Infrastructure change which I've been thinking about for a while:
[sgt/puzzles] / cube.c
1 /*
2 * cube.c: Cube game.
3 */
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <string.h>
8 #include <assert.h>
9 #include <ctype.h>
10 #include <math.h>
11
12 #include "puzzles.h"
13
14 #define MAXVERTICES 20
15 #define MAXFACES 20
16 #define MAXORDER 4
17 struct solid {
18 int nvertices;
19 float vertices[MAXVERTICES * 3]; /* 3*npoints coordinates */
20 int order;
21 int nfaces;
22 int faces[MAXFACES * MAXORDER]; /* order*nfaces point indices */
23 float normals[MAXFACES * 3]; /* 3*npoints vector components */
24 float shear; /* isometric shear for nice drawing */
25 float border; /* border required around arena */
26 };
27
28 static const struct solid s_tetrahedron = {
29 4,
30 {
31 0.0F, -0.57735026919F, -0.20412414523F,
32 -0.5F, 0.28867513459F, -0.20412414523F,
33 0.0F, -0.0F, 0.6123724357F,
34 0.5F, 0.28867513459F, -0.20412414523F,
35 },
36 3, 4,
37 {
38 0,2,1, 3,1,2, 2,0,3, 1,3,0
39 },
40 {
41 -0.816496580928F, -0.471404520791F, 0.333333333334F,
42 0.0F, 0.942809041583F, 0.333333333333F,
43 0.816496580928F, -0.471404520791F, 0.333333333334F,
44 0.0F, 0.0F, -1.0F,
45 },
46 0.0F, 0.3F
47 };
48
49 static const struct solid s_cube = {
50 8,
51 {
52 -0.5F,-0.5F,-0.5F, -0.5F,-0.5F,+0.5F,
53 -0.5F,+0.5F,-0.5F, -0.5F,+0.5F,+0.5F,
54 +0.5F,-0.5F,-0.5F, +0.5F,-0.5F,+0.5F,
55 +0.5F,+0.5F,-0.5F, +0.5F,+0.5F,+0.5F,
56 },
57 4, 6,
58 {
59 0,1,3,2, 1,5,7,3, 5,4,6,7, 4,0,2,6, 0,4,5,1, 3,7,6,2
60 },
61 {
62 -1.0F,0.0F,0.0F, 0.0F,0.0F,+1.0F,
63 +1.0F,0.0F,0.0F, 0.0F,0.0F,-1.0F,
64 0.0F,-1.0F,0.0F, 0.0F,+1.0F,0.0F
65 },
66 0.3F, 0.5F
67 };
68
69 static const struct solid s_octahedron = {
70 6,
71 {
72 -0.5F, -0.28867513459472505F, 0.4082482904638664F,
73 0.5F, 0.28867513459472505F, -0.4082482904638664F,
74 -0.5F, 0.28867513459472505F, -0.4082482904638664F,
75 0.5F, -0.28867513459472505F, 0.4082482904638664F,
76 0.0F, -0.57735026918945009F, -0.4082482904638664F,
77 0.0F, 0.57735026918945009F, 0.4082482904638664F,
78 },
79 3, 8,
80 {
81 4,0,2, 0,5,2, 0,4,3, 5,0,3, 1,4,2, 5,1,2, 4,1,3, 1,5,3
82 },
83 {
84 -0.816496580928F, -0.471404520791F, -0.333333333334F,
85 -0.816496580928F, 0.471404520791F, 0.333333333334F,
86 0.0F, -0.942809041583F, 0.333333333333F,
87 0.0F, 0.0F, 1.0F,
88 0.0F, 0.0F, -1.0F,
89 0.0F, 0.942809041583F, -0.333333333333F,
90 0.816496580928F, -0.471404520791F, -0.333333333334F,
91 0.816496580928F, 0.471404520791F, 0.333333333334F,
92 },
93 0.0F, 0.5F
94 };
95
96 static const struct solid s_icosahedron = {
97 12,
98 {
99 0.0F, 0.57735026919F, 0.75576131408F,
100 0.0F, -0.93417235896F, 0.17841104489F,
101 0.0F, 0.93417235896F, -0.17841104489F,
102 0.0F, -0.57735026919F, -0.75576131408F,
103 -0.5F, -0.28867513459F, 0.75576131408F,
104 -0.5F, 0.28867513459F, -0.75576131408F,
105 0.5F, -0.28867513459F, 0.75576131408F,
106 0.5F, 0.28867513459F, -0.75576131408F,
107 -0.80901699437F, 0.46708617948F, 0.17841104489F,
108 0.80901699437F, 0.46708617948F, 0.17841104489F,
109 -0.80901699437F, -0.46708617948F, -0.17841104489F,
110 0.80901699437F, -0.46708617948F, -0.17841104489F,
111 },
112 3, 20,
113 {
114 8,0,2, 0,9,2, 1,10,3, 11,1,3, 0,4,6,
115 4,1,6, 5,2,7, 3,5,7, 4,8,10, 8,5,10,
116 9,6,11, 7,9,11, 0,8,4, 9,0,6, 10,1,4,
117 1,11,6, 8,2,5, 2,9,7, 3,10,5, 11,3,7,
118 },
119 {
120 -0.356822089773F, 0.87267799625F, 0.333333333333F,
121 0.356822089773F, 0.87267799625F, 0.333333333333F,
122 -0.356822089773F, -0.87267799625F, -0.333333333333F,
123 0.356822089773F, -0.87267799625F, -0.333333333333F,
124 -0.0F, 0.0F, 1.0F,
125 0.0F, -0.666666666667F, 0.745355992501F,
126 0.0F, 0.666666666667F, -0.745355992501F,
127 0.0F, 0.0F, -1.0F,
128 -0.934172358963F, -0.12732200375F, 0.333333333333F,
129 -0.934172358963F, 0.12732200375F, -0.333333333333F,
130 0.934172358963F, -0.12732200375F, 0.333333333333F,
131 0.934172358963F, 0.12732200375F, -0.333333333333F,
132 -0.57735026919F, 0.333333333334F, 0.745355992501F,
133 0.57735026919F, 0.333333333334F, 0.745355992501F,
134 -0.57735026919F, -0.745355992501F, 0.333333333334F,
135 0.57735026919F, -0.745355992501F, 0.333333333334F,
136 -0.57735026919F, 0.745355992501F, -0.333333333334F,
137 0.57735026919F, 0.745355992501F, -0.333333333334F,
138 -0.57735026919F, -0.333333333334F, -0.745355992501F,
139 0.57735026919F, -0.333333333334F, -0.745355992501F,
140 },
141 0.0F, 0.8F
142 };
143
144 enum {
145 TETRAHEDRON, CUBE, OCTAHEDRON, ICOSAHEDRON
146 };
147 static const struct solid *solids[] = {
148 &s_tetrahedron, &s_cube, &s_octahedron, &s_icosahedron
149 };
150
151 enum {
152 COL_BACKGROUND,
153 COL_BORDER,
154 COL_BLUE,
155 NCOLOURS
156 };
157
158 enum { LEFT, RIGHT, UP, DOWN, UP_LEFT, UP_RIGHT, DOWN_LEFT, DOWN_RIGHT };
159
160 #define PREFERRED_GRID_SCALE 48.0F
161 #define GRID_SCALE (ds->gridscale)
162 #define ROLLTIME 0.13F
163
164 #define SQ(x) ( (x) * (x) )
165
166 #define MATMUL(ra,m,a) do { \
167 float rx, ry, rz, xx = (a)[0], yy = (a)[1], zz = (a)[2], *mat = (m); \
168 rx = mat[0] * xx + mat[3] * yy + mat[6] * zz; \
169 ry = mat[1] * xx + mat[4] * yy + mat[7] * zz; \
170 rz = mat[2] * xx + mat[5] * yy + mat[8] * zz; \
171 (ra)[0] = rx; (ra)[1] = ry; (ra)[2] = rz; \
172 } while (0)
173
174 #define APPROXEQ(x,y) ( SQ(x-y) < 0.1 )
175
176 struct grid_square {
177 float x, y;
178 int npoints;
179 float points[8]; /* maximum */
180 int directions[8]; /* bit masks showing point pairs */
181 int flip;
182 int blue;
183 int tetra_class;
184 };
185
186 struct game_params {
187 int solid;
188 /*
189 * Grid dimensions. For a square grid these are width and
190 * height respectively; otherwise the grid is a hexagon, with
191 * the top side and the two lower diagonals having length d1
192 * and the remaining three sides having length d2 (so that
193 * d1==d2 gives a regular hexagon, and d2==0 gives a triangle).
