I've had two complaints that Solo ought to recognise the numeric
[sgt/puzzles] / cube.c
1 /*
2 * cube.c: Cube game.
3 */
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <string.h>
8 #include <assert.h>
9 #include <ctype.h>
10 #include <math.h>
11
12 #include "puzzles.h"
13
14 #define MAXVERTICES 20
15 #define MAXFACES 20
16 #define MAXORDER 4
17 struct solid {
18 int nvertices;
19 float vertices[MAXVERTICES * 3]; /* 3*npoints coordinates */
20 int order;
21 int nfaces;
22 int faces[MAXFACES * MAXORDER]; /* order*nfaces point indices */
23 float normals[MAXFACES * 3]; /* 3*npoints vector components */
24 float shear; /* isometric shear for nice drawing */
25 float border; /* border required around arena */
26 };
27
28 static const struct solid s_tetrahedron = {
29 4,
30 {
31 0.0F, -0.57735026919F, -0.20412414523F,
32 -0.5F, 0.28867513459F, -0.20412414523F,
33 0.0F, -0.0F, 0.6123724357F,
34 0.5F, 0.28867513459F, -0.20412414523F,
35 },
36 3, 4,
37 {
38 0,2,1, 3,1,2, 2,0,3, 1,3,0
39 },
40 {
41 -0.816496580928F, -0.471404520791F, 0.333333333334F,
42 0.0F, 0.942809041583F, 0.333333333333F,
43 0.816496580928F, -0.471404520791F, 0.333333333334F,
44 0.0F, 0.0F, -1.0F,
45 },
46 0.0F, 0.3F
47 };
48
49 static const struct solid s_cube = {
50 8,
51 {
52 -0.5F,-0.5F,-0.5F, -0.5F,-0.5F,+0.5F,
53 -0.5F,+0.5F,-0.5F, -0.5F,+0.5F,+0.5F,
54 +0.5F,-0.5F,-0.5F, +0.5F,-0.5F,+0.5F,
55 +0.5F,+0.5F,-0.5F, +0.5F,+0.5F,+0.5F,
56 },
57 4, 6,
58 {
59 0,1,3,2, 1,5,7,3, 5,4,6,7, 4,0,2,6, 0,4,5,1, 3,7,6,2
60 },
61 {
62 -1.0F,0.0F,0.0F, 0.0F,0.0F,+1.0F,
63 +1.0F,0.0F,0.0F, 0.0F,0.0F,-1.0F,
64 0.0F,-1.0F,0.0F, 0.0F,+1.0F,0.0F
65 },
66 0.3F, 0.5F
67 };
68
69 static const struct solid s_octahedron = {
70 6,
71 {
72 -0.5F, -0.28867513459472505F, 0.4082482904638664F,
73 0.5F, 0.28867513459472505F, -0.4082482904638664F,
74 -0.5F, 0.28867513459472505F, -0.4082482904638664F,
75 0.5F, -0.28867513459472505F, 0.4082482904638664F,
76 0.0F, -0.57735026918945009F, -0.4082482904638664F,
77 0.0F, 0.57735026918945009F, 0.4082482904638664F,
78 },
79 3, 8,
80 {
81 4,0,2, 0,5,2, 0,4,3, 5,0,3, 1,4,2, 5,1,2, 4,1,3, 1,5,3
82 },
83 {
84 -0.816496580928F, -0.471404520791F, -0.333333333334F,
85 -0.816496580928F, 0.471404520791F, 0.333333333334F,
86 0.0F, -0.942809041583F, 0.333333333333F,
87 0.0F, 0.0F, 1.0F,
88 0.0F, 0.0F, -1.0F,
89 0.0F, 0.942809041583F, -0.333333333333F,
90 0.816496580928F, -0.471404520791F, -0.333333333334F,
91 0.816496580928F, 0.471404520791F, 0.333333333334F,
92 },
93 0.0F, 0.5F
94 };
95
96 static const struct solid s_icosahedron = {
97 12,
98 {
99 0.0F, 0.57735026919F, 0.75576131408F,
100 0.0F, -0.93417235896F, 0.17841104489F,
101 0.0F, 0.93417235896F, -0.17841104489F,
102 0.0F, -0.57735026919F, -0.75576131408F,
103 -0.5F, -0.28867513459F, 0.75576131408F,
104 -0.5F, 0.28867513459F, -0.75576131408F,
105 0.5F, -0.28867513459F, 0.75576131408F,
106 0.5F, 0.28867513459F, -0.75576131408F,
107 -0.80901699437F, 0.46708617948F, 0.17841104489F,
108 0.80901699437F, 0.46708617948F, 0.17841104489F,
109 -0.80901699437F, -0.46708617948F, -0.17841104489F,
110 0.80901699437F, -0.46708617948F, -0.17841104489F,
111 },
112 3, 20,
113 {
114 8,0,2, 0,9,2, 1,10,3, 11,1,3, 0,4,6,
115 4,1,6, 5,2,7, 3,5,7, 4,8,10, 8,5,10,
116 9,6,11, 7,9,11, 0,8,4, 9,0,6, 10,1,4,
117 1,11,6, 8,2,5, 2,9,7, 3,10,5, 11,3,7,
118 },
119 {
120 -0.356822089773F, 0.87267799625F, 0.333333333333F,
121 0.356822089773F, 0.87267799625F, 0.333333333333F,
122 -0.356822089773F, -0.87267799625F, -0.333333333333F,
123 0.356822089773F, -0.87267799625F, -0.333333333333F,
124 -0.0F, 0.0F, 1.0F,
125 0.0F, -0.666666666667F, 0.745355992501F,
126 0.0F, 0.666666666667F, -0.745355992501F,
127 0.0F, 0.0F, -1.0F,
128 -0.934172358963F, -0.12732200375F, 0.333333333333F,
129 -0.934172358963F, 0.12732200375F, -0.333333333333F,
130 0.934172358963F, -0.12732200375F, 0.333333333333F,
131 0.934172358963F, 0.12732200375F, -0.333333333333F,
132 -0.57735026919F, 0.333333333334F, 0.745355992501F,
133 0.57735026919F, 0.333333333334F, 0.745355992501F,
134 -0.57735026919F, -0.745355992501F, 0.333333333334F,
135 0.57735026919F, -0.745355992501F, 0.333333333334F,
136 -0.57735026919F, 0.745355992501F, -0.333333333334F,
137 0.57735026919F, 0.745355992501F, -0.333333333334F,
138 -0.57735026919F, -0.333333333334F, -0.745355992501F,
139 0.57735026919F, -0.333333333334F, -0.745355992501F,
140 },
141 0.0F, 0.8F
142 };
143
144 enum {
145 TETRAHEDRON, CUBE, OCTAHEDRON, ICOSAHEDRON
146 };
147 static const struct solid *solids[] = {
148 &s_tetrahedron, &s_cube, &s_octahedron, &s_icosahedron
149 };
150
151 enum {
152 COL_BACKGROUND,
153 COL_BORDER,
154 COL_BLUE,
155 NCOLOURS
156 };
157
158 enum { LEFT, RIGHT, UP, DOWN, UP_LEFT, UP_RIGHT, DOWN_LEFT, DOWN_RIGHT };
159
160 #define GRID_SCALE 48.0F
161 #define ROLLTIME 0.13F
162
163 #define SQ(x) ( (x) * (x) )
164
165 #define MATMUL(ra,m,a) do { \
166 float rx, ry, rz, xx = (a)[0], yy = (a)[1], zz = (a)[2], *mat = (m); \
167 rx = mat[0] * xx + mat[3] * yy + mat[6] * zz; \
168 ry = mat[1] * xx + mat[4] * yy + mat[7] * zz; \
169 rz = mat[2] * xx + mat[5] * yy + mat[8] * zz; \
170 (ra)[0] = rx; (ra)[1] = ry; (ra)[2] = rz; \
171 } while (0)
172
173 #define APPROXEQ(x,y) ( SQ(x-y) < 0.1 )
174
175 struct grid_square {
176 float x, y;
177 int npoints;
178 float points[8]; /* maximum */
179 int directions[8]; /* bit masks showing point pairs */
180 int flip;
181 int blue;
182 int tetra_class;
183 };
184
185 struct game_params {
186 int solid;
187 /*
188 * Grid dimensions. For a square grid these are width and
189 * height respectively; otherwise the grid is a hexagon, with
190 * the top side and the two lower diagonals having length d1
191 * and the remaining three sides having length d2 (so that
192 * d1==d2 gives a regular hexagon, and d2==0 gives a triangle).
