASY},
140 {6, 6, DIFF_TRICKY},
141 {8, 8, DIFF_EASY},
142 {8, 8, DIFF_TRICKY},
143 {10, 10, DIFF_EASY},
144 {10, 10, DIFF_TRICKY},
145 {12, 8, DIFF_EASY},
146 {12, 8, DIFF_TRICKY},
147 };
148
149 static game_params *default_params(void)
150 {
151 game_params *ret = snew(game_params);
152
153 *ret = pearl_presets[DEFAULT_PRESET];
154 ret->nosolve = FALSE;
155
156 return ret;
157 }
158
159 static int game_fetch_preset(int i, char **name, game_params **params)
160 {
161 game_params *ret;
162 char buf[64];
163
164 if (i < 0 || i >= lenof(pearl_presets)) return FALSE;
165
166 ret = default_params();
167 *ret = pearl_presets[i]; /* struct copy */
168 *params = ret;
169
170 sprintf(buf, "%dx%d %s",
171 pearl_presets[i].w, pearl_presets[i].h,
172 pearl_diffnames[pearl_presets[i].difficulty]);
173 *name = dupstr(buf);
174
175 return TRUE;
176 }
177
178 static void free_params(game_params *params)
179 {
180 sfree(params);
181 }
182
183 static game_params *dup_params(game_params *params)
184 {
185 game_params *ret = snew(game_params);
186 *ret = *params; /* structure copy */
187 return ret;
188 }
189
190 static void decode_params(game_params *ret, char const *string)
191 {
192 ret->w = ret->h = atoi(string);
193 while (*string && isdigit((unsigned char) *string)) ++string;
194 if (*string == 'x') {
195 string++;
196 ret->h = atoi(string);
197 while (*string && isdigit((unsigned char)*string)) string++;
198 }
199
200 ret->difficulty = DIFF_EASY;
201 if (*string == 'd') {
202 int i;
203 string++;
204 for (i = 0; i < DIFFCOUNT; i++)
205 if (*string == pearl_diffchars[i])
206 ret->difficulty = i;
207 if (*string) string++;
208 }
209
210 ret->nosolve = FALSE;
211 if (*string == 'n') {
212 ret->nosolve = TRUE;
213 string++;
214 }
215 }
216
217 static char *encode_params(game_params *params, int full)
218 {
219 char buf[256];
220 sprintf(buf, "%dx%d", params->w, params->h);
221 if (full)
222 sprintf(buf + strlen(buf), "d%c%s",
223 pearl_diffchars[params->difficulty],
224 params->nosolve ? "n" : "");
225 return dupstr(buf);
226 }
227
228 static config_item *game_configure(game_params *params)
229 {
230 config_item *ret;
231 char buf[64];
232
233 ret = snewn(5, config_item);
234
235 ret[0].name = "Width";
236 ret[0].type = C_STRING;
237 sprintf(buf, "%d", params->w);
238 ret[0].sval = dupstr(buf);
239 ret[0].ival = 0;
240
241 ret[1].name = "Height";
242 ret[1].type = C_STRING;
243 sprintf(buf, "%d", params->h);
244 ret[1].sval = dupstr(buf);
245 ret[1].ival = 0;
246
247 ret[2].name = "Difficulty";
248 ret[2].type = C_CHOICES;
249 ret[2].sval = DIFFCONFIG;
250 ret[2].ival = params->difficulty;
251
252 ret[3].name = "Allow unsoluble";
253 ret[3].type = C_BOOLEAN;
254 ret[3].sval = NULL;
255 ret[3].ival = params->nosolve;
256
257 ret[4].name = NULL;
258 ret[4].type = C_END;
259 ret[4].sval = NULL;
260 ret[4].ival = 0;
261
262 return ret;
263 }
264
265 static game_params *custom_params(config_item *cfg)
266 {
267 game_params *ret = snew(game_params);
268
269 ret->w = atoi(cfg[0].sval);
270 ret->h = atoi(cfg[1].sval);
271 ret->difficulty = cfg[2].ival;
272 ret->nosolve = cfg[3].ival;
273
274 return ret;
275 }
276
277 static char *validate_params(game_params *params, int full)
278 {
279 if (params->w < 5) return "Width must be at least five";
280 if (params->h < 5) return "Height must be at least five";
281 if (params->difficulty < 0 || params->difficulty >= DIFFCOUNT)
282 return "Unknown difficulty level";
283
284 return NULL;
285 }
286
287 /* ----------------------------------------------------------------------
288 * Solver.
289 */
290
291 int pearl_solve(int w, int h, char *clues, char *result,
292 int difficulty, int partial)
293 {
294 int W = 2*w+1, H = 2*h+1;
295 short *workspace;
296 int *dsf, *dsfsize;
297 int x, y, b, d;
298 int ret = -1;
299
300 /*
301 * workspace[(2*y+1)*W+(2*x+1)] indicates the possible nature
302 * of the square (x,y), as a logical OR of bitfields.
303 *
304 * workspace[(2*y)*W+(2*x+1)], for x odd and y even, indicates
305 * whether the horizontal edge between (x,y) and (x+1,y) is
306 * connected (1), disconnected (2) or unknown (3).
307 *
308 * workspace[(2*y+1)*W+(2*x)], indicates the same about the
309 * vertical edge between (x,y) and (x,y+1).
310 *
311 * Initially, every square is considered capable of being in
312 * any of the seven possible states (two straights, four
313 * corners and empty), except those corresponding to clue
314 * squares which are more restricted.
315 *
316 * Initially, all edges are unknown, except the ones around the
317 * grid border which are known to be disconnected.
318 */
319 workspace = snewn(W*H, short);
320 for (x = 0; x < W*H; x++)
321 workspace[x] = 0;
322 /* Square states */
323 for (y = 0; y < h; y++)
324 for (x = 0; x < w; x++)
325 switch (clues[y*w+x]) {
326 case CORNER:
327 workspace[(2*y+1)*W+(2*x+1)] = bLU|bLD|bRU|bRD;
328 break;
329 case STRAIGHT:
330 workspace[(2*y+1)*W+(2*x+1)] = bLR|bUD;
331 break;
332 default:
333 workspace[(2*y+1)*W+(2*x+1)] = bLR|bUD|bLU|bLD|bRU|bRD|bBLANK;
334 break;
335 }
336 /* Horizontal edges */
337 for (y = 0; y <= h; y++)
338 for (x = 0; x < w; x++)
339 workspace[(2*y)*W+(2*x+1)] = (y==0 || y==h ? 2 : 3);
340 /* Vertical edges */
341 for (y = 0; y < h; y++)
342 for (x = 0; x <= w; x++)
343 workspace[(2*y+1)*W+(2*x)] = (x==0 || x==w ? 2 : 3);
344
345 /*
346 * We maintain a dsf of connected squares, together with a
347 * count of the size of each equivalence class.
348 */
349 dsf = snewn(w*h, int);
350 dsfsize = snewn(w*h, int);
351
352 /*
353 * Now repeatedly try to find something we can do.
354 */
355 while (1) {
356 int done_something = FALSE;
357
358 #ifdef SOLVER_DIAGNOSTICS
359 for (y = 0; y < H; y++) {
360 for (x = 0; x < W; x++)
361 printf("%*x", (x&1) ? 5 : 2, workspace[y*W+x]);
362 printf("\n");
363 }
364 #endif
365
366 /*
367 * Go through the square state words, and discard any
368 * square state which is inconsistent with known facts
369 * about the edges around the square.
370 */
371 for (y = 0; y < h; y++)
372 for (x = 0; x < w; x++) {
373 for (b = 0; b < 0xD; b++)
374 if (workspace[(2*y+1)*W+(2*x+1)] & (1<<b)) {
375 /*
376 * If any edge of this square is known to
377 * be connected when state b would require
378 * it disconnected, or vice versa, discard
379 * the state.
380 */
381 for (d = 1; d <= 8; d += d) {
382 int ex = 2*x+1 + DX(d), ey = 2*y+1 + DY(d);
383 if (workspace[ey*W+ex] ==
384 ((b & d) ? 2 : 1)) {
385 workspace[(2*y+1)*W+(2*x+1)] &= ~(1<<b);
386 #ifdef SOLVER_DIAGNOSTICS
387 printf("edge (%d,%d)-(%d,%d) rules out state"
388 " %d for square (%d,%d)\n",
389 ex/2, ey/2, (ex+1)/2, (ey+1)/2,
390 b, x, y);
391 #endif
392 done_something = TRUE;
393 break;
394 }
395 }
396 }
397
398 /*
399 * Consistency check: each square must have at
400 * least one state left!
401 */
402 if (!workspace[(2*y+1)*W+(2*x+1)]) {
403 #ifdef SOLVER_DIAGNOSTICS
404 printf("edge check at (%d,%d): inconsistency\n", x, y);
405 #endif
406 ret = 0;
407 goto cleanup;
408 }
409 }
410
411 /*
412 * Now go through the states array again, and nail down any
413 * unknown edge if one of its neighbouring squares makes it
414 * known.
415 */
416 for (y = 0; y < h; y++)
417 for (x = 0; x < w; x++) {
418 int edgeor = 0, edgeand = 15;
419
420 for (b = 0; b < 0xD; b++)
421 if (workspace[(2*y+1)*W+(2*x+1)] & (1<<b)) {
422 edgeor |= b;
423 edgeand &= b;
424 }
425
426 /*
427 * Now any bit clear in edgeor marks a disconnected
428 * edge, and any bit set in edgeand marks a
429 * connected edge.
430 */
431
432 /* First check consistency: neither bit is both! */
433 if (edgeand & ~edgeor) {
434 #ifdef SOLVER_DIAGNOSTICS
435 printf("square check at (%d,%d): inconsistency\n", x, y);
436 #endif
437 ret = 0;
438 goto cleanup;
439 }
440
441 for (d = 1; d <= 8; d += d) {
442 int ex = 2*x+1 + DX(d), ey = 2*y+1 + DY(d);
443
444 if (!(edgeor & d) && workspace[ey*W+ex] == 3) {
445 workspace[ey*W+ex] = 2;
446 done_something = TRUE;
447 #ifdef SOLVER_DIAGNOSTICS
448 printf("possible states of square (%d,%d) force edge"
449 " (%d,%d)-(%d,%d) to be disconnected\n",
450 x, y, ex/2, ey/2, (ex+1)/2, (ey+1)/2);
451 #endif
452 } else if ((edgeand & d) && workspace[ey*W+ex] == 3) {
453 workspace[ey*W+ex] = 1;
454 done_something = TRUE;
455 #ifdef SOLVER_DIAGNOSTICS
456 printf("possible states of square (%d,%d) force edge"
457 " (%d,%d)-(%d,%d) to be connected\n",
458 x, y, ex/2, ey/2, (ex+1)/2, (ey+1)/2);
459 #endif
460 }
461 }
462 }
463
464 if (done_something)
465 continue;
466
467 /*
468 * Now for longer-range clue-based deductions (using the
469 * rules that a corner clue must connect to two straight
470 * squares, and a straight clue must connect to at least
471 * one corner square).
472 */
473 for (y = 0; y < h; y++)
474 for (x = 0; x < w; x++)
475 switch (clues[y*w+x]) {
476 case CORNER:
477 for (d = 1; d <= 8; d += d) {
478 int ex = 2*x+1 + DX(d), ey = 2*y+1 + DY(d);
479 int fx = ex + DX(d), fy = ey + DY(d);
480 int type = d | F(d);
481
482 if (workspace[ey*W+ex] == 1) {
483 /*
484 * If a corner clue is connected on any
485 * edge, then we can immediately nail
486 * down the square beyond that edge as
487 * being a straight in the appropriate
488 * direction.
