Ensure the shuffling process never produces an already-solved grid.
[sgt/puzzles] / net.c
1 /*
2 * net.c: Net game.
3 */
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <string.h>
8 #include <assert.h>
9 #include <ctype.h>
10 #include <math.h>
11
12 #include "puzzles.h"
13 #include "tree234.h"
14
15 /*
16 * The standard user interface for Net simply has left- and
17 * right-button mouse clicks in a square rotate it one way or the
18 * other. We also provide, by #ifdef, a separate interface based on
19 * rotational dragging motions. I initially developed this for the
20 * Mac on the basis that it might work better than the click
21 * interface with only one mouse button available, but in fact
22 * found it to be quite strange and unintuitive. Apparently it
23 * works better on stylus-driven platforms such as Palm and
24 * PocketPC, though, so we enable it by default there.
25 */
26 #ifdef STYLUS_BASED
27 #define USE_DRAGGING
28 #endif
29
30 #define MATMUL(xr,yr,m,x,y) do { \
31 float rx, ry, xx = (x), yy = (y), *mat = (m); \
32 rx = mat[0] * xx + mat[2] * yy; \
33 ry = mat[1] * xx + mat[3] * yy; \
34 (xr) = rx; (yr) = ry; \
35 } while (0)
36
37 /* Direction and other bitfields */
38 #define R 0x01
39 #define U 0x02
40 #define L 0x04
41 #define D 0x08
42 #define LOCKED 0x10
43 #define ACTIVE 0x20
44
45 /* Rotations: Anticlockwise, Clockwise, Flip, general rotate */
46 #define A(x) ( (((x) & 0x07) << 1) | (((x) & 0x08) >> 3) )
47 #define C(x) ( (((x) & 0x0E) >> 1) | (((x) & 0x01) << 3) )
48 #define F(x) ( (((x) & 0x0C) >> 2) | (((x) & 0x03) << 2) )
49 #define ROT(x, n) ( ((n)&3) == 0 ? (x) : \
50 ((n)&3) == 1 ? A(x) : \
51 ((n)&3) == 2 ? F(x) : C(x) )
52
53 /* X and Y displacements */
54 #define X(x) ( (x) == R ? +1 : (x) == L ? -1 : 0 )
55 #define Y(x) ( (x) == D ? +1 : (x) == U ? -1 : 0 )
56
57 /* Bit count */
58 #define COUNT(x) ( (((x) & 0x08) >> 3) + (((x) & 0x04) >> 2) + \
59 (((x) & 0x02) >> 1) + ((x) & 0x01) )
60
61 #define PREFERRED_TILE_SIZE 32
62 #define TILE_SIZE (ds->tilesize)
63 #define TILE_BORDER 1
64 #ifdef SMALL_SCREEN
65 #define WINDOW_OFFSET 4
66 #else
67 #define WINDOW_OFFSET 16
68 #endif
69
70 #define ROTATE_TIME 0.13F
71 #define FLASH_FRAME 0.07F
72
73 /* Transform physical coords to game coords using game_drawstate ds */
74 #define GX(x) (((x) + ds->org_x) % ds->width)
75 #define GY(y) (((y) + ds->org_y) % ds->height)
76 /* ...and game coords to physical coords */
77 #define RX(x) (((x) + ds->width - ds->org_x) % ds->width)
78 #define RY(y) (((y) + ds->height - ds->org_y) % ds->height)
79
80 enum {
81 COL_BACKGROUND,
82 COL_LOCKED,
83 COL_BORDER,
84 COL_WIRE,
85 COL_ENDPOINT,
86 COL_POWERED,
87 COL_BARRIER,
88 NCOLOURS
89 };
90
91 struct game_params {
92 int width;
93 int height;
94 int wrapping;
95 int unique;
96 float barrier_probability;
97 };
98
99 struct game_state {
100 int width, height, wrapping, completed;
101 int last_rotate_x, last_rotate_y, last_rotate_dir;
102 int used_solve;
103 unsigned char *tiles;
104 unsigned char *barriers;
105 };
106
107 #define OFFSETWH(x2,y2,x1,y1,dir,width,height) \
108 ( (x2) = ((x1) + width + X((dir))) % width, \
109 (y2) = ((y1) + height + Y((dir))) % height)
110
111 #define OFFSET(x2,y2,x1,y1,dir,state) \
112 OFFSETWH(x2,y2,x1,y1,dir,(state)->width,(state)->height)
113
114 #define index(state, a, x, y) ( a[(y) * (state)->width + (x)] )
115 #define tile(state, x, y) index(state, (state)->tiles, x, y)
116 #define barrier(state, x, y) index(state, (state)->barriers, x, y)
117
118 struct xyd {
119 int x, y, direction;
120 };
121
122 static int xyd_cmp(const void *av, const void *bv) {
123 const struct xyd *a = (const struct xyd *)av;
124 const struct xyd *b = (const struct xyd *)bv;
125 if (a->x < b->x)
126 return -1;
127 if (a->x > b->x)
128 return +1;
129 if (a->y < b->y)
130 return -1;
131 if (a->y > b->y)
132 return +1;
133 if (a->direction < b->direction)
134 return -1;
135 if (a->direction > b->direction)
136 return +1;
137 return 0;
138 }
139
140 static int xyd_cmp_nc(void *av, void *bv) { return xyd_cmp(av, bv); }
141
142 static struct xyd *new_xyd(int x, int y, int direction)
143 {
144 struct xyd *xyd = snew(struct xyd);
145 xyd->x = x;
146 xyd->y = y;
147 xyd->direction = direction;
148 return xyd;
149 }
150
151 /* ----------------------------------------------------------------------
152 * Manage game parameters.
153 */
154 static game_params *default_params(void)
155 {
156 game_params *ret = snew(game_params);
157
158 ret->width = 5;
159 ret->height = 5;
160 ret->wrapping = FALSE;
161 ret->unique = TRUE;
162 ret->barrier_probability = 0.0;
163
164 return ret;
165 }
166
167 static const struct game_params net_presets[] = {
168 {5, 5, FALSE, TRUE, 0.0},
169 {7, 7, FALSE, TRUE, 0.0},
170 {9, 9, FALSE, TRUE, 0.0},
171 {11, 11, FALSE, TRUE, 0.0},
172 #ifndef SMALL_SCREEN
173 {13, 11, FALSE, TRUE, 0.0},
174 #endif
175 {5, 5, TRUE, TRUE, 0.0},
176 {7, 7, TRUE, TRUE, 0.0},
177 {9, 9, TRUE, TRUE, 0.0},
178 {11, 11, TRUE, TRUE, 0.0},
179 #ifndef SMALL_SCREEN
180 {13, 11, TRUE, TRUE, 0.0},
181 #endif
182 };
183
184 static int game_fetch_preset(int i, char **name, game_params **params)
185 {
186 game_params *ret;
187 char str[80];
188
189 if (i < 0 || i >= lenof(net_presets))
190 return FALSE;
191
192 ret = snew(game_params);
193 *ret = net_presets[i];
194
195 sprintf(str, "%dx%d%s", ret->width, ret->height,
196 ret->wrapping ? " wrapping" : "");
197
198 *name = dupstr(str);
199 *params = ret;
200 return TRUE;
201 }
202
203 static void free_params(game_params *params)
204 {
205 sfree(params);
206 }
207
208 static game_params *dup_params(game_params *params)
209 {
210 game_params *ret = snew(game_params);
211 *ret = *params; /* structure copy */
212 return ret;
213 }
214
215 static void decode_params(game_params *ret, char const *string)
216 {
217 char const *p = string;
218
219 ret->width = atoi(p);
220 while (*p && isdigit((unsigned char)*p)) p++;
221 if (*p == 'x') {
222 p++;
223 ret->height = atoi(p);
224 while (*p && isdigit((unsigned char)*p)) p++;
225 } else {
226 ret->height = ret->width;
227 }
228
229 while (*p) {
230 if (*p == 'w') {
231 p++;
232 ret->wrapping = TRUE;
233 } else if (*p == 'b') {
234 p++;
235 ret->barrier_probability = atof(p);
236 while (*p && (*p == '.' || isdigit((unsigned char)*p))) p++;
237 } else if (*p == 'a') {
238 p++;
239 ret->unique = FALSE;
240 } else
241 p++; /* skip any other gunk */
242 }
243 }
244
245 static char *encode_params(game_params *params, int full)
246 {
247 char ret[400];
248 int len;
249
250 len = sprintf(ret, "%dx%d", params->width, params->height);
251 if (params->wrapping)
252 ret[len++] = 'w';
253 if (full && params->barrier_probability)
254 len += sprintf(ret+len, "b%g", params->barrier_probability);
255 if (full && !params->unique)
256 ret[len++] = 'a';
257 assert(len < lenof(ret));
258 ret[len] = '\0';
259
260 return dupstr(ret);
261 }
262
263 static config_item *game_configure(game_params *params)
264 {
265 config_item *ret;
266 char buf[80];
267
268 ret = snewn(6, config_item);
269
270 ret[0].name = "Width";
271 ret[0].type = C_STRING;
272 sprintf(buf, "%d", params->width);
273 ret[0].sval = dupstr(buf);
274 ret[0].ival = 0;
275
276 ret[1].name = "Height";
277 ret[1].type = C_STRING;
278 sprintf(buf, "%d", params->height);
279 ret[1].sval = dupstr(buf);
280 ret[1].ival = 0;
281
282 ret[2].name = "Walls wrap around";
283 ret[2].type = C_BOOLEAN;
284 ret[2].sval = NULL;
285 ret[2].ival = params->wrapping;
286
287 ret[3].name = "Barrier probability";
288 ret[3].type = C_STRING;
289 sprintf(buf, "%g", params->barrier_probability);
290 ret[3].sval = dupstr(buf);
291 ret[3].ival = 0;
292
293 ret[4].name = "Ensure unique solution";
294 ret[4].type = C_BOOLEAN;
295 ret[4].sval = NULL;
296 ret[4].ival = params->unique;
297
298 ret[5].name = NULL;
299 ret[5].type = C_END;
300 ret[5].sval = NULL;
301 ret[5].ival = 0;
302
303 return ret;
304 }
305
306 static game_params *custom_params(config_item *cfg)
307 {
308 game_params *ret = snew(game_params);
309
310 ret->width = atoi(cfg[0].sval);
311 ret->height = atoi(cfg[1].sval);
312 ret->wrapping = cfg[2].ival;
313 ret->barrier_probability = (float)atof(cfg[3].sval);
314 ret->unique = cfg[4].ival;
315
316 return ret;
317 }
318
319 static char *validate_params(game_params *params, int full)
320 {
321 if (params->width <= 0 || params->height <= 0)
322 return "Width and height must both be greater than zero";
323 if (params->width <= 1 && params->height <= 1)
324 return "At least one of width and height must be greater than one";
325 if (params->barrier_probability < 0)
326 return "Barrier probability may not be negative";
327 if (params->barrier_probability > 1)
328 return "Barrier probability may not be greater than 1";
329
330 /*
331 * Specifying either grid dimension as 2 in a wrapping puzzle
332 * makes it actually impossible to ensure a unique puzzle
333 * solution.
334 *
335 * Proof:
336 *
337 * Without loss of generality, let us assume the puzzle _width_
338 * is 2, so we can conveniently discuss rows without having to
339 * say `rows/columns' all the time. (The height may be 2 as
340 * well, but that doesn't matter.)
341 *
342 * In each row, there are two edges between tiles: the inner
343 * edge (running down the centre of the grid) and the outer
344 * edge (the identified left and right edges of the grid).
345 *
346 * Lemma: In any valid 2xn puzzle there must be at least one
347 * row in which _exactly one_ of the inner edge and outer edge
348 * is connected.
349 *
350 * Proof: No row can have _both_ inner and outer edges
351 * connected, because this would yield a loop. So the only
352 * other way to falsify the lemma is for every row to have
353 * _neither_ the inner nor outer edge connected. But this
354 * means there is no connection at all between the left and
355 * right columns of the puzzle, so there are two disjoint
356 * subgraphs, which is also disallowed. []
357 *
358 * Given such a row, it is always possible to make the
359 * disconnected edge connected and the connected edge
360 * disconnected without changing the state of any other edge.
361 * (This is easily seen by case analysis on the various tiles:
362 * left-pointing and right-pointing endpoints can be exchanged,
363 * likewise T-pieces, and a corner piece can select its
364 * horizontal connectivity independently of its vertical.) This
365 * yields a distinct valid solution.