193 */
194 int d1, d2;
195 };
196
197 struct game_state {
198 struct game_params params;
199 const struct solid *solid;
200 int *facecolours;
201 struct grid_square *squares;
202 int nsquares;
203 int current; /* index of current grid square */
204 int sgkey[2]; /* key-point indices into grid sq */
205 int dgkey[2]; /* key-point indices into grid sq */
206 int spkey[2]; /* key-point indices into polyhedron */
207 int dpkey[2]; /* key-point indices into polyhedron */
208 int previous;
209 float angle;
210 int completed;
211 int movecount;
212 };
213
214 static game_params *default_params(void)
215 {
216 game_params *ret = snew(game_params);
217
218 ret->solid = CUBE;
219 ret->d1 = 4;
220 ret->d2 = 4;
221
222 return ret;
223 }
224
225 static int game_fetch_preset(int i, char **name, game_params **params)
226 {
227 game_params *ret = snew(game_params);
228 char *str;
229
230 switch (i) {
231 case 0:
232 str = "Cube";
233 ret->solid = CUBE;
234 ret->d1 = 4;
235 ret->d2 = 4;
236 break;
237 case 1:
238 str = "Tetrahedron";
239 ret->solid = TETRAHEDRON;
240 ret->d1 = 1;
241 ret->d2 = 2;
242 break;
243 case 2:
244 str = "Octahedron";
245 ret->solid = OCTAHEDRON;
246 ret->d1 = 2;
247 ret->d2 = 2;
248 break;
249 case 3:
250 str = "Icosahedron";
251 ret->solid = ICOSAHEDRON;
252 ret->d1 = 3;
253 ret->d2 = 3;
254 break;
255 default:
256 sfree(ret);
257 return FALSE;
258 }
259
260 *name = dupstr(str);
261 *params = ret;
262 return TRUE;
263 }
264
265 static void free_params(game_params *params)
266 {
267 sfree(params);
268 }
269
270 static game_params *dup_params(game_params *params)
271 {
272 game_params *ret = snew(game_params);
273 *ret = *params; /* structure copy */
274 return ret;
275 }
276
277 static game_params *decode_params(char const *string)
278 {
279 game_params *ret = default_params();
280
281 switch (*string) {
282 case 't': ret->solid = TETRAHEDRON; string++; break;
283 case 'c': ret->solid = CUBE; string++; break;
284 case 'o': ret->solid = OCTAHEDRON; string++; break;
285 case 'i': ret->solid = ICOSAHEDRON; string++; break;
286 default: break;
287 }
288 ret->d1 = ret->d2 = atoi(string);
289 while (*string && isdigit(*string)) string++;
290 if (*string == 'x') {
291 string++;
292 ret->d2 = atoi(string);
293 }
294
295 return ret;
296 }
297
298 static char *encode_params(game_params *params)
299 {
300 char data[256];
301
302 assert(params->solid >= 0 && params->solid < 4);
303 sprintf(data, "%c%dx%d", "tcoi"[params->solid], params->d1, params->d2);
304
305 return dupstr(data);
306 }
307
308 static void enum_grid_squares(game_params *params,
309 void (*callback)(void *, struct grid_square *),
310 void *ctx)
311 {
312 const struct solid *solid = solids[params->solid];
313
314 if (solid->order == 4) {
315 int x, y;
316
317 for (y = 0; y < params->d2; y++)
318 for (x = 0; x < params->d1; x++) {
319 struct grid_square sq;
320
321 sq.x = (float)x;
322 sq.y = (float)y;
323 sq.points[0] = x - 0.5F;
324 sq.points[1] = y - 0.5F;
325 sq.points[2] = x - 0.5F;
326 sq.points[3] = y + 0.5F;
327 sq.points[4] = x + 0.5F;
328 sq.points[5] = y + 0.5F;
329 sq.points[6] = x + 0.5F;
330 sq.points[7] = y - 0.5F;
331 sq.npoints = 4;
332
333 sq.directions[LEFT] = 0x03; /* 0,1 */
334 sq.directions[RIGHT] = 0x0C; /* 2,3 */
335 sq.directions[UP] = 0x09; /* 0,3 */
336 sq.directions[DOWN] = 0x06; /* 1,2 */
337 sq.directions[UP_LEFT] = 0; /* no diagonals in a square */
338 sq.directions[UP_RIGHT] = 0; /* no diagonals in a square */
339 sq.directions[DOWN_LEFT] = 0; /* no diagonals in a square */
340 sq.directions[DOWN_RIGHT] = 0; /* no diagonals in a square */
341
342 sq.flip = FALSE;
343
344 /*
345 * This is supremely irrelevant, but just to avoid
346 * having any uninitialised structure members...
347 */
348 sq.tetra_class = 0;
349
350 callback(ctx, &sq);
351 }
352 } else {
353 int row, rowlen, other, i, firstix = -1;
354 float theight = (float)(sqrt(3) / 2.0);
355
356 for (row = 0; row < params->d1 + params->d2; row++) {
357 if (row < params->d2) {
358 other = +1;
359 rowlen = row + params->d1;
360 } else {
361 other = -1;
362 rowlen = 2*params->d2 + params->d1 - row;
363 }
364
365 /*
366 * There are `rowlen' down-pointing triangles.