489 */
490 if (workspace[fy*W+fx] != (1<<type)) {
491 workspace[fy*W+fx] = (1<<type);
492 done_something = TRUE;
493 #ifdef SOLVER_DIAGNOSTICS
494 printf("corner clue at (%d,%d) forces square "
495 "(%d,%d) into state %d\n", x, y,
496 fx/2, fy/2, type);
497 #endif
498
499 }
500 } else if (workspace[ey*W+ex] == 3) {
501 /*
502 * Conversely, if a corner clue is
503 * separated by an unknown edge from a
504 * square which _cannot_ be a straight
505 * in the appropriate direction, we can
506 * mark that edge as disconnected.
507 */
508 if (!(workspace[fy*W+fx] & (1<<type))) {
509 workspace[ey*W+ex] = 2;
510 done_something = TRUE;
511 #ifdef SOLVER_DIAGNOSTICS
512 printf("corner clue at (%d,%d), plus square "
513 "(%d,%d) not being state %d, "
514 "disconnects edge (%d,%d)-(%d,%d)\n",
515 x, y, fx/2, fy/2, type,
516 ex/2, ey/2, (ex+1)/2, (ey+1)/2);
517 #endif
518
519 }
520 }
521 }
522
523 break;
524 case STRAIGHT:
525 /*
526 * If a straight clue is between two squares
527 * neither of which is capable of being a
528 * corner connected to it, then the straight
529 * clue cannot point in that direction.
530 */
531 for (d = 1; d <= 2; d += d) {
532 int fx = 2*x+1 + 2*DX(d), fy = 2*y+1 + 2*DY(d);
533 int gx = 2*x+1 - 2*DX(d), gy = 2*y+1 - 2*DY(d);
534 int type = d | F(d);
535
536 if (!(workspace[(2*y+1)*W+(2*x+1)] & (1<<type)))
537 continue;
538
539 if (!(workspace[fy*W+fx] & ((1<<(F(d)|A(d))) |
540 (1<<(F(d)|C(d))))) &&
541 !(workspace[gy*W+gx] & ((1<<( d |A(d))) |
542 (1<<( d |C(d)))))) {
543 workspace[(2*y+1)*W+(2*x+1)] &= ~(1<<type);
544 done_something = TRUE;
545 #ifdef SOLVER_DIAGNOSTICS
546 printf("straight clue at (%d,%d) cannot corner at "
547 "(%d,%d) or (%d,%d) so is not state %d\n",
548 x, y, fx/2, fy/2, gx/2, gy/2, type);
549 #endif
550 }
551
552 }
553
554 /*
555 * If a straight clue with known direction is
556 * connected on one side to a known straight,
557 * then on the other side it must be a corner.
558 */
559 for (d = 1; d <= 8; d += d) {
560 int fx = 2*x+1 + 2*DX(d), fy = 2*y+1 + 2*DY(d);
561 int gx = 2*x+1 - 2*DX(d), gy = 2*y+1 - 2*DY(d);
562 int type = d | F(d);
563
564 if (workspace[(2*y+1)*W+(2*x+1)] != (1<<type))
565 continue;
566
567 if (!(workspace[fy*W+fx] &~ (bLR|bUD)) &&
568 (workspace[gy*W+gx] &~ (bLU|bLD|bRU|bRD))) {
569 workspace[gy*W+gx] &= (bLU|bLD|bRU|bRD);
570 done_something = TRUE;
571 #ifdef SOLVER_DIAGNOSTICS
572 printf("straight clue at (%d,%d) connecting to "
573 "straight at (%d,%d) makes (%d,%d) a "
574 "corner\n", x, y, fx/2, fy/2, gx/2, gy/2);
575 #endif
576 }
577
578 }
579 break;
580 }
581
582 if (done_something)
583 continue;
584
585 /*
586 * Now detect shortcut loops.
587 */
588
589 {
590 int nonblanks, loopclass;
591
592 dsf_init(dsf, w*h);
593 for (x = 0; x < w*h; x++)
594 dsfsize[x] = 1;
595
596 /*
597 * First go through the edge entries and update the dsf
598 * of which squares are connected to which others. We
599 * also track the number of squares in each equivalence
600 * class, and count the overall number of
601 * known-non-blank squares.
602 *
603 * In the process of doing this, we must notice if a
604 * loop has already been formed. If it has, we blank
605 * out any square which isn't part of that loop
606 * (failing a consistency check if any such square does
607 * not have BLANK as one of its remaining options) and
608 * exit the deduction loop with success.
609 */
610 nonblanks = 0;
611 loopclass = -1;
612 for (y = 1; y < H-1; y++)
613 for (x = 1; x < W-1; x++)
614 if ((y ^ x) & 1) {
615 /*
616 * (x,y) are the workspace coordinates of
617 * an edge field. Compute the normal-space
618 * coordinates of the squares it connects.
619 */
620 int ax = (x-1)/2, ay = (y-1)/2, ac = ay*w+ax;
621 int bx = x/2, by = y/2, bc = by*w+bx;
622
623 /*
624 * If the edge is connected, do the dsf
625 * thing.
626 */
627 if (workspace[y*W+x] == 1) {
628 int ae, be;
629
630 ae = dsf_canonify(dsf, ac);
631 be = dsf_canonify(dsf, bc);
632
633 if (ae == be) {
634 /*
635 * We have a loop!
636 */
637 if (loopclass != -1) {
638 /*
639 * In fact, we have two
640 * separate loops, which is
641 * doom.
642 */
643 #ifdef SOLVER_DIAGNOSTICS
644 printf("two loops found in grid!\n");
645 #endif
646 ret = 0;
647 goto cleanup;
648 }
649 loopclass = ae;
650 } else {
651 /*
652 * Merge the two equivalence
653 * classes.
654 */
655 int size = dsfsize[ae] + dsfsize[be];
656 dsf_merge(dsf, ac, bc);
657 ae = dsf_canonify(dsf, ac);
658 dsfsize[ae] = size;
659 }
660 }
661 } else if ((y & x) & 1) {
662 /*
663 * (x,y) are the workspace coordinates of a
664 * square field. If the square is
665 * definitely not blank, count it.
666 */
667 if (!(workspace[y*W+x] & bBLANK))
668 nonblanks++;
669 }
670
671 /*
672 * If we discovered an existing loop above, we must now
673 * blank every square not part of it, and exit the main
674 * deduction loop.
675 */
676 if (loopclass != -1) {
677 #ifdef SOLVER_DIAGNOSTICS
678 printf("loop found in grid!\n");
679 #endif
680 for (y = 0; y < h; y++)
681 for (x = 0; x < w; x++)
682 if (dsf_canonify(dsf, y*w+x) != loopclass) {
683 if (workspace[(y*2+1)*W+(x*2+1)] & bBLANK) {
684 workspace[(y*2+1)*W+(x*2+1)] = bBLANK;
685 } else {
686 /*
687 * This square is not part of the
688 * loop, but is known non-blank. We
689 * have goofed.
690 */
691 #ifdef SOLVER_DIAGNOSTICS
692 printf("non-blank square (%d,%d) found outside"
693 " loop!\n", x, y);
694 #endif
695 ret = 0;
696 goto cleanup;
697 }
698 }
699 /*
700 * And we're done.
701 */
702 ret = 1;
703 break;
704 }
705
706 /* Further deductions are considered 'tricky'. */
707 if (difficulty == DIFF_EASY) goto done_deductions;
708
709 /*
710 * Now go through the workspace again and mark any edge
711 * which would cause a shortcut loop (i.e. would
712 * connect together two squares in the same equivalence
713 * class, and that equivalence class does not contain
714 * _all_ the known-non-blank squares currently in the
715 * grid) as disconnected. Also, mark any _square state_
716 * which would cause a shortcut loop as disconnected.
717 */
718 for (y = 1; y < H-1; y++)
719 for (x = 1; x < W-1; x++)
720 if ((y ^ x) & 1) {
721 /*
722 * (x,y) are the workspace coordinates of
723 * an edge field. Compute the normal-space
724 * coordinates of the squares it connects.
725 */
726 int ax = (x-1)/2, ay = (y-1)/2, ac = ay*w+ax;
727 int bx = x/2, by = y/2, bc = by*w+bx;
728
729 /*
730 * If the edge is currently unknown, and
731 * sits between two squares in the same
732 * equivalence class, and the size of that
733 * class is less than nonblanks, then
734 * connecting this edge would be a shortcut
735 * loop and so we must not do so.
736 */
737 if (workspace[y*W+x] == 3) {
738 int ae, be;
739
740 ae = dsf_canonify(dsf, ac);
741 be = dsf_canonify(dsf, bc);
742
743 if (ae == be) {
744 /*
745 * We have a loop. Is it a shortcut?
746 */
747 if (dsfsize[ae] < nonblanks) {
748 /*
749 * Yes! Mark this edge disconnected.
750 */
751 workspace[y*W+x] = 2;
752 done_something = TRUE;
753 #ifdef SOLVER_DIAGNOSTICS
754 printf("edge (%d,%d)-(%d,%d) would create"
755 " a shortcut loop, hence must be"
756 " disconnected\n", x/2, y/2,
757 (x+1)/2, (y+1)/2);
758 #endif
759 }
760 }
761 }
762 } else if ((y & x) & 1) {
763 /*
764 * (x,y) are the workspace coordinates of a
765 * square field. Go through its possible
766 * (non-blank) states and see if any gives
767 * rise to a shortcut loop.
768 *
769 * This is slightly fiddly, because we have
770 * to check whether this square is already
771 * part of the same equivalence class as
772 * the things it's joining.
773 */
774 int ae = dsf_canonify(dsf, (y/2)*w+(x/2));
775
776 for (b = 2; b < 0xD; b++)
777 if (workspace[y*W+x] & (1<<b)) {
778 /*
779 * Find the equivalence classes of
780 * the two squares this one would
781 * connect if it were in this
782 * state.
783 */
784 int e = -1;
785
786 for (d = 1; d <= 8; d += d) if (b & d) {
787 int xx = x/2 + DX(d), yy = y/2 + DY(d);
788 int ee = dsf_canonify(dsf, yy*w+xx);
789
790 if (e == -1)
791 ee = e;
792 else if (e != ee)
793 e = -2;
794 }
795
796 if (e >= 0) {
797 /*
798 * This square state would form
799 * a loop on equivalence class
800 * e. Measure the size of that
801 * loop, and see if it's a
802 * shortcut.
803 */
804 int loopsize = dsfsize[e];
805 if (e != ae)
806 loopsize++;/* add the square itself */
807 if (loopsize < nonblanks) {
808 /*
809 * It is! Mark this square
810 * state invalid.
811 */
812 workspace[y*W+x] &= ~(1<<b);
813 done_something = TRUE;
814 #ifdef SOLVER_DIAGNOSTICS
815 printf("square (%d,%d) would create a "
816 "shortcut loop in state %d, "
817 "hence cannot be\n",
818 x/2, y/2, b);
819 #endif
820 }
821 }
822 }
823 }
824 }
825
826 done_deductions:
827
828 if (done_something)
829 continue;
830
831 /*
832 * If we reach here, there is nothing left we can do.
833 * Return 2 for ambiguous puzzle.
834 */
835 ret = 2;
836 break;
837 }
838
839 cleanup:
840
841 /*
842 * If ret = 1 then we've successfully achieved a solution. This
843 * means that we expect every square to be nailed down to
844 * exactly one possibility. If this is the case, or if the caller
845 * asked for a partial solution anyway, transcribe those
846 * possibilities into the result array.
