draw_polygon() and draw_circle() have always had a portability
[sgt/puzzles] / twiddle.c
1 /*
2 * twiddle.c: Puzzle involving rearranging a grid of squares by
3 * rotating subsquares. Adapted and generalised from a
4 * door-unlocking puzzle in Metroid Prime 2 (the one in the Main
5 * Gyro Chamber).
6 */
7
8 #include <stdio.h>
9 #include <stdlib.h>
10 #include <string.h>
11 #include <assert.h>
12 #include <ctype.h>
13 #include <math.h>
14
15 #include "puzzles.h"
16
17 #define PREFERRED_TILE_SIZE 48
18 #define TILE_SIZE (ds->tilesize)
19 #define BORDER (TILE_SIZE / 2)
20 #define HIGHLIGHT_WIDTH (TILE_SIZE / 20)
21 #define COORD(x) ( (x) * TILE_SIZE + BORDER )
22 #define FROMCOORD(x) ( ((x) - BORDER + TILE_SIZE) / TILE_SIZE - 1 )
23
24 #define ANIM_PER_RADIUS_UNIT 0.13F
25 #define FLASH_FRAME 0.13F
26
27 enum {
28 COL_BACKGROUND,
29 COL_TEXT,
30 COL_HIGHLIGHT,
31 COL_HIGHLIGHT_GENTLE,
32 COL_LOWLIGHT,
33 COL_LOWLIGHT_GENTLE,
34 NCOLOURS
35 };
36
37 struct game_params {
38 int w, h, n;
39 int rowsonly;
40 int orientable;
41 int movetarget;
42 };
43
44 struct game_state {
45 int w, h, n;
46 int orientable;
47 int *grid;
48 int completed;
49 int just_used_solve; /* used to suppress undo animation */
50 int used_solve; /* used to suppress completion flash */
51 int movecount, movetarget;
52 int lastx, lasty, lastr; /* coordinates of last rotation */
53 };
54
55 static game_params *default_params(void)
56 {
57 game_params *ret = snew(game_params);
58
59 ret->w = ret->h = 3;
60 ret->n = 2;
61 ret->rowsonly = ret->orientable = FALSE;
62 ret->movetarget = 0;
63
64 return ret;
65 }
66
67
68 static void free_params(game_params *params)
69 {
70 sfree(params);
71 }
72
73 static game_params *dup_params(game_params *params)
74 {
75 game_params *ret = snew(game_params);
76 *ret = *params; /* structure copy */
77 return ret;
78 }
79
80 static int game_fetch_preset(int i, char **name, game_params **params)
81 {
82 static struct {
83 char *title;
84 game_params params;
85 } presets[] = {
86 { "3x3 rows only", { 3, 3, 2, TRUE, FALSE } },
87 { "3x3 normal", { 3, 3, 2, FALSE, FALSE } },
88 { "3x3 orientable", { 3, 3, 2, FALSE, TRUE } },
89 { "4x4 normal", { 4, 4, 2, FALSE } },
90 { "4x4 orientable", { 4, 4, 2, FALSE, TRUE } },
91 { "4x4 radius 3", { 4, 4, 3, FALSE } },
92 { "5x5 radius 3", { 5, 5, 3, FALSE } },
93 { "6x6 radius 4", { 6, 6, 4, FALSE } },
94 };
95
96 if (i < 0 || i >= lenof(presets))
97 return FALSE;
98
99 *name = dupstr(presets[i].title);
100 *params = dup_params(&presets[i].params);
101
102 return TRUE;
103 }
104
105 static void decode_params(game_params *ret, char const *string)
106 {
107 ret->w = ret->h = atoi(string);
108 ret->n = 2;
109 ret->rowsonly = ret->orientable = FALSE;
110 ret->movetarget = 0;
111 while (*string && isdigit(*string)) string++;
112 if (*string == 'x') {
113 string++;
114 ret->h = atoi(string);
115 while (*string && isdigit(*string)) string++;
116 }
117 if (*string == 'n') {
118 string++;
119 ret->n = atoi(string);
120 while (*string && isdigit(*string)) string++;
121 }
122 while (*string) {
123 if (*string == 'r') {
124 ret->rowsonly = TRUE;
125 } else if (*string == 'o') {
126 ret->orientable = TRUE;
127 } else if (*string == 'm') {
128 string++;
129 ret->movetarget = atoi(string);
130 while (string[1] && isdigit(string[1])) string++;
131 }
132 string++;
133 }
134 }
135
136 static char *encode_params(game_params *params, int full)
137 {
138 char buf[256];
139 sprintf(buf, "%dx%dn%d%s%s", params->w, params->h, params->n,
140 params->rowsonly ? "r" : "",
141 params->orientable ? "o" : "");
142 /* Shuffle limit is part of the limited parameters, because we have to
143 * supply the target move count. */
144 if (params->movetarget)
145 sprintf(buf + strlen(buf), "m%d", params->movetarget);
146 return dupstr(buf);
147 }
148
149 static config_item *game_configure(game_params *params)
150 {
151 config_item *ret;
152 char buf[80];
153
154 ret = snewn(7, config_item);
155
156 ret[0].name = "Width";
157 ret[0].type = C_STRING;
158 sprintf(buf, "%d", params->w);
159 ret[0].sval = dupstr(buf);
160 ret[0].ival = 0;
161
162 ret[1].name = "Height";
163 ret[1].type = C_STRING;
164 sprintf(buf, "%d", params->h);
165 ret[1].sval = dupstr(buf);
166 ret[1].ival = 0;
167
168 ret[2].name = "Rotation radius";
169 ret[2].type = C_STRING;
170 sprintf(buf, "%d", params->n);
171 ret[2].sval = dupstr(buf);
172 ret[2].ival = 0;
173
