Write a comment outlining a design for a rewritten faster solver.
[sgt/puzzles] / bridges.c
1 /*
2 * bridges.c: Implementation of the Nikoli game 'Bridges'.
3 *
4 * Things still to do:
5 *
6 * - The solver's algorithmic design is not really ideal. It makes
7 * use of the same data representation as gameplay uses, which
8 * often looks like a tempting reuse of code but isn't always a
9 * good idea. In this case, it's unpleasant that each edge of the
10 * graph ends up represented as multiple squares on a grid, with
11 * flags indicating when edges and non-edges cross; that's useful
12 * when the result can be directly translated into positions of
13 * graphics on the display, but in purely internal work it makes
14 * even simple manipulations during solving more painful than they
15 * should be, and complex ones have no choice but to modify the
16 * data structures temporarily, test things, and put them back. I
17 * envisage a complete solver rewrite along the following lines:
18 * + We have a collection of vertices (islands) and edges
19 * (potential bridge locations, i.e. pairs of horizontal or
20 * vertical islands with no other island in between).
21 * + Each edge has an associated list of edges that cross it, and
22 * hence with which it is mutually exclusive.
23 * + For each edge, we track the min and max number of bridges we
24 * currently think possible.
25 * + For each vertex, we track the number of _liberties_ it has,
26 * i.e. its clue number minus the min bridge count for each edge
27 * out of it.
28 * + We also maintain a dsf that identifies sets of vertices which
29 * are connected components of the puzzle so far, and for each
30 * equivalence class we track the total number of liberties for
31 * that component. (The dsf mechanism will also already track
32 * the size of each component, i.e. number of islands.)
33 * + So incrementing the min for an edge requires processing along
34 * the lines of:
35 * - set the max for all edges crossing that one to zero
36 * - decrement the liberty count for the vertex at each end,
37 * and also for each vertex's equivalence class (NB they may
38 * be the same class)
39 * - unify the two equivalence classes if they're not already,
40 * and if so, set the liberty count for the new class to be
41 * the sum of the previous two.
42 * + Decrementing the max is much easier, however.
43 * + With this data structure the really fiddly stuff in stage3()
44 * becomes more or less trivial, because it's now a quick job to
45 * find out whether an island would form an isolated subgraph if
46 * connected to a given subset of its neighbours:
47 * - identify the connected components containing the test
48 * vertex and its putative new neighbours (but be careful not
49 * to count a component more than once if two or more of the
50 * vertices involved are already in the same one)
51 * - find the sum of those components' liberty counts, and also
52 * the total number of islands involved
53 * - if the total liberty count of the connected components is
54 * exactly equal to twice the number of edges we'd be adding
55 * (of course each edge destroys two liberties, one at each
56 * end) then these components would become a subgraph with
57 * zero liberties if connected together.
58 * - therefore, if that subgraph also contains fewer than the
59 * total number of islands, it's disallowed.
60 * - As mentioned in stage3(), once we've identified such a
61 * disallowed pattern, we have two choices for what to do
62 * with it: if the candidate set of neighbours has size 1 we
63 * can reduce the max for the edge to that one neighbour,
64 * whereas if its complement has size 1 we can increase the
65 * min for the edge to the _omitted_ neighbour.
66 *
67 * - write a recursive solver?
68 */
69
70 #include <stdio.h>
71 #include <stdlib.h>
72 #include <string.h>
73 #include <assert.h>
74 #include <ctype.h>
75 #include <math.h>
76
77 #include "puzzles.h"
78
79 /* Turn this on for hints about which lines are considered possibilities. */
80 #undef DRAW_GRID
81 #undef DRAW_DSF
82
83 /* --- structures for params, state, etc. --- */
84
85 #define MAX_BRIDGES 4
86
87 #define PREFERRED_TILE_SIZE 24
88 #define TILE_SIZE (ds->tilesize)
89 #define BORDER (TILE_SIZE / 2)
90
91 #define COORD(x) ( (x) * TILE_SIZE + BORDER )
92 #define FROMCOORD(x) ( ((x) - BORDER + TILE_SIZE) / TILE_SIZE - 1 )
93
94 #define FLASH_TIME 0.50F
95
96 enum {
97 COL_BACKGROUND,
98 COL_FOREGROUND,
99 COL_HIGHLIGHT, COL_LOWLIGHT,
100 COL_SELECTED, COL_MARK,
101 COL_HINT, COL_GRID,
102 COL_WARNING,
103 COL_CURSOR,
104 NCOLOURS
105 };
106
107 struct game_params {
108 int w, h, maxb;
109 int islands, expansion; /* %age of island squares, %age chance of expansion */
110 int allowloops, difficulty;
111 };
112
113 /* general flags used by all structs */
114 #define G_ISLAND 0x0001
115 #define G_LINEV 0x0002 /* contains a vert. line */
116 #define G_LINEH 0x0004 /* contains a horiz. line (mutex with LINEV) */
117 #define G_LINE (G_LINEV|G_LINEH)
118 #define G_MARKV 0x0008
119 #define G_MARKH 0x0010
120 #define G_MARK (G_MARKV|G_MARKH)
121 #define G_NOLINEV 0x0020
122 #define G_NOLINEH 0x0040
123 #define G_NOLINE (G_NOLINEV|G_NOLINEH)
124
125 /* flags used by the drawstate */
126 #define G_ISSEL 0x0080
127 #define G_REDRAW 0x0100
128 #define G_FLASH 0x0200
129 #define G_WARN 0x0400
130 #define G_CURSOR 0x0800
131
132 /* flags used by the solver etc. */
133 #define G_SWEEP 0x1000
134
135 #define G_FLAGSH (G_LINEH|G_MARKH|G_NOLINEH)
136 #define G_FLAGSV (G_LINEV|G_MARKV|G_NOLINEV)
137
138 typedef unsigned int grid_type; /* change me later if we invent > 16 bits of flags. */
139
140 struct solver_state {
141 int *dsf, *comptspaces;
142 int *tmpdsf, *tmpcompspaces;
143 int refcount;
144 };
145
146 /* state->gridi is an optimisation; it stores the pointer to the island
147 * structs indexed by (x,y). It's not strictly necessary (we could use
148 * find234 instead), but Purify showed that board generation (mostly the solver)
149 * was spending 60% of its time in find234. */
150
151 struct surrounds { /* cloned from lightup.c */
152 struct { int x, y, dx, dy, off; } points[4];
153 int npoints, nislands;
154 };
155
156 struct island {
157 game_state *state;
158 int x, y, count;
159 struct surrounds adj;
160 };
161
162 struct game_state {
163 int w, h, completed, solved, allowloops, maxb;
164 grid_type *grid, *scratch;
165 struct island *islands;
166 int n_islands, n_islands_alloc;
167 game_params params; /* used by the aux solver. */
168 #define N_WH_ARRAYS 5
169 char *wha, *possv, *possh, *lines, *maxv, *maxh;
170 struct island **gridi;
171 struct solver_state *solver; /* refcounted */
172 };
173
174 #define GRIDSZ(s) ((s)->w * (s)->h * sizeof(grid_type))
175
176 #define INGRID(s,x,y) ((x) >= 0 && (x) < (s)->w && (y) >= 0 && (y) < (s)->h)
177
178 #define DINDEX(x,y) ((y)*state->w + (x))
179
180 #define INDEX(s,g,x,y) ((s)->g[(y)*((s)->w) + (x)])
181 #define IDX(s,g,i) ((s)->g[(i)])
182 #define GRID(s,x,y) INDEX(s,grid,x,y)
183 #define SCRATCH(s,x,y) INDEX(s,scratch,x,y)
184 #define POSSIBLES(s,dx,x,y) ((dx) ? (INDEX(s,possh,x,y)) : (INDEX(s,possv,x,y)))
185 #define MAXIMUM(s,dx,x,y) ((dx) ? (INDEX(s,maxh,x,y)) : (INDEX(s,maxv,x,y)))
186
187 #define GRIDCOUNT(s,x,y,f) ((GRID(s,x,y) & (f)) ? (INDEX(s,lines,x,y)) : 0)
188
189 #define WITHIN2(x,min,max) (((x) < (min)) ? 0 : (((x) > (max)) ? 0 : 1))
190 #define WITHIN(x,min,max) ((min) > (max) ? \
191 WITHIN2(x,max,min) : WITHIN2(x,min,max))
192
193 /* --- island struct and tree support functions --- */
194
195 #define ISLAND_ORTH(is,j,f,df) \
196 (is->f + (is->adj.points[(j)].off*is->adj.points[(j)].df))
197
198 #define ISLAND_ORTHX(is,j) ISLAND_ORTH(is,j,x,dx)
199 #define ISLAND_ORTHY(is,j) ISLAND_ORTH(is,j,y,dy)
200
201 static void fixup_islands_for_realloc(game_state *state)
202 {
203 int i;
204
205 for (i = 0; i < state->w*state->h; i++) state->gridi[i] = NULL;
206 for (i = 0; i < state->n_islands; i++) {
207 struct island *is = &state->islands[i];
208 is->state = state;
209 INDEX(state, gridi, is->x, is->y) = is;
210 }
211 }
212
213 static int game_can_format_as_text_now(game_params *params)
214 {
215 return TRUE;
216 }
217
218 static char *game_text_format(game_state *state)
219 {
220 int x, y, len, nl;
221 char *ret, *p;
222 struct island *is;
223 grid_type grid;
224
225 len = (state->h) * (state->w+1) + 1;
226 ret = snewn(len, char);
227 p = ret;
228
229 for (y = 0; y < state->h; y++) {
230 for (x = 0; x < state->w; x++) {
231 grid = GRID(state,x,y);
232 nl = INDEX(state,lines,x,y);
233 is = INDEX(state, gridi, x, y);
234 if (is) {
235 *p++ = '0' + is->count;
236 } else if (grid & G_LINEV) {
237 *p++ = (nl > 1) ? '"' : (nl == 1) ? '|' : '!'; /* gaah, want a double-bar. */
238 } else if (grid & G_LINEH) {
239 *p++ = (nl > 1) ? '=' : (nl == 1) ? '-' : '~';
240 } else {
241 *p++ = '.';
242 }
243 }
244 *p++ = '\n';
245 }
246 *p++ = '\0';
247
248 assert(p - ret == len);
249 return ret;
250 }
251
252 static void debug_state(game_state *state)
253 {
254 char *textversion = game_text_format(state);
255 debug(("%s", textversion));
256 sfree(textversion);
257 }
258
259 /*static void debug_possibles(game_state *state)
260 {
261 int x, y;
262 debug(("possh followed by possv\n"));
263 for (y = 0; y < state->h; y++) {
264 for (x = 0; x < state->w; x++) {
265 debug(("%d", POSSIBLES(state, 1, x, y)));
266 }
267 debug((" "));
268 for (x = 0; x < state->w; x++) {
269 debug(("%d", POSSIBLES(state, 0, x, y)));
270 }
271 debug(("\n"));
272 }
273 debug(("\n"));
274 for (y = 0; y < state->h; y++) {
275 for (x = 0; x < state->w; x++) {
276 debug(("%d", MAXIMUM(state, 1, x, y)));
277 }
278 debug((" "));
279 for (x = 0; x < state->w; x++) {
280 debug(("%d", MAXIMUM(state, 0, x, y)));
281 }
282 debug(("\n"));
283 }
284 debug(("\n"));
285 }*/
286
287 static void island_set_surrounds(struct island *is)
288 {
289 assert(INGRID(is->state,is->x,is->y));
290 is->adj.npoints = is->adj.nislands = 0;
291 #define ADDPOINT(cond,ddx,ddy) do {\
292 if (cond) { \
293 is->adj.points[is->adj.npoints].x = is->x+(ddx); \
294 is->adj.points[is->adj.npoints].y = is->y+(ddy); \
295 is->adj.points[is->adj.npoints].dx = (ddx); \
296 is->adj.points[is->adj.npoints].dy = (ddy); \
297 is->adj.points[is->adj.npoints].off = 0; \
298 is->adj.npoints++; \
299 } } while(0)
300 ADDPOINT(is->x > 0, -1, 0);
301 ADDPOINT(is->x < (is->state->w-1), +1, 0);
302 ADDPOINT(is->y > 0, 0, -1);
303 ADDPOINT(is->y < (is->state->h-1), 0, +1);
304 }
305
306 static void island_find_orthogonal(struct island *is)
307 {
308 /* fills in the rest of the 'surrounds' structure, assuming
309 * all other islands are now in place. */
310 int i, x, y, dx, dy, off;
311
312 is->adj.nislands = 0;
313 for (i = 0; i < is->adj.npoints; i++) {
314 dx = is->adj.points[i].dx;
315 dy = is->adj.points[i].dy;
316 x = is->x + dx;
317 y = is->y + dy;
318 off = 1;
319 is->adj.points[i].off = 0;
320 while (INGRID(is->state, x, y)) {
321 if (GRID(is->state, x, y) & G_ISLAND) {
322 is->adj.points[i].off = off;
323 is->adj.nislands++;
324 /*debug(("island (%d,%d) has orth is. %d*(%d,%d) away at (%d,%d).\n",
325 is->x, is->y, off, dx, dy,
326 ISLAND_ORTHX(is,i), ISLAND_ORTHY(is,i)));*/
327 goto foundisland;
328 }
329 off++; x += dx; y += dy;
330 }
331 foundisland:
332 ;
333 }
334 }
335
336 static int island_hasbridge(struct island *is, int direction)
337 {
338 int x = is->adj.points[direction].x;
339 int y = is->adj.points[direction].y;
340 grid_type gline = is->adj.points[direction].dx ? G_LINEH : G_LINEV;
341
342 if (GRID(is->state, x, y) & gline) return 1;
343 return 0;
344 }
345
346 static struct island *island_find_connection(struct island *is, int adjpt)