847 */
848 if (ret == 1 || partial) {
849 for (y = 0; y < h; y++) {
850 for (x = 0; x < w; x++) {
851 for (b = 0; b < 0xD; b++)
852 if (workspace[(2*y+1)*W+(2*x+1)] == (1<<b)) {
853 result[y*w+x] = b;
854 break;
855 }
856 if (ret == 1) assert(b < 0xD); /* we should have had a break by now */
857 }
858 }
859 }
860
861 sfree(dsfsize);
862 sfree(dsf);
863 sfree(workspace);
864 assert(ret >= 0);
865 return ret;
866 }
867
868 /* ----------------------------------------------------------------------
869 * Loop generator.
870 */
871
872 /*
873 * We use the loop generator code from loopy, hard-coding to a square
874 * grid of the appropriate size. Knowing the grid layout and the tile
875 * size we can shrink that to our small grid and then make our line
876 * layout from the face colour info.
877 *
878 * We provide a bias function to the loop generator which tries to
879 * bias in favour of loops with more scope for Pearl black clues. This
880 * seems to improve the success rate of the puzzle generator, in that
881 * such loops have a better chance of being soluble with all valid
882 * clues put in.
883 */
884
885 struct pearl_loopgen_bias_ctx {
886 /*
887 * Our bias function counts the number of 'black clue' corners
888 * (i.e. corners adjacent to two straights) in both the
889 * BLACK/nonBLACK and WHITE/nonWHITE boundaries. In order to do
890 * this, we must:
891 *
892 * - track the edges that are part of each of those loops
893 * - track the types of vertex in each loop (corner, straight,
894 * none)
895 * - track the current black-clue status of each vertex in each
896 * loop.
897 *
898 * Each of these chunks of data is updated incrementally from the
899 * previous one, to avoid slowdown due to the bias function
900 * rescanning the whole grid every time it's called.
901 *
902 * So we need a lot of separate arrays, plus a tdq for each one,
903 * and we must repeat it all twice for the BLACK and WHITE
904 * boundaries.
905 */
906 struct pearl_loopgen_bias_ctx_boundary {
907 int colour; /* FACE_WHITE or FACE_BLACK */
908
909 char *edges; /* is each edge part of the loop? */
910 tdq *edges_todo;
911
912 char *vertextypes; /* bits 0-3 == outgoing edge bitmap;
913 * bit 4 set iff corner clue.
914 * Hence, 0 means non-vertex;
915 * nonzero but bit 4 zero = straight. */
916 int *neighbour[2]; /* indices of neighbour vertices in loop */
917 tdq *vertextypes_todo;
918
919 char *blackclues; /* is each vertex a black clue site? */
920 tdq *blackclues_todo;
921 } boundaries[2]; /* boundaries[0]=WHITE, [1]=BLACK */
922
923 char *faces; /* remember last-seen colour of each face */
924 tdq *faces_todo;
925
926 int score;
927
928 grid *g;
929 };
930 int pearl_loopgen_bias(void *vctx, char *board, int face)
931 {
932 struct pearl_loopgen_bias_ctx *ctx = (struct pearl_loopgen_bias_ctx *)vctx;
933 grid *g = ctx->g;
934 int oldface, newface;
935 int i, j, k;
936
937 tdq_add(ctx->faces_todo, face);
938 while ((j = tdq_remove(ctx->faces_todo)) >= 0) {
939 oldface = ctx->faces[j];
940 ctx->faces[j] = newface = board[j];
941 for (i = 0; i < 2; i++) {
942 struct pearl_loopgen_bias_ctx_boundary *b = &ctx->boundaries[i];
943 int c = b->colour;
944
945 /*
946 * If the face has changed either from or to colour c, we need
947 * to reprocess the edges for this boundary.
948 */
949 if (oldface == c || newface == c) {
950 grid_face *f = &g->faces[face];
951 for (k = 0; k < f->order; k++)
952 tdq_add(b->edges_todo, f->edges[k] - g->edges);
953 }
954 }
955 }
956
957 for (i = 0; i < 2; i++) {
958 struct pearl_loopgen_bias_ctx_boundary *b = &ctx->boundaries[i];
959 int c = b->colour;
960
961 /*
962 * Go through the to-do list of edges. For each edge, decide
963 * anew whether it's part of this boundary or not. Any edge
964 * that changes state has to have both its endpoints put on
965 * the vertextypes_todo list.
966 */
967 while ((j = tdq_remove(b->edges_todo)) >= 0) {
968 grid_edge *e = &g->edges[j];
969 int fc1 = e->face1 ? board[e->face1 - g->faces] : FACE_BLACK;
970 int fc2 = e->face2 ? board[e->face2 - g->faces] : FACE_BLACK;
971 int oldedge = b->edges[j];
972 int newedge = (fc1==c) ^ (fc2==c);
973 if (oldedge != newedge) {
974 b->edges[j] = newedge;
975 tdq_add(b->vertextypes_todo, e->dot1 - g->dots);
976 tdq_add(b->vertextypes_todo, e->dot2 - g->dots);
977 }
978 }
979
980 /*
981 * Go through the to-do list of vertices whose types need
982 * refreshing. For each one, decide whether it's a corner, a
983 * straight, or a vertex not in the loop, and in the former
984 * two cases also work out the indices of its neighbour
985 * vertices along the loop. Any vertex that changes state must
986 * be put back on the to-do list for deciding if it's a black
987 * clue site, and so must its two new neighbours _and_ its two
988 * old neighbours.
989 */
990 while ((j = tdq_remove(b->vertextypes_todo)) >= 0) {
991 grid_dot *d = &g->dots[j];
992 int neighbours[2], type = 0, n = 0;
993
994 for (k = 0; k < d->order; k++) {
995 grid_edge *e = d->edges[k];
996 grid_dot *d2 = (e->dot1 == d ? e->dot2 : e->dot1);
997 /* dir == 0,1,2,3 for an edge going L,U,R,D */
998 int dir = (d->y == d2->y) + 2*(d->x+d->y > d2->x+d2->y);
999 int ei = e - g->edges;
1000 if (b->edges[ei]) {
1001 type |= 1 << dir;
1002 neighbours[n] = d2 - g->dots;
1003 n++;
1004 }
1005 }
1006
1007 /*
1008 * Decide if it's a corner, and set the corner flag if so.
1009 */
1010 if (type != 0 && type != 0x5 && type != 0xA)
1011 type |= 0x10;
1012
1013 if (type != b->vertextypes[j]) {
1014 /*
1015 * Recompute old neighbours, if any.
1016 */
1017 if (b->vertextypes[j]) {
1018 tdq_add(b->blackclues_todo, b->neighbour[0][j]);
1019 tdq_add(b->blackclues_todo, b->neighbour[1][j]);
1020 }
1021 /*
1022 * Recompute this vertex.
1023 */
1024 tdq_add(b->blackclues_todo, j);
1025 b->vertextypes[j] = type;
1026 /*
1027 * Recompute new neighbours, if any.
1028 */
1029 if (b->vertextypes[j]) {
1030 b->neighbour[0][j] = neighbours[0];
1031 b->neighbour[1][j] = neighbours[1];
1032 tdq_add(b->blackclues_todo, b->neighbour[0][j]);
1033 tdq_add(b->blackclues_todo, b->neighbour[1][j]);
1034 }
1035 }
1036 }
1037
1038 /*
1039 * Go through the list of vertices which we must check to see
1040 * if they're black clue sites. Each one is a black clue site
1041 * iff it is a corner and its loop neighbours are non-corners.
1042 * Adjust the running total of black clues we've counted.
1043 */
1044 while ((j = tdq_remove(b->blackclues_todo)) >= 0) {
1045 ctx->score -= b->blackclues[j];
1046 b->blackclues[j] = ((b->vertextypes[j] & 0x10) &&
1047 !((b->vertextypes[b->neighbour[0][j]] |
1048 b->vertextypes[b->neighbour[1][j]])
1049 & 0x10));
1050 ctx->score += b->blackclues[j];
1051 }
1052 }
1053
1054 return ctx->score;
1055 }
1056
1057 void pearl_loopgen(int w, int h, char *lines, random_state *rs)
1058 {
1059 grid *g = grid_new(GRID_SQUARE, w-1, h-1, NULL);
1060 char *board = snewn(g->num_faces, char);
1061 int i, s = g->tilesize;
1062 struct pearl_loopgen_bias_ctx biasctx;
1063
1064 memset(lines, 0, w*h);
1065
1066 /*
1067 * Initialise the context for the bias function. Initially we fill
1068 * all the to-do lists, so that the first call will scan
1069 * everything; thereafter the lists stay empty so we make
1070 * incremental changes.
1071 */
1072 biasctx.g = g;
1073 biasctx.faces = snewn(g->num_faces, char);
1074 biasctx.faces_todo = tdq_new(g->num_faces);
1075 tdq_fill(biasctx.faces_todo);
1076 biasctx.score = 0;
1077 memset(biasctx.faces, FACE_GREY, g->num_faces);
1078 for (i = 0; i < 2; i++) {
1079 biasctx.boundaries[i].edges = snewn(g->num_edges, char);
1080 memset(biasctx.boundaries[i].edges, 0, g->num_edges);
1081 biasctx.boundaries[i].edges_todo = tdq_new(g->num_edges);
1082 tdq_fill(biasctx.boundaries[i].edges_todo);
1083 biasctx.boundaries[i].vertextypes = snewn(g->num_dots, char);
1084 memset(biasctx.boundaries[i].vertextypes, 0, g->num_dots);
1085 biasctx.boundaries[i].neighbour[0] = snewn(g->num_dots, int);
1086 biasctx.boundaries[i].neighbour[1] = snewn(g->num_dots, int);
1087 biasctx.boundaries[i].vertextypes_todo = tdq_new(g->num_dots);
1088 tdq_fill(biasctx.boundaries[i].vertextypes_todo);
1089 biasctx.boundaries[i].blackclues = snewn(g->num_dots, char);
1090 memset(biasctx.boundaries[i].blackclues, 0, g->num_dots);
1091 biasctx.boundaries[i].blackclues_todo = tdq_new(g->num_dots);
1092 tdq_fill(biasctx.boundaries[i].blackclues_todo);
1093 }
1094 biasctx.boundaries[0].colour = FACE_WHITE;
1095 biasctx.boundaries[1].colour = FACE_BLACK;
1096 generate_loop(g, board, rs, pearl_loopgen_bias, &biasctx);
1097 sfree(biasctx.faces);
1098 tdq_free(biasctx.faces_todo);
1099 for (i = 0; i < 2; i++) {
1100 sfree(biasctx.boundaries[i].edges);
1101 tdq_free(biasctx.boundaries[i].edges_todo);
1102 sfree(biasctx.boundaries[i].vertextypes);
1103 sfree(biasctx.boundaries[i].neighbour[0]);
1104 sfree(biasctx.boundaries[i].neighbour[1]);
1105 tdq_free(biasctx.boundaries[i].vertextypes_todo);
1106 sfree(biasctx.boundaries[i].blackclues);
1107 tdq_free(biasctx.boundaries[i].blackclues_todo);
1108 }
1109
1110 for (i = 0; i < g->num_edges; i++) {
1111 grid_edge *e = g->edges + i;
1112 enum face_colour c1 = FACE_COLOUR(e->face1);
1113 enum face_colour c2 = FACE_COLOUR(e->face2);
1114 assert(c1 != FACE_GREY);
1115 assert(c2 != FACE_GREY);
1116 if (c1 != c2) {
1117 /* This grid edge is on the loop: lay line along it */
1118 int x1 = e->dot1->x/s, y1 = e->dot1->y/s;
1119 int x2 = e->dot2->x/s, y2 = e->dot2->y/s;
1120
1121 /* (x1,y1) and (x2,y2) are now in our grid coords (0-w,0-h). */
1122 if (x1 == x2) {
1123 if (y1 > y2) SWAP(y1,y2);
1124
1125 assert(y1+1 == y2);
1126 lines[y1*w+x1] |= D;
1127 lines[y2*w+x1] |= U;
1128 } else if (y1 == y2) {
1129 if (x1 > x2) SWAP(x1,x2);
1130
1131 assert(x1+1 == x2);
1132 lines[y1*w+x1] |= R;
1133 lines[y1*w+x2] |= L;
1134 } else
1135 assert(!"grid with diagonal coords?!");
1136 }
1137 }
1138
1139 grid_free(g);
1140 sfree(board);
1141
1142 #if defined LOOPGEN_DIAGNOSTICS && !defined GENERATION_DIAGNOSTICS
1143 printf("as returned:\n");
1144 for (y = 0; y < h; y++) {
1145 for (x = 0; x < w; x++) {
1146 int type = lines[y*w+x];
1147 char s[5], *p = s;
1148 if (type & L) *p++ = 'L';
1149 if (type & R) *p++ = 'R';
1150 if (type & U) *p++ = 'U';
1151 if (type & D) *p++ = 'D';
1152 *p = '\0';
1153 printf("%3s", s);
1154 }
1155 printf("\n");
1156 }
1157 printf("\n");
1158 #endif
1159 }
1160
1161 static int new_clues(game_params *params, random_state *rs,
1162 char *clues, char *grid)
1163 {
1164 int w = params->w, h = params->h, diff = params->difficulty;
1165 int ngen = 0, x, y, d, ret, i;
1166
1167
1168 /*
1169 * Difficulty exception: 5x5 Tricky is not generable (the
1170 * generator will spin forever trying) and so we fudge it to Easy.