174 ret[3].name = "One number per row";
175 ret[3].type = C_BOOLEAN;
176 ret[3].sval = NULL;
177 ret[3].ival = params->rowsonly;
178
179 ret[4].name = "Orientation matters";
180 ret[4].type = C_BOOLEAN;
181 ret[4].sval = NULL;
182 ret[4].ival = params->orientable;
183
184 ret[5].name = "Number of shuffling moves";
185 ret[5].type = C_STRING;
186 sprintf(buf, "%d", params->movetarget);
187 ret[5].sval = dupstr(buf);
188 ret[5].ival = 0;
189
190 ret[6].name = NULL;
191 ret[6].type = C_END;
192 ret[6].sval = NULL;
193 ret[6].ival = 0;
194
195 return ret;
196 }
197
198 static game_params *custom_params(config_item *cfg)
199 {
200 game_params *ret = snew(game_params);
201
202 ret->w = atoi(cfg[0].sval);
203 ret->h = atoi(cfg[1].sval);
204 ret->n = atoi(cfg[2].sval);
205 ret->rowsonly = cfg[3].ival;
206 ret->orientable = cfg[4].ival;
207 ret->movetarget = atoi(cfg[5].sval);
208
209 return ret;
210 }
211
212 static char *validate_params(game_params *params)
213 {
214 if (params->n < 2)
215 return "Rotation radius must be at least two";
216 if (params->w < params->n)
217 return "Width must be at least the rotation radius";
218 if (params->h < params->n)
219 return "Height must be at least the rotation radius";
220 return NULL;
221 }
222
223 /*
224 * This function actually performs a rotation on a grid. The `x'
225 * and `y' coordinates passed in are the coordinates of the _top
226 * left corner_ of the rotated region. (Using the centre would have
227 * involved half-integers and been annoyingly fiddly. Clicking in
228 * the centre is good for a user interface, but too inconvenient to
229 * use internally.)
230 */
231 static void do_rotate(int *grid, int w, int h, int n, int orientable,
232 int x, int y, int dir)
233 {
234 int i, j;
235
236 assert(x >= 0 && x+n <= w);
237 assert(y >= 0 && y+n <= h);
238 dir &= 3;
239 if (dir == 0)
240 return; /* nothing to do */
241
242 grid += y*w+x; /* translate region to top corner */
243
244 /*
245 * If we were leaving the result of the rotation in a separate
246 * grid, the simple thing to do would be to loop over each
247 * square within the rotated region and assign it from its
248 * source square. However, to do it in place without taking
249 * O(n^2) memory, we need to be marginally more clever. What
250 * I'm going to do is loop over about one _quarter_ of the
251 * rotated region and permute each element within that quarter
252 * with its rotational coset.
253 *
254 * The size of the region I need to loop over is (n+1)/2 by
255 * n/2, which is an obvious exact quarter for even n and is a
256 * rectangle for odd n. (For odd n, this technique leaves out
257 * one element of the square, which is of course the central
258 * one that never moves anyway.)
259 */
260 for (i = 0; i < (n+1)/2; i++) {
261 for (j = 0; j < n/2; j++) {
262 int k;
263 int g[4];
264 int p[4];
265
266 p[0] = j*w+i;
267 p[1] = i*w+(n-j-1);
268 p[2] = (n-j-1)*w+(n-i-1);
269 p[3] = (n-i-1)*w+j;
270
271 for (k = 0; k < 4; k++)
272 g[k] = grid[p[k]];
273
274 for (k = 0; k < 4; k++) {
275 int v = g[(k+dir) & 3];
276 if (orientable)
277 v ^= ((v+dir) ^ v) & 3; /* alter orientation */
278 grid[p[k]] = v;
279 }
280 }
281 }
282
283 /*
284 * Don't forget the orientation on the centre square, if n is
285 * odd.
286 */
287 if (orientable && (n & 1)) {
288 int v = grid[n/2*(w+1)];
289 v ^= ((v+dir) ^ v) & 3; /* alter orientation */
290 grid[n/2*(w+1)] = v;
291 }
292 }
293
294 static int grid_complete(int *grid, int wh, int orientable)
295 {
296 int ok = TRUE;
297 int i;
298 for (i = 1; i < wh; i++)
299 if (grid[i] < grid[i-1])
300 ok = FALSE;
301 if (orientable) {
302 for (i = 0; i < wh; i++)
303 if (grid[i] & 3)
304 ok = FALSE;
305 }
306 return ok;
307 }
308
309 static char *new_game_desc(game_params *params, random_state *rs,
310 char **aux, int interactive)
311 {
312 int *grid;
313 int w = params->w, h = params->h, n = params->n, wh = w*h;
314 int i;
315 char *ret;
316 int retlen;
317 int total_moves;
318
319 /*
320 * Set up a solved grid.
321 */
322 grid = snewn(wh, int);
323 for (i = 0; i < wh; i++)
324 grid[i] = ((params->rowsonly ? i/w : i) + 1) * 4;
325
326 /*
327 * Shuffle it. This game is complex enough that I don't feel up
328 * to analysing its full symmetry properties (particularly at
329 * n=4 and above!), so I'm going to do it the pedestrian way
330 * and simply shuffle the grid by making a long sequence of
331 * randomly chosen moves.