366 *
367 * Thus, for _every_ row in which exactly one of the inner and
368 * outer edge is connected, there are two valid states for that
369 * row, and hence the total number of solutions of the puzzle
370 * is at least 2^(number of such rows), and in particular is at
371 * least 2 since there must be at least one such row. []
372 */
373 if (full && params->unique && params->wrapping &&
374 (params->width == 2 || params->height == 2))
375 return "No wrapping puzzle with a width or height of 2 can have"
376 " a unique solution";
377
378 return NULL;
379 }
380
381 /* ----------------------------------------------------------------------
382 * Solver used to assure solution uniqueness during generation.
383 */
384
385 /*
386 * Test cases I used while debugging all this were
387 *
388 * ./net --generate 1 13x11w#12300
389 * which expands under the non-unique grid generation rules to
390 * 13x11w:5eaade1bd222664436d5e2965c12656b1129dd825219e3274d558d5eb2dab5da18898e571d5a2987be79746bd95726c597447d6da96188c513add829da7681da954db113d3cd244
391 * and has two ambiguous areas.
392 *
393 * An even better one is
394 * 13x11w#507896411361192
395 * which expands to
396 * 13x11w:b7125b1aec598eb31bd58d82572bc11494e5dee4e8db2bdd29b88d41a16bdd996d2996ddec8c83741a1e8674e78328ba71737b8894a9271b1cd1399453d1952e43951d9b712822e
397 * and has an ambiguous area _and_ a situation where loop avoidance
398 * is a necessary deductive technique.
399 *
400 * Then there's
401 * 48x25w#820543338195187
402 * becoming
403 * 48x25w:255989d14cdd185deaa753a93821a12edc1ab97943ac127e2685d7b8b3c48861b2192416139212b316eddd35de43714ebc7628d753db32e596284d9ec52c5a7dc1b4c811a655117d16dc28921b2b4161352cab1d89d18bc836b8b891d55ea4622a1251861b5bc9a8aa3e5bcd745c95229ca6c3b5e21d5832d397e917325793d7eb442dc351b2db2a52ba8e1651642275842d8871d5534aabc6d5b741aaa2d48ed2a7dbbb3151ddb49d5b9a7ed1ab98ee75d613d656dbba347bc514c84556b43a9bc65a3256ead792488b862a9d2a8a39b4255a4949ed7dbd79443292521265896b4399c95ede89d7c8c797a6a57791a849adea489359a158aa12e5dacce862b8333b7ebea7d344d1a3c53198864b73a9dedde7b663abb1b539e1e8853b1b7edb14a2a17ebaae4dbe63598a2e7e9a2dbdad415bc1d8cb88cbab5a8c82925732cd282e641ea3bd7d2c6e776de9117a26be86deb7c82c89524b122cb9397cd1acd2284e744ea62b9279bae85479ababe315c3ac29c431333395b24e6a1e3c43a2da42d4dce84aadd5b154aea555eaddcbd6e527d228c19388d9b424d94214555a7edbdeebe569d4a56dc51a86bd9963e377bb74752bd5eaa5761ba545e297b62a1bda46ab4aee423ad6c661311783cc18786d4289236563cb4a75ec67d481c14814994464cd1b87396dee63e5ab6e952cc584baa1d4c47cb557ec84dbb63d487c8728118673a166846dd3a4ebc23d6cb9c5827d96b4556e91899db32b517eda815ae271a8911bd745447121dc8d321557bc2a435ebec1bbac35b1a291669451174e6aa2218a4a9c5a6ca31ebc45d84e3a82c121e9ced7d55e9a
404 * which has a spot (far right) where slightly more complex loop
405 * avoidance is required.
406 */
407
408 struct todo {
409 unsigned char *marked;
410 int *buffer;
411 int buflen;
412 int head, tail;
413 };
414
415 static struct todo *todo_new(int maxsize)
416 {
417 struct todo *todo = snew(struct todo);
418 todo->marked = snewn(maxsize, unsigned char);
419 memset(todo->marked, 0, maxsize);
420 todo->buflen = maxsize + 1;
421 todo->buffer = snewn(todo->buflen, int);
422 todo->head = todo->tail = 0;
423 return todo;
424 }
425
426 static void todo_free(struct todo *todo)
427 {
428 sfree(todo->marked);
429 sfree(todo->buffer);
430 sfree(todo);
431 }
432
433 static void todo_add(struct todo *todo, int index)
434 {
435 if (todo->marked[index])
436 return; /* already on the list */
437 todo->marked[index] = TRUE;
438 todo->buffer[todo->tail++] = index;
439 if (todo->tail == todo->buflen)
440 todo->tail = 0;
441 }
442
443 static int todo_get(struct todo *todo) {
444 int ret;
445
446 if (todo->head == todo->tail)
447 return -1; /* list is empty */
448 ret = todo->buffer[todo->head++];
449 if (todo->head == todo->buflen)
450 todo->head = 0;
451 todo->marked[ret] = FALSE;
452
453 return ret;
454 }
455
456 static int net_solver(int w, int h, unsigned char *tiles,
457 unsigned char *barriers, int wrapping)
458 {
459 unsigned char *tilestate;
460 unsigned char *edgestate;
461 int *deadends;
462 int *equivalence;
463 struct todo *todo;
464 int i, j, x, y;
465 int area;
466 int done_something;
467
468 /*
469 * Set up the solver's data structures.
470 */
471
472 /*
473 * tilestate stores the possible orientations of each tile.
474 * There are up to four of these, so we'll index the array in
475 * fours. tilestate[(y * w + x) * 4] and its three successive
476 * members give the possible orientations, clearing to 255 from
477 * the end as things are ruled out.
478 *
479 * In this loop we also count up the area of the grid (which is
480 * not _necessarily_ equal to w*h, because there might be one
481 * or more blank squares present. This will never happen in a
482 * grid generated _by_ this program, but it's worth keeping the
483 * solver as general as possible.)
484 */
485 tilestate = snewn(w * h * 4, unsigned char);
486 area = 0;
487 for (i = 0; i < w*h; i++) {
488 tilestate[i * 4] = tiles[i] & 0xF;
489 for (j = 1; j < 4; j++) {
490 if (tilestate[i * 4 + j - 1] == 255 ||
491 A(tilestate[i * 4 + j - 1]) == tilestate[i * 4])
492 tilestate[i * 4 + j] = 255;
493 else
494 tilestate[i * 4 + j] = A(tilestate[i * 4 + j - 1]);
495 }
496 if (tiles[i] != 0)
497 area++;
498 }
499
500 /*
501 * edgestate stores the known state of each edge. It is 0 for
502 * unknown, 1 for open (connected) and 2 for closed (not
503 * connected).
504 *
505 * In principle we need only worry about each edge once each,
506 * but in fact it's easier to track each edge twice so that we
507 * can reference it from either side conveniently. Also I'm
508 * going to allocate _five_ bytes per tile, rather than the
509 * obvious four, so that I can index edgestate[(y*w+x) * 5 + d]
510 * where d is 1,2,4,8 and they never overlap.
511 */
512 edgestate = snewn((w * h - 1) * 5 + 9, unsigned char);
513 memset(edgestate, 0, (w * h - 1) * 5 + 9);
514
515 /*
516 * deadends tracks which edges have dead ends on them. It is
517 * indexed by tile and direction: deadends[(y*w+x) * 5 + d]
518 * tells you whether heading out of tile (x,y) in direction d
519 * can reach a limited amount of the grid. Values are area+1
520 * (no dead end known) or less than that (can reach _at most_
521 * this many other tiles by heading this way out of this tile).
522 */
523 deadends = snewn((w * h - 1) * 5 + 9, int);
524 for (i = 0; i < (w * h - 1) * 5 + 9; i++)
525 deadends[i] = area+1;
526
527 /*
528 * equivalence tracks which sets of tiles are known to be
529 * connected to one another, so we can avoid creating loops by
530 * linking together tiles which are already linked through
531 * another route.
532 *
533 * This is a disjoint set forest structure: equivalence[i]
534 * contains the index of another member of the equivalence
535 * class containing i, or contains i itself for precisely one
536 * member in each such class. To find a representative member
537 * of the equivalence class containing i, you keep replacing i
538 * with equivalence[i] until it stops changing; then you go
539 * _back_ along the same path and point everything on it
540 * directly at the representative member so as to speed up
541 * future searches. Then you test equivalence between tiles by
542 * finding the representative of each tile and seeing if
543 * they're the same; and you create new equivalence (merge
544 * classes) by finding the representative of each tile and
545 * setting equivalence[one]=the_other.
546 */
547 equivalence = snew_dsf(w * h);
548
549 /*
550 * On a non-wrapping grid, we instantly know that all the edges
551 * round the edge are closed.
552 */
553 if (!wrapping) {
554 for (i = 0; i < w; i++) {
555 edgestate[i * 5 + 2] = edgestate[((h-1) * w + i) * 5 + 8] = 2;
556 }
557 for (i = 0; i < h; i++) {
558 edgestate[(i * w + w-1) * 5 + 1] = edgestate[(i * w) * 5 + 4] = 2;
559 }
560 }
561
562 /*
563 * If we have barriers available, we can mark those edges as
564 * closed too.
565 */
566 if (barriers) {
567 for (y = 0; y < h; y++) for (x = 0; x < w; x++) {
568 int d;
569 for (d = 1; d <= 8; d += d) {
570 if (barriers[y*w+x] & d) {
571 int x2, y2;
572 /*
573 * In principle the barrier list should already
574 * contain each barrier from each side, but
575 * let's not take chances with our internal
576 * consistency.
577 */
578 OFFSETWH(x2, y2, x, y, d, w, h);
579 edgestate[(y*w+x) * 5 + d] = 2;
580 edgestate[(y2*w+x2) * 5 + F(d)] = 2;
581 }
582 }
583 }
584 }
585
586 /*
587 * Since most deductions made by this solver are local (the
588 * exception is loop avoidance, where joining two tiles
589 * together on one side of the grid can theoretically permit a
590 * fresh deduction on the other), we can address the scaling
591 * problem inherent in iterating repeatedly over the entire
592 * grid by instead working with a to-do list.
593 */
594 todo = todo_new(w * h);
595
596 /*
597 * Main deductive loop.
598 */
599 done_something = TRUE; /* prevent instant termination! */
600 while (1) {
601 int index;
602
603 /*
604 * Take a tile index off the todo list and process it.
605 */
606 index = todo_get(todo);
607 if (index == -1) {
608 /*
609 * If we have run out of immediate things to do, we
610 * have no choice but to scan the whole grid for
611 * longer-range things we've missed. Hence, I now add
612 * every square on the grid back on to the to-do list.
613 * I also set `done_something' to FALSE at this point;
614 * if we later come back here and find it still FALSE,
615 * we will know we've scanned the entire grid without
616 * finding anything new to do, and we can terminate.
617 */
618 if (!done_something)
619 break;
620 for (i = 0; i < w*h; i++)
621 todo_add(todo, i);
622 done_something = FALSE;
623
624 index = todo_get(todo);
625 }
626
627 y = index / w;
628 x = index % w;
629 {
630 int d, ourclass = dsf_canonify(equivalence, y*w+x);
631 int deadendmax[9];
632
633 deadendmax[1] = deadendmax[2] = deadendmax[4] = deadendmax[8] = 0;
634
635 for (i = j = 0; i < 4 && tilestate[(y*w+x) * 4 + i] != 255; i++) {
636 int valid;
637 int nnondeadends, nondeadends[4], deadendtotal;
638 int nequiv, equiv[5];
639 int val = tilestate[(y*w+x) * 4 + i];
640
641 valid = TRUE;
642 nnondeadends = deadendtotal = 0;
643 equiv[0] = ourclass;
644 nequiv = 1;
645 for (d = 1; d <= 8; d += d) {
646 /*
647 * Immediately rule out this orientation if it
648 * conflicts with any known edge.
649 */
650 if ((edgestate[(y*w+x) * 5 + d] == 1 && !(val & d)) ||
651 (edgestate[(y*w+x) * 5 + d] == 2 && (val & d)))
652 valid = FALSE;
653
654 if (val & d) {
655 /*
656 * Count up the dead-end statistics.