1171 */
1172 if (w == 5 && h == 5 && diff > DIFF_EASY)
1173 diff = DIFF_EASY;
1174
1175 while (1) {
1176 ngen++;
1177 pearl_loopgen(w, h, grid, rs);
1178
1179 #ifdef GENERATION_DIAGNOSTICS
1180 printf("grid array:\n");
1181 for (y = 0; y < h; y++) {
1182 for (x = 0; x < w; x++) {
1183 int type = grid[y*w+x];
1184 char s[5], *p = s;
1185 if (type & L) *p++ = 'L';
1186 if (type & R) *p++ = 'R';
1187 if (type & U) *p++ = 'U';
1188 if (type & D) *p++ = 'D';
1189 *p = '\0';
1190 printf("%2s ", s);
1191 }
1192 printf("\n");
1193 }
1194 printf("\n");
1195 #endif
1196
1197 /*
1198 * Set up the maximal clue array.
1199 */
1200 for (y = 0; y < h; y++)
1201 for (x = 0; x < w; x++) {
1202 int type = grid[y*w+x];
1203
1204 clues[y*w+x] = NOCLUE;
1205
1206 if ((bLR|bUD) & (1 << type)) {
1207 /*
1208 * This is a straight; see if it's a viable
1209 * candidate for a straight clue. It qualifies if
1210 * at least one of the squares it connects to is a
1211 * corner.
1212 */
1213 for (d = 1; d <= 8; d += d) if (type & d) {
1214 int xx = x + DX(d), yy = y + DY(d);
1215 assert(xx >= 0 && xx < w && yy >= 0 && yy < h);
1216 if ((bLU|bLD|bRU|bRD) & (1 << grid[yy*w+xx]))
1217 break;
1218 }
1219 if (d <= 8) /* we found one */
1220 clues[y*w+x] = STRAIGHT;
1221 } else if ((bLU|bLD|bRU|bRD) & (1 << type)) {
1222 /*
1223 * This is a corner; see if it's a viable candidate
1224 * for a corner clue. It qualifies if all the
1225 * squares it connects to are straights.
1226 */
1227 for (d = 1; d <= 8; d += d) if (type & d) {
1228 int xx = x + DX(d), yy = y + DY(d);
1229 assert(xx >= 0 && xx < w && yy >= 0 && yy < h);
1230 if (!((bLR|bUD) & (1 << grid[yy*w+xx])))
1231 break;
1232 }
1233 if (d > 8) /* we didn't find a counterexample */
1234 clues[y*w+x] = CORNER;
1235 }
1236 }
1237
1238 #ifdef GENERATION_DIAGNOSTICS
1239 printf("clue array:\n");
1240 for (y = 0; y < h; y++) {
1241 for (x = 0; x < w; x++) {
1242 printf("%c", " *O"[(unsigned char)clues[y*w+x]]);
1243 }
1244 printf("\n");
1245 }
1246 printf("\n");
1247 #endif
1248
1249 if (!params->nosolve) {
1250 int *cluespace, *straights, *corners;
1251 int nstraights, ncorners, nstraightpos, ncornerpos;
1252
1253 /*
1254 * See if we can solve the puzzle just like this.
1255 */
1256 ret = pearl_solve(w, h, clues, grid, diff, FALSE);
1257 assert(ret > 0); /* shouldn't be inconsistent! */
1258 if (ret != 1)
1259 continue; /* go round and try again */
1260
1261 /*
1262 * Check this puzzle isn't too easy.
1263 */
1264 if (diff > DIFF_EASY) {
1265 ret = pearl_solve(w, h, clues, grid, diff-1, FALSE);
1266 assert(ret > 0);
1267 if (ret == 1)
1268 continue; /* too easy: try again */
1269 }
1270
1271 /*
1272 * Now shuffle the grid points and gradually remove the
1273 * clues to find a minimal set which still leaves the
1274 * puzzle soluble.
1275 *
1276 * We preferentially attempt to remove whichever type of
1277 * clue is currently most numerous, to combat a general
1278 * tendency of plain random generation to bias in favour
1279 * of many white clues and few black.
1280 *
1281 * 'nstraights' and 'ncorners' count the number of clues
1282 * of each type currently remaining in the grid;
1283 * 'nstraightpos' and 'ncornerpos' count the clues of each
1284 * type we have left to try to remove. (Clues which we
1285 * have tried and failed to remove are counted by the
1286 * former but not the latter.)
1287 */
1288 cluespace = snewn(w*h, int);
1289 straights = cluespace;
1290 nstraightpos = 0;
1291 for (i = 0; i < w*h; i++)
1292 if (clues[i] == STRAIGHT)
1293 straights[nstraightpos++] = i;
1294 corners = straights + nstraightpos;
1295 ncornerpos = 0;
1296 for (i = 0; i < w*h; i++)
1297 if (clues[i] == STRAIGHT)
1298 corners[ncornerpos++] = i;
1299 nstraights = nstraightpos;
1300 ncorners = ncornerpos;
1301
1302 shuffle(straights, nstraightpos, sizeof(*straights), rs);
1303 shuffle(corners, ncornerpos, sizeof(*corners), rs);
1304 while (nstraightpos > 0 || ncornerpos > 0) {
1305 int cluepos;
1306 int clue;
1307
1308 /*
1309 * Decide which clue to try to remove next. If both
1310 * types are available, we choose whichever kind is
1311 * currently overrepresented; otherwise we take
1312 * whatever we can get.
1313 */
1314 if (nstraightpos > 0 && ncornerpos > 0) {
1315 if (nstraights >= ncorners)
1316 cluepos = straights[--nstraightpos];
1317 else
1318 cluepos = straights[--ncornerpos];
1319 } else {
1320 if (nstraightpos > 0)
1321 cluepos = straights[--nstraightpos];
1322 else
1323 cluepos = straights[--ncornerpos];
1324 }
1325
1326 y = cluepos / w;
1327 x = cluepos % w;
1328
1329 clue = clues[y*w+x];
1330 clues[y*w+x] = 0; /* try removing this clue */
1331
1332 ret = pearl_solve(w, h, clues, grid, diff, FALSE);
1333 assert(ret > 0);
1334 if (ret != 1)
1335 clues[y*w+x] = clue; /* oops, put it back again */
1336 }
1337 sfree(cluespace);
1338 }
1339
1340 #ifdef FINISHED_PUZZLE
1341 printf("clue array:\n");
1342 for (y = 0; y < h; y++) {
1343 for (x = 0; x < w; x++) {
1344 printf("%c", " *O"[(unsigned char)clues[y*w+x]]);
1345 }
1346 printf("\n");
1347 }
1348 printf("\n");
1349 #endif
1350
1351 break; /* got it */
1352 }
1353
1354 debug(("%d %dx%d loops before finished puzzle.\n", ngen, w, h));
1355
1356 return ngen;
1357 }
1358
1359 static char *new_game_desc(game_params *params, random_state *rs,
1360 char **aux, int interactive)
1361 {
1362 char *grid, *clues;
1363 char *desc;
1364 int w = params->w, h = params->h, i, j;
1365
1366 grid = snewn(w*h, char);
1367 clues = snewn(w*h, char);
1368
1369 new_clues(params, rs, clues, grid);
1370
1371 desc = snewn(w * h + 1, char);
1372 for (i = j = 0; i < w*h; i++) {
1373 if (clues[i] == NOCLUE && j > 0 &&
1374 desc[j-1] >= 'a' && desc[j-1] < 'z')
1375 desc[j-1]++;
1376 else if (clues[i] == NOCLUE)
1377 desc[j++] = 'a';
1378 else if (clues[i] == CORNER)
1379 desc[j++] = 'B';
1380 else if (clues[i] == STRAIGHT)
1381 desc[j++] = 'W';
1382 }
1383 desc[j] = '\0';
1384
1385 *aux = snewn(w*h+1, char);
1386 for (i = 0; i < w*h; i++)
1387 (*aux)[i] = (grid[i] < 10) ? (grid[i] + '0') : (grid[i] + 'A' - 10);
1388 (*aux)[w*h] = '\0';
1389
1390 sfree(grid);
1391 sfree(clues);
1392
1393 return desc;
1394 }
1395
1396 static char *validate_desc(game_params *params, char *desc)
1397 {
1398 int i, sizesofar;
1399 const int totalsize = params->w * params->h;
1400
1401 sizesofar = 0;
1402 for (i = 0; desc[i]; i++) {
1403 if (desc[i] >= 'a' && desc[i] <= 'z')
1404 sizesofar += desc[i] - 'a' + 1;
1405 else if (desc[i] == 'B' || desc[i] == 'W')
1406 sizesofar++;
1407 else
1408 return "unrecognised character in string";
1409 }
1410
1411 if (sizesofar > totalsize)
1412 return "string too long";
1413 else if (sizesofar < totalsize)
1414 return "string too short";
1415
1416 return NULL;
1417 }
1418
1419 static game_state *new_game(midend *me, game_params *params, char *desc)
1420 {
1421 game_state *state = snew(game_state);
1422 int i, j, sz = params->w*params->h;
1423
1424 state->completed = state->used_solve = FALSE;
1425 state->shared = snew(struct shared_state);
1426
1427 state->shared->w = params->w;
1428 state->shared->h = params->h;
1429 state->shared->sz = sz;
1430 state->shared->refcnt = 1;
1431 state->shared->clues = snewn(sz, char);
1432 for (i = j = 0; desc[i]; i++) {
1433 assert(j < sz);
1434 if (desc[i] >= 'a' && desc[i] <= 'z') {
1435 int n = desc[i] - 'a' + 1;
1436 assert(j + n <= sz);
1437 while (n-- > 0)
1438 state->shared->clues[j++] = NOCLUE;
1439 } else if (desc[i] == 'B') {
1440 state->shared->clues[j++] = CORNER;
1441 } else if (desc[i] == 'W') {
1442 state->shared->clues[j++] = STRAIGHT;
1443 }
1444 }
1445
1446 state->lines = snewn(sz, char);
1447 state->errors = snewn(sz, char);
1448 state->marks = snewn(sz, char);
1449 for (i = 0; i < sz; i++)
1450 state->lines[i] = state->errors[i] = state->marks[i] = BLANK;
1451
1452 return state;
1453 }
1454
1455 static game_state *dup_game(game_state *state)
1456 {
1457 game_state *ret = snew(game_state);
1458 int sz = state->shared->sz, i;