367 */
368 for (i = 0; i < rowlen; i++) {
369 struct grid_square sq;
370 int ix;
371 float x, y;
372
373 ix = (2 * i - (rowlen-1));
374 x = ix * 0.5F;
375 y = theight * row;
376 sq.x = x;
377 sq.y = y + theight / 3;
378 sq.points[0] = x - 0.5F;
379 sq.points[1] = y;
380 sq.points[2] = x;
381 sq.points[3] = y + theight;
382 sq.points[4] = x + 0.5F;
383 sq.points[5] = y;
384 sq.npoints = 3;
385
386 sq.directions[LEFT] = 0x03; /* 0,1 */
387 sq.directions[RIGHT] = 0x06; /* 1,2 */
388 sq.directions[UP] = 0x05; /* 0,2 */
389 sq.directions[DOWN] = 0; /* invalid move */
390
391 /*
392 * Down-pointing triangle: both the up diagonals go
393 * up, and the down ones go left and right.
394 */
395 sq.directions[UP_LEFT] = sq.directions[UP_RIGHT] =
396 sq.directions[UP];
397 sq.directions[DOWN_LEFT] = sq.directions[LEFT];
398 sq.directions[DOWN_RIGHT] = sq.directions[RIGHT];
399
400 sq.flip = TRUE;
401
402 if (firstix < 0)
403 firstix = ix & 3;
404 ix -= firstix;
405 sq.tetra_class = ((row+(ix&1)) & 2) ^ (ix & 3);
406
407 callback(ctx, &sq);
408 }
409
410 /*
411 * There are `rowlen+other' up-pointing triangles.
412 */
413 for (i = 0; i < rowlen+other; i++) {
414 struct grid_square sq;
415 int ix;
416 float x, y;
417
418 ix = (2 * i - (rowlen+other-1));
419 x = ix * 0.5F;
420 y = theight * row;
421 sq.x = x;
422 sq.y = y + 2*theight / 3;
423 sq.points[0] = x + 0.5F;
424 sq.points[1] = y + theight;
425 sq.points[2] = x;
426 sq.points[3] = y;
427 sq.points[4] = x - 0.5F;
428 sq.points[5] = y + theight;
429 sq.npoints = 3;
430
431 sq.directions[LEFT] = 0x06; /* 1,2 */
432 sq.directions[RIGHT] = 0x03; /* 0,1 */
433 sq.directions[DOWN] = 0x05; /* 0,2 */
434 sq.directions[UP] = 0; /* invalid move */
435
436 /*
437 * Up-pointing triangle: both the down diagonals go
438 * down, and the up ones go left and right.
439 */
440 sq.directions[DOWN_LEFT] = sq.directions[DOWN_RIGHT] =
441 sq.directions[DOWN];
442 sq.directions[UP_LEFT] = sq.directions[LEFT];
443 sq.directions[UP_RIGHT] = sq.directions[RIGHT];
444
445 sq.flip = FALSE;
446
447 if (firstix < 0)
448 firstix = (ix - 1) & 3;
449 ix -= firstix;
450 sq.tetra_class = ((row+(ix&1)) & 2) ^ (ix & 3);
451
452 callback(ctx, &sq);
453 }
454 }
455 }
456 }
457
458 static int grid_area(int d1, int d2, int order)
459 {
460 /*
461 * An NxM grid of squares has NM squares in it.
462 *
463 * A grid of triangles with dimensions A and B has a total of
464 * A^2 + B^2 + 4AB triangles in it. (You can divide it up into
465 * a side-A triangle containing A^2 subtriangles, a side-B
466 * triangle containing B^2, and two congruent parallelograms,
467 * each with side lengths A and B, each therefore containing AB
468 * two-triangle rhombuses.)
469 */
470 if (order == 4)
471 return d1 * d2;
472 else
473 return d1*d1 + d2*d2 + 4*d1*d2;
474 }
475
476 static config_item *game_configure(game_params *params)
477 {
478 config_item *ret = snewn(4, config_item);
479 char buf[80];
480
481 ret[0].name = "Type of solid";
482 ret[0].type = C_CHOICES;
483 ret[0].sval = ":Tetrahedron:Cube:Octahedron:Icosahedron";
484 ret[0].ival = params->solid;
485
486 ret[1].name = "Width / top";
487 ret[1].type = C_STRING;
488 sprintf(buf, "%d", params->d1);
489 ret[1].sval = dupstr(buf);
490 ret[1].ival = 0;
491
492 ret[2].name = "Height / bottom";
493 ret[2].type = C_STRING;
494 sprintf(buf, "%d", params->d2);
495 ret[2].sval = dupstr(buf);
496 ret[2].ival = 0;
497
498 ret[3].name = NULL;
499 ret[3].type = C_END;
500 ret[3].sval = NULL;
501 ret[3].ival = 0;
502
503 return ret;
504 }
505
506 static game_params *custom_params(config_item *cfg)
507 {
508 game_params *ret = snew(game_params);
509
510 ret->solid = cfg[0].ival;
511 ret->d1 = atoi(cfg[1].sval);
512 ret->d2 = atoi(cfg[2].sval);
513
514 return ret;
515 }
516
517 static void count_grid_square_callback(void *ctx, struct grid_square *sq)
518 {
519 int *classes = (int *)ctx;
520 int thisclass;
521
522 if (classes[4] == 4)
523 thisclass = sq->tetra_class;
524 else if (classes[4] == 2)
525 thisclass = sq->flip;
526 else
527 thisclass = 0;
528
529 classes[thisclass]++;
530 }
531
532 static char *validate_params(game_params *params)
533 {
534 int classes[5];
535 int i;
536
537 if (params->solid < 0 || params->solid >= lenof(solids))
538 return "Unrecognised solid type";
539
540 if (solids[params->solid]->order == 4) {
541 if (params->d1 <= 0 || params->d2 <= 0)
542 return "Both grid dimensions must be greater than zero";
543 } else {
544 if (params->d1 <= 0 && params->d2 <= 0)
545 return "At least one grid dimension must be greater than zero";
546 }
547
548 for (i = 0; i < 4; i++)
549 classes[i] = 0;
550 if (params->solid == TETRAHEDRON)
551 classes[4] = 4;
552 else if (params->solid == OCTAHEDRON)
553 classes[4] = 2;
554 else
555 classes[4] = 1;
556 enum_grid_squares(params, count_grid_square_callback, classes);
557
558 for (i = 0; i < classes[4]; i++)
559 if (classes[i] < solids[params->solid]->nfaces / classes[4])
560 return "Not enough grid space to place all blue faces";
561
562 if (grid_area(params->d1, params->d2, solids[params->solid]->order) <
563 solids[params->solid]->nfaces + 1)
564 return "Not enough space to place the solid on an empty square";
565
566 return NULL;
567 }
568
569 struct grid_data {
570 int *gridptrs[4];
571 int nsquares[4];
572 int nclasses;
573 int squareindex;
574 };
575
576 static void classify_grid_square_callback(void *ctx, struct grid_square *sq)
577 {
578 struct grid_data *data = (struct grid_data *)ctx;
579 int thisclass;
580
581 if (data->nclasses == 4)
582 thisclass = sq->tetra_class;
583 else if (data->nclasses == 2)
584 thisclass = sq->flip;
585 else
586 thisclass = 0;
587
588 data->gridptrs[thisclass][data->nsquares[thisclass]++] =
589 data->squareindex++;
590 }
591
592 static char *new_game_seed(game_params *params, random_state *rs,
593 game_aux_info **aux)
594 {
595 struct grid_data data;
596 int i, j, k, m, area, facesperclass;
597 int *flags;
598 char *seed, *p;
599
600 /*
601 * Enumerate the grid squares, dividing them into equivalence
602 * classes as appropriate. (For the tetrahedron, there is one
603 * equivalence class for each face; for the octahedron there
604 * are two classes; for the other two solids there's only one.)