347 {
348 struct island *is_r;
349
350 assert(adjpt < is->adj.npoints);
351 if (!is->adj.points[adjpt].off) return NULL;
352 if (!island_hasbridge(is, adjpt)) return NULL;
353
354 is_r = INDEX(is->state, gridi,
355 ISLAND_ORTHX(is, adjpt), ISLAND_ORTHY(is, adjpt));
356 assert(is_r);
357
358 return is_r;
359 }
360
361 static struct island *island_add(game_state *state, int x, int y, int count)
362 {
363 struct island *is;
364 int realloced = 0;
365
366 assert(!(GRID(state,x,y) & G_ISLAND));
367 GRID(state,x,y) |= G_ISLAND;
368
369 state->n_islands++;
370 if (state->n_islands > state->n_islands_alloc) {
371 state->n_islands_alloc = state->n_islands * 2;
372 state->islands =
373 sresize(state->islands, state->n_islands_alloc, struct island);
374 realloced = 1;
375 }
376 is = &state->islands[state->n_islands-1];
377
378 memset(is, 0, sizeof(struct island));
379 is->state = state;
380 is->x = x;
381 is->y = y;
382 is->count = count;
383 island_set_surrounds(is);
384
385 if (realloced)
386 fixup_islands_for_realloc(state);
387 else
388 INDEX(state, gridi, x, y) = is;
389
390 return is;
391 }
392
393
394 /* n = -1 means 'flip NOLINE flags [and set line to 0].' */
395 static void island_join(struct island *i1, struct island *i2, int n, int is_max)
396 {
397 game_state *state = i1->state;
398 int s, e, x, y;
399
400 assert(i1->state == i2->state);
401 assert(n >= -1 && n <= i1->state->maxb);
402
403 if (i1->x == i2->x) {
404 x = i1->x;
405 if (i1->y < i2->y) {
406 s = i1->y+1; e = i2->y-1;
407 } else {
408 s = i2->y+1; e = i1->y-1;
409 }
410 for (y = s; y <= e; y++) {
411 if (is_max) {
412 INDEX(state,maxv,x,y) = n;
413 } else {
414 if (n < 0) {
415 GRID(state,x,y) ^= G_NOLINEV;
416 } else if (n == 0) {
417 GRID(state,x,y) &= ~G_LINEV;
418 } else {
419 GRID(state,x,y) |= G_LINEV;
420 INDEX(state,lines,x,y) = n;
421 }
422 }
423 }
424 } else if (i1->y == i2->y) {
425 y = i1->y;
426 if (i1->x < i2->x) {
427 s = i1->x+1; e = i2->x-1;
428 } else {
429 s = i2->x+1; e = i1->x-1;
430 }
431 for (x = s; x <= e; x++) {
432 if (is_max) {
433 INDEX(state,maxh,x,y) = n;
434 } else {
435 if (n < 0) {
436 GRID(state,x,y) ^= G_NOLINEH;
437 } else if (n == 0) {
438 GRID(state,x,y) &= ~G_LINEH;
439 } else {
440 GRID(state,x,y) |= G_LINEH;
441 INDEX(state,lines,x,y) = n;
442 }
443 }
444 }
445 } else {
446 assert(!"island_join: islands not orthogonal.");
447 }
448 }
449
450 /* Counts the number of bridges currently attached to the island. */
451 static int island_countbridges(struct island *is)
452 {
453 int i, c = 0;
454
455 for (i = 0; i < is->adj.npoints; i++) {
456 c += GRIDCOUNT(is->state,
457 is->adj.points[i].x, is->adj.points[i].y,
458 is->adj.points[i].dx ? G_LINEH : G_LINEV);
459 }
460 /*debug(("island count for (%d,%d) is %d.\n", is->x, is->y, c));*/
461 return c;
462 }
463
464 static int island_adjspace(struct island *is, int marks, int missing,
465 int direction)
466 {
467 int x, y, poss, curr, dx;
468 grid_type gline, mline;
469
470 x = is->adj.points[direction].x;
471 y = is->adj.points[direction].y;
472 dx = is->adj.points[direction].dx;
473 gline = dx ? G_LINEH : G_LINEV;
474
475 if (marks) {
476 mline = dx ? G_MARKH : G_MARKV;
477 if (GRID(is->state,x,y) & mline) return 0;
478 }
479 poss = POSSIBLES(is->state, dx, x, y);
480 poss = min(poss, missing);
481
482 curr = GRIDCOUNT(is->state, x, y, gline);
483 poss = min(poss, MAXIMUM(is->state, dx, x, y) - curr);
484
485 return poss;
486 }
487
488 /* Counts the number of bridge spaces left around the island;
489 * expects the possibles to be up-to-date. */
490 static int island_countspaces(struct island *is, int marks)
491 {
492 int i, c = 0, missing;
493
494 missing = is->count - island_countbridges(is);
495 if (missing < 0) return 0;
496
497 for (i = 0; i < is->adj.npoints; i++) {
498 c += island_adjspace(is, marks, missing, i);
499 }
500 return c;
501 }
502
503 static int island_isadj(struct island *is, int direction)
504 {
505 int x, y;
506 grid_type gline, mline;
507
508 x = is->adj.points[direction].x;
509 y = is->adj.points[direction].y;
510
511 mline = is->adj.points[direction].dx ? G_MARKH : G_MARKV;
512 gline = is->adj.points[direction].dx ? G_LINEH : G_LINEV;
513 if (GRID(is->state, x, y) & mline) {
514 /* If we're marked (i.e. the thing to attach to is complete)
515 * only count an adjacency if we're already attached. */
516 return GRIDCOUNT(is->state, x, y, gline);
517 } else {
518 /* If we're unmarked, count possible adjacency iff it's
519 * flagged as POSSIBLE. */
520 return POSSIBLES(is->state, is->adj.points[direction].dx, x, y);
521 }
522 return 0;
523 }
524
525 /* Counts the no. of possible adjacent islands (including islands
526 * we're already connected to). */
527 static int island_countadj(struct island *is)
528 {
529 int i, nadj = 0;
530
531 for (i = 0; i < is->adj.npoints; i++) {
532 if (island_isadj(is, i)) nadj++;
533 }
534 return nadj;
535 }
536
537 static void island_togglemark(struct island *is)
538 {
539 int i, j, x, y, o;
540 struct island *is_loop;
541
542 /* mark the island... */
543 GRID(is->state, is->x, is->y) ^= G_MARK;
544
545 /* ...remove all marks on non-island squares... */
546 for (x = 0; x < is->state->w; x++) {
547 for (y = 0; y < is->state->h; y++) {
548 if (!(GRID(is->state, x, y) & G_ISLAND))
549 GRID(is->state, x, y) &= ~G_MARK;
550 }
551 }
552
553 /* ...and add marks to squares around marked islands. */
554 for (i = 0; i < is->state->n_islands; i++) {
555 is_loop = &is->state->islands[i];
556 if (!(GRID(is_loop->state, is_loop->x, is_loop->y) & G_MARK))
557 continue;
558
559 for (j = 0; j < is_loop->adj.npoints; j++) {
560 /* if this direction takes us to another island, mark all
561 * squares between the two islands. */
562 if (!is_loop->adj.points[j].off) continue;
563 assert(is_loop->adj.points[j].off > 1);
564 for (o = 1; o < is_loop->adj.points[j].off; o++) {
565 GRID(is_loop->state,
566 is_loop->x + is_loop->adj.points[j].dx*o,
567 is_loop->y + is_loop->adj.points[j].dy*o) |=
568 is_loop->adj.points[j].dy ? G_MARKV : G_MARKH;
569 }
570 }
571 }
572 }
573
574 static int island_impossible(struct island *is, int strict)
575 {
576 int curr = island_countbridges(is), nspc = is->count - curr, nsurrspc;
577 int i, poss;
578 struct island *is_orth;
579
580 if (nspc < 0) {
581 debug(("island at (%d,%d) impossible because full.\n", is->x, is->y));
582 return 1; /* too many bridges */
583 } else if ((curr + island_countspaces(is, 0)) < is->count) {
584 debug(("island at (%d,%d) impossible because not enough spaces.\n", is->x, is->y));
585 return 1; /* impossible to create enough bridges */
586 } else if (strict && curr < is->count) {
587 debug(("island at (%d,%d) impossible because locked.\n", is->x, is->y));
588 return 1; /* not enough bridges and island is locked */
589 }
590
591 /* Count spaces in surrounding islands. */
592 nsurrspc = 0;
593 for (i = 0; i < is->adj.npoints; i++) {
594 int ifree, dx = is->adj.points[i].dx;
595
596 if (!is->adj.points[i].off) continue;
597 poss = POSSIBLES(is->state, dx,
598 is->adj.points[i].x, is->adj.points[i].y);
599 if (poss == 0) continue;
600 is_orth = INDEX(is->state, gridi,
601 ISLAND_ORTHX(is,i), ISLAND_ORTHY(is,i));
602 assert(is_orth);
603
604 ifree = is_orth->count - island_countbridges(is_orth);
605 if (ifree > 0) {
606 /*
607 * ifree is the number of bridges unfilled in the other
608 * island, which is clearly an upper bound on the number
609 * of extra bridges this island may run to it.
610 *
611 * Another upper bound is the number of bridges unfilled
612 * on the specific line between here and there. We must
613 * take the minimum of both.
614 */
615 int bmax = MAXIMUM(is->state, dx,
616 is->adj.points[i].x, is->adj.points[i].y);
617 int bcurr = GRIDCOUNT(is->state,
618 is->adj.points[i].x, is->adj.points[i].y,
619 dx ? G_LINEH : G_LINEV);
620 assert(bcurr <= bmax);
621 nsurrspc += min(ifree, bmax - bcurr);
622 }
623 }
624 if (nsurrspc < nspc) {
625 debug(("island at (%d,%d) impossible: surr. islands %d spc, need %d.\n",
626 is->x, is->y, nsurrspc, nspc));
627 return 1; /* not enough spaces around surrounding islands to fill this one. */
628 }
629
630 return 0;
631 }
632
633 /* --- Game parameter functions --- */
634
635 #define DEFAULT_PRESET 0
636
637 const struct game_params bridges_presets[] = {
638 { 7, 7, 2, 30, 10, 1, 0 },
639 { 7, 7, 2, 30, 10, 1, 1 },
640 { 7, 7, 2, 30, 10, 1, 2 },
641 { 10, 10, 2, 30, 10, 1, 0 },
642 { 10, 10, 2, 30, 10, 1, 1 },
643 { 10, 10, 2, 30, 10, 1, 2 },
644 { 15, 15, 2, 30, 10, 1, 0 },
645 { 15, 15, 2, 30, 10, 1, 1 },
646 { 15, 15, 2, 30, 10, 1, 2 },
647 };
648
649 static game_params *default_params(void)
650 {
651 game_params *ret = snew(game_params);
652 *ret = bridges_presets[DEFAULT_PRESET];
653
654 return ret;
655 }
656
657 static int game_fetch_preset(int i, char **name, game_params **params)
658 {
659 game_params *ret;
660 char buf[80];
661
662 if (i < 0 || i >= lenof(bridges_presets))
663 return FALSE;
664
665 ret = default_params();
666 *ret = bridges_presets[i];
667 *params = ret;
668
669 sprintf(buf, "%dx%d %s", ret->w, ret->h,
670 ret->difficulty == 0 ? "easy" :
671 ret->difficulty == 1 ? "medium" : "hard");
672 *name = dupstr(buf);
673
674 return TRUE;
675 }
676
677 static void free_params(game_params *params)
678 {
679 sfree(params);
680 }
681
682 static game_params *dup_params(game_params *params)
683 {
684 game_params *ret = snew(game_params);
685 *ret = *params; /* structure copy */
686 return ret;
687 }
688
689 #define EATNUM(x) do { \
690 (x) = atoi(string); \
691 while (*string && isdigit((unsigned char)*string)) string++; \
692 } while(0)
693
694 static void decode_params(game_params *params, char const *string)
695 {
696 EATNUM(params->w);
697 params->h = params->w;
698 if (*string == 'x') {
699 string++;
700 EATNUM(params->h);
701 }
702 if (*string == 'i') {
703 string++;
704 EATNUM(params->islands);
705 }
706 if (*string == 'e') {
707 string++;
708 EATNUM(params->expansion);
709 }
710 if (*string == 'm') {
711 string++;
712 EATNUM(params->maxb);
713 }
714 params->allowloops = 1;
715 if (*string == 'L') {
716 string++;
717 params->allowloops = 0;
718 }
719 if (*string == 'd') {
720 string++;
721 EATNUM(params->difficulty);
722 }
723 }
724
725 static char *encode_params(game_params *params, int full)
726 {
727 char buf[80];
728
729 if (full) {
730 sprintf(buf, "%dx%di%de%dm%d%sd%d",
731 params->w, params->h, params->islands, params->expansion,
732 params->maxb, params->allowloops ? "" : "L",
733 params->difficulty);
734 } else {
735 sprintf(buf, "%dx%dm%d%s", params->w, params->h,
736 params->maxb, params->allowloops ? "" : "L");
737 }
738 return dupstr(buf);
739 }
740
741 static config_item *game_configure(game_params *params)
742 {
743 config_item *ret;
744 char buf[80];
745
746 ret = snewn(8, config_item);
747
748 ret[0].name = "Width";
749 ret[0].type = C_STRING;
750 sprintf(buf, "%d", params->w);
751 ret[0].sval = dupstr(buf);
752 ret[0].ival = 0;
753
754 ret[1].name = "Height";
755 ret[1].type = C_STRING;
756 sprintf(buf, "%d", params->h);
757 ret[1].sval = dupstr(buf);
758 ret[1].ival = 0;
759
760 ret[2].name = "Difficulty";
761 ret[2].type = C_CHOICES;
762 ret[2].sval = ":Easy:Medium:Hard";
763 ret[2].ival = params->difficulty;
764
765 ret[3].name = "Allow loops";
766 ret[3].type = C_BOOLEAN;
767 ret[3].sval = NULL;
768 ret[3].ival = params->allowloops;
769
770 ret[4].name = "Max. bridges per direction";
771 ret[4].type = C_CHOICES;
772 ret[4].sval = ":1:2:3:4"; /* keep up-to-date with MAX_BRIDGES */
773 ret[4].ival = params->maxb - 1;
774
775 ret[5].name = "%age of island squares";
776 ret[5].type = C_CHOICES;
777 ret[5].sval = ":5%:10%:15%:20%:25%:30%";