1459
1460 ret->shared = state->shared;
1461 ret->completed = state->completed;
1462 ret->used_solve = state->used_solve;
1463 ++ret->shared->refcnt;
1464
1465 ret->lines = snewn(sz, char);
1466 ret->errors = snewn(sz, char);
1467 ret->marks = snewn(sz, char);
1468 for (i = 0; i < sz; i++) {
1469 ret->lines[i] = state->lines[i];
1470 ret->errors[i] = state->errors[i];
1471 ret->marks[i] = state->marks[i];
1472 }
1473
1474 return ret;
1475 }
1476
1477 static void free_game(game_state *state)
1478 {
1479 assert(state);
1480 if (--state->shared->refcnt == 0) {
1481 sfree(state->shared->clues);
1482 sfree(state->shared);
1483 }
1484 sfree(state->lines);
1485 sfree(state->errors);
1486 sfree(state->marks);
1487 sfree(state);
1488 }
1489
1490 static char nbits[16] = { 0, 1, 1, 2,
1491 1, 2, 2, 3,
1492 1, 2, 2, 3,
1493 2, 3, 3, 4 };
1494 #define NBITS(l) ( ((l) < 0 || (l) > 15) ? 4 : nbits[l] )
1495
1496 #define ERROR_CLUE 16
1497
1498 static void dsf_update_completion(game_state *state, int *loopclass,
1499 int ax, int ay, char dir,
1500 int *dsf, int *dsfsize)
1501 {
1502 int w = state->shared->w /*, h = state->shared->h */;
1503 int ac = ay*w+ax, ae, bx, by, bc, be;
1504
1505 if (!(state->lines[ac] & dir)) return; /* no link */
1506 bx = ax + DX(dir); by = ay + DY(dir);
1507
1508 assert(INGRID(state, bx, by)); /* should not have a link off grid */
1509
1510 bc = by*w+bx;
1511 #if 0
1512 assert(state->lines[bc] & F(dir)); /* should have reciprocal link */
1513 #endif
1514 /* TODO put above assertion back in once we stop generating partially
1515 * soluble puzzles. */
1516 if (!(state->lines[bc] & F(dir))) return;
1517
1518 ae = dsf_canonify(dsf, ac);
1519 be = dsf_canonify(dsf, bc);
1520
1521 if (ae == be) { /* detected a loop! */
1522 if (*loopclass != -1) /* this is the second loop, doom. */
1523 return;
1524 *loopclass = ae;
1525 } else {
1526 int size = dsfsize[ae] + dsfsize[be];
1527 dsf_merge(dsf, ac, bc);
1528 ae = dsf_canonify(dsf, ac);
1529 dsfsize[ae] = size;
1530 }
1531 return;
1532 }
1533
1534 static void check_completion(game_state *state, int mark)
1535 {
1536 int w = state->shared->w, h = state->shared->h, x, y, i, d;
1537 int had_error = FALSE /*, is_complete = FALSE */, loopclass;
1538 int *dsf, *dsfsize;
1539
1540 if (mark) {
1541 for (i = 0; i < w*h; i++) {
1542 state->errors[i] = 0;
1543 }
1544 }
1545
1546 #define ERROR(x,y,e) do { had_error = TRUE; if (mark) state->errors[(y)*w+(x)] |= (e); } while(0)
1547
1548 /*
1549 * First of all: we should have one single closed loop, passing through all clues.
1550 */
1551 dsf = snewn(w*h, int);
1552 dsfsize = snewn(w*h, int);
1553 dsf_init(dsf, w*h);
1554 for (i = 0; i < w*h; i++) dsfsize[i] = 1;
1555 loopclass = -1;
1556
1557 for (x = 0; x < w; x++) {
1558 for (y = 0; y < h; y++) {
1559 dsf_update_completion(state, &loopclass, x, y, R, dsf, dsfsize);
1560 dsf_update_completion(state, &loopclass, x, y, D, dsf, dsfsize);
1561 }
1562 }
1563 if (loopclass != -1) {
1564 /* We have a loop. Check all squares with lines on. */
1565 for (x = 0; x < w; x++) {
1566 for (y = 0; y < h; y++) {
1567 if (state->lines[y*w+x] == BLANK) {
1568 if (state->shared->clues[y*w+x] != NOCLUE) {
1569 /* the loop doesn't include this clue square! */
1570 ERROR(x, y, ERROR_CLUE);
1571 }
1572 } else {
1573 if (dsf_canonify(dsf, y*w+x) != loopclass) {
1574 /* these lines are not on the loop: mark them as error. */
1575 ERROR(x, y, state->lines[y*w+x]);
1576 }
1577 }
1578 }
1579 }
1580 }
1581
1582 /*
1583 * Second: check no clues are contradicted.
1584 */
1585
1586 for (x = 0; x < w; x++) {
1587 for (y = 0; y < h; y++) {
1588 int type = state->lines[y*w+x];
1589 /*
1590 * Check that no square has more than two line segments.
1591 */
1592 if (NBITS(type) > 2) {
1593 ERROR(x,y,type);
1594 }
1595 /*
1596 * Check that no clues are contradicted. This code is similar to
1597 * the code that sets up the maximal clue array for any given
1598 * loop.
1599 */
1600 if (state->shared->clues[y*w+x] == CORNER) {
1601 /* Supposed to be a corner: will find a contradiction if
1602 * it actually contains a straight line, or if it touches any
1603 * corners. */
1604 if ((bLR|bUD) & (1 << type)) {
1605 ERROR(x,y,ERROR_CLUE); /* actually straight */
1606 }
1607 for (d = 1; d <= 8; d += d) if (type & d) {
1608 int xx = x + DX(d), yy = y + DY(d);
1609 if (!INGRID(state, xx, yy)) {
1610 ERROR(x,y,d); /* leads off grid */
1611 } else {
1612 if ((bLU|bLD|bRU|bRD) & (1 << state->lines[yy*w+xx])) {
1613 ERROR(x,y,ERROR_CLUE); /* touches corner */
1614 }
1615 }
1616 }
1617 } else if (state->shared->clues[y*w+x] == STRAIGHT) {
1618 /* Supposed to be straight: will find a contradiction if
1619 * it actually contains a corner, or if it only touches
1620 * straight lines. */
1621 if ((bLU|bLD|bRU|bRD) & (1 << type)) {
1622 ERROR(x,y,ERROR_CLUE); /* actually a corner */
1623 }
1624 i = 0;
1625 for (d = 1; d <= 8; d += d) if (type & d) {
1626 int xx = x + DX(d), yy = y + DY(d);
1627 if (!INGRID(state, xx, yy)) {
1628 ERROR(x,y,d); /* leads off grid */
1629 } else {
1630 if ((bLR|bUD) & (1 << state->lines[yy*w+xx]))
1631 i++; /* a straight */
1632 }
1633 }
1634 if (i >= 2 && NBITS(type) >= 2) {
1635 ERROR(x,y,ERROR_CLUE); /* everything touched is straight */
1636 }
1637 }
1638 }
1639 }
1640 if (!had_error && loopclass != -1) {
1641 state->completed = TRUE;
1642 state->loop_length = dsfsize[loopclass];
1643 } else {
1644 state->completed = FALSE;
1645 }
1646
1647 sfree(dsf);
1648 sfree(dsfsize);
1649
1650 return;
1651 }
1652
1653 /* completion check:
1654 *
1655 * - no clues must be contradicted (highlight clue itself in error if so)
1656 * - if there is a closed loop it must include every line segment laid
1657 * - if there's a smaller closed loop then highlight whole loop as error
1658 * - no square must have more than 3 lines radiating from centre point
1659 * (highlight all lines in that square as error if so)
1660 */
1661
1662 static char *solve_for_diff(game_state *state, char *old_lines, char *new_lines)
1663 {
1664 int w = state->shared->w, h = state->shared->h, i;
1665 char *move = snewn(w*h*40, char), *p = move;
1666
1667 *p++ = 'S';
1668 for (i = 0; i < w*h; i++) {
1669 if (old_lines[i] != new_lines[i]) {
1670 p += sprintf(p, ";R%d,%d,%d", new_lines[i], i%w, i/w);
1671 }
1672 }
1673 *p++ = '\0';
1674 move = sresize(move, p - move, char);
1675
1676 return move;
1677 }
1678
1679 static char *solve_game(game_state *state, game_state *currstate,
1680 char *aux, char **error)
1681 {
1682 game_state *solved = dup_game(state);
1683 int i, ret, sz = state->shared->sz;
1684 char *move;
1685
1686 if (aux) {
1687 for (i = 0; i < sz; i++) {
1688 if (aux[i] >= '0' && aux[i] <= '9')
1689 solved->lines[i] = aux[i] - '0';
1690 else if (aux[i] >= 'A' && aux[i] <= 'F')
1691 solved->lines[i] = aux[i] - 'A' + 10;
1692 else {
1693 *error = "invalid char in aux";
1694 move = NULL;
1695 goto done;
1696 }
1697 }
1698 ret = 1;
1699 } else {
1700 /* Try to solve with present (half-solved) state first: if there's no
1701 * solution from there go back to original state. */
1702 ret = pearl_solve(currstate->shared->w, currstate->shared->h,
1703 currstate->shared->clues, solved->lines,
1704 DIFFCOUNT, FALSE);
1705 if (ret < 1)
1706 ret = pearl_solve(state->shared->w, state->shared->h,
1707 state->shared->clues, solved->lines,
1708 DIFFCOUNT, FALSE);
1709
1710 }
1711
1712 if (ret < 1) {
1713 *error = "Unable to find solution";
1714 move = NULL;
1715 } else {
1716 move = solve_for_diff(solved, currstate->lines, solved->lines);
1717 }
1718
1719 done:
1720 free_game(solved);
1721 return move;
1722 }
1723
1724 static int game_can_format_as_text_now(game_params *params)
1725 {
1726 return FALSE;
1727 }
1728
1729 static char *game_text_format(game_state *state)
1730 {
1731 return NULL;
1732 }
1733
1734 struct game_ui {
1735 int *dragcoords; /* list of (y*w+x) coords in drag so far */
1736 int ndragcoords; /* number of entries in dragcoords.