332 */
333 total_moves = params->movetarget;
334 if (!total_moves)
335 /* Add a random move to avoid parity issues. */
336 total_moves = w*h*n*n*2 + random_upto(rs, 2);
337
338 do {
339 int *prevmoves;
340 int rw, rh; /* w/h of rotation centre space */
341
342 rw = w - n + 1;
343 rh = h - n + 1;
344 prevmoves = snewn(rw * rh, int);
345 for (i = 0; i < rw * rh; i++)
346 prevmoves[i] = 0;
347
348 for (i = 0; i < total_moves; i++) {
349 int x, y, r, oldtotal, newtotal, dx, dy;
350
351 do {
352 x = random_upto(rs, w - n + 1);
353 y = random_upto(rs, h - n + 1);
354 r = 2 * random_upto(rs, 2) - 1;
355
356 /*
357 * See if any previous rotations has happened at
358 * this point which nothing has overlapped since.
359 * If so, ensure we haven't either undone a
360 * previous move or repeated one so many times that
361 * it turns into fewer moves in the inverse
362 * direction (i.e. three identical rotations).
363 */
364 oldtotal = prevmoves[y*rw+x];
365 newtotal = oldtotal + r;
366
367 /*
368 * Special case here for w==h==n, in which case
369 * there is actually no way to _avoid_ all moves
370 * repeating or undoing previous ones.
371 */
372 } while ((w != n || h != n) &&
373 (abs(newtotal) < abs(oldtotal) || abs(newtotal) > 2));
374
375 do_rotate(grid, w, h, n, params->orientable, x, y, r);
376
377 /*
378 * Log the rotation we've just performed at this point,
379 * for inversion detection in the next move.
380 *
381 * Also zero a section of the prevmoves array, because
382 * any rotation area which _overlaps_ this one is now
383 * entirely safe to perform further moves in.
384 *
385 * Two rotation areas overlap if their top left
386 * coordinates differ by strictly less than n in both
387 * directions
388 */
389 prevmoves[y*rw+x] += r;
390 for (dy = -n+1; dy <= n-1; dy++) {
391 if (y + dy < 0 || y + dy >= rh)
392 continue;
393 for (dx = -n+1; dx <= n-1; dx++) {
394 if (x + dx < 0 || x + dx >= rw)
395 continue;
396 if (dx == 0 && dy == 0)
397 continue;
398 prevmoves[(y+dy)*rw+(x+dx)] = 0;
399 }
400 }
401 }
402
403 sfree(prevmoves);
404
405 } while (grid_complete(grid, wh, params->orientable));
406
407 /*
408 * Now construct the game description, by describing the grid
409 * as a simple sequence of integers. They're comma-separated,
410 * unless the puzzle is orientable in which case they're
411 * separated by orientation letters `u', `d', `l' and `r'.
412 */
413 ret = NULL;
414 retlen = 0;
415 for (i = 0; i < wh; i++) {
416 char buf[80];
417 int k;
418
419 k = sprintf(buf, "%d%c", grid[i] / 4,
420 (char)(params->orientable ? "uldr"[grid[i] & 3] : ','));
421
422 ret = sresize(ret, retlen + k + 1, char);
423 strcpy(ret + retlen, buf);
424 retlen += k;
425 }
426 if (!params->orientable)
427 ret[retlen-1] = '\0'; /* delete last comma */
428
429 sfree(grid);
430 return ret;
431 }
432
433 static char *validate_desc(game_params *params, char *desc)
434 {
435 char *p, *err;
436 int w = params->w, h = params->h, wh = w*h;
437 int i;
438
439 p = desc;
440 err = NULL;
441
442 for (i = 0; i < wh; i++) {
443 if (*p < '0' || *p > '9')
444 return "Not enough numbers in string";
445 while (*p >= '0' && *p <= '9')
446 p++;
447 if (!params->orientable && i < wh-1) {
448 if (*p != ',')
449 return "Expected comma after number";
450 } else if (params->orientable && i < wh) {
451 if (*p != 'l' && *p != 'r' && *p != 'u' && *p != 'd')
452 return "Expected orientation letter after number";
453 } else if (i == wh-1 && *p) {
454 return "Excess junk at end of string";
455 }
456
457 if (*p) p++; /* eat comma */
458 }
459
460 return NULL;
461 }
462
463 static game_state *new_game(midend_data *me, game_params *params, char *desc)
464 {
465 game_state *state = snew(game_state);
466 int w = params->w, h = params->h, n = params->n, wh = w*h;
467 int i;
468 char *p;
469
470 state->w = w;
471 state->h = h;
472 state->n = n;
473 state->orientable = params->orientable;
474 state->completed = 0;
475 state->used_solve = state->just_used_solve = FALSE;
476 state->movecount = 0;
477 state->movetarget = params->movetarget;
478 state->lastx = state->lasty = state->lastr = -1;
479
480 state->grid = snewn(wh, int);
481
482 p = desc;
483
484 for (i = 0; i < wh; i++) {
485 state->grid[i] = 4 * atoi(p);
486 while (*p >= '0' && *p <= '9')
487 p++;
488 if (*p) {
489 if (params->orientable) {
490 switch (*p) {
491 case 'l': state->grid[i] |= 1; break;
492 case 'd': state->grid[i] |= 2; break;
493 case 'r': state->grid[i] |= 3; break;
494 }
495 }
496 p++;
497 }
498 }
499
500 return state;
501 }
502
503 static game_state *dup_game(game_state *state)
504 {
505 game_state *ret = snew(game_state);
506
507 ret->w = state->w;
508 ret->h = state->h;
509 ret->n = state->n;
510 ret->orientable = state->orientable;
511 ret->completed = state->completed;
512 ret->movecount = state->movecount;
513 ret->movetarget = state->movetarget;
514 ret->lastx = state->lastx;
515 ret->lasty = state->lasty;
516 ret->lastr = state->lastr;
517 ret->used_solve = state->used_solve;
518 ret->just_used_solve = state->just_used_solve;
519
520 ret->grid = snewn(ret->w * ret->h, int);
521 memcpy(ret->grid, state->grid, ret->w * ret->h * sizeof(int));
522
523 return ret;
524 }
525
526 static void free_game(game_state *state)
527 {
528 sfree(state->grid);
529 sfree(state);
530 }
531
532 static int compare_int(const void *av, const void *bv)
533 {
534 const int *a = (const int *)av;
535 const int *b = (const int *)bv;
536 if (*a < *b)
537 return -1;
538 else if (*a > *b)
539 return +1;
540 else
541 return 0;
542 }
543
544 static char *solve_game(game_state *state, game_state *currstate,
545 char *aux, char **error)
546 {
547 return dupstr("S");
548 }
549
550 static char *game_text_format(game_state *state)
551 {
552 char *ret, *p, buf[80];
553 int i, x, y, col, o, maxlen;
554
555 /*
556 * First work out how many characters we need to display each
557 * number. We're pretty flexible on grid contents here, so we
558 * have to scan the entire grid.