657 */
658 if (deadends[(y*w+x) * 5 + d] <= area) {
659 deadendtotal += deadends[(y*w+x) * 5 + d];
660 } else {
661 nondeadends[nnondeadends++] = d;
662 }
663
664 /*
665 * Ensure we aren't linking to any tiles,
666 * through edges not already known to be
667 * open, which create a loop.
668 */
669 if (edgestate[(y*w+x) * 5 + d] == 0) {
670 int c, k, x2, y2;
671
672 OFFSETWH(x2, y2, x, y, d, w, h);
673 c = dsf_canonify(equivalence, y2*w+x2);
674 for (k = 0; k < nequiv; k++)
675 if (c == equiv[k])
676 break;
677 if (k == nequiv)
678 equiv[nequiv++] = c;
679 else
680 valid = FALSE;
681 }
682 }
683 }
684
685 if (nnondeadends == 0) {
686 /*
687 * If this orientation links together dead-ends
688 * with a total area of less than the entire
689 * grid, it is invalid.
690 *
691 * (We add 1 to deadendtotal because of the
692 * tile itself, of course; one tile linking
693 * dead ends of size 2 and 3 forms a subnetwork
694 * with a total area of 6, not 5.)
695 */
696 if (deadendtotal > 0 && deadendtotal+1 < area)
697 valid = FALSE;
698 } else if (nnondeadends == 1) {
699 /*
700 * If this orientation links together one or
701 * more dead-ends with precisely one
702 * non-dead-end, then we may have to mark that
703 * non-dead-end as a dead end going the other
704 * way. However, it depends on whether all
705 * other orientations share the same property.
706 */
707 deadendtotal++;
708 if (deadendmax[nondeadends[0]] < deadendtotal)
709 deadendmax[nondeadends[0]] = deadendtotal;
710 } else {
711 /*
712 * If this orientation links together two or
713 * more non-dead-ends, then we can rule out the
714 * possibility of putting in new dead-end
715 * markings in those directions.
716 */
717 int k;
718 for (k = 0; k < nnondeadends; k++)
719 deadendmax[nondeadends[k]] = area+1;
720 }
721
722 if (valid)
723 tilestate[(y*w+x) * 4 + j++] = val;
724 #ifdef SOLVER_DIAGNOSTICS
725 else
726 printf("ruling out orientation %x at %d,%d\n", val, x, y);
727 #endif
728 }
729
730 assert(j > 0); /* we can't lose _all_ possibilities! */
731
732 if (j < i) {
733 done_something = TRUE;
734
735 /*
736 * We have ruled out at least one tile orientation.
737 * Make sure the rest are blanked.
738 */
739 while (j < 4)
740 tilestate[(y*w+x) * 4 + j++] = 255;
741 }
742
743 /*
744 * Now go through the tile orientations again and see
745 * if we've deduced anything new about any edges.
746 */
747 {
748 int a, o;
749 a = 0xF; o = 0;
750
751 for (i = 0; i < 4 && tilestate[(y*w+x) * 4 + i] != 255; i++) {
752 a &= tilestate[(y*w+x) * 4 + i];
753 o |= tilestate[(y*w+x) * 4 + i];
754 }
755 for (d = 1; d <= 8; d += d)
756 if (edgestate[(y*w+x) * 5 + d] == 0) {
757 int x2, y2, d2;
758 OFFSETWH(x2, y2, x, y, d, w, h);
759 d2 = F(d);
760 if (a & d) {
761 /* This edge is open in all orientations. */
762 #ifdef SOLVER_DIAGNOSTICS
763 printf("marking edge %d,%d:%d open\n", x, y, d);
764 #endif
765 edgestate[(y*w+x) * 5 + d] = 1;
766 edgestate[(y2*w+x2) * 5 + d2] = 1;
767 dsf_merge(equivalence, y*w+x, y2*w+x2);
768 done_something = TRUE;
769 todo_add(todo, y2*w+x2);
770 } else if (!(o & d)) {
771 /* This edge is closed in all orientations. */
772 #ifdef SOLVER_DIAGNOSTICS
773 printf("marking edge %d,%d:%d closed\n", x, y, d);
774 #endif
775 edgestate[(y*w+x) * 5 + d] = 2;
776 edgestate[(y2*w+x2) * 5 + d2] = 2;
777 done_something = TRUE;
778 todo_add(todo, y2*w+x2);
779 }
780 }
781
782 }
783
784 /*
785 * Now check the dead-end markers and see if any of
786 * them has lowered from the real ones.
787 */
788 for (d = 1; d <= 8; d += d) {
789 int x2, y2, d2;
790 OFFSETWH(x2, y2, x, y, d, w, h);
791 d2 = F(d);
792 if (deadendmax[d] > 0 &&
793 deadends[(y2*w+x2) * 5 + d2] > deadendmax[d]) {
794 #ifdef SOLVER_DIAGNOSTICS
795 printf("setting dead end value %d,%d:%d to %d\n",
796 x2, y2, d2, deadendmax[d]);
797 #endif
798 deadends[(y2*w+x2) * 5 + d2] = deadendmax[d];
799 done_something = TRUE;
800 todo_add(todo, y2*w+x2);
801 }
802 }
803
804 }
805 }
806
807 /*
808 * Mark all completely determined tiles as locked.
809 */
810 j = TRUE;
811 for (i = 0; i < w*h; i++) {
812 if (tilestate[i * 4 + 1] == 255) {
813 assert(tilestate[i * 4 + 0] != 255);
814 tiles[i] = tilestate[i * 4] | LOCKED;
815 } else {
816 tiles[i] &= ~LOCKED;
817 j = FALSE;
818 }
819 }
820
821 /*
822 * Free up working space.
823 */
824 todo_free(todo);
825 sfree(tilestate);
826 sfree(edgestate);
827 sfree(deadends);
828 sfree(equivalence);
829
830 return j;
831 }
832
833 /* ----------------------------------------------------------------------
834 * Randomly select a new game description.
835 */
836
837 /*
838 * Function to randomly perturb an ambiguous section in a grid, to
839 * attempt to ensure unique solvability.
840 */
841 static void perturb(int w, int h, unsigned char *tiles, int wrapping,
842 random_state *rs, int startx, int starty, int startd)
843 {
844 struct xyd *perimeter, *perim2, *loop[2], looppos[2];
845 int nperim, perimsize, nloop[2], loopsize[2];
846 int x, y, d, i;
847
848 /*
849 * We know that the tile at (startx,starty) is part of an
850 * ambiguous section, and we also know that its neighbour in
851 * direction startd is fully specified. We begin by tracing all
852 * the way round the ambiguous area.
853 */
854 nperim = perimsize = 0;
855 perimeter = NULL;
856 x = startx;
857 y = starty;
858 d = startd;
859 #ifdef PERTURB_DIAGNOSTICS
860 printf("perturb %d,%d:%d\n", x, y, d);
861 #endif
862 do {
863 int x2, y2, d2;
864
865 if (nperim >= perimsize) {
866 perimsize = perimsize * 3 / 2 + 32;
867 perimeter = sresize(perimeter, perimsize, struct xyd);
868 }
869 perimeter[nperim].x = x;
870 perimeter[nperim].y = y;
871 perimeter[nperim].direction = d;
872 nperim++;
873 #ifdef PERTURB_DIAGNOSTICS
874 printf("perimeter: %d,%d:%d\n", x, y, d);
875 #endif
876
877 /*
878 * First, see if we can simply turn left from where we are
879 * and find another locked square.
880 */
881 d2 = A(d);
882 OFFSETWH(x2, y2, x, y, d2, w, h);
883 if ((!wrapping && (abs(x2-x) > 1 || abs(y2-y) > 1)) ||
884 (tiles[y2*w+x2] & LOCKED)) {
885 d = d2;
886 } else {
887 /*
888 * Failing that, step left into the new square and look
889 * in front of us.
890 */
891 x = x2;
892 y = y2;
893 OFFSETWH(x2, y2, x, y, d, w, h);
894 if ((wrapping || (abs(x2-x) <= 1 && abs(y2-y) <= 1)) &&
895 !(tiles[y2*w+x2] & LOCKED)) {
896 /*
897 * And failing _that_, we're going to have to step
898 * forward into _that_ square and look right at the
899 * same locked square as we started with.
900 */
901 x = x2;
902 y = y2;
903 d = C(d);
904 }
905 }
906
907 } while (x != startx || y != starty || d != startd);
908
909 /*
910 * Our technique for perturbing this ambiguous area is to
911 * search round its edge for a join we can make: that is, an
912 * edge on the perimeter which is (a) not currently connected,
913 * and (b) connecting it would not yield a full cross on either
914 * side. Then we make that join, search round the network to
915 * find the loop thus constructed, and sever the loop at a
916 * randomly selected other point.
917 */
918 perim2 = snewn(nperim, struct xyd);
919 memcpy(perim2, perimeter, nperim * sizeof(struct xyd));
920 /* Shuffle the perimeter, so as to search it without directional bias. */
921 shuffle(perim2, nperim, sizeof(*perim2), rs);
922 for (i = 0; i < nperim; i++) {
923 int x2, y2;
924
925 x = perim2[i].x;
926 y = perim2[i].y;
927 d = perim2[i].direction;
928
929 OFFSETWH(x2, y2, x, y, d, w, h);
930 if (!wrapping && (abs(x2-x) > 1 || abs(y2-y) > 1))
931 continue; /* can't link across non-wrapping border */
932 if (tiles[y*w+x] & d)
933 continue; /* already linked in this direction! */
934 if (((tiles[y*w+x] | d) & 15) == 15)
935 continue; /* can't turn this tile into a cross */
936 if (((tiles[y2*w+x2] | F(d)) & 15) == 15)
937 continue; /* can't turn other tile into a cross */
938
939 /*
940 * We've found the point at which we're going to make a new
941 * link.
942 */
943 #ifdef PERTURB_DIAGNOSTICS
944 printf("linking %d,%d:%d\n", x, y, d);
945 #endif
946 tiles[y*w+x] |= d;
947 tiles[y2*w+x2] |= F(d);
948
949 break;
950 }
951 sfree(perim2);
952
953 if (i == nperim)
954 return; /* nothing we can do! */
955
956 /*
957 * Now we've constructed a new link, we need to find the entire
958 * loop of which it is a part.
959 *
960 * In principle, this involves doing a complete search round
961 * the network. However, I anticipate that in the vast majority
962 * of cases the loop will be quite small, so what I'm going to
963 * do is make _two_ searches round the network in parallel, one
964 * keeping its metaphorical hand on the left-hand wall while
965 * the other keeps its hand on the right. As soon as one of
966 * them gets back to its starting point, I abandon the other.
967 */
968 for (i = 0; i < 2; i++) {
969 loopsize[i] = nloop[i] = 0;
970 loop[i] = NULL;
971 looppos[i].x = x;
972 looppos[i].y = y;
973 looppos[i].direction = d;
974 }
975 while (1) {
976 for (i = 0; i < 2; i++) {
977 int x2, y2, j;
978
979 x = looppos[i].x;
980 y = looppos[i].y;
981 d = looppos[i].direction;
982
983 OFFSETWH(x2, y2, x, y, d, w, h);
984
985 /*
986 * Add this path segment to the loop, unless it exactly
987 * reverses the previous one on the loop in which case
988 * we take it away again.