194 */
195 int d1, d2;
196 };
197
198 struct game_state {
199 struct game_params params;
200 const struct solid *solid;
201 int *facecolours;
202 struct grid_square *squares;
203 int nsquares;
204 int current; /* index of current grid square */
205 int sgkey[2]; /* key-point indices into grid sq */
206 int dgkey[2]; /* key-point indices into grid sq */
207 int spkey[2]; /* key-point indices into polyhedron */
208 int dpkey[2]; /* key-point indices into polyhedron */
209 int previous;
210 float angle;
211 int completed;
212 int movecount;
213 };
214
215 static game_params *default_params(void)
216 {
217 game_params *ret = snew(game_params);
218
219 ret->solid = CUBE;
220 ret->d1 = 4;
221 ret->d2 = 4;
222
223 return ret;
224 }
225
226 static int game_fetch_preset(int i, char **name, game_params **params)
227 {
228 game_params *ret = snew(game_params);
229 char *str;
230
231 switch (i) {
232 case 0:
233 str = "Cube";
234 ret->solid = CUBE;
235 ret->d1 = 4;
236 ret->d2 = 4;
237 break;
238 case 1:
239 str = "Tetrahedron";
240 ret->solid = TETRAHEDRON;
241 ret->d1 = 1;
242 ret->d2 = 2;
243 break;
244 case 2:
245 str = "Octahedron";
246 ret->solid = OCTAHEDRON;
247 ret->d1 = 2;
248 ret->d2 = 2;
249 break;
250 case 3:
251 str = "Icosahedron";
252 ret->solid = ICOSAHEDRON;
253 ret->d1 = 3;
254 ret->d2 = 3;
255 break;
256 default:
257 sfree(ret);
258 return FALSE;
259 }
260
261 *name = dupstr(str);
262 *params = ret;
263 return TRUE;
264 }
265
266 static void free_params(game_params *params)
267 {
268 sfree(params);
269 }
270
271 static game_params *dup_params(game_params *params)
272 {
273 game_params *ret = snew(game_params);
274 *ret = *params; /* structure copy */
275 return ret;
276 }
277
278 static void decode_params(game_params *ret, char const *string)
279 {
280 switch (*string) {
281 case 't': ret->solid = TETRAHEDRON; string++; break;
282 case 'c': ret->solid = CUBE; string++; break;
283 case 'o': ret->solid = OCTAHEDRON; string++; break;
284 case 'i': ret->solid = ICOSAHEDRON; string++; break;
285 default: break;
286 }
287 ret->d1 = ret->d2 = atoi(string);
288 while (*string && isdigit(*string)) string++;
289 if (*string == 'x') {
290 string++;
291 ret->d2 = atoi(string);
292 }
293 }
294
295 static char *encode_params(game_params *params, int full)
296 {
297 char data[256];
298
299 assert(params->solid >= 0 && params->solid < 4);
300 sprintf(data, "%c%dx%d", "tcoi"[params->solid], params->d1, params->d2);
301
302 return dupstr(data);
303 }
304 typedef void (*egc_callback)(void *, struct grid_square *);
305
306 static void enum_grid_squares(game_params *params, egc_callback callback, void *ctx)
307 {
308 const struct solid *solid = solids[params->solid];
309
310 if (solid->order == 4) {
311 int x, y;
312
313 for (y = 0; y < params->d2; y++)
314 for (x = 0; x < params->d1; x++) {
315 struct grid_square sq;
316
317 sq.x = (float)x;
318 sq.y = (float)y;
319 sq.points[0] = x - 0.5F;
320 sq.points[1] = y - 0.5F;
321 sq.points[2] = x - 0.5F;
322 sq.points[3] = y + 0.5F;
323 sq.points[4] = x + 0.5F;
324 sq.points[5] = y + 0.5F;
325 sq.points[6] = x + 0.5F;
326 sq.points[7] = y - 0.5F;
327 sq.npoints = 4;
328
329 sq.directions[LEFT] = 0x03; /* 0,1 */
330 sq.directions[RIGHT] = 0x0C; /* 2,3 */
331 sq.directions[UP] = 0x09; /* 0,3 */
332 sq.directions[DOWN] = 0x06; /* 1,2 */
333 sq.directions[UP_LEFT] = 0; /* no diagonals in a square */
334 sq.directions[UP_RIGHT] = 0; /* no diagonals in a square */
335 sq.directions[DOWN_LEFT] = 0; /* no diagonals in a square */
336 sq.directions[DOWN_RIGHT] = 0; /* no diagonals in a square */
337
338 sq.flip = FALSE;
339
340 /*
341 * This is supremely irrelevant, but just to avoid
342 * having any uninitialised structure members...
343 */
344 sq.tetra_class = 0;
345
346 callback(ctx, &sq);
347 }
348 } else {
349 int row, rowlen, other, i, firstix = -1;
350 float theight = (float)(sqrt(3) / 2.0);
351
352 for (row = 0; row < params->d1 + params->d2; row++) {
353 if (row < params->d2) {
354 other = +1;
355 rowlen = row + params->d1;
356 } else {
357 other = -1;
358 rowlen = 2*params->d2 + params->d1 - row;
359 }
360
361 /*
362 * There are `rowlen' down-pointing triangles.
363 */
364 for (i = 0; i < rowlen; i++) {
365 struct grid_square sq;
366 int ix;
367 float x, y;
368
369 ix = (2 * i - (rowlen-1));
370 x = ix * 0.5F;
371 y = theight * row;
372 sq.x = x;
373 sq.y = y + theight / 3;
374 sq.points[0] = x - 0.5F;
375 sq.points[1] = y;
376 sq.points[2] = x;
377 sq.points[3] = y + theight;
378 sq.points[4] = x + 0.5F;
379 sq.points[5] = y;
380 sq.npoints = 3;
381
382 sq.directions[LEFT] = 0x03; /* 0,1 */
383 sq.directions[RIGHT] = 0x06; /* 1,2 */
384 sq.directions[UP] = 0x05; /* 0,2 */
385 sq.directions[DOWN] = 0; /* invalid move */
386
387 /*
388 * Down-pointing triangle: both the up diagonals go
389 * up, and the down ones go left and right.