559 */
560 col = 0;
561 for (i = 0; i < state->w * state->h; i++) {
562 x = sprintf(buf, "%d", state->grid[i] / 4);
563 if (col < x) col = x;
564 }
565 o = (state->orientable ? 1 : 0);
566
567 /*
568 * Now we know the exact total size of the grid we're going to
569 * produce: it's got h rows, each containing w lots of col+o,
570 * w-1 spaces and a trailing newline.
571 */
572 maxlen = state->h * state->w * (col+o+1);
573
574 ret = snewn(maxlen+1, char);
575 p = ret;
576
577 for (y = 0; y < state->h; y++) {
578 for (x = 0; x < state->w; x++) {
579 int v = state->grid[state->w*y+x];
580 sprintf(buf, "%*d", col, v/4);
581 memcpy(p, buf, col);
582 p += col;
583 if (o)
584 *p++ = "^<v>"[v & 3];
585 if (x+1 == state->w)
586 *p++ = '\n';
587 else
588 *p++ = ' ';
589 }
590 }
591
592 assert(p - ret == maxlen);
593 *p = '\0';
594 return ret;
595 }
596
597 static game_ui *new_ui(game_state *state)
598 {
599 return NULL;
600 }
601
602 static void free_ui(game_ui *ui)
603 {
604 }
605
606 static char *encode_ui(game_ui *ui)
607 {
608 return NULL;
609 }
610
611 static void decode_ui(game_ui *ui, char *encoding)
612 {
613 }
614
615 static void game_changed_state(game_ui *ui, game_state *oldstate,
616 game_state *newstate)
617 {
618 }
619
620 struct game_drawstate {
621 int started;
622 int w, h, bgcolour;
623 int *grid;
624 int tilesize;
625 };
626
627 static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
628 int x, int y, int button)
629 {
630 int w = state->w, h = state->h, n = state->n /* , wh = w*h */;
631 char buf[80];
632 int dir;
633
634 button = button & (~MOD_MASK | MOD_NUM_KEYPAD);
635
636 if (button == LEFT_BUTTON || button == RIGHT_BUTTON) {
637 /*
638 * Determine the coordinates of the click. We offset by n-1
639 * half-blocks so that the user must click at the centre of
640 * a rotation region rather than at the corner.
641 */
642 x -= (n-1) * TILE_SIZE / 2;
643 y -= (n-1) * TILE_SIZE / 2;
644 x = FROMCOORD(x);
645 y = FROMCOORD(y);
646 dir = (button == LEFT_BUTTON ? 1 : -1);
647 if (x < 0 || x > w-n || y < 0 || y > h-n)
648 return NULL;
649 } else if (button == 'a' || button == 'A' || button==MOD_NUM_KEYPAD+'7') {
650 x = y = 0;
651 dir = (button == 'A' ? -1 : +1);
652 } else if (button == 'b' || button == 'B' || button==MOD_NUM_KEYPAD+'9') {
653 x = w-n;
654 y = 0;
655 dir = (button == 'B' ? -1 : +1);
656 } else if (button == 'c' || button == 'C' || button==MOD_NUM_KEYPAD+'1') {
657 x = 0;
658 y = h-n;
659 dir = (button == 'C' ? -1 : +1);
660 } else if (button == 'd' || button == 'D' || button==MOD_NUM_KEYPAD+'3') {
661 x = w-n;
662 y = h-n;
663 dir = (button == 'D' ? -1 : +1);
664 } else if (button==MOD_NUM_KEYPAD+'8' && (w-n) % 2 == 0) {
665 x = (w-n) / 2;
666 y = 0;
667 dir = +1;
668 } else if (button==MOD_NUM_KEYPAD+'2' && (w-n) % 2 == 0) {
669 x = (w-n) / 2;
670 y = h-n;
671 dir = +1;
672 } else if (button==MOD_NUM_KEYPAD+'4' && (h-n) % 2 == 0) {
673 x = 0;
674 y = (h-n) / 2;
675 dir = +1;
676 } else if (button==MOD_NUM_KEYPAD+'6' && (h-n) % 2 == 0) {
677 x = w-n;
678 y = (h-n) / 2;
679 dir = +1;
680 } else if (button==MOD_NUM_KEYPAD+'5' && (w-n) % 2 == 0 && (h-n) % 2 == 0){
681 x = (w-n) / 2;
682 y = (h-n) / 2;
683 dir = +1;
684 } else {
685 return NULL; /* no move to be made */
686 }
687
688 /*
689 * If we reach here, we have a valid move.