1737 * 0 = click but no drag yet. -1 = no drag at all */
1738 int clickx, clicky; /* pixel position of initial click */
1739
1740 int curx, cury; /* grid position of keyboard cursor */
1741 int cursor_active; /* TRUE iff cursor is shown */
1742 };
1743
1744 static game_ui *new_ui(game_state *state)
1745 {
1746 game_ui *ui = snew(game_ui);
1747 int sz = state->shared->sz;
1748
1749 ui->ndragcoords = -1;
1750 ui->dragcoords = snewn(sz, int);
1751 ui->cursor_active = FALSE;
1752 ui->curx = ui->cury = 0;
1753
1754 return ui;
1755 }
1756
1757 static void free_ui(game_ui *ui)
1758 {
1759 sfree(ui->dragcoords);
1760 sfree(ui);
1761 }
1762
1763 static char *encode_ui(game_ui *ui)
1764 {
1765 return NULL;
1766 }
1767
1768 static void decode_ui(game_ui *ui, char *encoding)
1769 {
1770 }
1771
1772 static void game_changed_state(game_ui *ui, game_state *oldstate,
1773 game_state *newstate)
1774 {
1775 }
1776
1777 #define PREFERRED_TILE_SIZE 31
1778 #define HALFSZ (ds->halfsz)
1779 #define TILE_SIZE (ds->halfsz*2 + 1)
1780
1781 #define BORDER ((get_gui_style() == GUI_LOOPY) ? (TILE_SIZE/8) : (TILE_SIZE/2))
1782
1783 #define BORDER_WIDTH (max(TILE_SIZE / 32, 1))
1784
1785 #define COORD(x) ( (x) * TILE_SIZE + BORDER )
1786 #define CENTERED_COORD(x) ( COORD(x) + TILE_SIZE/2 )
1787 #define FROMCOORD(x) ( ((x) < BORDER) ? -1 : ( ((x) - BORDER) / TILE_SIZE) )
1788
1789 #define DS_ESHIFT 4 /* R/U/L/D shift, for error flags */
1790 #define DS_DSHIFT 8 /* R/U/L/D shift, for drag-in-progress flags */
1791 #define DS_MSHIFT 12 /* shift for no-line mark */
1792
1793 #define DS_ERROR_CLUE (1 << 20)
1794 #define DS_FLASH (1 << 21)
1795 #define DS_CURSOR (1 << 22)
1796
1797 enum { GUI_MASYU, GUI_LOOPY };
1798
1799 static int get_gui_style(void)
1800 {
1801 static int gui_style = -1;
1802
1803 if (gui_style == -1) {
1804 char *env = getenv("PEARL_GUI_LOOPY");
1805 if (env && (env[0] == 'y' || env[0] == 'Y'))
1806 gui_style = GUI_LOOPY;
1807 else
1808 gui_style = GUI_MASYU;
1809 }
1810 return gui_style;
1811 }
1812
1813 struct game_drawstate {
1814 int halfsz;
1815 int started;
1816
1817 int w, h, sz;
1818 unsigned int *lflags; /* size w*h */
1819
1820 char *draglines; /* size w*h; lines flipped by current drag */
1821 };
1822
1823 static void update_ui_drag(game_state *state, game_ui *ui, int gx, int gy)
1824 {
1825 int /* sz = state->shared->sz, */ w = state->shared->w;
1826 int i, ox, oy, pos;
1827 int lastpos;
1828
1829 if (!INGRID(state, gx, gy))
1830 return; /* square is outside grid */
1831
1832 if (ui->ndragcoords < 0)
1833 return; /* drag not in progress anyway */
1834
1835 pos = gy * w + gx;
1836
1837 lastpos = ui->dragcoords[ui->ndragcoords > 0 ? ui->ndragcoords-1 : 0];
1838 if (pos == lastpos)
1839 return; /* same square as last visited one */
1840
1841 /* Drag confirmed, if it wasn't already. */
1842 if (ui->ndragcoords == 0)
1843 ui->ndragcoords = 1;
1844
1845 /*
1846 * Dragging the mouse into a square that's already been visited by
1847 * the drag path so far has the effect of truncating the path back
1848 * to that square, so a player can back out part of an uncommitted
1849 * drag without having to let go of the mouse.
1850 */
1851 for (i = 0; i < ui->ndragcoords; i++)
1852 if (pos == ui->dragcoords[i]) {
1853 ui->ndragcoords = i+1;
1854 return;
1855 }
1856
1857 /*
1858 * Otherwise, dragging the mouse into a square that's a rook-move
1859 * away from the last one on the path extends the path.
1860 */
1861 oy = ui->dragcoords[ui->ndragcoords-1] / w;
1862 ox = ui->dragcoords[ui->ndragcoords-1] % w;
1863 if (ox == gx || oy == gy) {
1864 int dx = (gx < ox ? -1 : gx > ox ? +1 : 0);
1865 int dy = (gy < oy ? -1 : gy > oy ? +1 : 0);
1866 int dir = (dy>0 ? D : dy<0 ? U : dx>0 ? R : L);
1867 while (ox != gx || oy != gy) {
1868 /*
1869 * If the drag attempts to cross a 'no line here' mark,
1870 * stop there. We physically don't allow the user to drag
1871 * over those marks.
1872 */
1873 if (state->marks[oy*w+ox] & dir)
1874 break;
1875 ox += dx;
1876 oy += dy;
1877 ui->dragcoords[ui->ndragcoords++] = oy * w + ox;
1878 }
1879 }
1880
1881 /*
1882 * Failing that, we do nothing at all: if the user has dragged
1883 * diagonally across the board, they'll just have to return the
1884 * mouse to the last known position and do whatever they meant to
1885 * do again, more slowly and clearly.
1886 */
1887 }
1888
1889 /*
1890 * Routine shared between interpret_move and game_redraw to work out
1891 * the intended effect of a drag path on the grid.
1892 *
1893 * Call it in a loop, like this:
1894 *
1895 * int clearing = TRUE;
1896 * for (i = 0; i < ui->ndragcoords - 1; i++) {
1897 * int sx, sy, dx, dy, dir, oldstate, newstate;
1898 * interpret_ui_drag(state, ui, &clearing, i, &sx, &sy, &dx, &dy,
1899 * &dir, &oldstate, &newstate);
1900 *
1901 * [do whatever is needed to handle the fact that the drag
1902 * wants the edge from sx,sy to dx,dy (heading in direction
1903 * 'dir' at the sx,sy end) to be changed from state oldstate
1904 * to state newstate, each of which equals either 0 or dir]
1905 * }
1906 */
1907 static void interpret_ui_drag(game_state *state, game_ui *ui, int *clearing,
1908 int i, int *sx, int *sy, int *dx, int *dy,
1909 int *dir, int *oldstate, int *newstate)
1910 {
1911 int w = state->shared->w;
1912 int sp = ui->dragcoords[i], dp = ui->dragcoords[i+1];
1913 *sy = sp/w;
1914 *sx = sp%w;
1915 *dy = dp/w;
1916 *dx = dp%w;
1917 *dir = (*dy>*sy ? D : *dy<*sy ? U : *dx>*sx ? R : L);
1918 *oldstate = state->lines[sp] & *dir;
1919 if (*oldstate) {
1920 /*
1921 * The edge we've dragged over was previously
1922 * present. Set it to absent, unless we've already
1923 * stopped doing that.
1924 */
1925 *newstate = *clearing ? 0 : *dir;
1926 } else {
1927 /*
1928 * The edge we've dragged over was previously
1929 * absent. Set it to present, and cancel the
1930 * 'clearing' flag so that all subsequent edges in
1931 * the drag are set rather than cleared.
1932 */
1933 *newstate = *dir;
1934 *clearing = FALSE;
1935 }
1936 }
1937
1938 static char *mark_in_direction(game_state *state, int x, int y, int dir,
1939 int ismark, char *buf)
1940 {
1941 int w = state->shared->w /*, h = state->shared->h, sz = state->shared->sz */;
1942 int x2 = x + DX(dir);
1943 int y2 = y + DY(dir);
1944 int dir2 = F(dir);
1945 char ch = ismark ? 'M' : 'F';
1946
1947 if (!INGRID(state, x, y) || !INGRID(state, x2, y2)) return "";
1948 /* disallow laying a mark over a line, or vice versa. */
1949 if (ismark) {
1950 if ((state->lines[y*w+x] & dir) || (state->lines[y2*w+x2] & dir2))
1951 return "";
1952 } else {
1953 if ((state->marks[y*w+x] & dir) || (state->marks[y2*w+x2] & dir2))
1954 return "";
1955 }
1956
1957 sprintf(buf, "%c%d,%d,%d;%c%d,%d,%d", ch, dir, x, y, ch, dir2, x2, y2);
1958 return dupstr(buf);
1959 }
1960
1961 #define KEY_DIRECTION(btn) (\
1962 (btn) == CURSOR_DOWN ? D : (btn) == CURSOR_UP ? U :\
1963 (btn) == CURSOR_LEFT ? L : R)
1964
1965 static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
1966 int x, int y, int button)
1967 {
1968 int w = state->shared->w, h = state->shared->h /*, sz = state->shared->sz */;
1969 int gx = FROMCOORD(x), gy = FROMCOORD(y), i;
1970 int release = FALSE;
1971 char tmpbuf[80];
1972
1973 if (IS_MOUSE_DOWN(button)) {
1974 ui->cursor_active = FALSE;
1975
1976 if (!INGRID(state, gx, gy)) {
1977 ui->ndragcoords = -1;
1978 return NULL;
1979 }
1980
1981 ui->clickx = x; ui->clicky = y;
1982 ui->dragcoords[0] = gy * w + gx;
1983 ui->ndragcoords = 0; /* will be 1 once drag is confirmed */
1984
1985 return "";
1986 }
1987
1988 if (button == LEFT_DRAG && ui->ndragcoords >= 0) {
1989 update_ui_drag(state, ui, gx, gy);
1990 return "";
1991 }
1992
1993 if (IS_MOUSE_RELEASE(button)) release = TRUE;
1994
1995 if (IS_CURSOR_MOVE(button & ~MOD_MASK)) {
1996 if (!ui->cursor_active) {
1997 ui->cursor_active = TRUE;
1998 } else if (button & (MOD_SHFT | MOD_CTRL)) {
1999 if (ui->ndragcoords > 0) return NULL;
2000 ui->ndragcoords = -1;
2001 return mark_in_direction(state, ui->curx, ui->cury,
2002 KEY_DIRECTION(button & ~MOD_MASK),
2003 (button & MOD_SHFT), tmpbuf);
2004 } else {
2005 move_cursor(button, &ui->curx, &ui->cury, w, h, FALSE);
2006 if (ui->ndragcoords >= 0)
2007 update_ui_drag(state, ui, ui->curx, ui->cury);
2008 }
2009 return "";
2010 }
2011
2012 if (IS_CURSOR_SELECT(button & ~MOD_MASK)) {
2013 if (!ui->cursor_active) {
2014 ui->cursor_active = TRUE;
2015 return "";
2016 } else if (button == CURSOR_SELECT) {
2017 if (ui->ndragcoords == -1) {
2018 ui->ndragcoords = 0;
2019 ui->dragcoords[0] = ui->cury * w + ui->curx;
2020 ui->clickx = CENTERED_COORD(ui->curx);
2021 ui->clicky = CENTERED_COORD(ui->cury);
2022 return "";
2023 } else release = TRUE;
2024 } else if (button == CURSOR_SELECT2 && ui->ndragcoords >= 0) {
2025 ui->ndragcoords = -1;
2026 return "";
2027 }
2028 }
2029
2030 if (release) {
2031 if (ui->ndragcoords > 0) {
2032 /* End of a drag: process the cached line data. */
2033 int buflen = 0, bufsize = 256, tmplen;
2034 char *buf = NULL;
2035 const char *sep = "";
2036 int clearing = TRUE;
2037
2038 for (i = 0; i < ui->ndragcoords - 1; i++) {
2039 int sx, sy, dx, dy, dir, oldstate, newstate;
2040 interpret_ui_drag(state, ui, &clearing, i, &sx, &sy, &dx, &dy,
2041 &dir, &oldstate, &newstate);
2042
2043 if (oldstate != newstate) {
2044 if (!buf) buf = snewn(bufsize, char);
2045 tmplen = sprintf(tmpbuf, "%sF%d,%d,%d;F%d,%d,%d", sep,
2046 dir, sx, sy, F(dir), dx, dy);
2047 if (buflen + tmplen >= bufsize) {
2048 bufsize = (buflen + tmplen) * 5 / 4 + 256;
2049 buf = sresize(buf, bufsize, char);
2050 }
2051 strcpy(buf + buflen, tmpbuf);
2052 buflen += tmplen;
2053 sep = ";";
2054 }
2055 }
2056
2057 ui->ndragcoords = -1;
2058
2059 return buf ? buf : "";
2060 } else if (ui->ndragcoords == 0) {
2061 /* Click (or tiny drag). Work out which edge we were
2062 * closest to. */
2063 int cx, cy;
2064
2065 ui->ndragcoords = -1;
2066
2067 /*
2068 * We process clicks based on the mouse-down location,
2069 * because that's more natural for a user to carefully
2070 * control than the mouse-up.