605 */
606
607 area = grid_area(params->d1, params->d2, solids[params->solid]->order);
608 if (params->solid == TETRAHEDRON)
609 data.nclasses = 4;
610 else if (params->solid == OCTAHEDRON)
611 data.nclasses = 2;
612 else
613 data.nclasses = 1;
614 data.gridptrs[0] = snewn(data.nclasses * area, int);
615 for (i = 0; i < data.nclasses; i++) {
616 data.gridptrs[i] = data.gridptrs[0] + i * area;
617 data.nsquares[i] = 0;
618 }
619 data.squareindex = 0;
620 enum_grid_squares(params, classify_grid_square_callback, &data);
621
622 facesperclass = solids[params->solid]->nfaces / data.nclasses;
623
624 for (i = 0; i < data.nclasses; i++)
625 assert(data.nsquares[i] >= facesperclass);
626 assert(data.squareindex == area);
627
628 /*
629 * So now we know how many faces to allocate in each class. Get
630 * on with it.
631 */
632 flags = snewn(area, int);
633 for (i = 0; i < area; i++)
634 flags[i] = FALSE;
635
636 for (i = 0; i < data.nclasses; i++) {
637 for (j = 0; j < facesperclass; j++) {
638 int n = random_upto(rs, data.nsquares[i]);
639
640 assert(!flags[data.gridptrs[i][n]]);
641 flags[data.gridptrs[i][n]] = TRUE;
642
643 /*
644 * Move everything else up the array. I ought to use a
645 * better data structure for this, but for such small
646 * numbers it hardly seems worth the effort.
647 */
648 while (n < data.nsquares[i]-1) {
649 data.gridptrs[i][n] = data.gridptrs[i][n+1];
650 n++;
651 }
652 data.nsquares[i]--;
653 }
654 }
655
656 /*
657 * Now we know precisely which squares are blue. Encode this
658 * information in hex. While we're looping over this, collect
659 * the non-blue squares into a list in the now-unused gridptrs
660 * array.
661 */
662 seed = snewn(area / 4 + 40, char);
663 p = seed;
664 j = 0;
665 k = 8;
666 m = 0;
667 for (i = 0; i < area; i++) {
668 if (flags[i]) {
669 j |= k;
670 } else {
671 data.gridptrs[0][m++] = i;
672 }
673 k >>= 1;
674 if (!k) {
675 *p++ = "0123456789ABCDEF"[j];
676 k = 8;
677 j = 0;
678 }
679 }
680 if (k != 8)
681 *p++ = "0123456789ABCDEF"[j];
682
683 /*
684 * Choose a non-blue square for the polyhedron.
685 */
686 sprintf(p, ",%d", data.gridptrs[0][random_upto(rs, m)]);
687
688 sfree(data.gridptrs[0]);
689 sfree(flags);
690
691 return seed;
692 }
693
694 static void game_free_aux_info(game_aux_info *aux)
695 {
696 assert(!"Shouldn't happen");
697 }
698
699 static void add_grid_square_callback(void *ctx, struct grid_square *sq)
700 {
701 game_state *state = (game_state *)ctx;
702
703 state->squares[state->nsquares] = *sq; /* structure copy */
704 state->squares[state->nsquares].blue = FALSE;
705 state->nsquares++;
706 }
707
708 static int lowest_face(const struct solid *solid)
709 {
710 int i, j, best;
711 float zmin;
712
713 best = 0;
714 zmin = 0.0;
715 for (i = 0; i < solid->nfaces; i++) {
716 float z = 0;
717
718 for (j = 0; j < solid->order; j++) {
719 int f = solid->faces[i*solid->order + j];
720 z += solid->vertices[f*3+2];
721 }
722
723 if (i == 0 || zmin > z) {
724 zmin = z;
725 best = i;
726 }
727 }
728
729 return best;
730 }
731
732 static int align_poly(const struct solid *solid, struct grid_square *sq,
733 int *pkey)
734 {
735 float zmin;
736 int i, j;
737 int flip = (sq->flip ? -1 : +1);
738
739 /*
740 * First, find the lowest z-coordinate present in the solid.
741 */
742 zmin = 0.0;
743 for (i = 0; i < solid->nvertices; i++)
744 if (zmin > solid->vertices[i*3+2])
745 zmin = solid->vertices[i*3+2];
746
747 /*
748 * Now go round the grid square. For each point in the grid
749 * square, we're looking for a point of the polyhedron with the
750 * same x- and y-coordinates (relative to the square's centre),
751 * and z-coordinate equal to zmin (near enough).
752 */
753 for (j = 0; j < sq->npoints; j++) {
754 int matches, index;
755
756 matches = 0;
757 index = -1;
758
759 for (i = 0; i < solid->nvertices; i++) {
760 float dist = 0;
761
762 dist += SQ(solid->vertices[i*3+0] * flip - sq->points[j*2+0] + sq->x);
763 dist += SQ(solid->vertices[i*3+1] * flip - sq->points[j*2+1] + sq->y);
764 dist += SQ(solid->vertices[i*3+2] - zmin);
765
766 if (dist < 0.1) {
767 matches++;
768 index = i;
769 }
770 }
771
772 if (matches != 1 || index < 0)
773 return FALSE;
774 pkey[j] = index;
775 }
776
777 return TRUE;
778 }
779
780 static void flip_poly(struct solid *solid, int flip)
781 {
782 int i;
783
784 if (flip) {
785 for (i = 0; i < solid->nvertices; i++) {
786 solid->vertices[i*3+0] *= -1;
787 solid->vertices[i*3+1] *= -1;
788 }
789 for (i = 0; i < solid->nfaces; i++) {
790 solid->normals[i*3+0] *= -1;
791 solid->normals[i*3+1] *= -1;
792 }
793 }
794 }
795
796 static struct solid *transform_poly(const struct solid *solid, int flip,
797 int key0, int key1, float angle)
798 {
799 struct solid *ret = snew(struct solid);
800 float vx, vy, ax, ay;
801 float vmatrix[9], amatrix[9], vmatrix2[9];
802 int i;
803
804 *ret = *solid; /* structure copy */
805
806 flip_poly(ret, flip);
807
808 /*
809 * Now rotate the polyhedron through the given angle. We must
810 * rotate about the Z-axis to bring the two vertices key0 and
811 * key1 into horizontal alignment, then rotate about the
812 * X-axis, then rotate back again.