989 */
990 #ifdef PERTURB_DIAGNOSTICS
991 printf("looppos[%d] = %d,%d:%d\n", i, x, y, d);
992 #endif
993 if (nloop[i] > 0 &&
994 loop[i][nloop[i]-1].x == x2 &&
995 loop[i][nloop[i]-1].y == y2 &&
996 loop[i][nloop[i]-1].direction == F(d)) {
997 #ifdef PERTURB_DIAGNOSTICS
998 printf("removing path segment %d,%d:%d from loop[%d]\n",
999 x2, y2, F(d), i);
1000 #endif
1001 nloop[i]--;
1002 } else {
1003 if (nloop[i] >= loopsize[i]) {
1004 loopsize[i] = loopsize[i] * 3 / 2 + 32;
1005 loop[i] = sresize(loop[i], loopsize[i], struct xyd);
1006 }
1007 #ifdef PERTURB_DIAGNOSTICS
1008 printf("adding path segment %d,%d:%d to loop[%d]\n",
1009 x, y, d, i);
1010 #endif
1011 loop[i][nloop[i]++] = looppos[i];
1012 }
1013
1014 #ifdef PERTURB_DIAGNOSTICS
1015 printf("tile at new location is %x\n", tiles[y2*w+x2] & 0xF);
1016 #endif
1017 d = F(d);
1018 for (j = 0; j < 4; j++) {
1019 if (i == 0)
1020 d = A(d);
1021 else
1022 d = C(d);
1023 #ifdef PERTURB_DIAGNOSTICS
1024 printf("trying dir %d\n", d);
1025 #endif
1026 if (tiles[y2*w+x2] & d) {
1027 looppos[i].x = x2;
1028 looppos[i].y = y2;
1029 looppos[i].direction = d;
1030 break;
1031 }
1032 }
1033
1034 assert(j < 4);
1035 assert(nloop[i] > 0);
1036
1037 if (looppos[i].x == loop[i][0].x &&
1038 looppos[i].y == loop[i][0].y &&
1039 looppos[i].direction == loop[i][0].direction) {
1040 #ifdef PERTURB_DIAGNOSTICS
1041 printf("loop %d finished tracking\n", i);
1042 #endif
1043
1044 /*
1045 * Having found our loop, we now sever it at a
1046 * randomly chosen point - absolutely any will do -
1047 * which is not the one we joined it at to begin
1048 * with. Conveniently, the one we joined it at is
1049 * loop[i][0], so we just avoid that one.
1050 */
1051 j = random_upto(rs, nloop[i]-1) + 1;
1052 x = loop[i][j].x;
1053 y = loop[i][j].y;
1054 d = loop[i][j].direction;
1055 OFFSETWH(x2, y2, x, y, d, w, h);
1056 tiles[y*w+x] &= ~d;
1057 tiles[y2*w+x2] &= ~F(d);
1058
1059 break;
1060 }
1061 }
1062 if (i < 2)
1063 break;
1064 }
1065 sfree(loop[0]);
1066 sfree(loop[1]);
1067
1068 /*
1069 * Finally, we must mark the entire disputed section as locked,
1070 * to prevent the perturb function being called on it multiple
1071 * times.
1072 *
1073 * To do this, we _sort_ the perimeter of the area. The
1074 * existing xyd_cmp function will arrange things into columns
1075 * for us, in such a way that each column has the edges in
1076 * vertical order. Then we can work down each column and fill
1077 * in all the squares between an up edge and a down edge.
1078 */
1079 qsort(perimeter, nperim, sizeof(struct xyd), xyd_cmp);
1080 x = y = -1;
1081 for (i = 0; i <= nperim; i++) {
1082 if (i == nperim || perimeter[i].x > x) {
1083 /*
1084 * Fill in everything from the last Up edge to the
1085 * bottom of the grid, if necessary.
1086 */
1087 if (x != -1) {
1088 while (y < h) {
1089 #ifdef PERTURB_DIAGNOSTICS
1090 printf("resolved: locking tile %d,%d\n", x, y);
1091 #endif
1092 tiles[y * w + x] |= LOCKED;
1093 y++;
1094 }
1095 x = y = -1;
1096 }
1097
1098 if (i == nperim)
1099 break;
1100
1101 x = perimeter[i].x;
1102 y = 0;
1103 }
1104
1105 if (perimeter[i].direction == U) {
1106 x = perimeter[i].x;
1107 y = perimeter[i].y;
1108 } else if (perimeter[i].direction == D) {
1109 /*
1110 * Fill in everything from the last Up edge to here.
1111 */
1112 assert(x == perimeter[i].x && y <= perimeter[i].y);
1113 while (y <= perimeter[i].y) {
1114 #ifdef PERTURB_DIAGNOSTICS
1115 printf("resolved: locking tile %d,%d\n", x, y);
1116 #endif
1117 tiles[y * w + x] |= LOCKED;
1118 y++;
1119 }
1120 x = y = -1;
1121 }
1122 }
1123
1124 sfree(perimeter);
1125 }
1126
1127 static char *new_game_desc(game_params *params, random_state *rs,
1128 char **aux, int interactive)
1129 {
1130 tree234 *possibilities, *barriertree;
1131 int w, h, x, y, cx, cy, nbarriers;
1132 unsigned char *tiles, *barriers;
1133 char *desc, *p;
1134
1135 w = params->width;
1136 h = params->height;
1137
1138 cx = w / 2;
1139 cy = h / 2;
1140
1141 tiles = snewn(w * h, unsigned char);
1142 barriers = snewn(w * h, unsigned char);
1143
1144 begin_generation:
1145
1146 memset(tiles, 0, w * h);
1147 memset(barriers, 0, w * h);
1148
1149 /*
1150 * Construct the unshuffled grid.
1151 *
1152 * To do this, we simply start at the centre point, repeatedly
1153 * choose a random possibility out of the available ways to
1154 * extend a used square into an unused one, and do it. After
1155 * extending the third line out of a square, we remove the
1156 * fourth from the possibilities list to avoid any full-cross
1157 * squares (which would make the game too easy because they
1158 * only have one orientation).
1159 *
1160 * The slightly worrying thing is the avoidance of full-cross
1161 * squares. Can this cause our unsophisticated construction
1162 * algorithm to paint itself into a corner, by getting into a
1163 * situation where there are some unreached squares and the
1164 * only way to reach any of them is to extend a T-piece into a
1165 * full cross?
1166 *
1167 * Answer: no it can't, and here's a proof.
1168 *
1169 * Any contiguous group of such unreachable squares must be
1170 * surrounded on _all_ sides by T-pieces pointing away from the
1171 * group. (If not, then there is a square which can be extended
1172 * into one of the `unreachable' ones, and so it wasn't
1173 * unreachable after all.) In particular, this implies that
1174 * each contiguous group of unreachable squares must be
1175 * rectangular in shape (any deviation from that yields a
1176 * non-T-piece next to an `unreachable' square).
1177 *
1178 * So we have a rectangle of unreachable squares, with T-pieces
1179 * forming a solid border around the rectangle. The corners of
1180 * that border must be connected (since every tile connects all
1181 * the lines arriving in it), and therefore the border must
1182 * form a closed loop around the rectangle.
1183 *
1184 * But this can't have happened in the first place, since we
1185 * _know_ we've avoided creating closed loops! Hence, no such
1186 * situation can ever arise, and the naive grid construction
1187 * algorithm will guaranteeably result in a complete grid
1188 * containing no unreached squares, no full crosses _and_ no
1189 * closed loops. []
1190 */
1191 possibilities = newtree234(xyd_cmp_nc);
1192
1193 if (cx+1 < w)
1194 add234(possibilities, new_xyd(cx, cy, R));
1195 if (cy-1 >= 0)
1196 add234(possibilities, new_xyd(cx, cy, U));
1197 if (cx-1 >= 0)
1198 add234(possibilities, new_xyd(cx, cy, L));
1199 if (cy+1 < h)
1200 add234(possibilities, new_xyd(cx, cy, D));
1201
1202 while (count234(possibilities) > 0) {
1203 int i;
1204 struct xyd *xyd;
1205 int x1, y1, d1, x2, y2, d2, d;
1206
1207 /*
1208 * Extract a randomly chosen possibility from the list.
1209 */
1210 i = random_upto(rs, count234(possibilities));
1211 xyd = delpos234(possibilities, i);
1212 x1 = xyd->x;
1213 y1 = xyd->y;
1214 d1 = xyd->direction;
1215 sfree(xyd);
1216
1217 OFFSET(x2, y2, x1, y1, d1, params);
1218 d2 = F(d1);
1219 #ifdef GENERATION_DIAGNOSTICS
1220 printf("picked (%d,%d,%c) <-> (%d,%d,%c)\n",
1221 x1, y1, "0RU3L567D9abcdef"[d1], x2, y2, "0RU3L567D9abcdef"[d2]);
1222 #endif
1223
1224 /*
1225 * Make the connection. (We should be moving to an as yet
1226 * unused tile.)
1227 */
1228 index(params, tiles, x1, y1) |= d1;
1229 assert(index(params, tiles, x2, y2) == 0);
1230 index(params, tiles, x2, y2) |= d2;
1231
1232 /*
1233 * If we have created a T-piece, remove its last
1234 * possibility.
1235 */
1236 if (COUNT(index(params, tiles, x1, y1)) == 3) {
1237 struct xyd xyd1, *xydp;
1238
1239 xyd1.x = x1;
1240 xyd1.y = y1;
1241 xyd1.direction = 0x0F ^ index(params, tiles, x1, y1);
1242
1243 xydp = find234(possibilities, &xyd1, NULL);
1244
1245 if (xydp) {
1246 #ifdef GENERATION_DIAGNOSTICS
1247 printf("T-piece; removing (%d,%d,%c)\n",
1248 xydp->x, xydp->y, "0RU3L567D9abcdef"[xydp->direction]);
1249 #endif
1250 del234(possibilities, xydp);
1251 sfree(xydp);
1252 }
1253 }
1254
1255 /*
1256 * Remove all other possibilities that were pointing at the
1257 * tile we've just moved into.
1258 */
1259 for (d = 1; d < 0x10; d <<= 1) {
1260 int x3, y3, d3;
1261 struct xyd xyd1, *xydp;
1262
1263 OFFSET(x3, y3, x2, y2, d, params);
1264 d3 = F(d);
1265
1266 xyd1.x = x3;
1267 xyd1.y = y3;
1268 xyd1.direction = d3;
1269
1270 xydp = find234(possibilities, &xyd1, NULL);
1271
1272 if (xydp) {
1273 #ifdef GENERATION_DIAGNOSTICS
1274 printf("Loop avoidance; removing (%d,%d,%c)\n",
1275 xydp->x, xydp->y, "0RU3L567D9abcdef"[xydp->direction]);
1276 #endif
1277 del234(possibilities, xydp);
1278 sfree(xydp);
1279 }
1280 }
1281
1282 /*
1283 * Add new possibilities to the list for moving _out_ of
1284 * the tile we have just moved into.
1285 */
1286 for (d = 1; d < 0x10; d <<= 1) {
1287 int x3, y3;
1288
1289 if (d == d2)
1290 continue; /* we've got this one already */
1291
1292 if (!params->wrapping) {
1293 if (d == U && y2 == 0)
1294 continue;
1295 if (d == D && y2 == h-1)
1296 continue;
1297 if (d == L && x2 == 0)
1298 continue;
1299 if (d == R && x2 == w-1)
1300 continue;
1301 }
1302
1303 OFFSET(x3, y3, x2, y2, d, params);
1304
1305 if (index(params, tiles, x3, y3))
1306 continue; /* this would create a loop */
1307
1308 #ifdef GENERATION_DIAGNOSTICS
1309 printf("New frontier; adding (%d,%d,%c)\n",
1310 x2, y2, "0RU3L567D9abcdef"[d]);
1311 #endif
1312 add234(possibilities, new_xyd(x2, y2, d));
1313 }
1314 }
1315 /* Having done that, we should have no possibilities remaining. */
1316 assert(count234(possibilities) == 0);
1317 freetree234(possibilities);
1318
1319 if (params->unique) {
1320 int prevn = -1;
1321
1322 /*
1323 * Run the solver to check unique solubility.
1324 */
1325 while (!net_solver(w, h, tiles, NULL, params->wrapping)) {
1326 int n = 0;
1327
1328 /*
1329 * We expect (in most cases) that most of the grid will
1330 * be uniquely specified already, and the remaining
1331 * ambiguous sections will be small and separate. So
1332 * our strategy is to find each individual such
1333 * section, and perform a perturbation on the network
1334 * in that area.
1335 */
1336 for (y = 0; y < h; y++) for (x = 0; x < w; x++) {
1337 if (x+1 < w && ((tiles[y*w+x] ^ tiles[y*w+x+1]) & LOCKED)) {
1338 n++;
1339 if (tiles[y*w+x] & LOCKED)
1340 perturb(w, h, tiles, params->wrapping, rs, x+1, y, L);
1341 else
1342 perturb(w, h, tiles, params->wrapping, rs, x, y, R);
1343 }
1344 if (y+1 < h && ((tiles[y*w+x] ^ tiles[(y+1)*w+x]) & LOCKED)) {
1345 n++;
1346 if (tiles[y*w+x] & LOCKED)
1347 perturb(w, h, tiles, params->wrapping, rs, x, y+1, U);
1348 else
1349 perturb(w, h, tiles, params->wrapping, rs, x, y, D);
1350 }
1351 }
1352
1353 /*
1354 * Now n counts the number of ambiguous sections we
1355 * have fiddled with. If we haven't managed to decrease
1356 * it from the last time we ran the solver, give up and
1357 * regenerate the entire grid.