778 ret[5].ival = (params->islands / 5)-1;
779
780 ret[6].name = "Expansion factor (%age)";
781 ret[6].type = C_CHOICES;
782 ret[6].sval = ":0%:10%:20%:30%:40%:50%:60%:70%:80%:90%:100%";
783 ret[6].ival = params->expansion / 10;
784
785 ret[7].name = NULL;
786 ret[7].type = C_END;
787 ret[7].sval = NULL;
788 ret[7].ival = 0;
789
790 return ret;
791 }
792
793 static game_params *custom_params(config_item *cfg)
794 {
795 game_params *ret = snew(game_params);
796
797 ret->w = atoi(cfg[0].sval);
798 ret->h = atoi(cfg[1].sval);
799 ret->difficulty = cfg[2].ival;
800 ret->allowloops = cfg[3].ival;
801 ret->maxb = cfg[4].ival + 1;
802 ret->islands = (cfg[5].ival + 1) * 5;
803 ret->expansion = cfg[6].ival * 10;
804
805 return ret;
806 }
807
808 static char *validate_params(game_params *params, int full)
809 {
810 if (params->w < 3 || params->h < 3)
811 return "Width and height must be at least 3";
812 if (params->maxb < 1 || params->maxb > MAX_BRIDGES)
813 return "Too many bridges.";
814 if (full) {
815 if (params->islands <= 0 || params->islands > 30)
816 return "%age of island squares must be between 1% and 30%";
817 if (params->expansion < 0 || params->expansion > 100)
818 return "Expansion factor must be between 0 and 100";
819 }
820 return NULL;
821 }
822
823 /* --- Game encoding and differences --- */
824
825 static char *encode_game(game_state *state)
826 {
827 char *ret, *p;
828 int wh = state->w*state->h, run, x, y;
829 struct island *is;
830
831 ret = snewn(wh + 1, char);
832 p = ret;
833 run = 0;
834 for (y = 0; y < state->h; y++) {
835 for (x = 0; x < state->w; x++) {
836 is = INDEX(state, gridi, x, y);
837 if (is) {
838 if (run) {
839 *p++ = ('a'-1) + run;
840 run = 0;
841 }
842 if (is->count < 10)
843 *p++ = '0' + is->count;
844 else
845 *p++ = 'A' + (is->count - 10);
846 } else {
847 if (run == 26) {
848 *p++ = ('a'-1) + run;
849 run = 0;
850 }
851 run++;
852 }
853 }
854 }
855 if (run) {
856 *p++ = ('a'-1) + run;
857 run = 0;
858 }
859 *p = '\0';
860 assert(p - ret <= wh);
861
862 return ret;
863 }
864
865 static char *game_state_diff(game_state *src, game_state *dest)
866 {
867 int movesize = 256, movelen = 0;
868 char *move = snewn(movesize, char), buf[80];
869 int i, d, x, y, len;
870 grid_type gline, nline;
871 struct island *is_s, *is_d, *is_orth;
872
873 #define APPEND do { \
874 if (movelen + len >= movesize) { \
875 movesize = movelen + len + 256; \
876 move = sresize(move, movesize, char); \
877 } \
878 strcpy(move + movelen, buf); \
879 movelen += len; \
880 } while(0)
881
882 move[movelen++] = 'S';
883 move[movelen] = '\0';
884
885 assert(src->n_islands == dest->n_islands);
886
887 for (i = 0; i < src->n_islands; i++) {
888 is_s = &src->islands[i];
889 is_d = &dest->islands[i];
890 assert(is_s->x == is_d->x);
891 assert(is_s->y == is_d->y);
892 assert(is_s->adj.npoints == is_d->adj.npoints); /* more paranoia */
893
894 for (d = 0; d < is_s->adj.npoints; d++) {
895 if (is_s->adj.points[d].dx == -1 ||
896 is_s->adj.points[d].dy == -1) continue;
897
898 x = is_s->adj.points[d].x;
899 y = is_s->adj.points[d].y;
900 gline = is_s->adj.points[d].dx ? G_LINEH : G_LINEV;
901 nline = is_s->adj.points[d].dx ? G_NOLINEH : G_NOLINEV;
902 is_orth = INDEX(dest, gridi,
903 ISLAND_ORTHX(is_d, d), ISLAND_ORTHY(is_d, d));
904
905 if (GRIDCOUNT(src, x, y, gline) != GRIDCOUNT(dest, x, y, gline)) {
906 assert(is_orth);
907 len = sprintf(buf, ";L%d,%d,%d,%d,%d",
908 is_s->x, is_s->y, is_orth->x, is_orth->y,
909 GRIDCOUNT(dest, x, y, gline));
910 APPEND;
911 }
912 if ((GRID(src,x,y) & nline) != (GRID(dest, x, y) & nline)) {
913 assert(is_orth);
914 len = sprintf(buf, ";N%d,%d,%d,%d",
915 is_s->x, is_s->y, is_orth->x, is_orth->y);
916 APPEND;
917 }
918 }
919 if ((GRID(src, is_s->x, is_s->y) & G_MARK) !=
920 (GRID(dest, is_d->x, is_d->y) & G_MARK)) {
921 len = sprintf(buf, ";M%d,%d", is_s->x, is_s->y);
922 APPEND;
923 }
924 }
925 return move;
926 }
927
928 /* --- Game setup and solving utilities --- */
929
930 /* This function is optimised; a Quantify showed that lots of grid-generation time
931 * (>50%) was spent in here. Hence the IDX() stuff. */
932
933 static void map_update_possibles(game_state *state)
934 {
935 int x, y, s, e, bl, i, np, maxb, w = state->w, idx;
936 struct island *is_s = NULL, *is_f = NULL;
937
938 /* Run down vertical stripes [un]setting possv... */
939 for (x = 0; x < state->w; x++) {
940 idx = x;
941 s = e = -1;
942 bl = 0;
943 /* Unset possible flags until we find an island. */
944 for (y = 0; y < state->h; y++) {
945 is_s = IDX(state, gridi, idx);
946 if (is_s) {
947 maxb = is_s->count;
948 break;
949 }
950
951 IDX(state, possv, idx) = 0;
952 idx += w;
953 }
954 for (; y < state->h; y++) {
955 maxb = min(maxb, IDX(state, maxv, idx));
956 is_f = IDX(state, gridi, idx);
957 if (is_f) {
958 assert(is_s);
959 np = min(maxb, is_f->count);
960
961 if (s != -1) {
962 for (i = s; i <= e; i++) {
963 INDEX(state, possv, x, i) = bl ? 0 : np;
964 }
965 }
966 s = y+1;
967 bl = 0;
968 is_s = is_f;
969 maxb = is_s->count;
970 } else {
971 e = y;
972 if (IDX(state,grid,idx) & (G_LINEH|G_NOLINEV)) bl = 1;
973 }
974 idx += w;
975 }
976 if (s != -1) {
977 for (i = s; i <= e; i++)
978 INDEX(state, possv, x, i) = 0;
979 }
980 }
981
982 /* ...and now do horizontal stripes [un]setting possh. */
983 /* can we lose this clone'n'hack? */
984 for (y = 0; y < state->h; y++) {
985 idx = y*w;
986 s = e = -1;
987 bl = 0;
988 for (x = 0; x < state->w; x++) {
989 is_s = IDX(state, gridi, idx);
990 if (is_s) {
991 maxb = is_s->count;
992 break;
993 }
994
995 IDX(state, possh, idx) = 0;
996 idx += 1;
997 }
998 for (; x < state->w; x++) {
999 maxb = min(maxb, IDX(state, maxh, idx));
1000 is_f = IDX(state, gridi, idx);
1001 if (is_f) {
1002 assert(is_s);
1003 np = min(maxb, is_f->count);
1004
1005 if (s != -1) {
1006 for (i = s; i <= e; i++) {
1007 INDEX(state, possh, i, y) = bl ? 0 : np;
1008 }
1009 }
1010 s = x+1;
1011 bl = 0;
1012 is_s = is_f;
1013 maxb = is_s->count;
1014 } else {
1015 e = x;
1016 if (IDX(state,grid,idx) & (G_LINEV|G_NOLINEH)) bl = 1;
1017 }
1018 idx += 1;
1019 }
1020 if (s != -1) {
1021 for (i = s; i <= e; i++)
1022 INDEX(state, possh, i, y) = 0;
1023 }
1024 }
1025 }
1026
1027 static void map_count(game_state *state)
1028 {
1029 int i, n, ax, ay;
1030 grid_type flag, grid;
1031 struct island *is;
1032
1033 for (i = 0; i < state->n_islands; i++) {
1034 is = &state->islands[i];
1035 is->count = 0;
1036 for (n = 0; n < is->adj.npoints; n++) {
1037 ax = is->adj.points[n].x;
1038 ay = is->adj.points[n].y;
1039 flag = (ax == is->x) ? G_LINEV : G_LINEH;
1040 grid = GRID(state,ax,ay);
1041 if (grid & flag) {
1042 is->count += INDEX(state,lines,ax,ay);
1043 }
1044 }
1045 }
1046 }
1047
1048 static void map_find_orthogonal(game_state *state)
1049 {
1050 int i;
1051
1052 for (i = 0; i < state->n_islands; i++) {
1053 island_find_orthogonal(&state->islands[i]);
1054 }
1055 }
1056
1057 static int grid_degree(game_state *state, int x, int y, int *nx_r, int *ny_r)
1058 {
1059 grid_type grid = SCRATCH(state, x, y), gline = grid & G_LINE;
1060 struct island *is;
1061 int x1, y1, x2, y2, c = 0, i, nx, ny;
1062
1063 nx = ny = -1; /* placate optimiser */
1064 is = INDEX(state, gridi, x, y);
1065 if (is) {
1066 for (i = 0; i < is->adj.npoints; i++) {
1067 gline = is->adj.points[i].dx ? G_LINEH : G_LINEV;
1068 if (SCRATCH(state,
1069 is->adj.points[i].x,
1070 is->adj.points[i].y) & gline) {
1071 nx = is->adj.points[i].x;
1072 ny = is->adj.points[i].y;
1073 c++;
1074 }
1075 }
1076 } else if (gline) {
1077 if (gline & G_LINEV) {
1078 x1 = x2 = x;
1079 y1 = y-1; y2 = y+1;
1080 } else {
1081 x1 = x-1; x2 = x+1;
1082 y1 = y2 = y;
1083 }
1084 /* Non-island squares with edges in should never be pointing off the
1085 * edge of the grid. */
1086 assert(INGRID(state, x1, y1));
1087 assert(INGRID(state, x2, y2));
1088 if (SCRATCH(state, x1, y1) & (gline | G_ISLAND)) {
1089 nx = x1; ny = y1; c++;
1090 }
1091 if (SCRATCH(state, x2, y2) & (gline | G_ISLAND)) {
1092 nx = x2; ny = y2; c++;
1093 }
1094 }
1095 if (c == 1) {
1096 assert(nx != -1 && ny != -1); /* paranoia */
1097 *nx_r = nx; *ny_r = ny;
1098 }
1099 return c;
1100 }
1101
1102 static int map_hasloops(game_state *state, int mark)
1103 {
1104 int x, y, ox, oy, nx = 0, ny = 0, loop = 0;
1105
1106 memcpy(state->scratch, state->grid, GRIDSZ(state));
1107
1108 /* This algorithm is actually broken; if there are two loops connected
1109 * by bridges this will also highlight bridges. The correct algorithm
1110 * uses a dsf and a two-pass edge-detection algorithm (see check_correct
1111 * in slant.c); this is BALGE for now, especially since disallow-loops
1112 * is not the default for this puzzle. If we want to fix this later then
1113 * copy the alg in slant.c to the empty statement in map_group. */
1114
1115 /* Remove all 1-degree edges. */
1116 for (y = 0; y < state->h; y++) {
1117 for (x = 0; x < state->w; x++) {
1118 ox = x; oy = y;
1119 while (grid_degree(state, ox, oy, &nx, &ny) == 1) {
1120 /*debug(("hasloops: removing 1-degree at (%d,%d).\n", ox, oy));*/
1121 SCRATCH(state, ox, oy) &= ~(G_LINE|G_ISLAND);
1122 ox = nx; oy = ny;
1123 }
1124 }
1125 }
1126 /* Mark any remaining edges as G_WARN, if required. */
1127 for (x = 0; x < state->w; x++) {
1128 for (y = 0; y < state->h; y++) {
1129 if (GRID(state,x,y) & G_ISLAND) continue;
1130
1131 if (SCRATCH(state, x, y) & G_LINE) {
1132 if (mark) {
1133 /*debug(("hasloops: marking loop square at (%d,%d).\n",
1134 x, y));*/
1135 GRID(state,x,y) |= G_WARN;
1136 loop = 1;
1137 } else
1138 return 1; /* short-cut as soon as we find one */
1139 } else {
1140 if (mark)
1141 GRID(state,x,y) &= ~G_WARN;
1142 }
1143 }
1144 }
1145 return loop;
1146 }
1147
1148 static void map_group(game_state *state)
1149 {
1150 int i, wh = state->w*state->h, d1, d2;
1151 int x, y, x2, y2;
1152 int *dsf = state->solver->dsf;
1153 struct island *is, *is_join;
1154
1155 /* Initialise dsf. */
1156 dsf_init(dsf, wh);
1157
1158 /* For each island, find connected islands right or down
1159 * and merge the dsf for the island squares as well as the
1160 * bridge squares. */
1161 for (x = 0; x < state->w; x++) {
1162 for (y = 0; y < state->h; y++) {
1163 GRID(state,x,y) &= ~(G_SWEEP|G_WARN); /* for group_full. */
1164
1165 is = INDEX(state, gridi, x, y);
1166 if (!is) continue;
1167 d1 = DINDEX(x,y);
1168 for (i = 0; i < is->adj.npoints; i++) {
1169 /* only want right/down */
1170 if (is->adj.points[i].dx == -1 ||
1171 is->adj.points[i].dy == -1) continue;
1172
1173 is_join = island_find_connection(is, i);
1174 if (!is_join) continue;
1175
1176 d2 = DINDEX(is_join->x, is_join->y);
1177 if (dsf_canonify(dsf,d1) == dsf_canonify(dsf,d2)) {
1178 ; /* we have a loop. See comment in map_hasloops. */
1179 /* However, we still want to merge all squares joining
1180 * this side-that-makes-a-loop. */
1181 }
1182 /* merge all squares between island 1 and island 2. */
1183 for (x2 = x; x2 <= is_join->x; x2++) {
1184 for (y2 = y; y2 <= is_join->y; y2++) {
1185 d2 = DINDEX(x2,y2);
1186 if (d1 != d2) dsf_merge(dsf,d1,d2);
1187 }
1188 }
1189 }
1190 }
1191 }
1192 }
1193
1194 static int map_group_check(game_state *state, int canon, int warn,
1195 int *nislands_r)
1196 {
1197 int *dsf = state->solver->dsf, nislands = 0;
1198 int x, y, i, allfull = 1;
1199 struct island *is;
1200
1201 for (i = 0; i < state->n_islands; i++) {
1202 is = &state->islands[i];
1203 if (dsf_canonify(dsf, DINDEX(is->x,is->y)) != canon) continue;
1204
1205 GRID(state, is->x, is->y) |= G_SWEEP;
1206 nislands++;
1207 if (island_countbridges(is) != is->count)
1208 allfull = 0;
1209 }
1210 if (warn && allfull && nislands != state->n_islands) {
1211 /* we're full and this island group isn't the whole set.