813 */
814 vx = ret->vertices[key1*3+0] - ret->vertices[key0*3+0];
815 vy = ret->vertices[key1*3+1] - ret->vertices[key0*3+1];
816 assert(APPROXEQ(vx*vx + vy*vy, 1.0));
817
818 vmatrix[0] = vx; vmatrix[3] = vy; vmatrix[6] = 0;
819 vmatrix[1] = -vy; vmatrix[4] = vx; vmatrix[7] = 0;
820 vmatrix[2] = 0; vmatrix[5] = 0; vmatrix[8] = 1;
821
822 ax = (float)cos(angle);
823 ay = (float)sin(angle);
824
825 amatrix[0] = 1; amatrix[3] = 0; amatrix[6] = 0;
826 amatrix[1] = 0; amatrix[4] = ax; amatrix[7] = ay;
827 amatrix[2] = 0; amatrix[5] = -ay; amatrix[8] = ax;
828
829 memcpy(vmatrix2, vmatrix, sizeof(vmatrix));
830 vmatrix2[1] = vy;
831 vmatrix2[3] = -vy;
832
833 for (i = 0; i < ret->nvertices; i++) {
834 MATMUL(ret->vertices + 3*i, vmatrix, ret->vertices + 3*i);
835 MATMUL(ret->vertices + 3*i, amatrix, ret->vertices + 3*i);
836 MATMUL(ret->vertices + 3*i, vmatrix2, ret->vertices + 3*i);
837 }
838 for (i = 0; i < ret->nfaces; i++) {
839 MATMUL(ret->normals + 3*i, vmatrix, ret->normals + 3*i);
840 MATMUL(ret->normals + 3*i, amatrix, ret->normals + 3*i);
841 MATMUL(ret->normals + 3*i, vmatrix2, ret->normals + 3*i);
842 }
843
844 return ret;
845 }
846
847 static char *validate_seed(game_params *params, char *seed)
848 {
849 int area = grid_area(params->d1, params->d2, solids[params->solid]->order);
850 int i, j;
851
852 i = (area + 3) / 4;
853 for (j = 0; j < i; j++) {
854 int c = seed[j];
855 if (c >= '0' && c <= '9') continue;
856 if (c >= 'A' && c <= 'F') continue;
857 if (c >= 'a' && c <= 'f') continue;
858 return "Not enough hex digits at start of string";
859 /* NB if seed[j]=='\0' that will also be caught here, so we're safe */
860 }
861
862 if (seed[i] != ',')
863 return "Expected ',' after hex digits";
864
865 i++;
866 do {
867 if (seed[i] < '0' || seed[i] > '9')
868 return "Expected decimal integer after ','";
869 i++;
870 } while (seed[i]);
871
872 return NULL;
873 }
874
875 static game_state *new_game(game_params *params, char *seed)
876 {
877 game_state *state = snew(game_state);
878 int area;
879
880 state->params = *params; /* structure copy */
881 state->solid = solids[params->solid];
882
883 area = grid_area(params->d1, params->d2, state->solid->order);
884 state->squares = snewn(area, struct grid_square);
885 state->nsquares = 0;
886 enum_grid_squares(params, add_grid_square_callback, state);
887 assert(state->nsquares == area);
888
889 state->facecolours = snewn(state->solid->nfaces, int);
890 memset(state->facecolours, 0, state->solid->nfaces * sizeof(int));
891
892 /*
893 * Set up the blue squares and polyhedron position according to
894 * the game seed.
895 */
896 {
897 char *p = seed;
898 int i, j, v;
899
900 j = 8;
901 v = 0;
902 for (i = 0; i < state->nsquares; i++) {
903 if (j == 8) {
904 v = *p++;
905 if (v >= '0' && v <= '9')
906 v -= '0';
907 else if (v >= 'A' && v <= 'F')
908 v -= 'A' - 10;
909 else if (v >= 'a' && v <= 'f')
910 v -= 'a' - 10;
911 else
912 break;
913 }
914 if (v & j)
915 state->squares[i].blue = TRUE;
916 j >>= 1;
917 if (j == 0)
918 j = 8;
919 }
920
921 if (*p == ',')
922 p++;
923
924 state->current = atoi(p);
925 if (state->current < 0 || state->current >= state->nsquares)
926 state->current = 0; /* got to do _something_ */
927 }
928
929 /*
930 * Align the polyhedron with its grid square and determine
931 * initial key points.
932 */
933 {
934 int pkey[4];
935 int ret;
936
937 ret = align_poly(state->solid, &state->squares[state->current], pkey);
938 assert(ret);
939
940 state->dpkey[0] = state->spkey[0] = pkey[0];
941 state->dpkey[1] = state->spkey[0] = pkey[1];
942 state->dgkey[0] = state->sgkey[0] = 0;
943 state->dgkey[1] = state->sgkey[0] = 1;
944 }
945
946 state->previous = state->current;
947 state->angle = 0.0;
948 state->completed = 0;
949 state->movecount = 0;
950
951 return state;
952 }
953
954 static game_state *dup_game(game_state *state)
955 {
956 game_state *ret = snew(game_state);
957
958 ret->params = state->params; /* structure copy */
959 ret->solid = state->solid;
960 ret->facecolours = snewn(ret->solid->nfaces, int);
961 memcpy(ret->facecolours, state->facecolours,
962 ret->solid->nfaces * sizeof(int));
963 ret->nsquares = state->nsquares;
964 ret->squares = snewn(ret->nsquares, struct grid_square);
965 memcpy(ret->squares, state->squares,
966 ret->nsquares * sizeof(struct grid_square));
967 ret->dpkey[0] = state->dpkey[0];
968 ret->dpkey[1] = state->dpkey[1];
969 ret->dgkey[0] = state->dgkey[0];
970 ret->dgkey[1] = state->dgkey[1];
971 ret->spkey[0] = state->spkey[0];
972 ret->spkey[1] = state->spkey[1];
973 ret->sgkey[0] = state->sgkey[0];
974 ret->sgkey[1] = state->sgkey[1];
975 ret->previous = state->previous;
976 ret->angle = state->angle;
977 ret->completed = state->completed;
978 ret->movecount = state->movecount;
979
980 return ret;
981 }
982
983 static void free_game(game_state *state)
984 {
985 sfree(state);
986 }
987
988 static game_state *solve_game(game_state *state, game_aux_info *aux,
989 char **error)
990 {
991 return NULL;
992 }
993
994 static char *game_text_format(game_state *state)
995 {
996 return NULL;
997 }
998
999 static game_ui *new_ui(game_state *state)
1000 {
1001 return NULL;
1002 }
1003
1004 static void free_ui(game_ui *ui)
1005 {
1006 }
1007
1008 static game_state *make_move(game_state *from, game_ui *ui,
1009 int x, int y, int button)
1010 {
1011 int direction;
1012 int pkey[2], skey[2], dkey[2];
1013 float points[4];
1014 game_state *ret;
1015 float angle;
1016 int i, j, dest, mask;
1017 struct solid *poly;
1018
1019 /*
1020 * All moves are made with the cursor keys or numeric keypad.