390 */
391 sq.directions[UP_LEFT] = sq.directions[UP_RIGHT] =
392 sq.directions[UP];
393 sq.directions[DOWN_LEFT] = sq.directions[LEFT];
394 sq.directions[DOWN_RIGHT] = sq.directions[RIGHT];
395
396 sq.flip = TRUE;
397
398 if (firstix < 0)
399 firstix = ix & 3;
400 ix -= firstix;
401 sq.tetra_class = ((row+(ix&1)) & 2) ^ (ix & 3);
402
403 callback(ctx, &sq);
404 }
405
406 /*
407 * There are `rowlen+other' up-pointing triangles.
408 */
409 for (i = 0; i < rowlen+other; i++) {
410 struct grid_square sq;
411 int ix;
412 float x, y;
413
414 ix = (2 * i - (rowlen+other-1));
415 x = ix * 0.5F;
416 y = theight * row;
417 sq.x = x;
418 sq.y = y + 2*theight / 3;
419 sq.points[0] = x + 0.5F;
420 sq.points[1] = y + theight;
421 sq.points[2] = x;
422 sq.points[3] = y;
423 sq.points[4] = x - 0.5F;
424 sq.points[5] = y + theight;
425 sq.npoints = 3;
426
427 sq.directions[LEFT] = 0x06; /* 1,2 */
428 sq.directions[RIGHT] = 0x03; /* 0,1 */
429 sq.directions[DOWN] = 0x05; /* 0,2 */
430 sq.directions[UP] = 0; /* invalid move */
431
432 /*
433 * Up-pointing triangle: both the down diagonals go
434 * down, and the up ones go left and right.
435 */
436 sq.directions[DOWN_LEFT] = sq.directions[DOWN_RIGHT] =
437 sq.directions[DOWN];
438 sq.directions[UP_LEFT] = sq.directions[LEFT];
439 sq.directions[UP_RIGHT] = sq.directions[RIGHT];
440
441 sq.flip = FALSE;
442
443 if (firstix < 0)
444 firstix = (ix - 1) & 3;
445 ix -= firstix;
446 sq.tetra_class = ((row+(ix&1)) & 2) ^ (ix & 3);
447
448 callback(ctx, &sq);
449 }
450 }
451 }
452 }
453
454 static int grid_area(int d1, int d2, int order)
455 {
456 /*
457 * An NxM grid of squares has NM squares in it.
458 *
459 * A grid of triangles with dimensions A and B has a total of
460 * A^2 + B^2 + 4AB triangles in it. (You can divide it up into
461 * a side-A triangle containing A^2 subtriangles, a side-B
462 * triangle containing B^2, and two congruent parallelograms,
463 * each with side lengths A and B, each therefore containing AB
464 * two-triangle rhombuses.)
465 */
466 if (order == 4)
467 return d1 * d2;
468 else
469 return d1*d1 + d2*d2 + 4*d1*d2;
470 }
471
472 static config_item *game_configure(game_params *params)
473 {
474 config_item *ret = snewn(4, config_item);
475 char buf[80];
476
477 ret[0].name = "Type of solid";
478 ret[0].type = C_CHOICES;
479 ret[0].sval = ":Tetrahedron:Cube:Octahedron:Icosahedron";
480 ret[0].ival = params->solid;
481
482 ret[1].name = "Width / top";
483 ret[1].type = C_STRING;
484 sprintf(buf, "%d", params->d1);
485 ret[1].sval = dupstr(buf);
486 ret[1].ival = 0;
487
488 ret[2].name = "Height / bottom";
489 ret[2].type = C_STRING;
490 sprintf(buf, "%d", params->d2);
491 ret[2].sval = dupstr(buf);
492 ret[2].ival = 0;
493
494 ret[3].name = NULL;
495 ret[3].type = C_END;
496 ret[3].sval = NULL;
497 ret[3].ival = 0;
498
499 return ret;
500 }
501
502 static game_params *custom_params(config_item *cfg)
503 {
504 game_params *ret = snew(game_params);
505
506 ret->solid = cfg[0].ival;
507 ret->d1 = atoi(cfg[1].sval);
508 ret->d2 = atoi(cfg[2].sval);
509
510 return ret;
511 }
512
513 static void count_grid_square_callback(void *ctx, struct grid_square *sq)
514 {
515 int *classes = (int *)ctx;
516 int thisclass;
517
518 if (classes[4] == 4)
519 thisclass = sq->tetra_class;
520 else if (classes[4] == 2)
521 thisclass = sq->flip;
522 else
523 thisclass = 0;
524
525 classes[thisclass]++;
526 }
527
528 static char *validate_params(game_params *params)
529 {
530 int classes[5];
531 int i;
532
533 if (params->solid < 0 || params->solid >= lenof(solids))
534 return "Unrecognised solid type";
535
536 if (solids[params->solid]->order == 4) {
537 if (params->d1 <= 0 || params->d2 <= 0)
538 return "Both grid dimensions must be greater than zero";
539 } else {
540 if (params->d1 <= 0 && params->d2 <= 0)
541 return "At least one grid dimension must be greater than zero";
542 }
543
544 for (i = 0; i < 4; i++)
545 classes[i] = 0;
546 if (params->solid == TETRAHEDRON)
547 classes[4] = 4;
548 else if (params->solid == OCTAHEDRON)
549 classes[4] = 2;
550 else
551 classes[4] = 1;
552 enum_grid_squares(params, count_grid_square_callback, classes);
553
554 for (i = 0; i < classes[4]; i++)
555 if (classes[i] < solids[params->solid]->nfaces / classes[4])
556 return "Not enough grid space to place all blue faces";
557
558 if (grid_area(params->d1, params->d2, solids[params->solid]->order) <
559 solids[params->solid]->nfaces + 1)
560 return "Not enough space to place the solid on an empty square";
561
562 return NULL;
563 }
564
565 struct grid_data {
566 int *gridptrs[4];
567 int nsquares[4];
568 int nclasses;
569 int squareindex;
570 };
571
572 static void classify_grid_square_callback(void *ctx, struct grid_square *sq)
573 {
574 struct grid_data *data = (struct grid_data *)ctx;
575 int thisclass;
576
577 if (data->nclasses == 4)
578 thisclass = sq->tetra_class;
579 else if (data->nclasses == 2)
580 thisclass = sq->flip;
581 else
582 thisclass = 0;
583
584 data->gridptrs[thisclass][data->nsquares[thisclass]++] =
585 data->squareindex++;
586 }
587
588 static char *new_game_desc(game_params *params, random_state *rs,
589 game_aux_info **aux, int interactive)
590 {
591 struct grid_data data;
592 int i, j, k, m, area, facesperclass;
593 int *flags;
594 char *desc, *p;
595
596 /*
597 * Enumerate the grid squares, dividing them into equivalence
598 * classes as appropriate. (For the tetrahedron, there is one
599 * equivalence class for each face; for the octahedron there
600 * are two classes; for the other two solids there's only one.)