1212 * Mark all squares with this dsf canon as ERR. */
1213 for (x = 0; x < state->w; x++) {
1214 for (y = 0; y < state->h; y++) {
1215 if (dsf_canonify(dsf, DINDEX(x,y)) == canon) {
1216 GRID(state,x,y) |= G_WARN;
1217 }
1218 }
1219 }
1220
1221 }
1222 if (nislands_r) *nislands_r = nislands;
1223 return allfull;
1224 }
1225
1226 static int map_group_full(game_state *state, int *ngroups_r)
1227 {
1228 int *dsf = state->solver->dsf, ngroups = 0;
1229 int i, anyfull = 0;
1230 struct island *is;
1231
1232 /* NB this assumes map_group (or sth else) has cleared G_SWEEP. */
1233
1234 for (i = 0; i < state->n_islands; i++) {
1235 is = &state->islands[i];
1236 if (GRID(state,is->x,is->y) & G_SWEEP) continue;
1237
1238 ngroups++;
1239 if (map_group_check(state, dsf_canonify(dsf, DINDEX(is->x,is->y)),
1240 1, NULL))
1241 anyfull = 1;
1242 }
1243
1244 *ngroups_r = ngroups;
1245 return anyfull;
1246 }
1247
1248 static int map_check(game_state *state)
1249 {
1250 int ngroups;
1251
1252 /* Check for loops, if necessary. */
1253 if (!state->allowloops) {
1254 if (map_hasloops(state, 1))
1255 return 0;
1256 }
1257
1258 /* Place islands into island groups and check for early
1259 * satisfied-groups. */
1260 map_group(state); /* clears WARN and SWEEP */
1261 if (map_group_full(state, &ngroups)) {
1262 if (ngroups == 1) return 1;
1263 }
1264 return 0;
1265 }
1266
1267 static void map_clear(game_state *state)
1268 {
1269 int x, y;
1270
1271 for (x = 0; x < state->w; x++) {
1272 for (y = 0; y < state->h; y++) {
1273 /* clear most flags; might want to be slightly more careful here. */
1274 GRID(state,x,y) &= G_ISLAND;
1275 }
1276 }
1277 }
1278
1279 static void solve_join(struct island *is, int direction, int n, int is_max)
1280 {
1281 struct island *is_orth;
1282 int d1, d2, *dsf = is->state->solver->dsf;
1283 game_state *state = is->state; /* for DINDEX */
1284
1285 is_orth = INDEX(is->state, gridi,
1286 ISLAND_ORTHX(is, direction),
1287 ISLAND_ORTHY(is, direction));
1288 assert(is_orth);
1289 /*debug(("...joining (%d,%d) to (%d,%d) with %d bridge(s).\n",
1290 is->x, is->y, is_orth->x, is_orth->y, n));*/
1291 island_join(is, is_orth, n, is_max);
1292
1293 if (n > 0 && !is_max) {
1294 d1 = DINDEX(is->x, is->y);
1295 d2 = DINDEX(is_orth->x, is_orth->y);
1296 if (dsf_canonify(dsf, d1) != dsf_canonify(dsf, d2))
1297 dsf_merge(dsf, d1, d2);
1298 }
1299 }
1300
1301 static int solve_fillone(struct island *is)
1302 {
1303 int i, nadded = 0;
1304
1305 debug(("solve_fillone for island (%d,%d).\n", is->x, is->y));
1306
1307 for (i = 0; i < is->adj.npoints; i++) {
1308 if (island_isadj(is, i)) {
1309 if (island_hasbridge(is, i)) {
1310 /* already attached; do nothing. */;
1311 } else {
1312 solve_join(is, i, 1, 0);
1313 nadded++;
1314 }
1315 }
1316 }
1317 return nadded;
1318 }
1319
1320 static int solve_fill(struct island *is)
1321 {
1322 /* for each unmarked adjacent, make sure we convert every possible bridge
1323 * to a real one, and then work out the possibles afresh. */
1324 int i, nnew, ncurr, nadded = 0, missing;
1325
1326 debug(("solve_fill for island (%d,%d).\n", is->x, is->y));
1327
1328 missing = is->count - island_countbridges(is);
1329 if (missing < 0) return 0;
1330
1331 /* very like island_countspaces. */
1332 for (i = 0; i < is->adj.npoints; i++) {
1333 nnew = island_adjspace(is, 1, missing, i);
1334 if (nnew) {
1335 ncurr = GRIDCOUNT(is->state,
1336 is->adj.points[i].x, is->adj.points[i].y,
1337 is->adj.points[i].dx ? G_LINEH : G_LINEV);
1338
1339 solve_join(is, i, nnew + ncurr, 0);
1340 nadded += nnew;
1341 }
1342 }
1343 return nadded;
1344 }
1345
1346 static int solve_island_stage1(struct island *is, int *didsth_r)
1347 {
1348 int bridges = island_countbridges(is);
1349 int nspaces = island_countspaces(is, 1);
1350 int nadj = island_countadj(is);
1351 int didsth = 0;
1352
1353 assert(didsth_r);
1354
1355 /*debug(("island at (%d,%d) filled %d/%d (%d spc) nadj %d\n",
1356 is->x, is->y, bridges, is->count, nspaces, nadj));*/
1357 if (bridges > is->count) {
1358 /* We only ever add bridges when we're sure they fit, or that's
1359 * the only place they can go. If we've added bridges such that
1360 * another island has become wrong, the puzzle must not have had
1361 * a solution. */
1362 debug(("...island at (%d,%d) is overpopulated!\n", is->x, is->y));
1363 return 0;
1364 } else if (bridges == is->count) {
1365 /* This island is full. Make sure it's marked (and update
1366 * possibles if we did). */
1367 if (!(GRID(is->state, is->x, is->y) & G_MARK)) {
1368 debug(("...marking island (%d,%d) as full.\n", is->x, is->y));
1369 island_togglemark(is);
1370 didsth = 1;
1371 }
1372 } else if (GRID(is->state, is->x, is->y) & G_MARK) {
1373 debug(("...island (%d,%d) is marked but unfinished!\n",
1374 is->x, is->y));
1375 return 0; /* island has been marked unfinished; no solution from here. */
1376 } else {
1377 /* This is the interesting bit; we try and fill in more information
1378 * about this island. */
1379 if (is->count == bridges + nspaces) {
1380 if (solve_fill(is) > 0) didsth = 1;
1381 } else if (is->count > ((nadj-1) * is->state->maxb)) {
1382 /* must have at least one bridge in each possible direction. */
1383 if (solve_fillone(is) > 0) didsth = 1;
1384 }
1385 }
1386 if (didsth) {
1387 map_update_possibles(is->state);
1388 *didsth_r = 1;
1389 }
1390 return 1;
1391 }
1392
1393 /* returns non-zero if a new line here would cause a loop. */
1394 static int solve_island_checkloop(struct island *is, int direction)
1395 {
1396 struct island *is_orth;
1397 int *dsf = is->state->solver->dsf, d1, d2;
1398 game_state *state = is->state;
1399
1400 if (is->state->allowloops) return 0; /* don't care anyway */
1401 if (island_hasbridge(is, direction)) return 0; /* already has a bridge */
1402 if (island_isadj(is, direction) == 0) return 0; /* no adj island */
1403
1404 is_orth = INDEX(is->state, gridi,
1405 ISLAND_ORTHX(is,direction),
1406 ISLAND_ORTHY(is,direction));
1407 if (!is_orth) return 0;
1408
1409 d1 = DINDEX(is->x, is->y);
1410 d2 = DINDEX(is_orth->x, is_orth->y);
1411 if (dsf_canonify(dsf, d1) == dsf_canonify(dsf, d2)) {
1412 /* two islands are connected already; don't join them. */
1413 return 1;
1414 }
1415 return 0;
1416 }
1417
1418 static int solve_island_stage2(struct island *is, int *didsth_r)
1419 {
1420 int added = 0, removed = 0, navail = 0, nadj, i;
1421
1422 assert(didsth_r);
1423
1424 for (i = 0; i < is->adj.npoints; i++) {
1425 if (solve_island_checkloop(is, i)) {
1426 debug(("removing possible loop at (%d,%d) direction %d.\n",
1427 is->x, is->y, i));
1428 solve_join(is, i, -1, 0);
1429 map_update_possibles(is->state);
1430 removed = 1;
1431 } else {
1432 navail += island_isadj(is, i);
1433 /*debug(("stage2: navail for (%d,%d) direction (%d,%d) is %d.\n",
1434 is->x, is->y,
1435 is->adj.points[i].dx, is->adj.points[i].dy,
1436 island_isadj(is, i)));*/
1437 }
1438 }
1439
1440 /*debug(("island at (%d,%d) navail %d: checking...\n", is->x, is->y, navail));*/
1441
1442 for (i = 0; i < is->adj.npoints; i++) {
1443 if (!island_hasbridge(is, i)) {
1444 nadj = island_isadj(is, i);
1445 if (nadj > 0 && (navail - nadj) < is->count) {
1446 /* we couldn't now complete the island without at
1447 * least one bridge here; put it in. */
1448 /*debug(("nadj %d, navail %d, is->count %d.\n",
1449 nadj, navail, is->count));*/
1450 debug(("island at (%d,%d) direction (%d,%d) must have 1 bridge\n",
1451 is->x, is->y,
1452 is->adj.points[i].dx, is->adj.points[i].dy));
1453 solve_join(is, i, 1, 0);
1454 added = 1;
1455 /*debug_state(is->state);
1456 debug_possibles(is->state);*/
1457 }
1458 }
1459 }
1460 if (added) map_update_possibles(is->state);
1461 if (added || removed) *didsth_r = 1;
1462 return 1;
1463 }
1464
1465 static int solve_island_subgroup(struct island *is, int direction, int n)
1466 {
1467 struct island *is_join;
1468 int nislands, *dsf = is->state->solver->dsf;
1469 game_state *state = is->state;
1470
1471 debug(("..checking subgroups.\n"));
1472
1473 /* if is isn't full, return 0. */
1474 if (n < is->count) {
1475 debug(("...orig island (%d,%d) not full.\n", is->x, is->y));
1476 return 0;
1477 }
1478
1479 if (direction >= 0) {
1480 is_join = INDEX(state, gridi,
1481 ISLAND_ORTHX(is, direction),
1482 ISLAND_ORTHY(is, direction));
1483 assert(is_join);
1484
1485 /* if is_join isn't full, return 0. */
1486 if (island_countbridges(is_join) < is_join->count) {
1487 debug(("...dest island (%d,%d) not full.\n",
1488 is_join->x, is_join->y));
1489 return 0;
1490 }
1491 }
1492
1493 /* Check group membership for is->dsf; if it's full return 1. */
1494 if (map_group_check(state, dsf_canonify(dsf, DINDEX(is->x,is->y)),
1495 0, &nislands)) {
1496 if (nislands < state->n_islands) {
1497 /* we have a full subgroup that isn't the whole set.
1498 * This isn't allowed. */
1499 debug(("island at (%d,%d) makes full subgroup, disallowing.\n",
1500 is->x, is->y, n));
1501 return 1;
1502 } else {
1503 debug(("...has finished puzzle.\n"));
1504 }
1505 }
1506 return 0;
1507 }
1508
1509 static int solve_island_impossible(game_state *state)
1510 {
1511 struct island *is;
1512 int i;
1513
1514 /* If any islands are impossible, return 1. */
1515 for (i = 0; i < state->n_islands; i++) {
1516 is = &state->islands[i];
1517 if (island_impossible(is, 0)) {
1518 debug(("island at (%d,%d) has become impossible, disallowing.\n",
1519 is->x, is->y));
1520 return 1;
1521 }
1522 }
1523 return 0;
1524 }
1525
1526 /* Bear in mind that this function is really rather inefficient. */
1527 static int solve_island_stage3(struct island *is, int *didsth_r)
1528 {
1529 int i, n, x, y, missing, spc, curr, maxb, didsth = 0;
1530 int wh = is->state->w * is->state->h;
1531 struct solver_state *ss = is->state->solver;
1532
1533 assert(didsth_r);
1534
1535 missing = is->count - island_countbridges(is);
1536 if (missing <= 0) return 1;
1537
1538 for (i = 0; i < is->adj.npoints; i++) {
1539 /* We only do right- or down-pointing bridges. */
1540 if (is->adj.points[i].dx == -1 ||
1541 is->adj.points[i].dy == -1) continue;
1542
1543 x = is->adj.points[i].x;
1544 y = is->adj.points[i].y;
1545 spc = island_adjspace(is, 1, missing, i);
1546 if (spc == 0) continue;
1547
1548 curr = GRIDCOUNT(is->state, x, y,
1549 is->adj.points[i].dx ? G_LINEH : G_LINEV);
1550 debug(("island at (%d,%d) s3, trying %d - %d bridges.\n",
1551 is->x, is->y, curr+1, curr+spc));
1552
1553 /* Now we know that this island could have more bridges,
1554 * to bring the total from curr+1 to curr+spc. */
1555 maxb = -1;
1556 /* We have to squirrel the dsf away and restore it afterwards;
1557 * it is additive only, and can't be removed from. */
1558 memcpy(ss->tmpdsf, ss->dsf, wh*sizeof(int));
1559 for (n = curr+1; n <= curr+spc; n++) {
1560 solve_join(is, i, n, 0);
1561 map_update_possibles(is->state);
1562
1563 if (solve_island_subgroup(is, i, n) ||
1564 solve_island_impossible(is->state)) {
1565 maxb = n-1;
1566 debug(("island at (%d,%d) d(%d,%d) new max of %d bridges:\n",
1567 is->x, is->y,
1568 is->adj.points[i].dx, is->adj.points[i].dy,
1569 maxb));
1570 break;
1571 }
1572 }
1573 solve_join(is, i, curr, 0); /* put back to before. */
1574 memcpy(ss->dsf, ss->tmpdsf, wh*sizeof(int));
1575
1576 if (maxb != -1) {
1577 /*debug_state(is->state);*/
1578 if (maxb == 0) {
1579 debug(("...adding NOLINE.\n"));
1580 solve_join(is, i, -1, 0); /* we can't have any bridges here. */
1581 } else {
1582 debug(("...setting maximum\n"));
1583 solve_join(is, i, maxb, 1);
1584 }
1585 didsth = 1;
1586 }
1587 map_update_possibles(is->state);
1588 }
1589
1590 for (i = 0; i < is->adj.npoints; i++) {
1591 /*
1592 * Now check to see if any currently empty direction must have
1593 * at least one bridge in order to avoid forming an isolated
1594 * subgraph. This differs from the check above in that it
1595 * considers multiple target islands. For example:
1596 *
1597 * 2 2 4
1598 * 1 3 2
1599 * 3
1600 * 4
1601 *
1602 * The example on the left can be handled by the above loop:
1603 * it will observe that connecting the central 2 twice to the
1604 * left would form an isolated subgraph, and hence it will
1605 * restrict that 2 to at most one bridge in that direction.