690 */
691 sprintf(buf, "M%d,%d,%d", x, y, dir);
692 return dupstr(buf);
693 }
694
695 static game_state *execute_move(game_state *from, char *move)
696 {
697 game_state *ret;
698 int w = from->w, h = from->h, n = from->n, wh = w*h;
699 int x, y, dir;
700
701 if (!strcmp(move, "S")) {
702 int i;
703 ret = dup_game(from);
704
705 /*
706 * Simply replace the grid with a solved one. For this game,
707 * this isn't a useful operation for actually telling the user
708 * what they should have done, but it is useful for
709 * conveniently being able to get hold of a clean state from
710 * which to practise manoeuvres.
711 */
712 qsort(ret->grid, ret->w*ret->h, sizeof(int), compare_int);
713 for (i = 0; i < ret->w*ret->h; i++)
714 ret->grid[i] &= ~3;
715 ret->used_solve = ret->just_used_solve = TRUE;
716 ret->completed = ret->movecount = 1;
717
718 return ret;
719 }
720
721 if (move[0] != 'M' ||
722 sscanf(move+1, "%d,%d,%d", &x, &y, &dir) != 3 ||
723 x < 0 || y < 0 || x > from->w - n || y > from->h - n)
724 return NULL; /* can't parse this move string */
725
726 ret = dup_game(from);
727 ret->just_used_solve = FALSE; /* zero this in a hurry */
728 ret->movecount++;
729 do_rotate(ret->grid, w, h, n, ret->orientable, x, y, dir);
730 ret->lastx = x;
731 ret->lasty = y;
732 ret->lastr = dir;
733
734 /*
735 * See if the game has been completed. To do this we simply
736 * test that the grid contents are in increasing order.
737 */
738 if (!ret->completed && grid_complete(ret->grid, wh, ret->orientable))
739 ret->completed = ret->movecount;
740 return ret;
741 }
742
743 /* ----------------------------------------------------------------------
744 * Drawing routines.
745 */
746
747 static void game_size(game_params *params, game_drawstate *ds,
748 int *x, int *y, int expand)
749 {
750 double tsx, tsy, ts;
751 /*
752 * Each window dimension equals the tile size times one more
753 * than the grid dimension (the border is half the width of the
754 * tiles).
755 */
756 tsx = (double)*x / ((double)params->w + 1.0);
757 tsy = (double)*y / ((double)params->h + 1.0);
758 ts = min(tsx, tsy);
759 if (expand)
760 ds->tilesize = (int)(ts + 0.5);
761 else
762 ds->tilesize = min((int)ts, PREFERRED_TILE_SIZE);
763
764 *x = TILE_SIZE * params->w + 2 * BORDER;
765 *y = TILE_SIZE * params->h + 2 * BORDER;
766 }
767
768 static float *game_colours(frontend *fe, game_state *state, int *ncolours)
769 {
770 float *ret = snewn(3 * NCOLOURS, float);
771 int i;
772 float max;
773
774 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
775
776 /*
777 * Drop the background colour so that the highlight is
778 * noticeably brighter than it while still being under 1.
779 */
780 max = ret[COL_BACKGROUND*3];
781 for (i = 1; i < 3; i++)
782 if (ret[COL_BACKGROUND*3+i] > max)
783 max = ret[COL_BACKGROUND*3+i];
784 if (max * 1.2F > 1.0F) {
785 for (i = 0; i < 3; i++)
786 ret[COL_BACKGROUND*3+i] /= (max * 1.2F);
787 }
788
789 for (i = 0; i < 3; i++) {
790 ret[COL_HIGHLIGHT * 3 + i] = ret[COL_BACKGROUND * 3 + i] * 1.2F;
791 ret[COL_HIGHLIGHT_GENTLE * 3 + i] = ret[COL_BACKGROUND * 3 + i] * 1.1F;
792 ret[COL_LOWLIGHT * 3 + i] = ret[COL_BACKGROUND * 3 + i] * 0.8F;
793 ret[COL_LOWLIGHT_GENTLE * 3 + i] = ret[COL_BACKGROUND * 3 + i] * 0.9F;
794 ret[COL_TEXT * 3 + i] = 0.0;
795 }
796
797 *ncolours = NCOLOURS;
798 return ret;
799 }
800
801 static game_drawstate *game_new_drawstate(game_state *state)
802 {
803 struct game_drawstate *ds = snew(struct game_drawstate);
804 int i;
805
806 ds->started = FALSE;
807 ds->w = state->w;
808 ds->h = state->h;
809 ds->bgcolour = COL_BACKGROUND;
810 ds->grid = snewn(ds->w*ds->h, int);
811 ds->tilesize = 0; /* haven't decided yet */
812 for (i = 0; i < ds->w*ds->h; i++)
813 ds->grid[i] = -1;
814
815 return ds;
816 }
817
818 static void game_free_drawstate(game_drawstate *ds)
819 {
820 sfree(ds->grid);
821 sfree(ds);
822 }
823
824 struct rotation {
825 int cx, cy, cw, ch; /* clip region */
826 int ox, oy; /* rotation origin */
827 float c, s; /* cos and sin of rotation angle */
828 int lc, rc, tc, bc; /* colours of tile edges */
829 };
830
831 static void rotate(int *xy, struct rotation *rot)
832 {
833 if (rot) {
834 float xf = xy[0] - rot->ox, yf = xy[1] - rot->oy;
835 float xf2, yf2;
836
837 xf2 = rot->c * xf + rot->s * yf;
838 yf2 = - rot->s * xf + rot->c * yf;
839
840 xy[0] = xf2 + rot->ox + 0.5; /* round to nearest */
841 xy[1] = yf2 + rot->oy + 0.5; /* round to nearest */
842 }
843 }
844
845 static void draw_tile(frontend *fe, game_drawstate *ds, game_state *state,
846 int x, int y, int tile, int flash_colour,
847 struct rotation *rot)
848 {
849 int coords[8];
850 char str[40];
851
852 /*
853 * If we've been passed a rotation region but we're drawing a
854 * tile which is outside it, we must draw it normally. This can
855 * occur if we're cleaning up after a completion flash while a
856 * new move is also being made.