601 */
602
603 area = grid_area(params->d1, params->d2, solids[params->solid]->order);
604 if (params->solid == TETRAHEDRON)
605 data.nclasses = 4;
606 else if (params->solid == OCTAHEDRON)
607 data.nclasses = 2;
608 else
609 data.nclasses = 1;
610 data.gridptrs[0] = snewn(data.nclasses * area, int);
611 for (i = 0; i < data.nclasses; i++) {
612 data.gridptrs[i] = data.gridptrs[0] + i * area;
613 data.nsquares[i] = 0;
614 }
615 data.squareindex = 0;
616 enum_grid_squares(params, classify_grid_square_callback, &data);
617
618 facesperclass = solids[params->solid]->nfaces / data.nclasses;
619
620 for (i = 0; i < data.nclasses; i++)
621 assert(data.nsquares[i] >= facesperclass);
622 assert(data.squareindex == area);
623
624 /*
625 * So now we know how many faces to allocate in each class. Get
626 * on with it.
627 */
628 flags = snewn(area, int);
629 for (i = 0; i < area; i++)
630 flags[i] = FALSE;
631
632 for (i = 0; i < data.nclasses; i++) {
633 for (j = 0; j < facesperclass; j++) {
634 int n = random_upto(rs, data.nsquares[i]);
635
636 assert(!flags[data.gridptrs[i][n]]);
637 flags[data.gridptrs[i][n]] = TRUE;
638
639 /*
640 * Move everything else up the array. I ought to use a
641 * better data structure for this, but for such small
642 * numbers it hardly seems worth the effort.
643 */
644 while (n < data.nsquares[i]-1) {
645 data.gridptrs[i][n] = data.gridptrs[i][n+1];
646 n++;
647 }
648 data.nsquares[i]--;
649 }
650 }
651
652 /*
653 * Now we know precisely which squares are blue. Encode this
654 * information in hex. While we're looping over this, collect
655 * the non-blue squares into a list in the now-unused gridptrs
656 * array.
657 */
658 desc = snewn(area / 4 + 40, char);
659 p = desc;
660 j = 0;
661 k = 8;
662 m = 0;
663 for (i = 0; i < area; i++) {
664 if (flags[i]) {
665 j |= k;
666 } else {
667 data.gridptrs[0][m++] = i;
668 }
669 k >>= 1;
670 if (!k) {
671 *p++ = "0123456789ABCDEF"[j];
672 k = 8;
673 j = 0;
674 }
675 }
676 if (k != 8)
677 *p++ = "0123456789ABCDEF"[j];
678
679 /*
680 * Choose a non-blue square for the polyhedron.
681 */
682 sprintf(p, ",%d", data.gridptrs[0][random_upto(rs, m)]);
683
684 sfree(data.gridptrs[0]);
685 sfree(flags);
686
687 return desc;
688 }
689
690 static void game_free_aux_info(game_aux_info *aux)
691 {
692 assert(!"Shouldn't happen");
693 }
694
695 static void add_grid_square_callback(void *ctx, struct grid_square *sq)
696 {
697 game_state *state = (game_state *)ctx;
698
699 state->squares[state->nsquares] = *sq; /* structure copy */
700 state->squares[state->nsquares].blue = FALSE;
701 state->nsquares++;
702 }
703
704 static int lowest_face(const struct solid *solid)
705 {
706 int i, j, best;
707 float zmin;
708
709 best = 0;
710 zmin = 0.0;
711 for (i = 0; i < solid->nfaces; i++) {
712 float z = 0;
713
714 for (j = 0; j < solid->order; j++) {
715 int f = solid->faces[i*solid->order + j];
716 z += solid->vertices[f*3+2];
717 }
718
719 if (i == 0 || zmin > z) {
720 zmin = z;
721 best = i;
722 }
723 }
724
725 return best;
726 }
727
728 static int align_poly(const struct solid *solid, struct grid_square *sq,
729 int *pkey)
730 {
731 float zmin;
732 int i, j;
733 int flip = (sq->flip ? -1 : +1);
734
735 /*
736 * First, find the lowest z-coordinate present in the solid.
737 */
738 zmin = 0.0;
739 for (i = 0; i < solid->nvertices; i++)
740 if (zmin > solid->vertices[i*3+2])
741 zmin = solid->vertices[i*3+2];
742
743 /*
744 * Now go round the grid square. For each point in the grid
745 * square, we're looking for a point of the polyhedron with the
746 * same x- and y-coordinates (relative to the square's centre),
747 * and z-coordinate equal to zmin (near enough).
748 */
749 for (j = 0; j < sq->npoints; j++) {
750 int matches, index;
751
752 matches = 0;
753 index = -1;
754
755 for (i = 0; i < solid->nvertices; i++) {
756 float dist = 0;
757
758 dist += SQ(solid->vertices[i*3+0] * flip - sq->points[j*2+0] + sq->x);
759 dist += SQ(solid->vertices[i*3+1] * flip - sq->points[j*2+1] + sq->y);
760 dist += SQ(solid->vertices[i*3+2] - zmin);
761
762 if (dist < 0.1) {
763 matches++;
764 index = i;
765 }
766 }
767
768 if (matches != 1 || index < 0)
769 return FALSE;
770 pkey[j] = index;
771 }
772
773 return TRUE;
774 }
775
776 static void flip_poly(struct solid *solid, int flip)
777 {
778 int i;
779
780 if (flip) {
781 for (i = 0; i < solid->nvertices; i++) {
782 solid->vertices[i*3+0] *= -1;
783 solid->vertices[i*3+1] *= -1;
784 }
785 for (i = 0; i < solid->nfaces; i++) {
786 solid->normals[i*3+0] *= -1;
787 solid->normals[i*3+1] *= -1;
788 }
789 }
790 }
791
792 static struct solid *transform_poly(const struct solid *solid, int flip,
793 int key0, int key1, float angle)
794 {
795 struct solid *ret = snew(struct solid);
796 float vx, vy, ax, ay;
797 float vmatrix[9], amatrix[9], vmatrix2[9];
798 int i;
799
800 *ret = *solid; /* structure copy */
801
802 flip_poly(ret, flip);
803
804 /*
805 * Now rotate the polyhedron through the given angle. We must
806 * rotate about the Z-axis to bring the two vertices key0 and
807 * key1 into horizontal alignment, then rotate about the
808 * X-axis, then rotate back again.