1606 * But the example on the right won't be handled by that loop,
1607 * because the deduction requires us to imagine connecting the
1608 * 3 to _both_ the 1 and 2 at once to form an isolated
1609 * subgraph.
1610 *
1611 * This pass is necessary _as well_ as the above one, because
1612 * neither can do the other's job. In the left one,
1613 * restricting the direction which _would_ cause trouble can
1614 * be done even if it's not yet clear which of the remaining
1615 * directions has to have a compensatory bridge; whereas the
1616 * pass below that can handle the right-hand example does need
1617 * to know what direction to point the necessary bridge in.
1618 *
1619 * Neither pass can handle the most general case, in which we
1620 * observe that an arbitrary subset of an island's neighbours
1621 * would form an isolated subgraph with it if it connected
1622 * maximally to them, and hence that at least one bridge must
1623 * point to some neighbour outside that subset but we don't
1624 * know which neighbour. To handle that, we'd have to have a
1625 * richer data format for the solver, which could cope with
1626 * recording the idea that at least one of two edges must have
1627 * a bridge.
1628 */
1629 int got = 0;
1630 int before[4];
1631 int j;
1632
1633 spc = island_adjspace(is, 1, missing, i);
1634 if (spc == 0) continue;
1635
1636 for (j = 0; j < is->adj.npoints; j++)
1637 before[j] = GRIDCOUNT(is->state,
1638 is->adj.points[j].x,
1639 is->adj.points[j].y,
1640 is->adj.points[j].dx ? G_LINEH : G_LINEV);
1641 if (before[i] != 0) continue; /* this idea is pointless otherwise */
1642
1643 memcpy(ss->tmpdsf, ss->dsf, wh*sizeof(int));
1644
1645 for (j = 0; j < is->adj.npoints; j++) {
1646 spc = island_adjspace(is, 1, missing, j);
1647 if (spc == 0) continue;
1648 if (j == i) continue;
1649 solve_join(is, j, before[j] + spc, 0);
1650 }
1651 map_update_possibles(is->state);
1652
1653 if (solve_island_subgroup(is, -1, n))
1654 got = 1;
1655
1656 for (j = 0; j < is->adj.npoints; j++)
1657 solve_join(is, j, before[j], 0);
1658 memcpy(ss->dsf, ss->tmpdsf, wh*sizeof(int));
1659
1660 if (got) {
1661 debug(("island at (%d,%d) must connect in direction (%d,%d) to"
1662 " avoid full subgroup.\n",
1663 is->x, is->y, is->adj.points[i].dx, is->adj.points[i].dy));
1664 solve_join(is, i, 1, 0);
1665 didsth = 1;
1666 }
1667
1668 map_update_possibles(is->state);
1669 }
1670
1671 if (didsth) *didsth_r = didsth;
1672 return 1;
1673 }
1674
1675 #define CONTINUE_IF_FULL do { \
1676 if (GRID(state, is->x, is->y) & G_MARK) { \
1677 /* island full, don't try fixing it */ \
1678 continue; \
1679 } } while(0)
1680
1681 static int solve_sub(game_state *state, int difficulty, int depth)
1682 {
1683 struct island *is;
1684 int i, didsth;
1685
1686 while (1) {
1687 didsth = 0;
1688
1689 /* First island iteration: things we can work out by looking at
1690 * properties of the island as a whole. */
1691 for (i = 0; i < state->n_islands; i++) {
1692 is = &state->islands[i];
1693 if (!solve_island_stage1(is, &didsth)) return 0;
1694 }
1695 if (didsth) continue;
1696 else if (difficulty < 1) break;
1697
1698 /* Second island iteration: thing we can work out by looking at
1699 * properties of individual island connections. */
1700 for (i = 0; i < state->n_islands; i++) {
1701 is = &state->islands[i];
1702 CONTINUE_IF_FULL;
1703 if (!solve_island_stage2(is, &didsth)) return 0;
1704 }
1705 if (didsth) continue;
1706 else if (difficulty < 2) break;
1707
1708 /* Third island iteration: things we can only work out by looking
1709 * at groups of islands. */
1710 for (i = 0; i < state->n_islands; i++) {
1711 is = &state->islands[i];
1712 if (!solve_island_stage3(is, &didsth)) return 0;
1713 }
1714 if (didsth) continue;
1715 else if (difficulty < 3) break;
1716
1717 /* If we can be bothered, write a recursive solver to finish here. */
1718 break;
1719 }
1720 if (map_check(state)) return 1; /* solved it */
1721 return 0;
1722 }
1723
1724 static void solve_for_hint(game_state *state)
1725 {
1726 map_group(state);
1727 solve_sub(state, 10, 0);
1728 }
1729
1730 static int solve_from_scratch(game_state *state, int difficulty)
1731 {
1732 map_clear(state);
1733 map_group(state);
1734 map_update_possibles(state);
1735 return solve_sub(state, difficulty, 0);
1736 }
1737
1738 /* --- New game functions --- */
1739
1740 static game_state *new_state(game_params *params)
1741 {
1742 game_state *ret = snew(game_state);
1743 int wh = params->w * params->h, i;
1744
1745 ret->w = params->w;
1746 ret->h = params->h;
1747 ret->allowloops = params->allowloops;
1748 ret->maxb = params->maxb;
1749 ret->params = *params;
1750
1751 ret->grid = snewn(wh, grid_type);
1752 memset(ret->grid, 0, GRIDSZ(ret));
1753 ret->scratch = snewn(wh, grid_type);
1754 memset(ret->scratch, 0, GRIDSZ(ret));
1755
1756 ret->wha = snewn(wh*N_WH_ARRAYS, char);
1757 memset(ret->wha, 0, wh*N_WH_ARRAYS*sizeof(char));
1758
1759 ret->possv = ret->wha;
1760 ret->possh = ret->wha + wh;
1761 ret->lines = ret->wha + wh*2;
1762 ret->maxv = ret->wha + wh*3;
1763 ret->maxh = ret->wha + wh*4;
1764
1765 memset(ret->maxv, ret->maxb, wh*sizeof(char));
1766 memset(ret->maxh, ret->maxb, wh*sizeof(char));
1767
1768 ret->islands = NULL;
1769 ret->n_islands = 0;
1770 ret->n_islands_alloc = 0;
1771
1772 ret->gridi = snewn(wh, struct island *);
1773 for (i = 0; i < wh; i++) ret->gridi[i] = NULL;
1774
1775 ret->solved = ret->completed = 0;
1776
1777 ret->solver = snew(struct solver_state);
1778 ret->solver->dsf = snew_dsf(wh);
1779 ret->solver->tmpdsf = snewn(wh, int);
1780
1781 ret->solver->refcount = 1;
1782
1783 return ret;
1784 }
1785
1786 static game_state *dup_game(game_state *state)
1787 {
1788 game_state *ret = snew(game_state);
1789 int wh = state->w*state->h;
1790
1791 ret->w = state->w;
1792 ret->h = state->h;
1793 ret->allowloops = state->allowloops;
1794 ret->maxb = state->maxb;
1795 ret->params = state->params;
1796
1797 ret->grid = snewn(wh, grid_type);
1798 memcpy(ret->grid, state->grid, GRIDSZ(ret));
1799 ret->scratch = snewn(wh, grid_type);
1800 memcpy(ret->scratch, state->scratch, GRIDSZ(ret));
1801
1802 ret->wha = snewn(wh*N_WH_ARRAYS, char);
1803 memcpy(ret->wha, state->wha, wh*N_WH_ARRAYS*sizeof(char));
1804
1805 ret->possv = ret->wha;
1806 ret->possh = ret->wha + wh;
1807 ret->lines = ret->wha + wh*2;
1808 ret->maxv = ret->wha + wh*3;
1809 ret->maxh = ret->wha + wh*4;
1810
1811 ret->islands = snewn(state->n_islands, struct island);
1812 memcpy(ret->islands, state->islands, state->n_islands * sizeof(struct island));
1813 ret->n_islands = ret->n_islands_alloc = state->n_islands;
1814
1815 ret->gridi = snewn(wh, struct island *);
1816 fixup_islands_for_realloc(ret);
1817
1818 ret->solved = state->solved;
1819 ret->completed = state->completed;
1820
1821 ret->solver = state->solver;
1822 ret->solver->refcount++;
1823
1824 return ret;
1825 }
1826
1827 static void free_game(game_state *state)
1828 {
1829 if (--state->solver->refcount <= 0) {
1830 sfree(state->solver->dsf);
1831 sfree(state->solver->tmpdsf);
1832 sfree(state->solver);
1833 }
1834
1835 sfree(state->islands);
1836 sfree(state->gridi);
1837
1838 sfree(state->wha);
1839
1840 sfree(state->scratch);
1841 sfree(state->grid);
1842 sfree(state);
1843 }
1844
1845 #define MAX_NEWISLAND_TRIES 50
1846 #define MIN_SENSIBLE_ISLANDS 3
1847
1848 #define ORDER(a,b) do { if (a < b) { int tmp=a; int a=b; int b=tmp; } } while(0)
1849
1850 static char *new_game_desc(game_params *params, random_state *rs,
1851 char **aux, int interactive)
1852 {
1853 game_state *tobuild = NULL;
1854 int i, j, wh = params->w * params->h, x, y, dx, dy;
1855 int minx, miny, maxx, maxy, joinx, joiny, newx, newy, diffx, diffy;
1856 int ni_req = max((params->islands * wh) / 100, MIN_SENSIBLE_ISLANDS), ni_curr, ni_bad;
1857 struct island *is, *is2;
1858 char *ret;
1859 unsigned int echeck;
1860
1861 /* pick a first island position randomly. */
1862 generate:
1863 if (tobuild) free_game(tobuild);
1864 tobuild = new_state(params);
1865
1866 x = random_upto(rs, params->w);
1867 y = random_upto(rs, params->h);
1868 island_add(tobuild, x, y, 0);
1869 ni_curr = 1;
1870 ni_bad = 0;
1871 debug(("Created initial island at (%d,%d).\n", x, y));
1872
1873 while (ni_curr < ni_req) {
1874 /* Pick a random island to try and extend from. */
1875 i = random_upto(rs, tobuild->n_islands);
1876 is = &tobuild->islands[i];
1877
1878 /* Pick a random direction to extend in. */
1879 j = random_upto(rs, is->adj.npoints);
1880 dx = is->adj.points[j].x - is->x;
1881 dy = is->adj.points[j].y - is->y;
1882
1883 /* Find out limits of where we could put a new island. */
1884 joinx = joiny = -1;
1885 minx = is->x + 2*dx; miny = is->y + 2*dy; /* closest is 2 units away. */
1886 x = is->x+dx; y = is->y+dy;
1887 if (GRID(tobuild,x,y) & (G_LINEV|G_LINEH)) {
1888 /* already a line next to the island, continue. */
1889 goto bad;
1890 }
1891 while (1) {
1892 if (x < 0 || x >= params->w || y < 0 || y >= params->h) {
1893 /* got past the edge; put a possible at the island
1894 * and exit. */
1895 maxx = x-dx; maxy = y-dy;
1896 goto foundmax;
1897 }
1898 if (GRID(tobuild,x,y) & G_ISLAND) {
1899 /* could join up to an existing island... */
1900 joinx = x; joiny = y;
1901 /* ... or make a new one 2 spaces away. */
1902 maxx = x - 2*dx; maxy = y - 2*dy;
1903 goto foundmax;
1904 } else if (GRID(tobuild,x,y) & (G_LINEV|G_LINEH)) {
1905 /* could make a new one 1 space away from the line. */
1906 maxx = x - dx; maxy = y - dy;
1907 goto foundmax;
1908 }
1909 x += dx; y += dy;
1910 }
1911
1912 foundmax:
1913 debug(("Island at (%d,%d) with d(%d,%d) has new positions "
1914 "(%d,%d) -> (%d,%d), join (%d,%d).\n",
1915 is->x, is->y, dx, dy, minx, miny, maxx, maxy, joinx, joiny));
1916 /* Now we know where we could either put a new island
1917 * (between min and max), or (if loops are allowed) could join on
1918 * to an existing island (at join). */
1919 if (params->allowloops && joinx != -1 && joiny != -1) {
1920 if (random_upto(rs, 100) < (unsigned long)params->expansion) {
1921 is2 = INDEX(tobuild, gridi, joinx, joiny);
1922 debug(("Joining island at (%d,%d) to (%d,%d).\n",
1923 is->x, is->y, is2->x, is2->y));
1924 goto join;
1925 }
1926 }
1927 diffx = (maxx - minx) * dx;
1928 diffy = (maxy - miny) * dy;
1929 if (diffx < 0 || diffy < 0) goto bad;
1930 if (random_upto(rs,100) < (unsigned long)params->expansion) {
1931 newx = maxx; newy = maxy;
1932 debug(("Creating new island at (%d,%d) (expanded).\n", newx, newy));
1933 } else {
1934 newx = minx + random_upto(rs,diffx+1)*dx;
1935 newy = miny + random_upto(rs,diffy+1)*dy;
1936 debug(("Creating new island at (%d,%d).\n", newx, newy));
1937 }
1938 /* check we're not next to island in the other orthogonal direction. */
1939 if ((INGRID(tobuild,newx+dy,newy+dx) && (GRID(tobuild,newx+dy,newy+dx) & G_ISLAND)) ||
1940 (INGRID(tobuild,newx-dy,newy-dx) && (GRID(tobuild,newx-dy,newy-dx) & G_ISLAND))) {
1941 debug(("New location is adjacent to island, skipping.\n"));
1942 goto bad;
1943 }
1944 is2 = island_add(tobuild, newx, newy, 0);
1945 /* Must get is again at this point; the array might have
1946 * been realloced by island_add... */
1947 is = &tobuild->islands[i]; /* ...but order will not change. */
1948
1949 ni_curr++; ni_bad = 0;
1950 join:
1951 island_join(is, is2, random_upto(rs, tobuild->maxb)+1, 0);