2071 */
2072 x = ui->clickx;
2073 y = ui->clicky;
2074
2075 gx = FROMCOORD(x);
2076 gy = FROMCOORD(y);
2077 cx = CENTERED_COORD(gx);
2078 cy = CENTERED_COORD(gy);
2079
2080 if (!INGRID(state, gx, gy)) return "";
2081
2082 if (max(abs(x-cx),abs(y-cy)) < TILE_SIZE/4) {
2083 /* TODO closer to centre of grid: process as a cell click not an edge click. */
2084
2085 return "";
2086 } else {
2087 int direction;
2088 if (abs(x-cx) < abs(y-cy)) {
2089 /* Closest to top/bottom edge. */
2090 direction = (y < cy) ? U : D;
2091 } else {
2092 /* Closest to left/right edge. */
2093 direction = (x < cx) ? L : R;
2094 }
2095 return mark_in_direction(state, gx, gy, direction,
2096 (button == RIGHT_RELEASE), tmpbuf);
2097 }
2098 }
2099 }
2100
2101 if (button == 'H' || button == 'h')
2102 return dupstr("H");
2103
2104 return NULL;
2105 }
2106
2107 static game_state *execute_move(game_state *state, char *move)
2108 {
2109 int w = state->shared->w, h = state->shared->h;
2110 char c;
2111 int x, y, l, n;
2112 game_state *ret = dup_game(state);
2113
2114 debug(("move: %s\n", move));
2115
2116 while (*move) {
2117 c = *move;
2118 if (c == 'S') {
2119 ret->used_solve = TRUE;
2120 move++;
2121 } else if (c == 'L' || c == 'N' || c == 'R' || c == 'F' || c == 'M') {
2122 /* 'line' or 'noline' or 'replace' or 'flip' or 'mark' */
2123 move++;
2124 if (sscanf(move, "%d,%d,%d%n", &l, &x, &y, &n) != 3)
2125 goto badmove;
2126 if (!INGRID(state, x, y)) goto badmove;
2127 if (l < 0 || l > 15) goto badmove;
2128
2129 if (c == 'L')
2130 ret->lines[y*w + x] |= (char)l;
2131 else if (c == 'N')
2132 ret->lines[y*w + x] &= ~((char)l);
2133 else if (c == 'R') {
2134 ret->lines[y*w + x] = (char)l;
2135 ret->marks[y*w + x] &= ~((char)l); /* erase marks too */
2136 } else if (c == 'F')
2137 ret->lines[y*w + x] ^= (char)l;
2138 else if (c == 'M')
2139 ret->marks[y*w + x] ^= (char)l;
2140
2141 /*
2142 * If we ended up trying to lay a line _over_ a mark,
2143 * that's a failed move: interpret_move() should have
2144 * ensured we never received a move string like that in
2145 * the first place.
2146 */
2147 if ((ret->lines[y*w + x] & (char)l) &&
2148 (ret->marks[y*w + x] & (char)l))
2149 goto badmove;
2150
2151 move += n;
2152 } else if (strcmp(move, "H") == 0) {
2153 pearl_solve(ret->shared->w, ret->shared->h,
2154 ret->shared->clues, ret->lines, DIFFCOUNT, TRUE);
2155 for (n = 0; n < w*h; n++)
2156 ret->marks[n] &= ~ret->lines[n]; /* erase marks too */
2157 move++;
2158 } else {
2159 goto badmove;
2160 }
2161 if (*move == ';')
2162 move++;
2163 else if (*move)
2164 goto badmove;
2165 }
2166
2167 check_completion(ret, TRUE);
2168
2169 return ret;
2170
2171 badmove:
2172 free_game(ret);
2173 return NULL;
2174 }
2175
2176 /* ----------------------------------------------------------------------
2177 * Drawing routines.
2178 */
2179
2180 #define FLASH_TIME 0.5F
2181
2182 static void game_compute_size(game_params *params, int tilesize,
2183 int *x, int *y)
2184 {
2185 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
2186 struct { int halfsz; } ads, *ds = &ads;
2187 ads.halfsz = (tilesize-1)/2;
2188
2189 *x = (params->w) * TILE_SIZE + 2 * BORDER;
2190 *y = (params->h) * TILE_SIZE + 2 * BORDER;
2191 }
2192
2193 static void game_set_size(drawing *dr, game_drawstate *ds,
2194 game_params *params, int tilesize)
2195 {
2196 ds->halfsz = (tilesize-1)/2;
2197 }
2198
2199 static float *game_colours(frontend *fe, int *ncolours)
2200 {
2201 float *ret = snewn(3 * NCOLOURS, float);
2202 int i;
2203
2204 game_mkhighlight(fe, ret, COL_BACKGROUND, COL_HIGHLIGHT, COL_LOWLIGHT);
2205
2206 for (i = 0; i < 3; i++) {
2207 ret[COL_BLACK * 3 + i] = 0.0F;
2208 ret[COL_WHITE * 3 + i] = 1.0F;
2209 ret[COL_GRID * 3 + i] = 0.4F;
2210 }
2211
2212 ret[COL_ERROR * 3 + 0] = 1.0F;
2213 ret[COL_ERROR * 3 + 1] = 0.0F;
2214 ret[COL_ERROR * 3 + 2] = 0.0F;
2215
2216 ret[COL_DRAGON * 3 + 0] = 0.0F;
2217 ret[COL_DRAGON * 3 + 1] = 0.0F;
2218 ret[COL_DRAGON * 3 + 2] = 1.0F;
2219
2220 ret[COL_DRAGOFF * 3 + 0] = 0.8F;
2221 ret[COL_DRAGOFF * 3 + 1] = 0.8F;
2222 ret[COL_DRAGOFF * 3 + 2] = 1.0F;
2223
2224 ret[COL_FLASH * 3 + 0] = 1.0F;
2225 ret[COL_FLASH * 3 + 1] = 1.0F;
2226 ret[COL_FLASH * 3 + 2] = 1.0F;
2227
2228 *ncolours = NCOLOURS;
2229
2230 return ret;
2231 }
2232
2233 static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
2234 {
2235 struct game_drawstate *ds = snew(struct game_drawstate);
2236 int i;
2237
2238 ds->halfsz = 0;
2239 ds->started = FALSE;
2240
2241 ds->w = state->shared->w;
2242 ds->h = state->shared->h;
2243 ds->sz = state->shared->sz;
2244 ds->lflags = snewn(ds->sz, unsigned int);
2245 for (i = 0; i < ds->sz; i++)
2246 ds->lflags[i] = 0;
2247
2248 ds->draglines = snewn(ds->sz, char);
2249
2250 return ds;
2251 }
2252
2253 static void game_free_drawstate(drawing *dr, game_drawstate *ds)
2254 {
2255 sfree(ds->draglines);
2256 sfree(ds->lflags);
2257 sfree(ds);
2258 }
2259
2260 static void draw_lines_specific(drawing *dr, game_drawstate *ds,
2261 int x, int y, unsigned int lflags,
2262 unsigned int shift, int c)
2263 {
2264 int ox = COORD(x), oy = COORD(y);
2265 int t2 = HALFSZ, t16 = HALFSZ/4;
2266 int cx = ox + t2, cy = oy + t2;
2267 int d;
2268
2269 /* Draw each of the four directions, where laid (or error, or drag, etc.) */
2270 for (d = 1; d < 16; d *= 2) {
2271 int xoff = t2 * DX(d), yoff = t2 * DY(d);
2272 int xnudge = abs(t16 * DX(C(d))), ynudge = abs(t16 * DY(C(d)));
2273
2274 if ((lflags >> shift) & d) {
2275 int lx = cx + ((xoff < 0) ? xoff : 0) - xnudge;
2276 int ly = cy + ((yoff < 0) ? yoff : 0) - ynudge;
2277
2278 if (c == COL_DRAGOFF && !(lflags & d))
2279 continue;
2280 if (c == COL_DRAGON && (lflags & d))
2281 continue;
2282
2283 draw_rect(dr, lx, ly,
2284 abs(xoff)+2*xnudge+1,
2285 abs(yoff)+2*ynudge+1, c);
2286 /* end cap */
2287 draw_rect(dr, cx - t16, cy - t16, 2*t16+1, 2*t16+1, c);
2288 }
2289 }
2290 }
2291
2292 static void draw_square(drawing *dr, game_drawstate *ds, game_ui *ui,
2293 int x, int y, unsigned int lflags, char clue)
2294 {
2295 int ox = COORD(x), oy = COORD(y);
2296 int t2 = HALFSZ, t16 = HALFSZ/4;
2297 int cx = ox + t2, cy = oy + t2;
2298 int d;
2299
2300 assert(dr);
2301
2302 /* Clip to the grid square. */
2303 clip(dr, ox, oy, TILE_SIZE, TILE_SIZE);
2304
2305 /* Clear the square. */
2306 draw_rect(dr, ox, oy, TILE_SIZE, TILE_SIZE,
2307 (lflags & DS_CURSOR) ?
2308 COL_CURSOR_BACKGROUND : COL_BACKGROUND);
2309
2310
2311 if (get_gui_style() == GUI_LOOPY) {
2312 /* Draw small dot, underneath any lines. */
2313 draw_circle(dr, cx, cy, t16, COL_GRID, COL_GRID);
2314 } else {
2315 /* Draw outline of grid square */
2316 draw_line(dr, ox, oy, COORD(x+1), oy, COL_GRID);
2317 draw_line(dr, ox, oy, ox, COORD(y+1), COL_GRID);
2318 }
2319
2320 /* Draw grid: either thin gridlines, or no-line marks.
2321 * We draw these first because the thick laid lines should be on top. */
2322 for (d = 1; d < 16; d *= 2) {
2323 int xoff = t2 * DX(d), yoff = t2 * DY(d);
2324
2325 if ((x == 0 && d == L) ||
2326 (y == 0 && d == U) ||
2327 (x == ds->w-1 && d == R) ||
2328 (y == ds->h-1 && d == D))
2329 continue; /* no gridlines out to the border. */
2330
2331 if ((lflags >> DS_MSHIFT) & d) {
2332 /* either a no-line mark ... */
2333 int mx = cx + xoff, my = cy + yoff, msz = t16;
2334
2335 draw_line(dr, mx-msz, my-msz, mx+msz, my+msz, COL_BLACK);
2336 draw_line(dr, mx-msz, my+msz, mx+msz, my-msz, COL_BLACK);
2337 } else {
2338 if (get_gui_style() == GUI_LOOPY) {
2339 /* draw grid lines connecting centre of cells */
2340 draw_line(dr, cx, cy, cx+xoff, cy+yoff, COL_GRID);
2341 }
2342 }
2343 }
2344
2345 /* Draw each of the four directions, where laid (or error, or drag, etc.)