809 */
810 vx = ret->vertices[key1*3+0] - ret->vertices[key0*3+0];
811 vy = ret->vertices[key1*3+1] - ret->vertices[key0*3+1];
812 assert(APPROXEQ(vx*vx + vy*vy, 1.0));
813
814 vmatrix[0] = vx; vmatrix[3] = vy; vmatrix[6] = 0;
815 vmatrix[1] = -vy; vmatrix[4] = vx; vmatrix[7] = 0;
816 vmatrix[2] = 0; vmatrix[5] = 0; vmatrix[8] = 1;
817
818 ax = (float)cos(angle);
819 ay = (float)sin(angle);
820
821 amatrix[0] = 1; amatrix[3] = 0; amatrix[6] = 0;
822 amatrix[1] = 0; amatrix[4] = ax; amatrix[7] = ay;
823 amatrix[2] = 0; amatrix[5] = -ay; amatrix[8] = ax;
824
825 memcpy(vmatrix2, vmatrix, sizeof(vmatrix));
826 vmatrix2[1] = vy;
827 vmatrix2[3] = -vy;
828
829 for (i = 0; i < ret->nvertices; i++) {
830 MATMUL(ret->vertices + 3*i, vmatrix, ret->vertices + 3*i);
831 MATMUL(ret->vertices + 3*i, amatrix, ret->vertices + 3*i);
832 MATMUL(ret->vertices + 3*i, vmatrix2, ret->vertices + 3*i);
833 }
834 for (i = 0; i < ret->nfaces; i++) {
835 MATMUL(ret->normals + 3*i, vmatrix, ret->normals + 3*i);
836 MATMUL(ret->normals + 3*i, amatrix, ret->normals + 3*i);
837 MATMUL(ret->normals + 3*i, vmatrix2, ret->normals + 3*i);
838 }
839
840 return ret;
841 }
842
843 static char *validate_desc(game_params *params, char *desc)
844 {
845 int area = grid_area(params->d1, params->d2, solids[params->solid]->order);
846 int i, j;
847
848 i = (area + 3) / 4;
849 for (j = 0; j < i; j++) {
850 int c = desc[j];
851 if (c >= '0' && c <= '9') continue;
852 if (c >= 'A' && c <= 'F') continue;
853 if (c >= 'a' && c <= 'f') continue;
854 return "Not enough hex digits at start of string";
855 /* NB if desc[j]=='\0' that will also be caught here, so we're safe */
856 }
857
858 if (desc[i] != ',')
859 return "Expected ',' after hex digits";
860
861 i++;
862 do {
863 if (desc[i] < '0' || desc[i] > '9')
864 return "Expected decimal integer after ','";
865 i++;
866 } while (desc[i]);
867
868 return NULL;
869 }
870
871 static game_state *new_game(midend_data *me, game_params *params, char *desc)
872 {
873 game_state *state = snew(game_state);
874 int area;
875
876 state->params = *params; /* structure copy */
877 state->solid = solids[params->solid];
878
879 area = grid_area(params->d1, params->d2, state->solid->order);
880 state->squares = snewn(area, struct grid_square);
881 state->nsquares = 0;
882 enum_grid_squares(params, add_grid_square_callback, state);
883 assert(state->nsquares == area);
884
885 state->facecolours = snewn(state->solid->nfaces, int);
886 memset(state->facecolours, 0, state->solid->nfaces * sizeof(int));
887
888 /*
889 * Set up the blue squares and polyhedron position according to
890 * the game description.
891 */
892 {
893 char *p = desc;
894 int i, j, v;
895
896 j = 8;
897 v = 0;
898 for (i = 0; i < state->nsquares; i++) {
899 if (j == 8) {
900 v = *p++;
901 if (v >= '0' && v <= '9')
902 v -= '0';
903 else if (v >= 'A' && v <= 'F')
904 v -= 'A' - 10;
905 else if (v >= 'a' && v <= 'f')
906 v -= 'a' - 10;
907 else
908 break;
909 }
910 if (v & j)
911 state->squares[i].blue = TRUE;
912 j >>= 1;
913 if (j == 0)
914 j = 8;
915 }
916
917 if (*p == ',')
918 p++;
919
920 state->current = atoi(p);
921 if (state->current < 0 || state->current >= state->nsquares)
922 state->current = 0; /* got to do _something_ */
923 }
924
925 /*
926 * Align the polyhedron with its grid square and determine
927 * initial key points.
928 */
929 {
930 int pkey[4];
931 int ret;
932
933 ret = align_poly(state->solid, &state->squares[state->current], pkey);
934 assert(ret);
935
936 state->dpkey[0] = state->spkey[0] = pkey[0];
937 state->dpkey[1] = state->spkey[0] = pkey[1];
938 state->dgkey[0] = state->sgkey[0] = 0;
939 state->dgkey[1] = state->sgkey[0] = 1;
940 }
941
942 state->previous = state->current;
943 state->angle = 0.0;
944 state->completed = 0;
945 state->movecount = 0;
946
947 return state;
948 }
949
950 static game_state *dup_game(game_state *state)
951 {
952 game_state *ret = snew(game_state);
953
954 ret->params = state->params; /* structure copy */
955 ret->solid = state->solid;
956 ret->facecolours = snewn(ret->solid->nfaces, int);
957 memcpy(ret->facecolours, state->facecolours,
958 ret->solid->nfaces * sizeof(int));
959 ret->nsquares = state->nsquares;
960 ret->current = state->current;
961 ret->squares = snewn(ret->nsquares, struct grid_square);
962 memcpy(ret->squares, state->squares,
963 ret->nsquares * sizeof(struct grid_square));
964 ret->dpkey[0] = state->dpkey[0];
965 ret->dpkey[1] = state->dpkey[1];
966 ret->dgkey[0] = state->dgkey[0];
967 ret->dgkey[1] = state->dgkey[1];
968 ret->spkey[0] = state->spkey[0];
969 ret->spkey[1] = state->spkey[1];
970 ret->sgkey[0] = state->sgkey[0];
971 ret->sgkey[1] = state->sgkey[1];
972 ret->previous = state->previous;
973 ret->angle = state->angle;
974 ret->completed = state->completed;
975 ret->movecount = state->movecount;
976
977 return ret;
978 }
979
980 static void free_game(game_state *state)
981 {
982 sfree(state->squares);
983 sfree(state->facecolours);
984 sfree(state);
985 }
986
987 static game_state *solve_game(game_state *state, game_state *currstate,
988 game_aux_info *aux, char **error)
989 {
990 return NULL;
991 }
992
993 static char *game_text_format(game_state *state)
994 {
995 return NULL;
996 }
997
998 static game_ui *new_ui(game_state *state)
999 {
1000 return NULL;
1001 }
1002
1003 static void free_ui(game_ui *ui)
1004 {
1005 }
1006
1007 static void game_changed_state(game_ui *ui, game_state *oldstate,
1008 game_state *newstate)
1009 {
1010 }
1011
1012 struct game_drawstate {
1013 float gridscale;
1014 int ox, oy; /* pixel position of float origin */
1015 };
1016
1017 static game_state *make_move(game_state *from, game_ui *ui, game_drawstate *ds,
1018 int x, int y, int button)
1019 {
1020 int direction;
1021 int pkey[2], skey[2], dkey[2];
1022 float points[4];
1023 game_state *ret;
1024 float angle;
1025 int i, j, dest, mask;
1026 struct solid *poly;
1027
1028 button = button & (~MOD_MASK | MOD_NUM_KEYPAD);
1029
1030 /*
1031 * Moves can be made with the cursor keys or numeric keypad, or
1032 * alternatively you can left-click and the polyhedron will
1033 * move in the general direction of the mouse pointer.