1952 debug_state(tobuild);
1953 continue;
1954
1955 bad:
1956 ni_bad++;
1957 if (ni_bad > MAX_NEWISLAND_TRIES) {
1958 debug(("Unable to create any new islands after %d tries; "
1959 "created %d [%d%%] (instead of %d [%d%%] requested).\n",
1960 MAX_NEWISLAND_TRIES,
1961 ni_curr, ni_curr * 100 / wh,
1962 ni_req, ni_req * 100 / wh));
1963 goto generated;
1964 }
1965 }
1966
1967 generated:
1968 if (ni_curr == 1) {
1969 debug(("Only generated one island (!), retrying.\n"));
1970 goto generate;
1971 }
1972 /* Check we have at least one island on each extremity of the grid. */
1973 echeck = 0;
1974 for (x = 0; x < params->w; x++) {
1975 if (INDEX(tobuild, gridi, x, 0)) echeck |= 1;
1976 if (INDEX(tobuild, gridi, x, params->h-1)) echeck |= 2;
1977 }
1978 for (y = 0; y < params->h; y++) {
1979 if (INDEX(tobuild, gridi, 0, y)) echeck |= 4;
1980 if (INDEX(tobuild, gridi, params->w-1, y)) echeck |= 8;
1981 }
1982 if (echeck != 15) {
1983 debug(("Generated grid doesn't fill to sides, retrying.\n"));
1984 goto generate;
1985 }
1986
1987 map_count(tobuild);
1988 map_find_orthogonal(tobuild);
1989
1990 if (params->difficulty > 0) {
1991 if ((ni_curr > MIN_SENSIBLE_ISLANDS) &&
1992 (solve_from_scratch(tobuild, params->difficulty-1) > 0)) {
1993 debug(("Grid is solvable at difficulty %d (too easy); retrying.\n",
1994 params->difficulty-1));
1995 goto generate;
1996 }
1997 }
1998
1999 if (solve_from_scratch(tobuild, params->difficulty) == 0) {
2000 debug(("Grid not solvable at difficulty %d, (too hard); retrying.\n",
2001 params->difficulty));
2002 goto generate;
2003 }
2004
2005 /* ... tobuild is now solved. We rely on this making the diff for aux. */
2006 debug_state(tobuild);
2007 ret = encode_game(tobuild);
2008 {
2009 game_state *clean = dup_game(tobuild);
2010 map_clear(clean);
2011 map_update_possibles(clean);
2012 *aux = game_state_diff(clean, tobuild);
2013 free_game(clean);
2014 }
2015 free_game(tobuild);
2016
2017 return ret;
2018 }
2019
2020 static char *validate_desc(game_params *params, char *desc)
2021 {
2022 int i, wh = params->w * params->h;
2023
2024 for (i = 0; i < wh; i++) {
2025 if (*desc >= '1' && *desc <= '9')
2026 /* OK */;
2027 else if (*desc >= 'a' && *desc <= 'z')
2028 i += *desc - 'a'; /* plus the i++ */
2029 else if (*desc >= 'A' && *desc <= 'G')
2030 /* OK */;
2031 else if (*desc == 'V' || *desc == 'W' ||
2032 *desc == 'X' || *desc == 'Y' ||
2033 *desc == 'H' || *desc == 'I' ||
2034 *desc == 'J' || *desc == 'K')
2035 /* OK */;
2036 else if (!*desc)
2037 return "Game description shorter than expected";
2038 else
2039 return "Game description containers unexpected character";
2040 desc++;
2041 }
2042 if (*desc || i > wh)
2043 return "Game description longer than expected";
2044
2045 return NULL;
2046 }
2047
2048 static game_state *new_game_sub(game_params *params, char *desc)
2049 {
2050 game_state *state = new_state(params);
2051 int x, y, run = 0;
2052
2053 debug(("new_game[_sub]: desc = '%s'.\n", desc));
2054
2055 for (y = 0; y < params->h; y++) {
2056 for (x = 0; x < params->w; x++) {
2057 char c = '\0';
2058
2059 if (run == 0) {
2060 c = *desc++;
2061 assert(c != 'S');
2062 if (c >= 'a' && c <= 'z')
2063 run = c - 'a' + 1;
2064 }
2065
2066 if (run > 0) {
2067 c = 'S';
2068 run--;
2069 }
2070
2071 switch (c) {
2072 case '1': case '2': case '3': case '4':
2073 case '5': case '6': case '7': case '8': case '9':
2074 island_add(state, x, y, (c - '0'));
2075 break;
2076
2077 case 'A': case 'B': case 'C': case 'D':
2078 case 'E': case 'F': case 'G':
2079 island_add(state, x, y, (c - 'A') + 10);
2080 break;
2081
2082 case 'S':
2083 /* empty square */
2084 break;
2085
2086 default:
2087 assert(!"Malformed desc.");
2088 break;
2089 }
2090 }
2091 }
2092 if (*desc) assert(!"Over-long desc.");
2093
2094 map_find_orthogonal(state);
2095 map_update_possibles(state);
2096
2097 return state;
2098 }
2099
2100 static game_state *new_game(midend *me, game_params *params, char *desc)
2101 {
2102 return new_game_sub(params, desc);
2103 }
2104
2105 struct game_ui {
2106 int dragx_src, dragy_src; /* source; -1 means no drag */
2107 int dragx_dst, dragy_dst; /* src's closest orth island. */
2108 grid_type todraw;
2109 int dragging, drag_is_noline, nlines;
2110
2111 int cur_x, cur_y, cur_visible; /* cursor position */
2112 int show_hints;
2113 };
2114
2115 static char *ui_cancel_drag(game_ui *ui)
2116 {
2117 ui->dragx_src = ui->dragy_src = -1;
2118 ui->dragx_dst = ui->dragy_dst = -1;
2119 ui->dragging = 0;
2120 return "";
2121 }
2122
2123 static game_ui *new_ui(game_state *state)
2124 {
2125 game_ui *ui = snew(game_ui);
2126 ui_cancel_drag(ui);
2127 ui->cur_x = state->islands[0].x;
2128 ui->cur_y = state->islands[0].y;
2129 ui->cur_visible = 0;
2130 ui->show_hints = 0;
2131 return ui;
2132 }
2133
2134 static void free_ui(game_ui *ui)
2135 {
2136 sfree(ui);
2137 }
2138
2139 static char *encode_ui(game_ui *ui)
2140 {
2141 return NULL;
2142 }
2143
2144 static void decode_ui(game_ui *ui, char *encoding)
2145 {
2146 }
2147
2148 static void game_changed_state(game_ui *ui, game_state *oldstate,
2149 game_state *newstate)
2150 {
2151 }
2152
2153 struct game_drawstate {
2154 int tilesize;
2155 int w, h;
2156 grid_type *grid;
2157 int *lv, *lh;
2158 int started, dragging;
2159 int show_hints;
2160 };
2161
2162 static char *update_drag_dst(game_state *state, game_ui *ui, game_drawstate *ds,
2163 int nx, int ny)
2164 {
2165 int ox, oy, dx, dy, i, currl, maxb;
2166 struct island *is;
2167 grid_type gtype, ntype, mtype, curr;
2168
2169 if (ui->dragx_src == -1 || ui->dragy_src == -1) return NULL;
2170
2171 ui->dragx_dst = -1;
2172 ui->dragy_dst = -1;
2173
2174 /* work out which of the four directions we're closest to... */
2175 ox = COORD(ui->dragx_src) + TILE_SIZE/2;
2176 oy = COORD(ui->dragy_src) + TILE_SIZE/2;
2177
2178 if (abs(nx-ox) < abs(ny-oy)) {
2179 dx = 0;
2180 dy = (ny-oy) < 0 ? -1 : 1;
2181 gtype = G_LINEV; ntype = G_NOLINEV; mtype = G_MARKV;
2182 maxb = INDEX(state, maxv, ui->dragx_src+dx, ui->dragy_src+dy);
2183 } else {
2184 dy = 0;
2185 dx = (nx-ox) < 0 ? -1 : 1;
2186 gtype = G_LINEH; ntype = G_NOLINEH; mtype = G_MARKH;
2187 maxb = INDEX(state, maxh, ui->dragx_src+dx, ui->dragy_src+dy);
2188 }
2189 if (ui->drag_is_noline) {
2190 ui->todraw = ntype;
2191 } else {
2192 curr = GRID(state, ui->dragx_src+dx, ui->dragy_src+dy);
2193 currl = INDEX(state, lines, ui->dragx_src+dx, ui->dragy_src+dy);
2194
2195 if (curr & gtype) {
2196 if (currl == maxb) {
2197 ui->todraw = 0;
2198 ui->nlines = 0;
2199 } else {
2200 ui->todraw = gtype;
2201 ui->nlines = currl + 1;
2202 }
2203 } else {
2204 ui->todraw = gtype;
2205 ui->nlines = 1;
2206 }
2207 }
2208
2209 /* ... and see if there's an island off in that direction. */
2210 is = INDEX(state, gridi, ui->dragx_src, ui->dragy_src);
2211 for (i = 0; i < is->adj.npoints; i++) {
2212 if (is->adj.points[i].off == 0) continue;
2213 curr = GRID(state, is->x+dx, is->y+dy);
2214 if (curr & mtype) continue; /* don't allow changes to marked lines. */
2215 if (ui->drag_is_noline) {
2216 if (curr & gtype) continue; /* no no-line where already a line */
2217 } else {
2218 if (POSSIBLES(state, dx, is->x+dx, is->y+dy) == 0) continue; /* no line if !possible. */
2219 if (curr & ntype) continue; /* can't have a bridge where there's a no-line. */
2220 }
2221
2222 if (is->adj.points[i].dx == dx &&
2223 is->adj.points[i].dy == dy) {
2224 ui->dragx_dst = ISLAND_ORTHX(is,i);
2225 ui->dragy_dst = ISLAND_ORTHY(is,i);
2226 }
2227 }
2228 /*debug(("update_drag src (%d,%d) d(%d,%d) dst (%d,%d)\n",
2229 ui->dragx_src, ui->dragy_src, dx, dy,
2230 ui->dragx_dst, ui->dragy_dst));*/
2231 return "";
2232 }
2233
2234 static char *finish_drag(game_state *state, game_ui *ui)
2235 {
2236 char buf[80];
2237
2238 if (ui->dragx_src == -1 || ui->dragy_src == -1)
2239 return NULL;
2240 if (ui->dragx_dst == -1 || ui->dragy_dst == -1)
2241 return ui_cancel_drag(ui);
2242
2243 if (ui->drag_is_noline) {
2244 sprintf(buf, "N%d,%d,%d,%d",
2245 ui->dragx_src, ui->dragy_src,
2246 ui->dragx_dst, ui->dragy_dst);
2247 } else {
2248 sprintf(buf, "L%d,%d,%d,%d,%d",
2249 ui->dragx_src, ui->dragy_src,
2250 ui->dragx_dst, ui->dragy_dst, ui->nlines);
2251 }
2252
2253 ui_cancel_drag(ui);
2254
2255 return dupstr(buf);
2256 }
2257
2258 static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
2259 int x, int y, int button)
2260 {
2261 int gx = FROMCOORD(x), gy = FROMCOORD(y);
2262 char buf[80], *ret;
2263 grid_type ggrid = INGRID(state,gx,gy) ? GRID(state,gx,gy) : 0;
2264
2265 if (button == LEFT_BUTTON || button == RIGHT_BUTTON) {
2266 if (!INGRID(state, gx, gy)) return NULL;
2267 ui->cur_visible = 0;
2268 if ((ggrid & G_ISLAND) && !(ggrid & G_MARK)) {
2269 ui->dragx_src = gx;
2270 ui->dragy_src = gy;
2271 return "";
2272 } else
2273 return ui_cancel_drag(ui);
2274 } else if (button == LEFT_DRAG || button == RIGHT_DRAG) {
2275 if (gx != ui->dragx_src || gy != ui->dragy_src) {
2276 ui->dragging = 1;
2277 ui->drag_is_noline = (button == RIGHT_DRAG) ? 1 : 0;
2278 return update_drag_dst(state, ui, ds, x, y);
2279 } else {
2280 /* cancel a drag when we go back to the starting point */
2281 ui->dragx_dst = -1;
2282 ui->dragy_dst = -1;
2283 return "";
2284 }
2285 } else if (button == LEFT_RELEASE || button == RIGHT_RELEASE) {
2286 if (ui->dragging) {
2287 return finish_drag(state, ui);
2288 } else {
2289 ui_cancel_drag(ui);
2290 if (!INGRID(state, gx, gy)) return NULL;
2291 if (!(GRID(state, gx, gy) & G_ISLAND)) return NULL;
2292 sprintf(buf, "M%d,%d", gx, gy);
2293 return dupstr(buf);
2294 }
2295 } else if (button == 'h' || button == 'H') {
2296 game_state *solved = dup_game(state);
2297 solve_for_hint(solved);
2298 ret = game_state_diff(state, solved);
2299 free_game(solved);
2300 return ret;
2301 } else if (IS_CURSOR_MOVE(button)) {
2302 ui->cur_visible = 1;
2303 if (ui->dragging) {
2304 int nx = ui->cur_x, ny = ui->cur_y;
2305
2306 move_cursor(button, &nx, &ny, state->w, state->h, 0);
2307 update_drag_dst(state, ui, ds,
2308 COORD(nx)+TILE_SIZE/2,
2309 COORD(ny)+TILE_SIZE/2);
2310 return finish_drag(state, ui);
2311 } else {
2312 int dx = (button == CURSOR_RIGHT) ? +1 : (button == CURSOR_LEFT) ? -1 : 0;
2313 int dy = (button == CURSOR_DOWN) ? +1 : (button == CURSOR_UP) ? -1 : 0;
2314 int dorthx = 1 - abs(dx), dorthy = 1 - abs(dy);
2315 int dir, orth, nx = x, ny = y;
2316
2317 /* 'orthorder' is a tweak to ensure that if you press RIGHT and
2318 * happen to move upwards, when you press LEFT you then tend
2319 * downwards (rather than upwards again). */
2320 int orthorder = (button == CURSOR_LEFT || button == CURSOR_UP) ? 1 : -1;
2321
2322 /* This attempts to find an island in the direction you're
2323 * asking for, broadly speaking. If you ask to go right, for
2324 * example, it'll look for islands to the right and slightly
2325 * above or below your current horiz. position, allowing
2326 * further above/below the further away it searches. */
2327
2328 assert(GRID(state, ui->cur_x, ui->cur_y) & G_ISLAND);
2329 /* currently this is depth-first (so orthogonally-adjacent
2330 * islands across the other side of the grid will be moved to
2331 * before closer islands slightly offset). Swap the order of
2332 * these two loops to change to breadth-first search. */
2333 for (orth = 0; ; orth++) {
2334 int oingrid = 0;