2346 * Order is important here, specifically for the eventual colours of the
2347 * exposed end caps. */
2348 draw_lines_specific(dr, ds, x, y, lflags, 0,
2349 (lflags & DS_FLASH ? COL_FLASH : COL_BLACK));
2350 draw_lines_specific(dr, ds, x, y, lflags, DS_ESHIFT, COL_ERROR);
2351 draw_lines_specific(dr, ds, x, y, lflags, DS_DSHIFT, COL_DRAGOFF);
2352 draw_lines_specific(dr, ds, x, y, lflags, DS_DSHIFT, COL_DRAGON);
2353
2354 /* Draw a clue, if present */
2355 if (clue != NOCLUE) {
2356 int c = (lflags & DS_FLASH) ? COL_FLASH :
2357 (clue == STRAIGHT) ? COL_WHITE : COL_BLACK;
2358
2359 if (lflags & DS_ERROR_CLUE) /* draw a bigger 'error' clue circle. */
2360 draw_circle(dr, cx, cy, TILE_SIZE*3/8, COL_ERROR, COL_ERROR);
2361
2362 draw_circle(dr, cx, cy, TILE_SIZE/4, c, COL_BLACK);
2363 }
2364
2365 unclip(dr);
2366 draw_update(dr, ox, oy, TILE_SIZE, TILE_SIZE);
2367 }
2368
2369 static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
2370 game_state *state, int dir, game_ui *ui,
2371 float animtime, float flashtime)
2372 {
2373 int w = state->shared->w, h = state->shared->h, sz = state->shared->sz;
2374 int x, y, force = 0, flashing = 0;
2375
2376 if (!ds->started) {
2377 /*
2378 * The initial contents of the window are not guaranteed and
2379 * can vary with front ends. To be on the safe side, all games
2380 * should start by drawing a big background-colour rectangle
2381 * covering the whole window.
2382 */
2383 draw_rect(dr, 0, 0, w*TILE_SIZE + 2*BORDER, h*TILE_SIZE + 2*BORDER,
2384 COL_BACKGROUND);
2385
2386 if (get_gui_style() == GUI_MASYU) {
2387 /*
2388 * Smaller black rectangle which is the main grid.
2389 */
2390 draw_rect(dr, BORDER - BORDER_WIDTH, BORDER - BORDER_WIDTH,
2391 w*TILE_SIZE + 2*BORDER_WIDTH + 1,
2392 h*TILE_SIZE + 2*BORDER_WIDTH + 1,
2393 COL_GRID);
2394 }
2395
2396 draw_update(dr, 0, 0, w*TILE_SIZE + 2*BORDER, h*TILE_SIZE + 2*BORDER);
2397
2398 ds->started = TRUE;
2399 force = 1;
2400 }
2401
2402 if (flashtime > 0 &&
2403 (flashtime <= FLASH_TIME/3 ||
2404 flashtime >= FLASH_TIME*2/3))
2405 flashing = DS_FLASH;
2406
2407 memset(ds->draglines, 0, sz);
2408 if (ui->ndragcoords > 0) {
2409 int i, clearing = TRUE;
2410 for (i = 0; i < ui->ndragcoords - 1; i++) {
2411 int sx, sy, dx, dy, dir, oldstate, newstate;
2412 interpret_ui_drag(state, ui, &clearing, i, &sx, &sy, &dx, &dy,
2413 &dir, &oldstate, &newstate);
2414 ds->draglines[sy*w+sx] ^= (oldstate ^ newstate);
2415 ds->draglines[dy*w+dx] ^= (F(oldstate) ^ F(newstate));
2416 }
2417 }
2418
2419 for (x = 0; x < w; x++) {
2420 for (y = 0; y < h; y++) {
2421 unsigned int f = (unsigned int)state->lines[y*w+x];
2422 unsigned int eline = (unsigned int)(state->errors[y*w+x] & (R|U|L|D));
2423
2424 f |= eline << DS_ESHIFT;
2425 f |= ((unsigned int)ds->draglines[y*w+x]) << DS_DSHIFT;
2426 f |= ((unsigned int)state->marks[y*w+x]) << DS_MSHIFT;
2427
2428 if (state->errors[y*w+x] & ERROR_CLUE)
2429 f |= DS_ERROR_CLUE;
2430
2431 f |= flashing;
2432
2433 if (ui->cursor_active && x == ui->curx && y == ui->cury)
2434 f |= DS_CURSOR;
2435
2436 if (f != ds->lflags[y*w+x] || force) {
2437 ds->lflags[y*w+x] = f;
2438 draw_square(dr, ds, ui, x, y, f, state->shared->clues[y*w+x]);
2439 }
2440 }
2441 }
2442 }
2443
2444 static float game_anim_length(game_state *oldstate, game_state *newstate,
2445 int dir, game_ui *ui)
2446 {
2447 return 0.0F;
2448 }
2449
2450 static float game_flash_length(game_state *oldstate, game_state *newstate,
2451 int dir, game_ui *ui)
2452 {
2453 if (!oldstate->completed &&
2454 newstate->completed && !newstate->used_solve)
2455 return FLASH_TIME;
2456 else
2457 return 0.0F;
2458 }
2459
2460 static int game_status(game_state *state)
2461 {
2462 return state->completed ? +1 : 0;
2463 }
2464
2465 static int game_timing_state(game_state *state, game_ui *ui)
2466 {
2467 return TRUE;
2468 }
2469
2470 static void game_print_size(game_params *params, float *x, float *y)
2471 {
2472 int pw, ph;
2473
2474 /*
2475 * I'll use 6mm squares by default.
2476 */
2477 game_compute_size(params, 600, &pw, &ph);
2478 *x = pw / 100.0F;
2479 *y = ph / 100.0F;
2480 }
2481
2482 static void game_print(drawing *dr, game_state *state, int tilesize)
2483 {
2484 int w = state->shared->w, h = state->shared->h, x, y;
2485 int black = print_mono_colour(dr, 0);
2486 int white = print_mono_colour(dr, 1);
2487
2488 /* No GUI_LOOPY here: only use the familiar masyu style. */
2489
2490 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
2491 game_drawstate *ds = game_new_drawstate(dr, state);
2492 game_set_size(dr, ds, NULL, tilesize);
2493
2494 /* Draw grid outlines (black). */
2495 for (x = 0; x <= w; x++)
2496 draw_line(dr, COORD(x), COORD(0), COORD(x), COORD(h), black);
2497 for (y = 0; y <= h; y++)
2498 draw_line(dr, COORD(0), COORD(y), COORD(w), COORD(y), black);
2499
2500 for (x = 0; x < w; x++) {
2501 for (y = 0; y < h; y++) {
2502 int cx = COORD(x) + HALFSZ, cy = COORD(y) + HALFSZ;
2503 int clue = state->shared->clues[y*w+x];
2504
2505 draw_lines_specific(dr, ds, x, y, state->lines[y*w+x], 0, black);
2506
2507 if (clue != NOCLUE) {
2508 int c = (clue == CORNER) ? black : white;
2509 draw_circle(dr, cx, cy, TILE_SIZE/4, c, black);
2510 }
2511 }
2512 }
2513
2514 game_free_drawstate(dr, ds);
2515 }
2516
2517 #ifdef COMBINED
2518 #define thegame pearl
2519 #endif
2520
2521 const struct game thegame = {
2522 "Pearl", "games.pearl", "pearl",
2523 default_params,
2524 game_fetch_preset,
2525 decode_params,
2526 encode_params,
2527 free_params,
2528 dup_params,
2529 TRUE, game_configure, custom_params,
2530 validate_params,
2531 new_game_desc,
2532 validate_desc,
2533 new_game,
2534 dup_game,
2535 free_game,
2536 TRUE, solve_game,
2537 FALSE, game_can_format_as_text_now, game_text_format,
2538 new_ui,
2539 free_ui,
2540 encode_ui,
2541 decode_ui,
2542 game_changed_state,
2543 interpret_move,
2544 execute_move,
2545 PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
2546 game_colours,
2547 game_new_drawstate,
2548 game_free_drawstate,
2549 game_redraw,
2550 game_anim_length,
2551 game_flash_length,
2552 game_status,
2553 TRUE, FALSE, game_print_size, game_print,
2554 FALSE, /* wants_statusbar */
2555 FALSE, game_timing_state,
2556 0, /* flags */
2557 };
2558
2559 #ifdef STANDALONE_SOLVER
2560
2561 #include <time.h>
2562 #include <stdarg.h>
2563
2564 const char *quis = NULL;
2565
2566 static void usage(FILE *out) {
2567 fprintf(out, "usage: %s <params>\n", quis);
2568 }
2569
2570 static void pnum(int n, int ntot, const char *desc)
2571 {
2572 printf("%2.1f%% (%d) %s", (double)n*100.0 / (double)ntot, n, desc);
2573 }
2574
2575 static void start_soak(game_params *p, random_state *rs, int nsecs)
2576 {
2577 time_t tt_start, tt_now, tt_last;
2578 int n = 0, nsolved = 0, nimpossible = 0, ret;
2579 char *grid, *clues;
2580
2581 tt_start = tt_last = time(NULL);
2582
2583 /* Currently this generates puzzles of any difficulty (trying to solve it
2584 * on the maximum difficulty level and not checking it's not too easy). */
2585 printf("Soak-testing a %dx%d grid (any difficulty)", p->w, p->h);
2586 if (nsecs > 0) printf(" for %d seconds", nsecs);
2587 printf(".\n");
2588
2589 p->nosolve = TRUE;
2590
2591 grid = snewn(p->w*p->h, char);
2592 clues = snewn(p->w*p->h, char);
2593
2594 while (1) {
2595 n += new_clues(p, rs, clues, grid); /* should be 1, with nosolve */
2596
2597 ret = pearl_solve(p->w, p->h, clues, grid, DIFF_TRICKY, FALSE);
2598 if (ret <= 0) nimpossible++;
2599 if (ret == 1) nsolved++;
2600
2601 tt_now = time(NULL);
2602 if (tt_now > tt_last) {
2603 tt_last = tt_now;
2604
2605 printf("%d total, %3.1f/s, ",
2606 n, (double)n / ((double)tt_now - tt_start));
2607 pnum(nsolved, n, "solved"); printf(", ");
2608 printf("%3.1f/s", (double)nsolved / ((double)tt_now - tt_start));
2609 if (nimpossible > 0)
2610 pnum(nimpossible, n, "impossible");
2611 printf("\n");
2612 }
2613 if (nsecs > 0 && (tt_now - tt_start) > nsecs) {
2614 printf("\n");
2615 break;
2616 }
2617 }
2618
2619 sfree(grid);
2620 sfree(clues);
2621 }
2622
2623 int main(int argc, const char *argv[])
2624 {
2625 game_params *p = NULL;
2626 random_state *rs = NULL;
2627 time_t seed = time(NULL);
2628 char *id = NULL, *err;
2629
2630 setvbuf(stdout, NULL, _IONBF, 0);
2631
2632 quis = argv[0];
2633
2634 while (--argc > 0) {
2635 char *p = (char*)(*++argv);
2636 if (!strcmp(p, "-e") || !strcmp(p, "--seed")) {
2637 seed = atoi(*++argv);
2638 argc--;
2639 } else if (*p == '-') {
2640 fprintf(stderr, "%s: unrecognised option `%s'\n", argv[0], p);
2641 usage(stderr);
2642 exit(1);
2643 } else {
2644 id = p;
2645 }
2646 }
2647
2648 rs = random_new((void*)&seed, sizeof(time_t));
2649 p = default_params();
2650
2651 if (id) {
2652 if (strchr(id, ':')) {
2653 fprintf(stderr, "soak takes params only.\n");
2654 goto done;
2655 }
2656
2657 decode_params(p, id);
2658 err = validate_params(p, 1);
2659 if (err) {
2660 fprintf(stderr, "%s: %s", argv[0], err);
2661 goto done;
2662 }
2663
2664 start_soak(p, rs, 0); /* run forever */
2665 } else {
2666 int i;
2667
2668 for (i = 5; i <= 12; i++) {
2669 p->w = p->h = i;
2670 start_soak(p, rs, 5);
2671 }
2672 }
2673
2674 done:
2675 free_params(p);
2676 random_free(rs);
2677
2678 return 0;
2679 }
2680
2681 #endif
2682
2683 /* vim: set shiftwidth=4 tabstop=8: */