1034 */
1035 if (button == CURSOR_UP || button == (MOD_NUM_KEYPAD | '8'))
1036 direction = UP;
1037 else if (button == CURSOR_DOWN || button == (MOD_NUM_KEYPAD | '2'))
1038 direction = DOWN;
1039 else if (button == CURSOR_LEFT || button == (MOD_NUM_KEYPAD | '4'))
1040 direction = LEFT;
1041 else if (button == CURSOR_RIGHT || button == (MOD_NUM_KEYPAD | '6'))
1042 direction = RIGHT;
1043 else if (button == (MOD_NUM_KEYPAD | '7'))
1044 direction = UP_LEFT;
1045 else if (button == (MOD_NUM_KEYPAD | '1'))
1046 direction = DOWN_LEFT;
1047 else if (button == (MOD_NUM_KEYPAD | '9'))
1048 direction = UP_RIGHT;
1049 else if (button == (MOD_NUM_KEYPAD | '3'))
1050 direction = DOWN_RIGHT;
1051 else if (button == LEFT_BUTTON) {
1052 /*
1053 * Find the bearing of the click point from the current
1054 * square's centre.
1055 */
1056 int cx, cy;
1057 double angle;
1058
1059 cx = from->squares[from->current].x * GRID_SCALE + ds->ox;
1060 cy = from->squares[from->current].y * GRID_SCALE + ds->oy;
1061
1062 if (x == cx && y == cy)
1063 return NULL; /* clicked in exact centre! */
1064 angle = atan2(y - cy, x - cx);
1065
1066 /*
1067 * There are three possibilities.
1068 *
1069 * - This square is a square, so we choose between UP,
1070 * DOWN, LEFT and RIGHT by dividing the available angle
1071 * at the 45-degree points.
1072 *
1073 * - This square is an up-pointing triangle, so we choose
1074 * between DOWN, LEFT and RIGHT by dividing into
1075 * 120-degree arcs.
1076 *
1077 * - This square is a down-pointing triangle, so we choose
1078 * between UP, LEFT and RIGHT in the inverse manner.
1079 *
1080 * Don't forget that since our y-coordinates increase
1081 * downwards, `angle' is measured _clockwise_ from the
1082 * x-axis, not anticlockwise as most mathematicians would
1083 * instinctively assume.
1084 */
1085 if (from->squares[from->current].npoints == 4) {
1086 /* Square. */
1087 if (fabs(angle) > 3*PI/4)
1088 direction = LEFT;
1089 else if (fabs(angle) < PI/4)
1090 direction = RIGHT;
1091 else if (angle > 0)
1092 direction = DOWN;
1093 else
1094 direction = UP;
1095 } else if (from->squares[from->current].directions[UP] == 0) {
1096 /* Up-pointing triangle. */
1097 if (angle < -PI/2 || angle > 5*PI/6)
1098 direction = LEFT;
1099 else if (angle > PI/6)
1100 direction = DOWN;
1101 else
1102 direction = RIGHT;
1103 } else {
1104 /* Down-pointing triangle. */
1105 assert(from->squares[from->current].directions[DOWN] == 0);
1106 if (angle > PI/2 || angle < -5*PI/6)
1107 direction = LEFT;
1108 else if (angle < -PI/6)
1109 direction = UP;
1110 else
1111 direction = RIGHT;
1112 }
1113 } else
1114 return NULL;
1115
1116 /*
1117 * Find the two points in the current grid square which
1118 * correspond to this move.
1119 */
1120 mask = from->squares[from->current].directions[direction];
1121 if (mask == 0)
1122 return NULL;
1123 for (i = j = 0; i < from->squares[from->current].npoints; i++)
1124 if (mask & (1 << i)) {
1125 points[j*2] = from->squares[from->current].points[i*2];
1126 points[j*2+1] = from->squares[from->current].points[i*2+1];
1127 skey[j] = i;
1128 j++;
1129 }
1130 assert(j == 2);
1131
1132 /*
1133 * Now find the other grid square which shares those points.
1134 * This is our move destination.
1135 */
1136 dest = -1;
1137 for (i = 0; i < from->nsquares; i++)
1138 if (i != from->current) {
1139 int match = 0;
1140 float dist;
1141
1142 for (j = 0; j < from->squares[i].npoints; j++) {
1143 dist = (SQ(from->squares[i].points[j*2] - points[0]) +
1144 SQ(from->squares[i].points[j*2+1] - points[1]));
1145 if (dist < 0.1)
1146 dkey[match++] = j;
1147 dist = (SQ(from->squares[i].points[j*2] - points[2]) +
1148 SQ(from->squares[i].points[j*2+1] - points[3]));
1149 if (dist < 0.1)
1150 dkey[match++] = j;
1151 }
1152
1153 if (match == 2) {
1154 dest = i;
1155 break;
1156 }
1157 }
1158
1159 if (dest < 0)
1160 return NULL;
1161
1162 ret = dup_game(from);
1163 ret->current = i;
1164
1165 /*
1166 * So we know what grid square we're aiming for, and we also
1167 * know the two key points (as indices in both the source and
1168 * destination grid squares) which are invariant between source
1169 * and destination.
1170 *
1171 * Next we must roll the polyhedron on to that square. So we
1172 * find the indices of the key points within the polyhedron's
1173 * vertex array, then use those in a call to transform_poly,
1174 * and align the result on the new grid square.
1175 */
1176 {
1177 int all_pkey[4];
1178 align_poly(from->solid, &from->squares[from->current], all_pkey);
1179 pkey[0] = all_pkey[skey[0]];
1180 pkey[1] = all_pkey[skey[1]];
1181 /*
1182 * Now pkey[0] corresponds to skey[0] and dkey[0], and
1183 * likewise [1].
1184 */
1185 }
1186
1187 /*
1188 * Now find the angle through which to rotate the polyhedron.
1189 * Do this by finding the two faces that share the two vertices
1190 * we've found, and taking the dot product of their normals.
1191 */
1192 {
1193 int f[2], nf = 0;
1194 float dp;
1195
1196 for (i = 0; i < from->solid->nfaces; i++) {
1197 int match = 0;
1198 for (j = 0; j < from->solid->order; j++)
1199 if (from->solid->faces[i*from->solid->order + j] == pkey[0] ||
1200 from->solid->faces[i*from->solid->order + j] == pkey[1])
1201 match++;
1202 if (match == 2) {
1203 assert(nf < 2);
1204 f[nf++] = i;
1205 }
1206 }
1207
1208 assert(nf == 2);
1209
1210 dp = 0;
1211 for (i = 0; i < 3; i++)
1212 dp += (from->solid->normals[f[0]*3+i] *
1213 from->solid->normals[f[1]*3+i]);
1214 angle = (float)acos(dp);
1215 }
1216
1217 /*
1218 * Now transform the polyhedron. We aren't entirely sure
1219 * whether we need to rotate through angle or -angle, and the
1220 * simplest way round this is to try both and see which one
1221 * aligns successfully!
1222 *
1223 * Unfortunately, _both_ will align successfully if this is a
1224 * cube, which won't tell us anything much. So for that
1225 * particular case, I resort to gross hackery: I simply negate
1226 * the angle before trying the alignment, depending on the
1227 * direction. Which directions work which way is determined by
1228 * pure trial and error. I said it was gross :-/
1229 */
1230 {
1231 int all_pkey[4];
1232 int success;
1233
1234 if (from->solid->order == 4 && direction == UP)
1235 angle = -angle; /* HACK */
1236
1237 poly = transform_poly(from->solid,
1238 from->squares[from->current].flip,
1239 pkey[0], pkey[1], angle);
1240 flip_poly(poly, from->squares[ret->current].flip);
1241 success = align_poly(poly, &from->squares[ret->current], all_pkey);
1242
1243 if (!success) {
1244 sfree(poly);
1245 angle = -angle;
1246 poly = transform_poly(from->solid,
1247 from->squares[from->current].flip,
1248 pkey[0], pkey[1], angle);
1249 flip_poly(poly, from->squares[ret->current].flip);
1250 success = align_poly(poly, &from->squares[ret->current], all_pkey);
1251 }
1252
1253 assert(success);
1254 }
1255
1256 /*
1257 * Now we have our rotated polyhedron, which we expect to be
1258 * exactly congruent to the one we started with - but with the
1259 * faces permuted. So we map that congruence and thereby figure
1260 * out how to permute the faces as a result of the polyhedron
1261 * having rolled.