2335 for (dir = 1; ; dir++) {
2336 int dingrid = 0;
2337
2338 if (orth > dir) continue; /* only search in cone outwards. */
2339
2340 nx = ui->cur_x + dir*dx + orth*dorthx*orthorder;
2341 ny = ui->cur_y + dir*dy + orth*dorthy*orthorder;
2342 if (INGRID(state, nx, ny)) {
2343 dingrid = oingrid = 1;
2344 if (GRID(state, nx, ny) & G_ISLAND) goto found;
2345 }
2346
2347 nx = ui->cur_x + dir*dx - orth*dorthx*orthorder;
2348 ny = ui->cur_y + dir*dy - orth*dorthy*orthorder;
2349 if (INGRID(state, nx, ny)) {
2350 dingrid = oingrid = 1;
2351 if (GRID(state, nx, ny) & G_ISLAND) goto found;
2352 }
2353
2354 if (!dingrid) break;
2355 }
2356 if (!oingrid) return "";
2357 }
2358 /* not reached */
2359
2360 found:
2361 ui->cur_x = nx;
2362 ui->cur_y = ny;
2363 return "";
2364 }
2365 } else if (IS_CURSOR_SELECT(button)) {
2366 if (!ui->cur_visible) {
2367 ui->cur_visible = 1;
2368 return "";
2369 }
2370 if (ui->dragging) {
2371 ui_cancel_drag(ui);
2372 if (ui->dragx_dst == -1 && ui->dragy_dst == -1) {
2373 sprintf(buf, "M%d,%d", ui->cur_x, ui->cur_y);
2374 return dupstr(buf);
2375 } else
2376 return "";
2377 } else {
2378 grid_type v = GRID(state, ui->cur_x, ui->cur_y);
2379 if (v & G_ISLAND) {
2380 ui->dragging = 1;
2381 ui->dragx_src = ui->cur_x;
2382 ui->dragy_src = ui->cur_y;
2383 ui->dragx_dst = ui->dragy_dst = -1;
2384 ui->drag_is_noline = (button == CURSOR_SELECT2) ? 1 : 0;
2385 return "";
2386 }
2387 }
2388 } else if (button == 'g' || button == 'G') {
2389 ui->show_hints = 1 - ui->show_hints;
2390 return "";
2391 }
2392
2393 return NULL;
2394 }
2395
2396 static game_state *execute_move(game_state *state, char *move)
2397 {
2398 game_state *ret = dup_game(state);
2399 int x1, y1, x2, y2, nl, n;
2400 struct island *is1, *is2;
2401 char c;
2402
2403 debug(("execute_move: %s\n", move));
2404
2405 if (!*move) goto badmove;
2406 while (*move) {
2407 c = *move++;
2408 if (c == 'S') {
2409 ret->solved = TRUE;
2410 n = 0;
2411 } else if (c == 'L') {
2412 if (sscanf(move, "%d,%d,%d,%d,%d%n",
2413 &x1, &y1, &x2, &y2, &nl, &n) != 5)
2414 goto badmove;
2415 if (!INGRID(ret, x1, y1) || !INGRID(ret, x2, y2))
2416 goto badmove;
2417 is1 = INDEX(ret, gridi, x1, y1);
2418 is2 = INDEX(ret, gridi, x2, y2);
2419 if (!is1 || !is2) goto badmove;
2420 if (nl < 0 || nl > state->maxb) goto badmove;
2421 island_join(is1, is2, nl, 0);
2422 } else if (c == 'N') {
2423 if (sscanf(move, "%d,%d,%d,%d%n",
2424 &x1, &y1, &x2, &y2, &n) != 4)
2425 goto badmove;
2426 if (!INGRID(ret, x1, y1) || !INGRID(ret, x2, y2))
2427 goto badmove;
2428 is1 = INDEX(ret, gridi, x1, y1);
2429 is2 = INDEX(ret, gridi, x2, y2);
2430 if (!is1 || !is2) goto badmove;
2431 island_join(is1, is2, -1, 0);
2432 } else if (c == 'M') {
2433 if (sscanf(move, "%d,%d%n",
2434 &x1, &y1, &n) != 2)
2435 goto badmove;
2436 if (!INGRID(ret, x1, y1))
2437 goto badmove;
2438 is1 = INDEX(ret, gridi, x1, y1);
2439 if (!is1) goto badmove;
2440 island_togglemark(is1);
2441 } else
2442 goto badmove;
2443
2444 move += n;
2445 if (*move == ';')
2446 move++;
2447 else if (*move) goto badmove;
2448 }
2449
2450 map_update_possibles(ret);
2451 if (map_check(ret)) {
2452 debug(("Game completed.\n"));
2453 ret->completed = 1;
2454 }
2455 return ret;
2456
2457 badmove:
2458 debug(("%s: unrecognised move.\n", move));
2459 free_game(ret);
2460 return NULL;
2461 }
2462
2463 static char *solve_game(game_state *state, game_state *currstate,
2464 char *aux, char **error)
2465 {
2466 char *ret;
2467 game_state *solved;
2468
2469 if (aux) {
2470 debug(("solve_game: aux = %s\n", aux));
2471 solved = execute_move(state, aux);
2472 if (!solved) {
2473 *error = "Generated aux string is not a valid move (!).";
2474 return NULL;
2475 }
2476 } else {
2477 solved = dup_game(state);
2478 /* solve with max strength... */
2479 if (solve_from_scratch(solved, 10) == 0) {
2480 free_game(solved);
2481 *error = "Game does not have a (non-recursive) solution.";
2482 return NULL;
2483 }
2484 }
2485 ret = game_state_diff(currstate, solved);
2486 free_game(solved);
2487 debug(("solve_game: ret = %s\n", ret));
2488 return ret;
2489 }
2490
2491 /* ----------------------------------------------------------------------
2492 * Drawing routines.
2493 */
2494
2495 static void game_compute_size(game_params *params, int tilesize,
2496 int *x, int *y)
2497 {
2498 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
2499 struct { int tilesize; } ads, *ds = &ads;
2500 ads.tilesize = tilesize;
2501
2502 *x = TILE_SIZE * params->w + 2 * BORDER;
2503 *y = TILE_SIZE * params->h + 2 * BORDER;
2504 }
2505
2506 static void game_set_size(drawing *dr, game_drawstate *ds,
2507 game_params *params, int tilesize)
2508 {
2509 ds->tilesize = tilesize;
2510 }
2511
2512 static float *game_colours(frontend *fe, int *ncolours)
2513 {
2514 float *ret = snewn(3 * NCOLOURS, float);
2515 int i;
2516
2517 game_mkhighlight(fe, ret, COL_BACKGROUND, COL_HIGHLIGHT, COL_LOWLIGHT);
2518
2519 for (i = 0; i < 3; i++) {
2520 ret[COL_FOREGROUND * 3 + i] = 0.0F;
2521 ret[COL_HINT * 3 + i] = ret[COL_LOWLIGHT * 3 + i];
2522 ret[COL_GRID * 3 + i] =
2523 (ret[COL_HINT * 3 + i] + ret[COL_BACKGROUND * 3 + i]) * 0.5F;
2524 ret[COL_MARK * 3 + i] = ret[COL_HIGHLIGHT * 3 + i];
2525 }
2526 ret[COL_WARNING * 3 + 0] = 1.0F;
2527 ret[COL_WARNING * 3 + 1] = 0.25F;
2528 ret[COL_WARNING * 3 + 2] = 0.25F;
2529
2530 ret[COL_SELECTED * 3 + 0] = 0.25F;
2531 ret[COL_SELECTED * 3 + 1] = 1.00F;
2532 ret[COL_SELECTED * 3 + 2] = 0.25F;
2533
2534 ret[COL_CURSOR * 3 + 0] = min(ret[COL_BACKGROUND * 3 + 0] * 1.4F, 1.0F);
2535 ret[COL_CURSOR * 3 + 1] = ret[COL_BACKGROUND * 3 + 1] * 0.8F;
2536 ret[COL_CURSOR * 3 + 2] = ret[COL_BACKGROUND * 3 + 2] * 0.8F;
2537
2538 *ncolours = NCOLOURS;
2539 return ret;
2540 }
2541
2542 static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
2543 {
2544 struct game_drawstate *ds = snew(struct game_drawstate);
2545 int wh = state->w*state->h;
2546
2547 ds->tilesize = 0;
2548 ds->w = state->w;
2549 ds->h = state->h;
2550 ds->started = 0;
2551 ds->grid = snewn(wh, grid_type);
2552 memset(ds->grid, -1, wh*sizeof(grid_type));
2553 ds->lv = snewn(wh, int);
2554 ds->lh = snewn(wh, int);
2555 memset(ds->lv, 0, wh*sizeof(int));
2556 memset(ds->lh, 0, wh*sizeof(int));
2557 ds->show_hints = 0;
2558
2559 return ds;
2560 }
2561
2562 static void game_free_drawstate(drawing *dr, game_drawstate *ds)
2563 {
2564 sfree(ds->lv);
2565 sfree(ds->lh);
2566 sfree(ds->grid);
2567 sfree(ds);
2568 }
2569
2570 #define LINE_WIDTH (TILE_SIZE/8)
2571 #define TS8(x) (((x)*TILE_SIZE)/8)
2572
2573 #define OFFSET(thing) ((TILE_SIZE/2) - ((thing)/2))
2574
2575 static void lines_vert(drawing *dr, game_drawstate *ds,
2576 int ox, int oy, int lv, int col, grid_type v)
2577 {
2578 int lw = LINE_WIDTH, gw = LINE_WIDTH, bw, i, loff;
2579 while ((bw = lw * lv + gw * (lv+1)) > TILE_SIZE)
2580 gw--;
2581 loff = OFFSET(bw);
2582 if (v & G_MARKV)
2583 draw_rect(dr, ox + loff, oy, bw, TILE_SIZE, COL_MARK);
2584 for (i = 0; i < lv; i++, loff += lw + gw)
2585 draw_rect(dr, ox + loff + gw, oy, lw, TILE_SIZE, col);
2586 }
2587
2588 static void lines_horiz(drawing *dr, game_drawstate *ds,
2589 int ox, int oy, int lh, int col, grid_type v)
2590 {
2591 int lw = LINE_WIDTH, gw = LINE_WIDTH, bw, i, loff;
2592 while ((bw = lw * lh + gw * (lh+1)) > TILE_SIZE)
2593 gw--;
2594 loff = OFFSET(bw);
2595 if (v & G_MARKH)
2596 draw_rect(dr, ox, oy + loff, TILE_SIZE, bw, COL_MARK);
2597 for (i = 0; i < lh; i++, loff += lw + gw)
2598 draw_rect(dr, ox, oy + loff + gw, TILE_SIZE, lw, col);
2599 }
2600
2601 static void line_cross(drawing *dr, game_drawstate *ds,
2602 int ox, int oy, int col, grid_type v)
2603 {
2604 int off = TS8(2);
2605 draw_line(dr, ox, oy, ox+off, oy+off, col);
2606 draw_line(dr, ox+off, oy, ox, oy+off, col);
2607 }
2608
2609 static int between_island(game_state *state, int sx, int sy, int dx, int dy)
2610 {
2611 int x = sx - dx, y = sy - dy;
2612
2613 while (INGRID(state, x, y)) {
2614 if (GRID(state, x, y) & G_ISLAND) goto found;
2615 x -= dx; y -= dy;
2616 }
2617 return 0;
2618 found:
2619 x = sx + dx, y = sy + dy;
2620 while (INGRID(state, x, y)) {
2621 if (GRID(state, x, y) & G_ISLAND) return 1;
2622 x += dx; y += dy;
2623 }
2624 return 0;
2625 }
2626
2627 static void lines_lvlh(game_state *state, game_ui *ui, int x, int y, grid_type v,
2628 int *lv_r, int *lh_r)
2629 {
2630 int lh = 0, lv = 0;
2631
2632 if (v & G_LINEV) lv = INDEX(state,lines,x,y);
2633 if (v & G_LINEH) lh = INDEX(state,lines,x,y);
2634
2635 if (ui->show_hints) {
2636 if (between_island(state, x, y, 0, 1) && !lv) lv = 1;
2637 if (between_island(state, x, y, 1, 0) && !lh) lh = 1;
2638 }
2639 /*debug(("lvlh: (%d,%d) v 0x%x lv %d lh %d.\n", x, y, v, lv, lh));*/
2640 *lv_r = lv; *lh_r = lh;
2641 }
2642
2643 static void dsf_debug_draw(drawing *dr,
2644 game_state *state, game_drawstate *ds,
2645 int x, int y)
2646 {
2647 #ifdef DRAW_DSF
2648 int ts = TILE_SIZE/2;
2649 int ox = COORD(x) + ts/2, oy = COORD(y) + ts/2;
2650 char str[32];
2651
2652 sprintf(str, "%d", dsf_canonify(state->solver->dsf, DINDEX(x,y)));
2653 draw_text(dr, ox, oy, FONT_VARIABLE, ts,
2654 ALIGN_VCENTRE | ALIGN_HCENTRE, COL_WARNING, str);
2655 #endif
2656 }
2657
2658 static void lines_redraw(drawing *dr,
2659 game_state *state, game_drawstate *ds, game_ui *ui,
2660 int x, int y, grid_type v, int lv, int lh)
2661 {
2662 int ox = COORD(x), oy = COORD(y);
2663 int vcol = (v & G_FLASH) ? COL_HIGHLIGHT :
2664 (v & G_WARN) ? COL_WARNING : COL_FOREGROUND, hcol = vcol;
2665 grid_type todraw = v & G_NOLINE;
2666
2667 if (v & G_ISSEL) {
2668 if (ui->todraw & G_FLAGSH) hcol = COL_SELECTED;
2669 if (ui->todraw & G_FLAGSV) vcol = COL_SELECTED;
2670 todraw |= ui->todraw;
2671 }
2672
2673 draw_rect(dr, ox, oy, TILE_SIZE, TILE_SIZE, COL_BACKGROUND);
2674 /*if (v & G_CURSOR)
2675 draw_rect(dr, ox+TILE_SIZE/4, oy+TILE_SIZE/4,
2676 TILE_SIZE/2, TILE_SIZE/2, COL_CURSOR);*/
2677
2678
2679 if (ui->show_hints) {
2680 if (between_island(state, x, y, 0, 1) && !(v & G_LINEV))
2681 vcol = COL_HINT;
2682 if (between_island(state, x, y, 1, 0) && !(v & G_LINEH))
2683 hcol = COL_HINT;
2684 }
2685 #ifdef DRAW_GRID
2686 draw_rect_outline(dr, ox, oy, TILE_SIZE, TILE_SIZE, COL_GRID);
2687 #endif
2688
2689 if (todraw & G_NOLINEV) {
2690 line_cross(dr, ds, ox + TS8(3), oy + TS8(1), vcol, todraw);
2691 line_cross(dr, ds, ox + TS8(3), oy + TS8(5), vcol, todraw);
2692 }
2693 if (todraw & G_NOLINEH) {
2694 line_cross(dr, ds, ox + TS8(1), oy + TS8(3), hcol, todraw);
2695 line_cross(dr, ds, ox + TS8(5), oy + TS8(3), hcol, todraw);
2696 }
2697 /* if we're drawing a real line and a hint, make sure we draw the real
2698 * line on top. */
2699 if (lv && vcol == COL_HINT) lines_vert(dr, ds, ox, oy, lv, vcol, v);
2700 if (lh) lines_horiz(dr, ds, ox, oy, lh, hcol, v);
2701 if (lv && vcol != COL_HINT) lines_vert(dr, ds, ox, oy, lv, vcol, v);
2702
2703 dsf_debug_draw(dr, state, ds, x, y);
2704 draw_update(dr, ox, oy, TILE_SIZE, TILE_SIZE);
2705 }
2706
2707 #define ISLAND_RADIUS ((TILE_SIZE*12)/20)
2708 #define ISLAND_NUMSIZE(is) \
2709 (((is)->count < 10) ? (TILE_SIZE*7)/10 : (TILE_SIZE*5)/10)
2710
2711 static void island_redraw(drawing *dr,
2712 game_state *state, game_drawstate *ds,
2713 struct island *is, grid_type v)
2714 {
2715 /* These overlap the edges of their squares, which is why they're drawn later.