857 */
858 if (rot && (x < rot->cx || y < rot->cy ||
859 x >= rot->cx+rot->cw || y >= rot->cy+rot->ch))
860 rot = NULL;
861
862 if (rot)
863 clip(fe, rot->cx, rot->cy, rot->cw, rot->ch);
864
865 /*
866 * We must draw each side of the tile's highlight separately,
867 * because in some cases (during rotation) they will all need
868 * to be different colours.
869 */
870
871 /* The centre point is common to all sides. */
872 coords[4] = x + TILE_SIZE / 2;
873 coords[5] = y + TILE_SIZE / 2;
874 rotate(coords+4, rot);
875
876 /* Right side. */
877 coords[0] = x + TILE_SIZE - 1;
878 coords[1] = y + TILE_SIZE - 1;
879 rotate(coords+0, rot);
880 coords[2] = x + TILE_SIZE - 1;
881 coords[3] = y;
882 rotate(coords+2, rot);
883 draw_polygon(fe, coords, 3, rot ? rot->rc : COL_LOWLIGHT,
884 rot ? rot->rc : COL_LOWLIGHT);
885
886 /* Bottom side. */
887 coords[2] = x;
888 coords[3] = y + TILE_SIZE - 1;
889 rotate(coords+2, rot);
890 draw_polygon(fe, coords, 3, rot ? rot->bc : COL_LOWLIGHT,
891 rot ? rot->bc : COL_LOWLIGHT);
892
893 /* Left side. */
894 coords[0] = x;
895 coords[1] = y;
896 rotate(coords+0, rot);
897 draw_polygon(fe, coords, 3, rot ? rot->lc : COL_HIGHLIGHT,
898 rot ? rot->lc : COL_HIGHLIGHT);
899
900 /* Top side. */
901 coords[2] = x + TILE_SIZE - 1;
902 coords[3] = y;
903 rotate(coords+2, rot);
904 draw_polygon(fe, coords, 3, rot ? rot->tc : COL_HIGHLIGHT,
905 rot ? rot->tc : COL_HIGHLIGHT);
906
907 /*
908 * Now the main blank area in the centre of the tile.
909 */
910 if (rot) {
911 coords[0] = x + HIGHLIGHT_WIDTH;
912 coords[1] = y + HIGHLIGHT_WIDTH;
913 rotate(coords+0, rot);
914 coords[2] = x + HIGHLIGHT_WIDTH;
915 coords[3] = y + TILE_SIZE - 1 - HIGHLIGHT_WIDTH;
916 rotate(coords+2, rot);
917 coords[4] = x + TILE_SIZE - 1 - HIGHLIGHT_WIDTH;
918 coords[5] = y + TILE_SIZE - 1 - HIGHLIGHT_WIDTH;
919 rotate(coords+4, rot);
920 coords[6] = x + TILE_SIZE - 1 - HIGHLIGHT_WIDTH;
921 coords[7] = y + HIGHLIGHT_WIDTH;
922 rotate(coords+6, rot);
923 draw_polygon(fe, coords, 4, flash_colour, flash_colour);
924 } else {
925 draw_rect(fe, x + HIGHLIGHT_WIDTH, y + HIGHLIGHT_WIDTH,
926 TILE_SIZE - 2*HIGHLIGHT_WIDTH, TILE_SIZE - 2*HIGHLIGHT_WIDTH,
927 flash_colour);
928 }
929
930 /*
931 * Next, the triangles for orientation.