1358 */
1359 if (prevn != -1 && prevn <= n)
1360 goto begin_generation; /* (sorry) */
1361
1362 prevn = n;
1363 }
1364
1365 /*
1366 * The solver will have left a lot of LOCKED bits lying
1367 * around in the tiles array. Remove them.
1368 */
1369 for (x = 0; x < w*h; x++)
1370 tiles[x] &= ~LOCKED;
1371 }
1372
1373 /*
1374 * Now compute a list of the possible barrier locations.
1375 */
1376 barriertree = newtree234(xyd_cmp_nc);
1377 for (y = 0; y < h; y++) {
1378 for (x = 0; x < w; x++) {
1379
1380 if (!(index(params, tiles, x, y) & R) &&
1381 (params->wrapping || x < w-1))
1382 add234(barriertree, new_xyd(x, y, R));
1383 if (!(index(params, tiles, x, y) & D) &&
1384 (params->wrapping || y < h-1))
1385 add234(barriertree, new_xyd(x, y, D));
1386 }
1387 }
1388
1389 /*
1390 * Save the unshuffled grid in aux.
1391 */
1392 {
1393 char *solution;
1394 int i;
1395
1396 solution = snewn(w * h + 1, char);
1397 for (i = 0; i < w * h; i++)
1398 solution[i] = "0123456789abcdef"[tiles[i] & 0xF];
1399 solution[w*h] = '\0';
1400
1401 *aux = solution;
1402 }
1403
1404 /*
1405 * Now shuffle the grid.
1406 *
1407 * In order to avoid accidentally generating an already-solved
1408 * grid, we will reshuffle as necessary to ensure that at least
1409 * one edge has a mismatched connection.
1410 *
1411 * This can always be done, since validate_params() enforces a
1412 * grid area of at least 2 and our generator never creates
1413 * either type of rotationally invariant tile (cross and
1414 * blank). Hence there must be at least one edge separating
1415 * distinct tiles, and it must be possible to find orientations
1416 * of those tiles such that one tile is trying to connect
1417 * through that edge and the other is not.
1418 *
1419 * (We could be more subtle, and allow the shuffle to generate
1420 * a grid in which all tiles match up locally and the only
1421 * criterion preventing the grid from being already solved is
1422 * connectedness. However, that would take more effort, and
1423 * it's easier to simply make sure every grid is _obviously_
1424 * not solved.)
1425 */
1426 while (1) {
1427 int mismatches;
1428
1429 for (y = 0; y < h; y++) {
1430 for (x = 0; x < w; x++) {
1431 int orig = index(params, tiles, x, y);
1432 int rot = random_upto(rs, 4);
1433 index(params, tiles, x, y) = ROT(orig, rot);
1434 }
1435 }
1436
1437 mismatches = 0;
1438 /*
1439 * I can't even be bothered to check for mismatches across
1440 * a wrapping edge, so I'm just going to enforce that there
1441 * must be a mismatch across a non-wrapping edge, which is
1442 * still always possible.
1443 */
1444 for (y = 0; y < h; y++) for (x = 0; x < w; x++) {
1445 if (x+1 < w && ((ROT(index(params, tiles, x, y), 2) ^
1446 index(params, tiles, x+1, y)) & L))
1447 mismatches++;
1448 if (y+1 < h && ((ROT(index(params, tiles, x, y), 2) ^
1449 index(params, tiles, x, y+1)) & U))
1450 mismatches++;
1451 }
1452
1453 if (mismatches > 0)
1454 break;
1455 }
1456
1457 /*
1458 * And now choose barrier locations. (We carefully do this
1459 * _after_ shuffling, so that changing the barrier rate in the
1460 * params while keeping the random seed the same will give the
1461 * same shuffled grid and _only_ change the barrier locations.
1462 * Also the way we choose barrier locations, by repeatedly
1463 * choosing one possibility from the list until we have enough,
1464 * is designed to ensure that raising the barrier rate while
1465 * keeping the seed the same will provide a superset of the
1466 * previous barrier set - i.e. if you ask for 10 barriers, and
1467 * then decide that's still too hard and ask for 20, you'll get
1468 * the original 10 plus 10 more, rather than getting 20 new
1469 * ones and the chance of remembering your first 10.)
1470 */
1471 nbarriers = (int)(params->barrier_probability * count234(barriertree));
1472 assert(nbarriers >= 0 && nbarriers <= count234(barriertree));
1473
1474 while (nbarriers > 0) {
1475 int i;
1476 struct xyd *xyd;
1477 int x1, y1, d1, x2, y2, d2;
1478
1479 /*
1480 * Extract a randomly chosen barrier from the list.
1481 */
1482 i = random_upto(rs, count234(barriertree));
1483 xyd = delpos234(barriertree, i);
1484
1485 assert(xyd != NULL);
1486
1487 x1 = xyd->x;
1488 y1 = xyd->y;
1489 d1 = xyd->direction;
1490 sfree(xyd);
1491
1492 OFFSET(x2, y2, x1, y1, d1, params);
1493 d2 = F(d1);
1494
1495 index(params, barriers, x1, y1) |= d1;
1496 index(params, barriers, x2, y2) |= d2;
1497
1498 nbarriers--;
1499 }
1500
1501 /*
1502 * Clean up the rest of the barrier list.
1503 */
1504 {
1505 struct xyd *xyd;
1506
1507 while ( (xyd = delpos234(barriertree, 0)) != NULL)
1508 sfree(xyd);
1509
1510 freetree234(barriertree);
1511 }
1512
1513 /*
1514 * Finally, encode the grid into a string game description.
1515 *
1516 * My syntax is extremely simple: each square is encoded as a
1517 * hex digit in which bit 0 means a connection on the right,
1518 * bit 1 means up, bit 2 left and bit 3 down. (i.e. the same
1519 * encoding as used internally). Each digit is followed by
1520 * optional barrier indicators: `v' means a vertical barrier to
1521 * the right of it, and `h' means a horizontal barrier below
1522 * it.
1523 */
1524 desc = snewn(w * h * 3 + 1, char);
1525 p = desc;
1526 for (y = 0; y < h; y++) {
1527 for (x = 0; x < w; x++) {
1528 *p++ = "0123456789abcdef"[index(params, tiles, x, y)];
1529 if ((params->wrapping || x < w-1) &&
1530 (index(params, barriers, x, y) & R))
1531 *p++ = 'v';
1532 if ((params->wrapping || y < h-1) &&
1533 (index(params, barriers, x, y) & D))
1534 *p++ = 'h';
1535 }
1536 }
1537 assert(p - desc <= w*h*3);
1538 *p = '\0';
1539
1540 sfree(tiles);
1541 sfree(barriers);
1542
1543 return desc;
1544 }
1545
1546 static char *validate_desc(game_params *params, char *desc)
1547 {
1548 int w = params->width, h = params->height;
1549 int i;
1550
1551 for (i = 0; i < w*h; i++) {
1552 if (*desc >= '0' && *desc <= '9')
1553 /* OK */;
1554 else if (*desc >= 'a' && *desc <= 'f')
1555 /* OK */;
1556 else if (*desc >= 'A' && *desc <= 'F')
1557 /* OK */;
1558 else if (!*desc)
1559 return "Game description shorter than expected";
1560 else
1561 return "Game description contained unexpected character";
1562 desc++;
1563 while (*desc == 'h' || *desc == 'v')
1564 desc++;
1565 }
1566 if (*desc)
1567 return "Game description longer than expected";
1568
1569 return NULL;
1570 }
1571
1572 /* ----------------------------------------------------------------------
1573 * Construct an initial game state, given a description and parameters.
1574 */
1575
1576 static game_state *new_game(midend *me, game_params *params, char *desc)
1577 {
1578 game_state *state;
1579 int w, h, x, y;
1580
1581 assert(params->width > 0 && params->height > 0);
1582 assert(params->width > 1 || params->height > 1);
1583
1584 /*
1585 * Create a blank game state.
1586 */
1587 state = snew(game_state);
1588 w = state->width = params->width;
1589 h = state->height = params->height;
1590 state->wrapping = params->wrapping;
1591 state->last_rotate_dir = state->last_rotate_x = state->last_rotate_y = 0;
1592 state->completed = state->used_solve = FALSE;
1593 state->tiles = snewn(state->width * state->height, unsigned char);
1594 memset(state->tiles, 0, state->width * state->height);
1595 state->barriers = snewn(state->width * state->height, unsigned char);
1596 memset(state->barriers, 0, state->width * state->height);
1597
1598 /*
1599 * Parse the game description into the grid.
1600 */
1601 for (y = 0; y < h; y++) {
1602 for (x = 0; x < w; x++) {
1603 if (*desc >= '0' && *desc <= '9')
1604 tile(state, x, y) = *desc - '0';
1605 else if (*desc >= 'a' && *desc <= 'f')
1606 tile(state, x, y) = *desc - 'a' + 10;
1607 else if (*desc >= 'A' && *desc <= 'F')
1608 tile(state, x, y) = *desc - 'A' + 10;
1609 if (*desc)
1610 desc++;
1611 while (*desc == 'h' || *desc == 'v') {
1612 int x2, y2, d1, d2;
1613 if (*desc == 'v')
1614 d1 = R;
1615 else
1616 d1 = D;
1617
1618 OFFSET(x2, y2, x, y, d1, state);
1619 d2 = F(d1);
1620
1621 barrier(state, x, y) |= d1;
1622 barrier(state, x2, y2) |= d2;
1623
1624 desc++;
1625 }
1626 }
1627 }
1628
1629 /*
1630 * Set up border barriers if this is a non-wrapping game.
1631 */
1632 if (!state->wrapping) {
1633 for (x = 0; x < state->width; x++) {
1634 barrier(state, x, 0) |= U;
1635 barrier(state, x, state->height-1) |= D;
1636 }
1637 for (y = 0; y < state->height; y++) {
1638 barrier(state, 0, y) |= L;
1639 barrier(state, state->width-1, y) |= R;
1640 }
1641 } else {
1642 /*
1643 * We check whether this is de-facto a non-wrapping game
1644 * despite the parameters, in case we were passed the
1645 * description of a non-wrapping game. This is so that we
1646 * can change some aspects of the UI behaviour.
1647 */
1648 state->wrapping = FALSE;
1649 for (x = 0; x < state->width; x++)
1650 if (!(barrier(state, x, 0) & U) ||
1651 !(barrier(state, x, state->height-1) & D))
1652 state->wrapping = TRUE;
1653 for (y = 0; y < state->width; y++)
1654 if (!(barrier(state, 0, y) & L) ||
1655 !(barrier(state, state->width-1, y) & R))
1656 state->wrapping = TRUE;
1657 }
1658
1659 return state;
1660 }
1661
1662 static game_state *dup_game(game_state *state)
1663 {
1664 game_state *ret;
1665
1666 ret = snew(game_state);
1667 ret->width = state->width;
1668 ret->height = state->height;
1669 ret->wrapping = state->wrapping;
1670 ret->completed = state->completed;
1671 ret->used_solve = state->used_solve;
1672 ret->last_rotate_dir = state->last_rotate_dir;
1673 ret->last_rotate_x = state->last_rotate_x;
1674 ret->last_rotate_y = state->last_rotate_y;
1675 ret->tiles = snewn(state->width * state->height, unsigned char);
1676 memcpy(ret->tiles, state->tiles, state->width * state->height);
1677 ret->barriers = snewn(state->width * state->height, unsigned char);
1678 memcpy(ret->barriers, state->barriers, state->width * state->height);
1679
1680 return ret;
1681 }
1682
1683 static void free_game(game_state *state)
1684 {
1685 sfree(state->tiles);
1686 sfree(state->barriers);
1687 sfree(state);
1688 }
1689
1690 static char *solve_game(game_state *state, game_state *currstate,
1691 char *aux, char **error)
1692 {
1693 unsigned char *tiles;
1694 char *ret;
1695 int retlen, retsize;
1696 int i;
1697
1698 tiles = snewn(state->width * state->height, unsigned char);
1699
1700 if (!aux) {
1701 /*
1702 * Run the internal solver on the provided grid. This might
1703 * not yield a complete solution.