2716 * We know they can't overlap each other because they're not allowed within 2
2717 * squares of each other. */
2718 int half = TILE_SIZE/2;
2719 int ox = COORD(is->x) + half, oy = COORD(is->y) + half;
2720 int orad = ISLAND_RADIUS, irad = orad - LINE_WIDTH;
2721 int updatesz = orad*2+1;
2722 int tcol = (v & G_FLASH) ? COL_HIGHLIGHT :
2723 (v & G_WARN) ? COL_WARNING : COL_FOREGROUND;
2724 int col = (v & G_ISSEL) ? COL_SELECTED : tcol;
2725 int bg = (v & G_CURSOR) ? COL_CURSOR :
2726 (v & G_MARK) ? COL_MARK : COL_BACKGROUND;
2727 char str[32];
2728
2729 #ifdef DRAW_GRID
2730 draw_rect_outline(dr, COORD(is->x), COORD(is->y),
2731 TILE_SIZE, TILE_SIZE, COL_GRID);
2732 #endif
2733
2734 /* draw a thick circle */
2735 draw_circle(dr, ox, oy, orad, col, col);
2736 draw_circle(dr, ox, oy, irad, bg, bg);
2737
2738 sprintf(str, "%d", is->count);
2739 draw_text(dr, ox, oy, FONT_VARIABLE, ISLAND_NUMSIZE(is),
2740 ALIGN_VCENTRE | ALIGN_HCENTRE, tcol, str);
2741
2742 dsf_debug_draw(dr, state, ds, is->x, is->y);
2743 draw_update(dr, ox - orad, oy - orad, updatesz, updatesz);
2744 }
2745
2746 static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
2747 game_state *state, int dir, game_ui *ui,
2748 float animtime, float flashtime)
2749 {
2750 int x, y, force = 0, i, j, redraw, lv, lh;
2751 grid_type v, dsv, flash = 0;
2752 struct island *is, *is_drag_src = NULL, *is_drag_dst = NULL;
2753
2754 if (flashtime) {
2755 int f = (int)(flashtime * 5 / FLASH_TIME);
2756 if (f == 1 || f == 3) flash = G_FLASH;
2757 }
2758
2759 /* Clear screen, if required. */
2760 if (!ds->started) {
2761 draw_rect(dr, 0, 0,
2762 TILE_SIZE * ds->w + 2 * BORDER,
2763 TILE_SIZE * ds->h + 2 * BORDER, COL_BACKGROUND);
2764 #ifdef DRAW_GRID
2765 draw_rect_outline(dr,
2766 COORD(0)-1, COORD(0)-1,
2767 TILE_SIZE * ds->w + 2, TILE_SIZE * ds->h + 2,
2768 COL_GRID);
2769 #endif
2770 draw_update(dr, 0, 0,
2771 TILE_SIZE * ds->w + 2 * BORDER,
2772 TILE_SIZE * ds->h + 2 * BORDER);
2773 ds->started = 1;
2774 force = 1;
2775 }
2776
2777 if (ui->dragx_src != -1 && ui->dragy_src != -1) {
2778 ds->dragging = 1;
2779 is_drag_src = INDEX(state, gridi, ui->dragx_src, ui->dragy_src);
2780 assert(is_drag_src);
2781 if (ui->dragx_dst != -1 && ui->dragy_dst != -1) {
2782 is_drag_dst = INDEX(state, gridi, ui->dragx_dst, ui->dragy_dst);
2783 assert(is_drag_dst);
2784 }
2785 } else
2786 ds->dragging = 0;
2787
2788 if (ui->show_hints != ds->show_hints) {
2789 force = 1;
2790 ds->show_hints = ui->show_hints;
2791 }
2792
2793 /* Draw all lines (and hints, if we want), but *not* islands. */
2794 for (x = 0; x < ds->w; x++) {
2795 for (y = 0; y < ds->h; y++) {
2796 v = GRID(state, x, y) | flash;
2797 dsv = GRID(ds,x,y) & ~G_REDRAW;
2798
2799 if (v & G_ISLAND) continue;
2800
2801 if (is_drag_dst) {
2802 if (WITHIN(x,is_drag_src->x, is_drag_dst->x) &&
2803 WITHIN(y,is_drag_src->y, is_drag_dst->y))
2804 v |= G_ISSEL;
2805 }
2806 lines_lvlh(state, ui, x, y, v, &lv, &lh);
2807
2808 /*if (ui->cur_visible && ui->cur_x == x && ui->cur_y == y)
2809 v |= G_CURSOR;*/
2810
2811 if (v != dsv ||
2812 lv != INDEX(ds,lv,x,y) ||
2813 lh != INDEX(ds,lh,x,y) ||
2814 force) {
2815 GRID(ds, x, y) = v | G_REDRAW;
2816 INDEX(ds,lv,x,y) = lv;
2817 INDEX(ds,lh,x,y) = lh;
2818 lines_redraw(dr, state, ds, ui, x, y, v, lv, lh);
2819 } else
2820 GRID(ds,x,y) &= ~G_REDRAW;
2821 }
2822 }
2823
2824 /* Draw islands. */
2825 for (i = 0; i < state->n_islands; i++) {
2826 is = &state->islands[i];
2827 v = GRID(state, is->x, is->y) | flash;
2828
2829 redraw = 0;
2830 for (j = 0; j < is->adj.npoints; j++) {
2831 if (GRID(ds,is->adj.points[j].x,is->adj.points[j].y) & G_REDRAW) {
2832 redraw = 1;
2833 }
2834 }
2835
2836 if (is_drag_src) {
2837 if (is == is_drag_src)
2838 v |= G_ISSEL;
2839 else if (is_drag_dst && is == is_drag_dst)
2840 v |= G_ISSEL;
2841 }
2842
2843 if (island_impossible(is, v & G_MARK)) v |= G_WARN;
2844
2845 if (ui->cur_visible && ui->cur_x == is->x && ui->cur_y == is->y)
2846 v |= G_CURSOR;
2847
2848 if ((v != GRID(ds, is->x, is->y)) || force || redraw) {
2849 GRID(ds,is->x,is->y) = v;
2850 island_redraw(dr, state, ds, is, v);
2851 }
2852 }
2853 }
2854
2855 static float game_anim_length(game_state *oldstate, game_state *newstate,
2856 int dir, game_ui *ui)
2857 {
2858 return 0.0F;
2859 }
2860
2861 static float game_flash_length(game_state *oldstate, game_state *newstate,
2862 int dir, game_ui *ui)
2863 {
2864 if (!oldstate->completed && newstate->completed &&
2865 !oldstate->solved && !newstate->solved)
2866 return FLASH_TIME;
2867
2868 return 0.0F;
2869 }
2870
2871 static int game_status(game_state *state)
2872 {
2873 return state->completed ? +1 : 0;
2874 }
2875
2876 static int game_timing_state(game_state *state, game_ui *ui)
2877 {
2878 return TRUE;
2879 }
2880
2881 static void game_print_size(game_params *params, float *x, float *y)
2882 {
2883 int pw, ph;
2884
2885 /* 10mm squares by default. */
2886 game_compute_size(params, 1000, &pw, &ph);
2887 *x = pw / 100.0F;
2888 *y = ph / 100.0F;
2889 }
2890
2891 static void game_print(drawing *dr, game_state *state, int ts)
2892 {
2893 int ink = print_mono_colour(dr, 0);
2894 int paper = print_mono_colour(dr, 1);
2895 int x, y, cx, cy, i, nl;
2896 int loff;
2897 grid_type grid;
2898
2899 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
2900 game_drawstate ads, *ds = &ads;
2901 ads.tilesize = ts;
2902
2903 /* I don't think this wants a border. */
2904
2905 /* Bridges */
2906 loff = ts / (8 * sqrt((state->params.maxb - 1)));
2907 print_line_width(dr, ts / 12);
2908 for (x = 0; x < state->w; x++) {
2909 for (y = 0; y < state->h; y++) {
2910 cx = COORD(x); cy = COORD(y);
2911 grid = GRID(state,x,y);
2912 nl = INDEX(state,lines,x,y);
2913
2914 if (grid & G_ISLAND) continue;
2915 if (grid & G_LINEV) {
2916 for (i = 0; i < nl; i++)
2917 draw_line(dr, cx+ts/2+(2*i-nl+1)*loff, cy,
2918 cx+ts/2+(2*i-nl+1)*loff, cy+ts, ink);
2919 }
2920 if (grid & G_LINEH) {
2921 for (i = 0; i < nl; i++)
2922 draw_line(dr, cx, cy+ts/2+(2*i-nl+1)*loff,
2923 cx+ts, cy+ts/2+(2*i-nl+1)*loff, ink);
2924 }
2925 }
2926 }
2927
2928 /* Islands */
2929 for (i = 0; i < state->n_islands; i++) {
2930 char str[32];
2931 struct island *is = &state->islands[i];
2932 grid = GRID(state, is->x, is->y);
2933 cx = COORD(is->x) + ts/2;
2934 cy = COORD(is->y) + ts/2;
2935
2936 draw_circle(dr, cx, cy, ISLAND_RADIUS, paper, ink);
2937
2938 sprintf(str, "%d", is->count);
2939 draw_text(dr, cx, cy, FONT_VARIABLE, ISLAND_NUMSIZE(is),
2940 ALIGN_VCENTRE | ALIGN_HCENTRE, ink, str);
2941 }
2942 }
2943
2944 #ifdef COMBINED
2945 #define thegame bridges
2946 #endif
2947
2948 const struct game thegame = {
2949 "Bridges", "games.bridges", "bridges",
2950 default_params,
2951 game_fetch_preset,
2952 decode_params,
2953 encode_params,
2954 free_params,
2955 dup_params,
2956 TRUE, game_configure, custom_params,
2957 validate_params,
2958 new_game_desc,
2959 validate_desc,
2960 new_game,
2961 dup_game,
2962 free_game,
2963 TRUE, solve_game,
2964 TRUE, game_can_format_as_text_now, game_text_format,
2965 new_ui,
2966 free_ui,
2967 encode_ui,
2968 decode_ui,
2969 game_changed_state,
2970 interpret_move,
2971 execute_move,
2972 PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
2973 game_colours,
2974 game_new_drawstate,
2975 game_free_drawstate,
2976 game_redraw,
2977 game_anim_length,
2978 game_flash_length,
2979 game_status,
2980 TRUE, FALSE, game_print_size, game_print,
2981 FALSE, /* wants_statusbar */
2982 FALSE, game_timing_state,
2983 REQUIRE_RBUTTON, /* flags */
2984 };
2985
2986 /* vim: set shiftwidth=4 tabstop=8: */