932 */
933 if (state->orientable) {
934 int xdx, xdy, ydx, ydy;
935 int cx, cy, displ, displ2;
936 switch (tile & 3) {
937 case 0:
938 xdx = 1, xdy = 0;
939 ydx = 0, ydy = 1;
940 break;
941 case 1:
942 xdx = 0, xdy = -1;
943 ydx = 1, ydy = 0;
944 break;
945 case 2:
946 xdx = -1, xdy = 0;
947 ydx = 0, ydy = -1;
948 break;
949 default /* case 3 */:
950 xdx = 0, xdy = 1;
951 ydx = -1, ydy = 0;
952 break;
953 }
954
955 cx = x + TILE_SIZE / 2;
956 cy = y + TILE_SIZE / 2;
957 displ = TILE_SIZE / 2 - HIGHLIGHT_WIDTH - 2;
958 displ2 = TILE_SIZE / 3 - HIGHLIGHT_WIDTH;
959
960 coords[0] = cx - displ * xdx + displ2 * ydx;
961 coords[1] = cy - displ * xdy + displ2 * ydy;
962 rotate(coords+0, rot);
963 coords[2] = cx + displ * xdx + displ2 * ydx;
964 coords[3] = cy + displ * xdy + displ2 * ydy;
965 rotate(coords+2, rot);
966 coords[4] = cx - displ * ydx;
967 coords[5] = cy - displ * ydy;
968 rotate(coords+4, rot);
969 draw_polygon(fe, coords, 3, COL_LOWLIGHT_GENTLE, COL_LOWLIGHT_GENTLE);
970 }
971
972 coords[0] = x + TILE_SIZE/2;
973 coords[1] = y + TILE_SIZE/2;
974 rotate(coords+0, rot);
975 sprintf(str, "%d", tile / 4);
976 draw_text(fe, coords[0], coords[1],
977 FONT_VARIABLE, TILE_SIZE/3, ALIGN_VCENTRE | ALIGN_HCENTRE,
978 COL_TEXT, str);
979
980 if (rot)
981 unclip(fe);
982
983 draw_update(fe, x, y, TILE_SIZE, TILE_SIZE);
984 }
985
986 static int highlight_colour(float angle)
987 {
988 int colours[32] = {
989 COL_LOWLIGHT,
990 COL_LOWLIGHT_GENTLE,
991 COL_LOWLIGHT_GENTLE,
992 COL_LOWLIGHT_GENTLE,
993 COL_HIGHLIGHT_GENTLE,
994 COL_HIGHLIGHT_GENTLE,
995 COL_HIGHLIGHT_GENTLE,
996 COL_HIGHLIGHT,
997 COL_HIGHLIGHT,
998 COL_HIGHLIGHT,
999 COL_HIGHLIGHT,
1000 COL_HIGHLIGHT,
1001 COL_HIGHLIGHT,
1002 COL_HIGHLIGHT,
1003 COL_HIGHLIGHT,
1004 COL_HIGHLIGHT,
1005 COL_HIGHLIGHT,
1006 COL_HIGHLIGHT_GENTLE,
1007 COL_HIGHLIGHT_GENTLE,
1008 COL_HIGHLIGHT_GENTLE,
1009 COL_LOWLIGHT_GENTLE,
1010 COL_LOWLIGHT_GENTLE,
1011 COL_LOWLIGHT_GENTLE,
1012 COL_LOWLIGHT,
1013 COL_LOWLIGHT,
1014 COL_LOWLIGHT,
1015 COL_LOWLIGHT,
1016 COL_LOWLIGHT,
1017 COL_LOWLIGHT,
1018 COL_LOWLIGHT,
1019 COL_LOWLIGHT,
1020 COL_LOWLIGHT,
1021 };
1022
1023 return colours[(int)((angle + 2*PI) / (PI/16)) & 31];
1024 }
1025
1026 static float game_anim_length(game_state *oldstate, game_state *newstate,
1027 int dir, game_ui *ui)
1028 {
1029 if ((dir > 0 && newstate->just_used_solve) ||
1030 (dir < 0 && oldstate->just_used_solve))
1031 return 0.0F;
1032 else
1033 return ANIM_PER_RADIUS_UNIT * sqrt(newstate->n-1);
1034 }
1035
1036 static float game_flash_length(game_state *oldstate, game_state *newstate,
1037 int dir, game_ui *ui)
1038 {
1039 if (!oldstate->completed && newstate->completed &&
1040 !oldstate->used_solve && !newstate->used_solve)
1041 return 2 * FLASH_FRAME;
1042 else
1043 return 0.0F;
1044 }
1045
1046 static void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate,
1047 game_state *state, int dir, game_ui *ui,
1048 float animtime, float flashtime)
1049 {
1050 int i, bgcolour;
1051 struct rotation srot, *rot;
1052 int lastx = -1, lasty = -1, lastr = -1;
1053
1054 if (flashtime > 0) {
1055 int frame = (int)(flashtime / FLASH_FRAME);
1056 bgcolour = (frame % 2 ? COL_LOWLIGHT : COL_HIGHLIGHT);
1057 } else
1058 bgcolour = COL_BACKGROUND;
1059
1060 if (!ds->started) {
1061 int coords[10];
1062
1063 draw_rect(fe, 0, 0,
1064 TILE_SIZE * state->w + 2 * BORDER,
1065 TILE_SIZE * state->h + 2 * BORDER, COL_BACKGROUND);
1066 draw_update(fe, 0, 0,
1067 TILE_SIZE * state->w + 2 * BORDER,
1068 TILE_SIZE * state->h + 2 * BORDER);
1069
1070 /*
1071 * Recessed area containing the whole puzzle.