1704 */
1705 memcpy(tiles, state->tiles, state->width * state->height);
1706 net_solver(state->width, state->height, tiles,
1707 state->barriers, state->wrapping);
1708 } else {
1709 for (i = 0; i < state->width * state->height; i++) {
1710 int c = aux[i];
1711
1712 if (c >= '0' && c <= '9')
1713 tiles[i] = c - '0';
1714 else if (c >= 'a' && c <= 'f')
1715 tiles[i] = c - 'a' + 10;
1716 else if (c >= 'A' && c <= 'F')
1717 tiles[i] = c - 'A' + 10;
1718
1719 tiles[i] |= LOCKED;
1720 }
1721 }
1722
1723 /*
1724 * Now construct a string which can be passed to execute_move()
1725 * to transform the current grid into the solved one.
1726 */
1727 retsize = 256;
1728 ret = snewn(retsize, char);
1729 retlen = 0;
1730 ret[retlen++] = 'S';
1731
1732 for (i = 0; i < state->width * state->height; i++) {
1733 int from = currstate->tiles[i], to = tiles[i];
1734 int ft = from & (R|L|U|D), tt = to & (R|L|U|D);
1735 int x = i % state->width, y = i / state->width;
1736 int chr = '\0';
1737 char buf[80], *p = buf;
1738
1739 if (from == to)
1740 continue; /* nothing needs doing at all */
1741
1742 /*
1743 * To transform this tile into the desired tile: first
1744 * unlock the tile if it's locked, then rotate it if
1745 * necessary, then lock it if necessary.
1746 */
1747 if (from & LOCKED)
1748 p += sprintf(p, ";L%d,%d", x, y);
1749
1750 if (tt == A(ft))
1751 chr = 'A';
1752 else if (tt == C(ft))
1753 chr = 'C';
1754 else if (tt == F(ft))
1755 chr = 'F';
1756 else {
1757 assert(tt == ft);
1758 chr = '\0';
1759 }
1760 if (chr)
1761 p += sprintf(p, ";%c%d,%d", chr, x, y);
1762
1763 if (to & LOCKED)
1764 p += sprintf(p, ";L%d,%d", x, y);
1765
1766 if (p > buf) {
1767 if (retlen + (p - buf) >= retsize) {
1768 retsize = retlen + (p - buf) + 512;
1769 ret = sresize(ret, retsize, char);
1770 }
1771 memcpy(ret+retlen, buf, p - buf);
1772 retlen += p - buf;
1773 }
1774 }
1775
1776 assert(retlen < retsize);
1777 ret[retlen] = '\0';
1778 ret = sresize(ret, retlen+1, char);
1779
1780 sfree(tiles);
1781
1782 return ret;
1783 }
1784
1785 static char *game_text_format(game_state *state)
1786 {
1787 return NULL;
1788 }
1789
1790 /* ----------------------------------------------------------------------
1791 * Utility routine.
1792 */
1793
1794 /*
1795 * Compute which squares are reachable from the centre square, as a
1796 * quick visual aid to determining how close the game is to
1797 * completion. This is also a simple way to tell if the game _is_
1798 * completed - just call this function and see whether every square
1799 * is marked active.
1800 */
1801 static unsigned char *compute_active(game_state *state, int cx, int cy)
1802 {
1803 unsigned char *active;
1804 tree234 *todo;
1805 struct xyd *xyd;
1806
1807 active = snewn(state->width * state->height, unsigned char);
1808 memset(active, 0, state->width * state->height);
1809
1810 /*
1811 * We only store (x,y) pairs in todo, but it's easier to reuse
1812 * xyd_cmp and just store direction 0 every time.
1813 */
1814 todo = newtree234(xyd_cmp_nc);
1815 index(state, active, cx, cy) = ACTIVE;
1816 add234(todo, new_xyd(cx, cy, 0));
1817
1818 while ( (xyd = delpos234(todo, 0)) != NULL) {
1819 int x1, y1, d1, x2, y2, d2;
1820
1821 x1 = xyd->x;
1822 y1 = xyd->y;
1823 sfree(xyd);
1824
1825 for (d1 = 1; d1 < 0x10; d1 <<= 1) {
1826 OFFSET(x2, y2, x1, y1, d1, state);
1827 d2 = F(d1);
1828
1829 /*
1830 * If the next tile in this direction is connected to
1831 * us, and there isn't a barrier in the way, and it
1832 * isn't already marked active, then mark it active and
1833 * add it to the to-examine list.
1834 */
1835 if ((tile(state, x1, y1) & d1) &&
1836 (tile(state, x2, y2) & d2) &&
1837 !(barrier(state, x1, y1) & d1) &&
1838 !index(state, active, x2, y2)) {
1839 index(state, active, x2, y2) = ACTIVE;
1840 add234(todo, new_xyd(x2, y2, 0));
1841 }
1842 }
1843 }
1844 /* Now we expect the todo list to have shrunk to zero size. */
1845 assert(count234(todo) == 0);
1846 freetree234(todo);
1847
1848 return active;
1849 }
1850
1851 struct game_ui {
1852 int org_x, org_y; /* origin */
1853 int cx, cy; /* source tile (game coordinates) */
1854 int cur_x, cur_y;
1855 int cur_visible;
1856 random_state *rs; /* used for jumbling */
1857 #ifdef USE_DRAGGING
1858 int dragtilex, dragtiley, dragstartx, dragstarty, dragged;
1859 #endif
1860 };
1861
1862 static game_ui *new_ui(game_state *state)
1863 {
1864 void *seed;
1865 int seedsize;
1866 game_ui *ui = snew(game_ui);
1867 ui->org_x = ui->org_y = 0;
1868 ui->cur_x = ui->cx = state->width / 2;
1869 ui->cur_y = ui->cy = state->height / 2;
1870 ui->cur_visible = FALSE;
1871 get_random_seed(&seed, &seedsize);
1872 ui->rs = random_new(seed, seedsize);
1873 sfree(seed);
1874
1875 return ui;
1876 }
1877
1878 static void free_ui(game_ui *ui)
1879 {
1880 random_free(ui->rs);
1881 sfree(ui);
1882 }
1883
1884 static char *encode_ui(game_ui *ui)
1885 {
1886 char buf[120];
1887 /*
1888 * We preserve the origin and centre-point coordinates over a
1889 * serialise.
1890 */
1891 sprintf(buf, "O%d,%d;C%d,%d", ui->org_x, ui->org_y, ui->cx, ui->cy);
1892 return dupstr(buf);
1893 }
1894
1895 static void decode_ui(game_ui *ui, char *encoding)
1896 {
1897 sscanf(encoding, "O%d,%d;C%d,%d",
1898 &ui->org_x, &ui->org_y, &ui->cx, &ui->cy);
1899 }
1900
1901 static void game_changed_state(game_ui *ui, game_state *oldstate,
1902 game_state *newstate)
1903 {
1904 }
1905
1906 struct game_drawstate {
1907 int started;
1908 int width, height;
1909 int org_x, org_y;
1910 int tilesize;
1911 unsigned char *visible;
1912 };
1913
1914 /* ----------------------------------------------------------------------
1915 * Process a move.
1916 */
1917 static char *interpret_move(game_state *state, game_ui *ui,
1918 game_drawstate *ds, int x, int y, int button)
1919 {
1920 char *nullret;
1921 int tx = -1, ty = -1, dir = 0;
1922 int shift = button & MOD_SHFT, ctrl = button & MOD_CTRL;
1923 enum {
1924 NONE, ROTATE_LEFT, ROTATE_180, ROTATE_RIGHT, TOGGLE_LOCK, JUMBLE,
1925 MOVE_ORIGIN, MOVE_SOURCE, MOVE_ORIGIN_AND_SOURCE, MOVE_CURSOR
1926 } action;
1927
1928 button &= ~MOD_MASK;
1929 nullret = NULL;
1930 action = NONE;
1931
1932 if (button == LEFT_BUTTON ||
1933 button == MIDDLE_BUTTON ||
1934 #ifdef USE_DRAGGING
1935 button == LEFT_DRAG ||
1936 button == LEFT_RELEASE ||
1937 button == RIGHT_DRAG ||
1938 button == RIGHT_RELEASE ||
1939 #endif
1940 button == RIGHT_BUTTON) {
1941
1942 if (ui->cur_visible) {
1943 ui->cur_visible = FALSE;
1944 nullret = "";
1945 }
1946
1947 /*
1948 * The button must have been clicked on a valid tile.
1949 */
1950 x -= WINDOW_OFFSET + TILE_BORDER;
1951 y -= WINDOW_OFFSET + TILE_BORDER;
1952 if (x < 0 || y < 0)
1953 return nullret;
1954 tx = x / TILE_SIZE;
1955 ty = y / TILE_SIZE;
1956 if (tx >= state->width || ty >= state->height)
1957 return nullret;
1958 /* Transform from physical to game coords */
1959 tx = (tx + ui->org_x) % state->width;
1960 ty = (ty + ui->org_y) % state->height;
1961 if (x % TILE_SIZE >= TILE_SIZE - TILE_BORDER ||
1962 y % TILE_SIZE >= TILE_SIZE - TILE_BORDER)
1963 return nullret;
1964
1965 #ifdef USE_DRAGGING
1966
1967 if (button == MIDDLE_BUTTON
1968 #ifdef STYLUS_BASED
1969 || button == RIGHT_BUTTON /* with a stylus, `right-click' locks */
1970 #endif
1971 ) {
1972 /*
1973 * Middle button never drags: it only toggles the lock.
1974 */
1975 action = TOGGLE_LOCK;
1976 } else if (button == LEFT_BUTTON || button == RIGHT_BUTTON) {
1977 /*
1978 * Otherwise, we note down the start point for a drag.
1979 */
1980 ui->dragtilex = tx;
1981 ui->dragtiley = ty;
1982 ui->dragstartx = x % TILE_SIZE;
1983 ui->dragstarty = y % TILE_SIZE;
1984 ui->dragged = FALSE;
1985 return nullret; /* no actual action */
1986 } else if (button == LEFT_DRAG || button == RIGHT_DRAG) {
1987 /*
1988 * Find the new drag point and see if it necessitates a
1989 * rotation.
1990 */
1991 int x0,y0, xA,yA, xC,yC, xF,yF;
1992 int mx, my;
1993 int d0, dA, dC, dF, dmin;
1994
1995 tx = ui->dragtilex;
1996 ty = ui->dragtiley;
1997
1998 mx = x - (ui->dragtilex * TILE_SIZE);
1999 my = y - (ui->dragtiley * TILE_SIZE);
2000
2001 x0 = ui->dragstartx;
2002 y0 = ui->dragstarty;
2003 xA = ui->dragstarty;
2004 yA = TILE_SIZE-1 - ui->dragstartx;
2005 xF = TILE_SIZE-1 - ui->dragstartx;
2006 yF = TILE_SIZE-1 - ui->dragstarty;
2007 xC = TILE_SIZE-1 - ui->dragstarty;
2008 yC = ui->dragstartx;
2009
2010 d0 = (mx-x0)*(mx-x0) + (my-y0)*(my-y0);
2011 dA = (mx-xA)*(mx-xA) + (my-yA)*(my-yA);
2012 dF = (mx-xF)*(mx-xF) + (my-yF)*(my-yF);
2013 dC = (mx-xC)*(mx-xC) + (my-yC)*(my-yC);
2014
2015 dmin = min(min(d0,dA),min(dF,dC));
2016
2017 if (d0 == dmin) {
2018 return nullret;
2019 } else if (dF == dmin) {
2020 action = ROTATE_180;
2021 ui->dragstartx = xF;
2022 ui->dragstarty = yF;
2023 ui->dragged = TRUE;
2024 } else if (dA == dmin) {
2025 action = ROTATE_LEFT;
2026 ui->dragstartx = xA;
2027 ui->dragstarty = yA;
2028 ui->dragged = TRUE;
2029 } else /* dC == dmin */ {
2030 action = ROTATE_RIGHT;
2031 ui->dragstartx = xC;
2032 ui->dragstarty = yC;
2033 ui->dragged = TRUE;
2034 }
2035 } else if (button == LEFT_RELEASE || button == RIGHT_RELEASE) {
2036 if (!ui->dragged) {
2037 /*
2038 * There was a click but no perceptible drag:
2039 * revert to single-click behaviour.