1262 */
1263 {
1264 int *newcolours = snewn(from->solid->nfaces, int);
1265
1266 for (i = 0; i < from->solid->nfaces; i++)
1267 newcolours[i] = -1;
1268
1269 for (i = 0; i < from->solid->nfaces; i++) {
1270 int nmatch = 0;
1271
1272 /*
1273 * Now go through the transformed polyhedron's faces
1274 * and figure out which one's normal is approximately
1275 * equal to this one.
1276 */
1277 for (j = 0; j < poly->nfaces; j++) {
1278 float dist;
1279 int k;
1280
1281 dist = 0;
1282
1283 for (k = 0; k < 3; k++)
1284 dist += SQ(poly->normals[j*3+k] -
1285 from->solid->normals[i*3+k]);
1286
1287 if (APPROXEQ(dist, 0)) {
1288 nmatch++;
1289 newcolours[i] = ret->facecolours[j];
1290 }
1291 }
1292
1293 assert(nmatch == 1);
1294 }
1295
1296 for (i = 0; i < from->solid->nfaces; i++)
1297 assert(newcolours[i] != -1);
1298
1299 sfree(ret->facecolours);
1300 ret->facecolours = newcolours;
1301 }
1302
1303 ret->movecount++;
1304
1305 /*
1306 * And finally, swap the colour between the bottom face of the
1307 * polyhedron and the face we've just landed on.
1308 *
1309 * We don't do this if the game is already complete, since we
1310 * allow the user to roll the fully blue polyhedron around the
1311 * grid as a feeble reward.
1312 */
1313 if (!ret->completed) {
1314 i = lowest_face(from->solid);
1315 j = ret->facecolours[i];
1316 ret->facecolours[i] = ret->squares[ret->current].blue;
1317 ret->squares[ret->current].blue = j;
1318
1319 /*
1320 * Detect game completion.
1321 */
1322 j = 0;
1323 for (i = 0; i < ret->solid->nfaces; i++)
1324 if (ret->facecolours[i])
1325 j++;
1326 if (j == ret->solid->nfaces)
1327 ret->completed = ret->movecount;
1328 }
1329
1330 sfree(poly);
1331
1332 /*
1333 * Align the normal polyhedron with its grid square, to get key
1334 * points for non-animated display.
1335 */
1336 {
1337 int pkey[4];
1338 int success;
1339
1340 success = align_poly(ret->solid, &ret->squares[ret->current], pkey);
1341 assert(success);
1342
1343 ret->dpkey[0] = pkey[0];
1344 ret->dpkey[1] = pkey[1];
1345 ret->dgkey[0] = 0;
1346 ret->dgkey[1] = 1;
1347 }
1348
1349
1350 ret->spkey[0] = pkey[0];
1351 ret->spkey[1] = pkey[1];
1352 ret->sgkey[0] = skey[0];
1353 ret->sgkey[1] = skey[1];
1354 ret->previous = from->current;
1355 ret->angle = angle;
1356
1357 return ret;
1358 }
1359
1360 /* ----------------------------------------------------------------------
1361 * Drawing routines.
1362 */
1363
1364 struct bbox {
1365 float l, r, u, d;
1366 };
1367
1368 static void find_bbox_callback(void *ctx, struct grid_square *sq)
1369 {
1370 struct bbox *bb = (struct bbox *)ctx;
1371 int i;
1372
1373 for (i = 0; i < sq->npoints; i++) {
1374 if (bb->l > sq->points[i*2]) bb->l = sq->points[i*2];
1375 if (bb->r < sq->points[i*2]) bb->r = sq->points[i*2];
1376 if (bb->u > sq->points[i*2+1]) bb->u = sq->points[i*2+1];
1377 if (bb->d < sq->points[i*2+1]) bb->d = sq->points[i*2+1];
1378 }
1379 }
1380
1381 static struct bbox find_bbox(game_params *params)
1382 {
1383 struct bbox bb;
1384
1385 /*
1386 * These should be hugely more than the real bounding box will
1387 * be.
1388 */
1389 bb.l = 2.0F * (params->d1 + params->d2);
1390 bb.r = -2.0F * (params->d1 + params->d2);
1391 bb.u = 2.0F * (params->d1 + params->d2);
1392 bb.d = -2.0F * (params->d1 + params->d2);
1393 enum_grid_squares(params, find_bbox_callback, &bb);
1394
1395 return bb;
1396 }
1397
1398 #define XSIZE(bb, solid) \
1399 ((int)(((bb).r - (bb).l + 2*(solid)->border) * GRID_SCALE))
1400 #define YSIZE(bb, solid) \
1401 ((int)(((bb).d - (bb).u + 2*(solid)->border) * GRID_SCALE))
1402
1403 static void game_size(game_params *params, game_drawstate *ds, int *x, int *y,
1404 int expand)
1405 {
1406 struct bbox bb = find_bbox(params);
1407 float gsx, gsy, gs;
1408
1409 gsx = *x / (bb.r - bb.l + 2*solids[params->solid]->border);
1410 gsy = *y / (bb.d - bb.u + 2*solids[params->solid]->border);
1411 gs = min(gsx, gsy);
1412
1413 if (expand)
1414 ds->gridscale = gs;
1415 else
1416 ds->gridscale = min(gs, PREFERRED_GRID_SCALE);
1417
1418 ds->ox = (int)(-(bb.l - solids[params->solid]->border) * GRID_SCALE);
1419 ds->oy = (int)(-(bb.u - solids[params->solid]->border) * GRID_SCALE);
1420
1421 *x = XSIZE(bb, solids[params->solid]);
1422 *y = YSIZE(bb, solids[params->solid]);
1423 }
1424
1425 static float *game_colours(frontend *fe, game_state *state, int *ncolours)
1426 {
1427 float *ret = snewn(3 * NCOLOURS, float);
1428
1429 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
1430
1431 ret[COL_BORDER * 3 + 0] = 0.0;
1432 ret[COL_BORDER * 3 + 1] = 0.0;
1433 ret[COL_BORDER * 3 + 2] = 0.0;
1434
1435 ret[COL_BLUE * 3 + 0] = 0.0;
1436 ret[COL_BLUE * 3 + 1] = 0.0;
1437 ret[COL_BLUE * 3 + 2] = 1.0;
1438
1439 *ncolours = NCOLOURS;
1440 return ret;
1441 }
1442
1443 static game_drawstate *game_new_drawstate(game_state *state)
1444 {
1445 struct game_drawstate *ds = snew(struct game_drawstate);
1446
1447 ds->ox = ds->oy = ds->gridscale = 0.0F;/* not decided yet */
1448
1449 return ds;
1450 }
1451
1452 static void game_free_drawstate(game_drawstate *ds)
1453 {
1454 sfree(ds);
1455 }
1456
1457 static void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate,
1458 game_state *state, int dir, game_ui *ui,
1459 float animtime, float flashtime)
1460 {
1461 int i, j;
1462 struct bbox bb = find_bbox(&state->params);
1463 struct solid *poly;
1464 int *pkey, *gkey;
1465 float t[3];
1466 float angle;
1467 game_state *newstate;
1468 int square;
1469
1470 draw_rect(fe, 0, 0, XSIZE(bb, state->solid), YSIZE(bb, state->solid),
1471 COL_BACKGROUND);
1472
1473 if (dir < 0) {
1474 game_state *t;
1475
1476 /*
1477 * This is an Undo. So reverse the order of the states, and
1478 * run the roll timer backwards.