1021 */
1022 if (button == CURSOR_UP || button == (MOD_NUM_KEYPAD | '8'))
1023 direction = UP;
1024 else if (button == CURSOR_DOWN || button == (MOD_NUM_KEYPAD | '2'))
1025 direction = DOWN;
1026 else if (button == CURSOR_LEFT || button == (MOD_NUM_KEYPAD | '4'))
1027 direction = LEFT;
1028 else if (button == CURSOR_RIGHT || button == (MOD_NUM_KEYPAD | '6'))
1029 direction = RIGHT;
1030 else if (button == (MOD_NUM_KEYPAD | '7'))
1031 direction = UP_LEFT;
1032 else if (button == (MOD_NUM_KEYPAD | '1'))
1033 direction = DOWN_LEFT;
1034 else if (button == (MOD_NUM_KEYPAD | '9'))
1035 direction = UP_RIGHT;
1036 else if (button == (MOD_NUM_KEYPAD | '3'))
1037 direction = DOWN_RIGHT;
1038 else
1039 return NULL;
1040
1041 /*
1042 * Find the two points in the current grid square which
1043 * correspond to this move.
1044 */
1045 mask = from->squares[from->current].directions[direction];
1046 if (mask == 0)
1047 return NULL;
1048 for (i = j = 0; i < from->squares[from->current].npoints; i++)
1049 if (mask & (1 << i)) {
1050 points[j*2] = from->squares[from->current].points[i*2];
1051 points[j*2+1] = from->squares[from->current].points[i*2+1];
1052 skey[j] = i;
1053 j++;
1054 }
1055 assert(j == 2);
1056
1057 /*
1058 * Now find the other grid square which shares those points.
1059 * This is our move destination.
1060 */
1061 dest = -1;
1062 for (i = 0; i < from->nsquares; i++)
1063 if (i != from->current) {
1064 int match = 0;
1065 float dist;
1066
1067 for (j = 0; j < from->squares[i].npoints; j++) {
1068 dist = (SQ(from->squares[i].points[j*2] - points[0]) +
1069 SQ(from->squares[i].points[j*2+1] - points[1]));
1070 if (dist < 0.1)
1071 dkey[match++] = j;
1072 dist = (SQ(from->squares[i].points[j*2] - points[2]) +
1073 SQ(from->squares[i].points[j*2+1] - points[3]));
1074 if (dist < 0.1)
1075 dkey[match++] = j;
1076 }
1077
1078 if (match == 2) {
1079 dest = i;
1080 break;
1081 }
1082 }
1083
1084 if (dest < 0)
1085 return NULL;
1086
1087 ret = dup_game(from);
1088 ret->current = i;
1089
1090 /*
1091 * So we know what grid square we're aiming for, and we also
1092 * know the two key points (as indices in both the source and
1093 * destination grid squares) which are invariant between source
1094 * and destination.
1095 *
1096 * Next we must roll the polyhedron on to that square. So we
1097 * find the indices of the key points within the polyhedron's
1098 * vertex array, then use those in a call to transform_poly,
1099 * and align the result on the new grid square.
1100 */
1101 {
1102 int all_pkey[4];
1103 align_poly(from->solid, &from->squares[from->current], all_pkey);
1104 pkey[0] = all_pkey[skey[0]];
1105 pkey[1] = all_pkey[skey[1]];
1106 /*
1107 * Now pkey[0] corresponds to skey[0] and dkey[0], and
1108 * likewise [1].
1109 */
1110 }
1111
1112 /*
1113 * Now find the angle through which to rotate the polyhedron.
1114 * Do this by finding the two faces that share the two vertices
1115 * we've found, and taking the dot product of their normals.
1116 */
1117 {
1118 int f[2], nf = 0;
1119 float dp;
1120
1121 for (i = 0; i < from->solid->nfaces; i++) {
1122 int match = 0;
1123 for (j = 0; j < from->solid->order; j++)
1124 if (from->solid->faces[i*from->solid->order + j] == pkey[0] ||
1125 from->solid->faces[i*from->solid->order + j] == pkey[1])
1126 match++;
1127 if (match == 2) {
1128 assert(nf < 2);
1129 f[nf++] = i;
1130 }
1131 }
1132
1133 assert(nf == 2);
1134
1135 dp = 0;
1136 for (i = 0; i < 3; i++)
1137 dp += (from->solid->normals[f[0]*3+i] *
1138 from->solid->normals[f[1]*3+i]);
1139 angle = (float)acos(dp);
1140 }
1141
1142 /*
1143 * Now transform the polyhedron. We aren't entirely sure
1144 * whether we need to rotate through angle or -angle, and the
1145 * simplest way round this is to try both and see which one
1146 * aligns successfully!
1147 *
1148 * Unfortunately, _both_ will align successfully if this is a
1149 * cube, which won't tell us anything much. So for that
1150 * particular case, I resort to gross hackery: I simply negate
1151 * the angle before trying the alignment, depending on the
1152 * direction. Which directions work which way is determined by
1153 * pure trial and error. I said it was gross :-/
1154 */
1155 {
1156 int all_pkey[4];
1157 int success;
1158
1159 if (from->solid->order == 4 && direction == UP)
1160 angle = -angle; /* HACK */
1161
1162 poly = transform_poly(from->solid,
1163 from->squares[from->current].flip,
1164 pkey[0], pkey[1], angle);
1165 flip_poly(poly, from->squares[ret->current].flip);
1166 success = align_poly(poly, &from->squares[ret->current], all_pkey);
1167
1168 if (!success) {
1169 angle = -angle;
1170 poly = transform_poly(from->solid,
1171 from->squares[from->current].flip,
1172 pkey[0], pkey[1], angle);
1173 flip_poly(poly, from->squares[ret->current].flip);
1174 success = align_poly(poly, &from->squares[ret->current], all_pkey);
1175 }
1176
1177 assert(success);
1178 }
1179
1180 /*
1181 * Now we have our rotated polyhedron, which we expect to be
1182 * exactly congruent to the one we started with - but with the
1183 * faces permuted. So we map that congruence and thereby figure
1184 * out how to permute the faces as a result of the polyhedron
1185 * having rolled.