2040 */
2041 tx = ui->dragtilex;
2042 ty = ui->dragtiley;
2043
2044 if (button == LEFT_RELEASE)
2045 action = ROTATE_LEFT;
2046 else
2047 action = ROTATE_RIGHT;
2048 } else
2049 return nullret; /* no action */
2050 }
2051
2052 #else /* USE_DRAGGING */
2053
2054 action = (button == LEFT_BUTTON ? ROTATE_LEFT :
2055 button == RIGHT_BUTTON ? ROTATE_RIGHT : TOGGLE_LOCK);
2056
2057 #endif /* USE_DRAGGING */
2058
2059 } else if (button == CURSOR_UP || button == CURSOR_DOWN ||
2060 button == CURSOR_RIGHT || button == CURSOR_LEFT) {
2061 switch (button) {
2062 case CURSOR_UP: dir = U; break;
2063 case CURSOR_DOWN: dir = D; break;
2064 case CURSOR_LEFT: dir = L; break;
2065 case CURSOR_RIGHT: dir = R; break;
2066 default: return nullret;
2067 }
2068 if (shift && ctrl) action = MOVE_ORIGIN_AND_SOURCE;
2069 else if (shift) action = MOVE_ORIGIN;
2070 else if (ctrl) action = MOVE_SOURCE;
2071 else action = MOVE_CURSOR;
2072 } else if (button == 'a' || button == 's' || button == 'd' ||
2073 button == 'A' || button == 'S' || button == 'D' ||
2074 button == 'f' || button == 'F' ||
2075 button == CURSOR_SELECT) {
2076 tx = ui->cur_x;
2077 ty = ui->cur_y;
2078 if (button == 'a' || button == 'A' || button == CURSOR_SELECT)
2079 action = ROTATE_LEFT;
2080 else if (button == 's' || button == 'S')
2081 action = TOGGLE_LOCK;
2082 else if (button == 'd' || button == 'D')
2083 action = ROTATE_RIGHT;
2084 else if (button == 'f' || button == 'F')
2085 action = ROTATE_180;
2086 ui->cur_visible = TRUE;
2087 } else if (button == 'j' || button == 'J') {
2088 /* XXX should we have some mouse control for this? */
2089 action = JUMBLE;
2090 } else
2091 return nullret;
2092
2093 /*
2094 * The middle button locks or unlocks a tile. (A locked tile
2095 * cannot be turned, and is visually marked as being locked.
2096 * This is a convenience for the player, so that once they are
2097 * sure which way round a tile goes, they can lock it and thus
2098 * avoid forgetting later on that they'd already done that one;
2099 * and the locking also prevents them turning the tile by
2100 * accident. If they change their mind, another middle click
2101 * unlocks it.)
2102 */
2103 if (action == TOGGLE_LOCK) {
2104 char buf[80];
2105 sprintf(buf, "L%d,%d", tx, ty);
2106 return dupstr(buf);
2107 } else if (action == ROTATE_LEFT || action == ROTATE_RIGHT ||
2108 action == ROTATE_180) {
2109 char buf[80];
2110
2111 /*
2112 * The left and right buttons have no effect if clicked on a
2113 * locked tile.
2114 */
2115 if (tile(state, tx, ty) & LOCKED)
2116 return nullret;
2117
2118 /*
2119 * Otherwise, turn the tile one way or the other. Left button
2120 * turns anticlockwise; right button turns clockwise.
2121 */
2122 sprintf(buf, "%c%d,%d", (int)(action == ROTATE_LEFT ? 'A' :
2123 action == ROTATE_RIGHT ? 'C' : 'F'), tx, ty);
2124 return dupstr(buf);
2125 } else if (action == JUMBLE) {
2126 /*
2127 * Jumble all unlocked tiles to random orientations.
2128 */
2129
2130 int jx, jy, maxlen;
2131 char *ret, *p;
2132
2133 /*
2134 * Maximum string length assumes no int can be converted to
2135 * decimal and take more than 11 digits!
2136 */
2137 maxlen = state->width * state->height * 25 + 3;
2138
2139 ret = snewn(maxlen, char);
2140 p = ret;
2141 *p++ = 'J';
2142
2143 for (jy = 0; jy < state->height; jy++) {
2144 for (jx = 0; jx < state->width; jx++) {
2145 if (!(tile(state, jx, jy) & LOCKED)) {
2146 int rot = random_upto(ui->rs, 4);
2147 if (rot) {
2148 p += sprintf(p, ";%c%d,%d", "AFC"[rot-1], jx, jy);
2149 }
2150 }
2151 }
2152 }
2153 *p++ = '\0';
2154 assert(p - ret < maxlen);
2155 ret = sresize(ret, p - ret, char);
2156
2157 return ret;
2158 } else if (action == MOVE_ORIGIN || action == MOVE_SOURCE ||
2159 action == MOVE_ORIGIN_AND_SOURCE || action == MOVE_CURSOR) {
2160 assert(dir != 0);
2161 if (action == MOVE_ORIGIN || action == MOVE_ORIGIN_AND_SOURCE) {
2162 if (state->wrapping) {
2163 OFFSET(ui->org_x, ui->org_y, ui->org_x, ui->org_y, dir, state);
2164 } else return nullret; /* disallowed for non-wrapping grids */
2165 }
2166 if (action == MOVE_SOURCE || action == MOVE_ORIGIN_AND_SOURCE) {
2167 OFFSET(ui->cx, ui->cy, ui->cx, ui->cy, dir, state);
2168 }
2169 if (action == MOVE_CURSOR) {
2170 OFFSET(ui->cur_x, ui->cur_y, ui->cur_x, ui->cur_y, dir, state);
2171 ui->cur_visible = TRUE;
2172 }
2173 return "";
2174 } else {
2175 return NULL;
2176 }
2177 }
2178
2179 static game_state *execute_move(game_state *from, char *move)
2180 {
2181 game_state *ret;
2182 int tx, ty, n, noanim, orig;
2183
2184 ret = dup_game(from);
2185
2186 if (move[0] == 'J' || move[0] == 'S') {
2187 if (move[0] == 'S')
2188 ret->used_solve = TRUE;
2189
2190 move++;
2191 if (*move == ';')
2192 move++;
2193 noanim = TRUE;
2194 } else
2195 noanim = FALSE;
2196
2197 ret->last_rotate_dir = 0; /* suppress animation */
2198 ret->last_rotate_x = ret->last_rotate_y = 0;
2199
2200 while (*move) {
2201 if ((move[0] == 'A' || move[0] == 'C' ||
2202 move[0] == 'F' || move[0] == 'L') &&
2203 sscanf(move+1, "%d,%d%n", &tx, &ty, &n) >= 2 &&
2204 tx >= 0 && tx < from->width && ty >= 0 && ty < from->height) {
2205 orig = tile(ret, tx, ty);
2206 if (move[0] == 'A') {
2207 tile(ret, tx, ty) = A(orig);
2208 if (!noanim)
2209 ret->last_rotate_dir = +1;
2210 } else if (move[0] == 'F') {
2211 tile(ret, tx, ty) = F(orig);
2212 if (!noanim)
2213 ret->last_rotate_dir = +2; /* + for sake of argument */
2214 } else if (move[0] == 'C') {
2215 tile(ret, tx, ty) = C(orig);
2216 if (!noanim)
2217 ret->last_rotate_dir = -1;
2218 } else {
2219 assert(move[0] == 'L');
2220 tile(ret, tx, ty) ^= LOCKED;
2221 }
2222
2223 move += 1 + n;
2224 if (*move == ';') move++;
2225 } else {
2226 free_game(ret);
2227 return NULL;
2228 }
2229 }
2230 if (!noanim) {
2231 ret->last_rotate_x = tx;
2232 ret->last_rotate_y = ty;
2233 }
2234
2235 /*
2236 * Check whether the game has been completed.
2237 *
2238 * For this purpose it doesn't matter where the source square
2239 * is, because we can start from anywhere and correctly
2240 * determine whether the game is completed.
2241 */
2242 {
2243 unsigned char *active = compute_active(ret, 0, 0);
2244 int x1, y1;
2245 int complete = TRUE;
2246
2247 for (x1 = 0; x1 < ret->width; x1++)
2248 for (y1 = 0; y1 < ret->height; y1++)
2249 if ((tile(ret, x1, y1) & 0xF) && !index(ret, active, x1, y1)) {
2250 complete = FALSE;
2251 goto break_label; /* break out of two loops at once */
2252 }
2253 break_label:
2254
2255 sfree(active);
2256
2257 if (complete)
2258 ret->completed = TRUE;
2259 }
2260
2261 return ret;
2262 }
2263
2264
2265 /* ----------------------------------------------------------------------
2266 * Routines for drawing the game position on the screen.
2267 */
2268
2269 static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
2270 {
2271 game_drawstate *ds = snew(game_drawstate);
2272
2273 ds->started = FALSE;
2274 ds->width = state->width;
2275 ds->height = state->height;
2276 ds->org_x = ds->org_y = -1;
2277 ds->visible = snewn(state->width * state->height, unsigned char);
2278 ds->tilesize = 0; /* undecided yet */
2279 memset(ds->visible, 0xFF, state->width * state->height);
2280
2281 return ds;
2282 }
2283
2284 static void game_free_drawstate(drawing *dr, game_drawstate *ds)
2285 {
2286 sfree(ds->visible);
2287 sfree(ds);
2288 }
2289
2290 static void game_compute_size(game_params *params, int tilesize,
2291 int *x, int *y)
2292 {
2293 *x = WINDOW_OFFSET * 2 + tilesize * params->width + TILE_BORDER;
2294 *y = WINDOW_OFFSET * 2 + tilesize * params->height + TILE_BORDER;
2295 }
2296
2297 static void game_set_size(drawing *dr, game_drawstate *ds,
2298 game_params *params, int tilesize)
2299 {
2300 ds->tilesize = tilesize;
2301 }
2302
2303 static float *game_colours(frontend *fe, int *ncolours)
2304 {
2305 float *ret;
2306
2307 ret = snewn(NCOLOURS * 3, float);
2308 *ncolours = NCOLOURS;
2309
2310 /*
2311 * Basic background colour is whatever the front end thinks is
2312 * a sensible default.
2313 */
2314 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
2315
2316 /*
2317 * Wires are black.
2318 */
2319 ret[COL_WIRE * 3 + 0] = 0.0F;
2320 ret[COL_WIRE * 3 + 1] = 0.0F;
2321 ret[COL_WIRE * 3 + 2] = 0.0F;
2322
2323 /*
2324 * Powered wires and powered endpoints are cyan.
2325 */
2326 ret[COL_POWERED * 3 + 0] = 0.0F;
2327 ret[COL_POWERED * 3 + 1] = 1.0F;
2328 ret[COL_POWERED * 3 + 2] = 1.0F;
2329
2330 /*
2331 * Barriers are red.
2332 */
2333 ret[COL_BARRIER * 3 + 0] = 1.0F;
2334 ret[COL_BARRIER * 3 + 1] = 0.0F;
2335 ret[COL_BARRIER * 3 + 2] = 0.0F;
2336
2337 /*
2338 * Unpowered endpoints are blue.
2339 */
2340 ret[COL_ENDPOINT * 3 + 0] = 0.0F;
2341 ret[COL_ENDPOINT * 3 + 1] = 0.0F;
2342 ret[COL_ENDPOINT * 3 + 2] = 1.0F;
2343
2344 /*
2345 * Tile borders are a darker grey than the background.
2346 */
2347 ret[COL_BORDER * 3 + 0] = 0.5F * ret[COL_BACKGROUND * 3 + 0];
2348 ret[COL_BORDER * 3 + 1] = 0.5F * ret[COL_BACKGROUND * 3 + 1];
2349 ret[COL_BORDER * 3 + 2] = 0.5F * ret[COL_BACKGROUND * 3 + 2];
2350
2351 /*
2352 * Locked tiles are a grey in between those two.