1479 */
1480 assert(oldstate);
1481
1482 t = oldstate;
1483 oldstate = state;
1484 state = t;
1485
1486 animtime = ROLLTIME - animtime;
1487 }
1488
1489 if (!oldstate) {
1490 oldstate = state;
1491 angle = 0.0;
1492 square = state->current;
1493 pkey = state->dpkey;
1494 gkey = state->dgkey;
1495 } else {
1496 angle = state->angle * animtime / ROLLTIME;
1497 square = state->previous;
1498 pkey = state->spkey;
1499 gkey = state->sgkey;
1500 }
1501 newstate = state;
1502 state = oldstate;
1503
1504 for (i = 0; i < state->nsquares; i++) {
1505 int coords[8];
1506
1507 for (j = 0; j < state->squares[i].npoints; j++) {
1508 coords[2*j] = ((int)(state->squares[i].points[2*j] * GRID_SCALE)
1509 + ds->ox);
1510 coords[2*j+1] = ((int)(state->squares[i].points[2*j+1]*GRID_SCALE)
1511 + ds->oy);
1512 }
1513
1514 draw_polygon(fe, coords, state->squares[i].npoints, TRUE,
1515 state->squares[i].blue ? COL_BLUE : COL_BACKGROUND);
1516 draw_polygon(fe, coords, state->squares[i].npoints, FALSE, COL_BORDER);
1517 }
1518
1519 /*
1520 * Now compute and draw the polyhedron.
1521 */
1522 poly = transform_poly(state->solid, state->squares[square].flip,
1523 pkey[0], pkey[1], angle);
1524
1525 /*
1526 * Compute the translation required to align the two key points
1527 * on the polyhedron with the same key points on the current
1528 * face.
1529 */
1530 for (i = 0; i < 3; i++) {
1531 float tc = 0.0;
1532
1533 for (j = 0; j < 2; j++) {
1534 float grid_coord;
1535
1536 if (i < 2) {
1537 grid_coord =
1538 state->squares[square].points[gkey[j]*2+i];
1539 } else {
1540 grid_coord = 0.0;
1541 }
1542
1543 tc += (grid_coord - poly->vertices[pkey[j]*3+i]);
1544 }
1545
1546 t[i] = tc / 2;
1547 }
1548 for (i = 0; i < poly->nvertices; i++)
1549 for (j = 0; j < 3; j++)
1550 poly->vertices[i*3+j] += t[j];
1551
1552 /*
1553 * Now actually draw each face.
1554 */
1555 for (i = 0; i < poly->nfaces; i++) {
1556 float points[8];
1557 int coords[8];
1558
1559 for (j = 0; j < poly->order; j++) {
1560 int f = poly->faces[i*poly->order + j];
1561 points[j*2] = (poly->vertices[f*3+0] -
1562 poly->vertices[f*3+2] * poly->shear);
1563 points[j*2+1] = (poly->vertices[f*3+1] -
1564 poly->vertices[f*3+2] * poly->shear);
1565 }
1566
1567 for (j = 0; j < poly->order; j++) {
1568 coords[j*2] = (int)floor(points[j*2] * GRID_SCALE) + ds->ox;
1569 coords[j*2+1] = (int)floor(points[j*2+1] * GRID_SCALE) + ds->oy;
1570 }
1571
1572 /*
1573 * Find out whether these points are in a clockwise or
1574 * anticlockwise arrangement. If the latter, discard the
1575 * face because it's facing away from the viewer.
1576 *
1577 * This would involve fiddly winding-number stuff for a
1578 * general polygon, but for the simple parallelograms we'll
1579 * be seeing here, all we have to do is check whether the
1580 * corners turn right or left. So we'll take the vector
1581 * from point 0 to point 1, turn it right 90 degrees,
1582 * and check the sign of the dot product with that and the
1583 * next vector (point 1 to point 2).
1584 */
1585 {
1586 float v1x = points[2]-points[0];
1587 float v1y = points[3]-points[1];
1588 float v2x = points[4]-points[2];
1589 float v2y = points[5]-points[3];
1590 float dp = v1x * v2y - v1y * v2x;
1591
1592 if (dp <= 0)
1593 continue;
1594 }
1595
1596 draw_polygon(fe, coords, poly->order, TRUE,
1597 state->facecolours[i] ? COL_BLUE : COL_BACKGROUND);
1598 draw_polygon(fe, coords, poly->order, FALSE, COL_BORDER);
1599 }
1600 sfree(poly);
1601
1602 draw_update(fe, 0, 0, XSIZE(bb, state->solid), YSIZE(bb, state->solid));
1603
1604 /*
1605 * Update the status bar.
1606 */
1607 {
1608 char statusbuf[256];
1609
1610 sprintf(statusbuf, "%sMoves: %d",
1611 (state->completed ? "COMPLETED! " : ""),
1612 (state->completed ? state->completed : state->movecount));
1613
1614 status_bar(fe, statusbuf);
1615 }
1616 }
1617
1618 static float game_anim_length(game_state *oldstate,
1619 game_state *newstate, int dir, game_ui *ui)
1620 {
1621 return ROLLTIME;
1622 }
1623
1624 static float game_flash_length(game_state *oldstate,
1625 game_state *newstate, int dir, game_ui *ui)
1626 {
1627 return 0.0F;
1628 }
1629
1630 static int game_wants_statusbar(void)
1631 {
1632 return TRUE;
1633 }
1634
1635 static int game_timing_state(game_state *state)
1636 {
1637 return TRUE;
1638 }
1639
1640 #ifdef COMBINED
1641 #define thegame cube
1642 #endif
1643
1644 const struct game thegame = {
1645 "Cube", "games.cube",
1646 default_params,
1647 game_fetch_preset,
1648 decode_params,
1649 encode_params,
1650 free_params,
1651 dup_params,
1652 TRUE, game_configure, custom_params,
1653 validate_params,
1654 new_game_desc,
1655 game_free_aux_info,
1656 validate_desc,
1657 new_game,
1658 dup_game,
1659 free_game,
1660 FALSE, solve_game,
1661 FALSE, game_text_format,
1662 new_ui,
1663 free_ui,
1664 game_changed_state,
1665 make_move,
1666 game_size,
1667 game_colours,
1668 game_new_drawstate,
1669 game_free_drawstate,
1670 game_redraw,
1671 game_anim_length,
1672 game_flash_length,
1673 game_wants_statusbar,
1674 FALSE, game_timing_state,
1675 0, /* mouse_priorities */
1676 };