1186 */
1187 {
1188 int *newcolours = snewn(from->solid->nfaces, int);
1189
1190 for (i = 0; i < from->solid->nfaces; i++)
1191 newcolours[i] = -1;
1192
1193 for (i = 0; i < from->solid->nfaces; i++) {
1194 int nmatch = 0;
1195
1196 /*
1197 * Now go through the transformed polyhedron's faces
1198 * and figure out which one's normal is approximately
1199 * equal to this one.
1200 */
1201 for (j = 0; j < poly->nfaces; j++) {
1202 float dist;
1203 int k;
1204
1205 dist = 0;
1206
1207 for (k = 0; k < 3; k++)
1208 dist += SQ(poly->normals[j*3+k] -
1209 from->solid->normals[i*3+k]);
1210
1211 if (APPROXEQ(dist, 0)) {
1212 nmatch++;
1213 newcolours[i] = ret->facecolours[j];
1214 }
1215 }
1216
1217 assert(nmatch == 1);
1218 }
1219
1220 for (i = 0; i < from->solid->nfaces; i++)
1221 assert(newcolours[i] != -1);
1222
1223 sfree(ret->facecolours);
1224 ret->facecolours = newcolours;
1225 }
1226
1227 ret->movecount++;
1228
1229 /*
1230 * And finally, swap the colour between the bottom face of the
1231 * polyhedron and the face we've just landed on.
1232 *
1233 * We don't do this if the game is already complete, since we
1234 * allow the user to roll the fully blue polyhedron around the
1235 * grid as a feeble reward.
1236 */
1237 if (!ret->completed) {
1238 i = lowest_face(from->solid);
1239 j = ret->facecolours[i];
1240 ret->facecolours[i] = ret->squares[ret->current].blue;
1241 ret->squares[ret->current].blue = j;
1242
1243 /*
1244 * Detect game completion.
1245 */
1246 j = 0;
1247 for (i = 0; i < ret->solid->nfaces; i++)
1248 if (ret->facecolours[i])
1249 j++;
1250 if (j == ret->solid->nfaces)
1251 ret->completed = ret->movecount;
1252 }
1253
1254 sfree(poly);
1255
1256 /*
1257 * Align the normal polyhedron with its grid square, to get key
1258 * points for non-animated display.
1259 */
1260 {
1261 int pkey[4];
1262 int success;
1263
1264 success = align_poly(ret->solid, &ret->squares[ret->current], pkey);
1265 assert(success);
1266
1267 ret->dpkey[0] = pkey[0];
1268 ret->dpkey[1] = pkey[1];
1269 ret->dgkey[0] = 0;
1270 ret->dgkey[1] = 1;
1271 }
1272
1273
1274 ret->spkey[0] = pkey[0];
1275 ret->spkey[1] = pkey[1];
1276 ret->sgkey[0] = skey[0];
1277 ret->sgkey[1] = skey[1];
1278 ret->previous = from->current;
1279 ret->angle = angle;
1280
1281 return ret;
1282 }
1283
1284 /* ----------------------------------------------------------------------
1285 * Drawing routines.
1286 */
1287
1288 struct bbox {
1289 float l, r, u, d;
1290 };
1291
1292 struct game_drawstate {
1293 int ox, oy; /* pixel position of float origin */
1294 };
1295
1296 static void find_bbox_callback(void *ctx, struct grid_square *sq)
1297 {
1298 struct bbox *bb = (struct bbox *)ctx;
1299 int i;
1300
1301 for (i = 0; i < sq->npoints; i++) {
1302 if (bb->l > sq->points[i*2]) bb->l = sq->points[i*2];
1303 if (bb->r < sq->points[i*2]) bb->r = sq->points[i*2];
1304 if (bb->u > sq->points[i*2+1]) bb->u = sq->points[i*2+1];
1305 if (bb->d < sq->points[i*2+1]) bb->d = sq->points[i*2+1];
1306 }
1307 }
1308
1309 static struct bbox find_bbox(game_params *params)
1310 {
1311 struct bbox bb;
1312
1313 /*
1314 * These should be hugely more than the real bounding box will
1315 * be.
1316 */
1317 bb.l = 2.0F * (params->d1 + params->d2);
1318 bb.r = -2.0F * (params->d1 + params->d2);
1319 bb.u = 2.0F * (params->d1 + params->d2);
1320 bb.d = -2.0F * (params->d1 + params->d2);
1321 enum_grid_squares(params, find_bbox_callback, &bb);
1322
1323 return bb;
1324 }
1325
1326 static void game_size(game_params *params, int *x, int *y)
1327 {
1328 struct bbox bb = find_bbox(params);
1329 *x = (int)((bb.r - bb.l + 2*solids[params->solid]->border) * GRID_SCALE);
1330 *y = (int)((bb.d - bb.u + 2*solids[params->solid]->border) * GRID_SCALE);
1331 }
1332
1333 static float *game_colours(frontend *fe, game_state *state, int *ncolours)
1334 {
1335 float *ret = snewn(3 * NCOLOURS, float);
1336
1337 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
1338
1339 ret[COL_BORDER * 3 + 0] = 0.0;
1340 ret[COL_BORDER * 3 + 1] = 0.0;
1341 ret[COL_BORDER * 3 + 2] = 0.0;
1342
1343 ret[COL_BLUE * 3 + 0] = 0.0;
1344 ret[COL_BLUE * 3 + 1] = 0.0;
1345 ret[COL_BLUE * 3 + 2] = 1.0;
1346
1347 *ncolours = NCOLOURS;
1348 return ret;
1349 }
1350
1351 static game_drawstate *game_new_drawstate(game_state *state)
1352 {
1353 struct game_drawstate *ds = snew(struct game_drawstate);
1354 struct bbox bb = find_bbox(&state->params);
1355
1356 ds->ox = (int)(-(bb.l - state->solid->border) * GRID_SCALE);
1357 ds->oy = (int)(-(bb.u - state->solid->border) * GRID_SCALE);
1358
1359 return ds;
1360 }
1361
1362 static void game_free_drawstate(game_drawstate *ds)
1363 {
1364 sfree(ds);
1365 }
1366
1367 static void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate,
1368 game_state *state, int dir, game_ui *ui,
1369 float animtime, float flashtime)
1370 {
1371 int i, j;
1372 struct bbox bb = find_bbox(&state->params);
1373 struct solid *poly;
1374 int *pkey, *gkey;
1375 float t[3];
1376 float angle;
1377 game_state *newstate;
1378 int square;
1379
1380 draw_rect(fe, 0, 0, (int)((bb.r-bb.l+2.0F) * GRID_SCALE),
1381 (int)((bb.d-bb.u+2.0F) * GRID_SCALE), COL_BACKGROUND);
1382
1383 if (dir < 0) {
1384 game_state *t;
1385
1386 /*
1387 * This is an Undo. So reverse the order of the states, and
1388 * run the roll timer backwards.