1072 */
1073 coords[0] = COORD(state->w) + HIGHLIGHT_WIDTH - 1;
1074 coords[1] = COORD(state->h) + HIGHLIGHT_WIDTH - 1;
1075 coords[2] = COORD(state->w) + HIGHLIGHT_WIDTH - 1;
1076 coords[3] = COORD(0) - HIGHLIGHT_WIDTH;
1077 coords[4] = coords[2] - TILE_SIZE;
1078 coords[5] = coords[3] + TILE_SIZE;
1079 coords[8] = COORD(0) - HIGHLIGHT_WIDTH;
1080 coords[9] = COORD(state->h) + HIGHLIGHT_WIDTH - 1;
1081 coords[6] = coords[8] + TILE_SIZE;
1082 coords[7] = coords[9] - TILE_SIZE;
1083 draw_polygon(fe, coords, 5, COL_HIGHLIGHT, COL_HIGHLIGHT);
1084
1085 coords[1] = COORD(0) - HIGHLIGHT_WIDTH;
1086 coords[0] = COORD(0) - HIGHLIGHT_WIDTH;
1087 draw_polygon(fe, coords, 5, COL_LOWLIGHT, COL_LOWLIGHT);
1088
1089 ds->started = TRUE;
1090 }
1091
1092 /*
1093 * If we're drawing any rotated tiles, sort out the rotation
1094 * parameters, and also zap the rotation region to the
1095 * background colour before doing anything else.
1096 */
1097 if (oldstate) {
1098 float angle;
1099 float anim_max = game_anim_length(oldstate, state, dir, ui);
1100
1101 if (dir > 0) {
1102 lastx = state->lastx;
1103 lasty = state->lasty;
1104 lastr = state->lastr;
1105 } else {
1106 lastx = oldstate->lastx;
1107 lasty = oldstate->lasty;
1108 lastr = -oldstate->lastr;
1109 }
1110
1111 rot = &srot;
1112 rot->cx = COORD(lastx);
1113 rot->cy = COORD(lasty);
1114 rot->cw = rot->ch = TILE_SIZE * state->n;
1115 rot->ox = rot->cx + rot->cw/2;
1116 rot->oy = rot->cy + rot->ch/2;
1117 angle = (-PI/2 * lastr) * (1.0 - animtime / anim_max);
1118 rot->c = cos(angle);
1119 rot->s = sin(angle);
1120
1121 /*
1122 * Sort out the colours of the various sides of the tile.
1123 */
1124 rot->lc = highlight_colour(PI + angle);
1125 rot->rc = highlight_colour(angle);
1126 rot->tc = highlight_colour(PI/2 + angle);
1127 rot->bc = highlight_colour(-PI/2 + angle);
1128
1129 draw_rect(fe, rot->cx, rot->cy, rot->cw, rot->ch, bgcolour);
1130 } else
1131 rot = NULL;
1132
1133 /*
1134 * Now draw each tile.
1135 */
1136 for (i = 0; i < state->w * state->h; i++) {
1137 int t;
1138 int tx = i % state->w, ty = i / state->w;
1139
1140 /*
1141 * Figure out what should be displayed at this location.
1142 * Usually it will be state->grid[i], unless we're in the
1143 * middle of animating an actual rotation and this cell is
1144 * within the rotation region, in which case we set -1
1145 * (always display).
1146 */
1147 if (oldstate && lastx >= 0 && lasty >= 0 &&
1148 tx >= lastx && tx < lastx + state->n &&
1149 ty >= lasty && ty < lasty + state->n)
1150 t = -1;
1151 else
1152 t = state->grid[i];
1153
1154 if (ds->bgcolour != bgcolour || /* always redraw when flashing */
1155 ds->grid[i] != t || ds->grid[i] == -1 || t == -1) {
1156 int x = COORD(tx), y = COORD(ty);
1157
1158 draw_tile(fe, ds, state, x, y, state->grid[i], bgcolour, rot);
1159 ds->grid[i] = t;
1160 }
1161 }
1162 ds->bgcolour = bgcolour;
1163
1164 /*
1165 * Update the status bar.
1166 */
1167 {
1168 char statusbuf[256];
1169
1170 /*
1171 * Don't show the new status until we're also showing the
1172 * new _state_ - after the game animation is complete.
1173 */
1174 if (oldstate)
1175 state = oldstate;
1176
1177 if (state->used_solve)
1178 sprintf(statusbuf, "Moves since auto-solve: %d",
1179 state->movecount - state->completed);
1180 else {
1181 sprintf(statusbuf, "%sMoves: %d",
1182 (state->completed ? "COMPLETED! " : ""),
1183 (state->completed ? state->completed : state->movecount));
1184 if (state->movetarget)
1185 sprintf(statusbuf+strlen(statusbuf), " (target %d)",
1186 state->movetarget);
1187 }
1188
1189 status_bar(fe, statusbuf);
1190 }
1191 }
1192
1193 static int game_wants_statusbar(void)
1194 {
1195 return TRUE;
1196 }
1197
1198 static int game_timing_state(game_state *state)
1199 {
1200 return TRUE;
1201 }
1202
1203 #ifdef COMBINED
1204 #define thegame twiddle
1205 #endif
1206
1207 const struct game thegame = {
1208 "Twiddle", "games.twiddle",
1209 default_params,
1210 game_fetch_preset,
1211 decode_params,
1212 encode_params,
1213 free_params,
1214 dup_params,
1215 TRUE, game_configure, custom_params,
1216 validate_params,
1217 new_game_desc,
1218 validate_desc,
1219 new_game,
1220 dup_game,
1221 free_game,
1222 TRUE, solve_game,
1223 TRUE, game_text_format,
1224 new_ui,
1225 free_ui,
1226 encode_ui,
1227 decode_ui,
1228 game_changed_state,
1229 interpret_move,
1230 execute_move,
1231 game_size,
1232 game_colours,
1233 game_new_drawstate,
1234 game_free_drawstate,
1235 game_redraw,
1236 game_anim_length,
1237 game_flash_length,
1238 game_wants_statusbar,
1239 FALSE, game_timing_state,
1240 0, /* mouse_priorities */
1241 };