1389 */
1390 assert(oldstate);
1391
1392 t = oldstate;
1393 oldstate = state;
1394 state = t;
1395
1396 animtime = ROLLTIME - animtime;
1397 }
1398
1399 if (!oldstate) {
1400 oldstate = state;
1401 angle = 0.0;
1402 square = state->current;
1403 pkey = state->dpkey;
1404 gkey = state->dgkey;
1405 } else {
1406 angle = state->angle * animtime / ROLLTIME;
1407 square = state->previous;
1408 pkey = state->spkey;
1409 gkey = state->sgkey;
1410 }
1411 newstate = state;
1412 state = oldstate;
1413
1414 for (i = 0; i < state->nsquares; i++) {
1415 int coords[8];
1416
1417 for (j = 0; j < state->squares[i].npoints; j++) {
1418 coords[2*j] = ((int)(state->squares[i].points[2*j] * GRID_SCALE)
1419 + ds->ox);
1420 coords[2*j+1] = ((int)(state->squares[i].points[2*j+1]*GRID_SCALE)
1421 + ds->oy);
1422 }
1423
1424 draw_polygon(fe, coords, state->squares[i].npoints, TRUE,
1425 state->squares[i].blue ? COL_BLUE : COL_BACKGROUND);
1426 draw_polygon(fe, coords, state->squares[i].npoints, FALSE, COL_BORDER);
1427 }
1428
1429 /*
1430 * Now compute and draw the polyhedron.
1431 */
1432 poly = transform_poly(state->solid, state->squares[square].flip,
1433 pkey[0], pkey[1], angle);
1434
1435 /*
1436 * Compute the translation required to align the two key points
1437 * on the polyhedron with the same key points on the current
1438 * face.
1439 */
1440 for (i = 0; i < 3; i++) {
1441 float tc = 0.0;
1442
1443 for (j = 0; j < 2; j++) {
1444 float grid_coord;
1445
1446 if (i < 2) {
1447 grid_coord =
1448 state->squares[square].points[gkey[j]*2+i];
1449 } else {
1450 grid_coord = 0.0;
1451 }
1452
1453 tc += (grid_coord - poly->vertices[pkey[j]*3+i]);
1454 }
1455
1456 t[i] = tc / 2;
1457 }
1458 for (i = 0; i < poly->nvertices; i++)
1459 for (j = 0; j < 3; j++)
1460 poly->vertices[i*3+j] += t[j];
1461
1462 /*
1463 * Now actually draw each face.
1464 */
1465 for (i = 0; i < poly->nfaces; i++) {
1466 float points[8];
1467 int coords[8];
1468
1469 for (j = 0; j < poly->order; j++) {
1470 int f = poly->faces[i*poly->order + j];
1471 points[j*2] = (poly->vertices[f*3+0] -
1472 poly->vertices[f*3+2] * poly->shear);
1473 points[j*2+1] = (poly->vertices[f*3+1] -
1474 poly->vertices[f*3+2] * poly->shear);
1475 }
1476
1477 for (j = 0; j < poly->order; j++) {
1478 coords[j*2] = (int)floor(points[j*2] * GRID_SCALE) + ds->ox;
1479 coords[j*2+1] = (int)floor(points[j*2+1] * GRID_SCALE) + ds->oy;
1480 }
1481
1482 /*
1483 * Find out whether these points are in a clockwise or
1484 * anticlockwise arrangement. If the latter, discard the
1485 * face because it's facing away from the viewer.
1486 *
1487 * This would involve fiddly winding-number stuff for a
1488 * general polygon, but for the simple parallelograms we'll
1489 * be seeing here, all we have to do is check whether the
1490 * corners turn right or left. So we'll take the vector
1491 * from point 0 to point 1, turn it right 90 degrees,
1492 * and check the sign of the dot product with that and the
1493 * next vector (point 1 to point 2).
1494 */
1495 {
1496 float v1x = points[2]-points[0];
1497 float v1y = points[3]-points[1];
1498 float v2x = points[4]-points[2];
1499 float v2y = points[5]-points[3];
1500 float dp = v1x * v2y - v1y * v2x;
1501
1502 if (dp <= 0)
1503 continue;
1504 }
1505
1506 draw_polygon(fe, coords, poly->order, TRUE,
1507 state->facecolours[i] ? COL_BLUE : COL_BACKGROUND);
1508 draw_polygon(fe, coords, poly->order, FALSE, COL_BORDER);
1509 }
1510 sfree(poly);
1511
1512 draw_update(fe, 0, 0, (int)((bb.r-bb.l+2.0F) * GRID_SCALE),
1513 (int)((bb.d-bb.u+2.0F) * GRID_SCALE));
1514
1515 /*
1516 * Update the status bar.
1517 */
1518 {
1519 char statusbuf[256];
1520
1521 sprintf(statusbuf, "%sMoves: %d",
1522 (state->completed ? "COMPLETED! " : ""),
1523 (state->completed ? state->completed : state->movecount));
1524
1525 status_bar(fe, statusbuf);
1526 }
1527 }
1528
1529 static float game_anim_length(game_state *oldstate,
1530 game_state *newstate, int dir)
1531 {
1532 return ROLLTIME;
1533 }
1534
1535 static float game_flash_length(game_state *oldstate,
1536 game_state *newstate, int dir)
1537 {
1538 return 0.0F;
1539 }
1540
1541 static int game_wants_statusbar(void)
1542 {
1543 return TRUE;
1544 }
1545
1546 #ifdef COMBINED
1547 #define thegame cube
1548 #endif
1549
1550 const struct game thegame = {
1551 "Cube", "games.cube",
1552 default_params,
1553 game_fetch_preset,
1554 decode_params,
1555 encode_params,
1556 free_params,
1557 dup_params,
1558 TRUE, game_configure, custom_params,
1559 validate_params,
1560 new_game_seed,
1561 game_free_aux_info,
1562 validate_seed,
1563 new_game,
1564 dup_game,
1565 free_game,
1566 FALSE, solve_game,
1567 FALSE, game_text_format,
1568 new_ui,
1569 free_ui,
1570 make_move,
1571 game_size,
1572 game_colours,
1573 game_new_drawstate,
1574 game_free_drawstate,
1575 game_redraw,
1576 game_anim_length,
1577 game_flash_length,
1578 game_wants_statusbar,
1579 };