2353 */
2354 ret[COL_LOCKED * 3 + 0] = 0.75F * ret[COL_BACKGROUND * 3 + 0];
2355 ret[COL_LOCKED * 3 + 1] = 0.75F * ret[COL_BACKGROUND * 3 + 1];
2356 ret[COL_LOCKED * 3 + 2] = 0.75F * ret[COL_BACKGROUND * 3 + 2];
2357
2358 return ret;
2359 }
2360
2361 static void draw_thick_line(drawing *dr, int x1, int y1, int x2, int y2,
2362 int colour)
2363 {
2364 draw_line(dr, x1-1, y1, x2-1, y2, COL_WIRE);
2365 draw_line(dr, x1+1, y1, x2+1, y2, COL_WIRE);
2366 draw_line(dr, x1, y1-1, x2, y2-1, COL_WIRE);
2367 draw_line(dr, x1, y1+1, x2, y2+1, COL_WIRE);
2368 draw_line(dr, x1, y1, x2, y2, colour);
2369 }
2370
2371 static void draw_rect_coords(drawing *dr, int x1, int y1, int x2, int y2,
2372 int colour)
2373 {
2374 int mx = (x1 < x2 ? x1 : x2);
2375 int my = (y1 < y2 ? y1 : y2);
2376 int dx = (x2 + x1 - 2*mx + 1);
2377 int dy = (y2 + y1 - 2*my + 1);
2378
2379 draw_rect(dr, mx, my, dx, dy, colour);
2380 }
2381
2382 /*
2383 * draw_barrier_corner() and draw_barrier() are passed physical coords
2384 */
2385 static void draw_barrier_corner(drawing *dr, game_drawstate *ds,
2386 int x, int y, int dx, int dy, int phase)
2387 {
2388 int bx = WINDOW_OFFSET + TILE_SIZE * x;
2389 int by = WINDOW_OFFSET + TILE_SIZE * y;
2390 int x1, y1;
2391
2392 x1 = (dx > 0 ? TILE_SIZE+TILE_BORDER-1 : 0);
2393 y1 = (dy > 0 ? TILE_SIZE+TILE_BORDER-1 : 0);
2394
2395 if (phase == 0) {
2396 draw_rect_coords(dr, bx+x1+dx, by+y1,
2397 bx+x1-TILE_BORDER*dx, by+y1-(TILE_BORDER-1)*dy,
2398 COL_WIRE);
2399 draw_rect_coords(dr, bx+x1, by+y1+dy,
2400 bx+x1-(TILE_BORDER-1)*dx, by+y1-TILE_BORDER*dy,
2401 COL_WIRE);
2402 } else {
2403 draw_rect_coords(dr, bx+x1, by+y1,
2404 bx+x1-(TILE_BORDER-1)*dx, by+y1-(TILE_BORDER-1)*dy,
2405 COL_BARRIER);
2406 }
2407 }
2408
2409 static void draw_barrier(drawing *dr, game_drawstate *ds,
2410 int x, int y, int dir, int phase)
2411 {
2412 int bx = WINDOW_OFFSET + TILE_SIZE * x;
2413 int by = WINDOW_OFFSET + TILE_SIZE * y;
2414 int x1, y1, w, h;
2415
2416 x1 = (X(dir) > 0 ? TILE_SIZE : X(dir) == 0 ? TILE_BORDER : 0);
2417 y1 = (Y(dir) > 0 ? TILE_SIZE : Y(dir) == 0 ? TILE_BORDER : 0);
2418 w = (X(dir) ? TILE_BORDER : TILE_SIZE - TILE_BORDER);
2419 h = (Y(dir) ? TILE_BORDER : TILE_SIZE - TILE_BORDER);
2420
2421 if (phase == 0) {
2422 draw_rect(dr, bx+x1-X(dir), by+y1-Y(dir), w, h, COL_WIRE);
2423 } else {
2424 draw_rect(dr, bx+x1, by+y1, w, h, COL_BARRIER);
2425 }
2426 }
2427
2428 /*
2429 * draw_tile() is passed physical coordinates
2430 */
2431 static void draw_tile(drawing *dr, game_state *state, game_drawstate *ds,
2432 int x, int y, int tile, int src, float angle, int cursor)
2433 {
2434 int bx = WINDOW_OFFSET + TILE_SIZE * x;
2435 int by = WINDOW_OFFSET + TILE_SIZE * y;
2436 float matrix[4];
2437 float cx, cy, ex, ey, tx, ty;
2438 int dir, col, phase;
2439
2440 /*
2441 * When we draw a single tile, we must draw everything up to
2442 * and including the borders around the tile. This means that
2443 * if the neighbouring tiles have connections to those borders,
2444 * we must draw those connections on the borders themselves.
2445 */
2446
2447 clip(dr, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER);
2448
2449 /*
2450 * So. First blank the tile out completely: draw a big
2451 * rectangle in border colour, and a smaller rectangle in
2452 * background colour to fill it in.
2453 */
2454 draw_rect(dr, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER,
2455 COL_BORDER);
2456 draw_rect(dr, bx+TILE_BORDER, by+TILE_BORDER,
2457 TILE_SIZE-TILE_BORDER, TILE_SIZE-TILE_BORDER,
2458 tile & LOCKED ? COL_LOCKED : COL_BACKGROUND);
2459
2460 /*
2461 * Draw an inset outline rectangle as a cursor, in whichever of
2462 * COL_LOCKED and COL_BACKGROUND we aren't currently drawing
2463 * in.
2464 */
2465 if (cursor) {
2466 draw_line(dr, bx+TILE_SIZE/8, by+TILE_SIZE/8,
2467 bx+TILE_SIZE/8, by+TILE_SIZE-TILE_SIZE/8,
2468 tile & LOCKED ? COL_BACKGROUND : COL_LOCKED);
2469 draw_line(dr, bx+TILE_SIZE/8, by+TILE_SIZE/8,
2470 bx+TILE_SIZE-TILE_SIZE/8, by+TILE_SIZE/8,
2471 tile & LOCKED ? COL_BACKGROUND : COL_LOCKED);
2472 draw_line(dr, bx+TILE_SIZE-TILE_SIZE/8, by+TILE_SIZE/8,
2473 bx+TILE_SIZE-TILE_SIZE/8, by+TILE_SIZE-TILE_SIZE/8,
2474 tile & LOCKED ? COL_BACKGROUND : COL_LOCKED);
2475 draw_line(dr, bx+TILE_SIZE/8, by+TILE_SIZE-TILE_SIZE/8,
2476 bx+TILE_SIZE-TILE_SIZE/8, by+TILE_SIZE-TILE_SIZE/8,
2477 tile & LOCKED ? COL_BACKGROUND : COL_LOCKED);
2478 }
2479
2480 /*
2481 * Set up the rotation matrix.
2482 */
2483 matrix[0] = (float)cos(angle * PI / 180.0);
2484 matrix[1] = (float)-sin(angle * PI / 180.0);
2485 matrix[2] = (float)sin(angle * PI / 180.0);
2486 matrix[3] = (float)cos(angle * PI / 180.0);
2487
2488 /*
2489 * Draw the wires.
2490 */
2491 cx = cy = TILE_BORDER + (TILE_SIZE-TILE_BORDER) / 2.0F - 0.5F;
2492 col = (tile & ACTIVE ? COL_POWERED : COL_WIRE);
2493 for (dir = 1; dir < 0x10; dir <<= 1) {
2494 if (tile & dir) {
2495 ex = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * X(dir);
2496 ey = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * Y(dir);
2497 MATMUL(tx, ty, matrix, ex, ey);
2498 draw_thick_line(dr, bx+(int)cx, by+(int)cy,
2499 bx+(int)(cx+tx), by+(int)(cy+ty),
2500 COL_WIRE);
2501 }
2502 }
2503 for (dir = 1; dir < 0x10; dir <<= 1) {
2504 if (tile & dir) {
2505 ex = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * X(dir);
2506 ey = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * Y(dir);
2507 MATMUL(tx, ty, matrix, ex, ey);
2508 draw_line(dr, bx+(int)cx, by+(int)cy,
2509 bx+(int)(cx+tx), by+(int)(cy+ty), col);
2510 }
2511 }
2512
2513 /*
2514 * Draw the box in the middle. We do this in blue if the tile
2515 * is an unpowered endpoint, in cyan if the tile is a powered
2516 * endpoint, in black if the tile is the centrepiece, and
2517 * otherwise not at all.
2518 */
2519 col = -1;
2520 if (src)
2521 col = COL_WIRE;
2522 else if (COUNT(tile) == 1) {
2523 col = (tile & ACTIVE ? COL_POWERED : COL_ENDPOINT);
2524 }
2525 if (col >= 0) {
2526 int i, points[8];
2527
2528 points[0] = +1; points[1] = +1;
2529 points[2] = +1; points[3] = -1;
2530 points[4] = -1; points[5] = -1;
2531 points[6] = -1; points[7] = +1;
2532
2533 for (i = 0; i < 8; i += 2) {
2534 ex = (TILE_SIZE * 0.24F) * points[i];
2535 ey = (TILE_SIZE * 0.24F) * points[i+1];
2536 MATMUL(tx, ty, matrix, ex, ey);
2537 points[i] = bx+(int)(cx+tx);
2538 points[i+1] = by+(int)(cy+ty);
2539 }
2540
2541 draw_polygon(dr, points, 4, col, COL_WIRE);
2542 }
2543
2544 /*
2545 * Draw the points on the border if other tiles are connected
2546 * to us.
2547 */
2548 for (dir = 1; dir < 0x10; dir <<= 1) {
2549 int dx, dy, px, py, lx, ly, vx, vy, ox, oy;
2550
2551 dx = X(dir);
2552 dy = Y(dir);
2553
2554 ox = x + dx;
2555 oy = y + dy;
2556
2557 if (ox < 0 || ox >= state->width || oy < 0 || oy >= state->height)
2558 continue;
2559
2560 if (!(tile(state, GX(ox), GY(oy)) & F(dir)))
2561 continue;
2562
2563 px = bx + (int)(dx>0 ? TILE_SIZE + TILE_BORDER - 1 : dx<0 ? 0 : cx);
2564 py = by + (int)(dy>0 ? TILE_SIZE + TILE_BORDER - 1 : dy<0 ? 0 : cy);
2565 lx = dx * (TILE_BORDER-1);
2566 ly = dy * (TILE_BORDER-1);
2567 vx = (dy ? 1 : 0);
2568 vy = (dx ? 1 : 0);
2569
2570 if (angle == 0.0 && (tile & dir)) {
2571 /*
2572 * If we are fully connected to the other tile, we must
2573 * draw right across the tile border. (We can use our
2574 * own ACTIVE state to determine what colour to do this
2575 * in: if we are fully connected to the other tile then
2576 * the two ACTIVE states will be the same.)
2577 */
2578 draw_rect_coords(dr, px-vx, py-vy, px+lx+vx, py+ly+vy, COL_WIRE);
2579 draw_rect_coords(dr, px, py, px+lx, py+ly,
2580 (tile & ACTIVE) ? COL_POWERED : COL_WIRE);
2581 } else {
2582 /*
2583 * The other tile extends into our border, but isn't
2584 * actually connected to us. Just draw a single black
2585 * dot.
2586 */
2587 draw_rect_coords(dr, px, py, px, py, COL_WIRE);
2588 }
2589 }
2590
2591 /*
2592 * Draw barrier corners, and then barriers.
2593 */
2594 for (phase = 0; phase < 2; phase++) {
2595 for (dir = 1; dir < 0x10; dir <<= 1) {
2596 int x1, y1, corner = FALSE;
2597 /*
2598 * If at least one barrier terminates at the corner
2599 * between dir and A(dir), draw a barrier corner.
2600 */
2601 if (barrier(state, GX(x), GY(y)) & (dir | A(dir))) {
2602 corner = TRUE;
2603 } else {
2604 /*
2605 * Only count barriers terminating at this corner
2606 * if they're physically next to the corner. (That
2607 * is, if they've wrapped round from the far side
2608 * of the screen, they don't count.)
2609 */
2610 x1 = x + X(dir);
2611 y1 = y + Y(dir);
2612 if (x1 >= 0 && x1 < state->width &&
2613 y1 >= 0 && y1 < state->height &&
2614 (barrier(state, GX(x1), GY(y1)) & A(dir))) {
2615 corner = TRUE;
2616 } else {
2617 x1 = x + X(A(dir));
2618 y1 = y + Y(A(dir));
2619 if (x1 >= 0 && x1 < state->width &&
2620 y1 >= 0 && y1 < state->height &&
2621 (barrier(state, GX(x1), GY(y1)) & dir))
2622 corner = TRUE;
2623 }
2624 }
2625
2626 if (corner) {
2627 /*
2628 * At least one barrier terminates here. Draw a
2629 * corner.
2630 */
2631 draw_barrier_corner(dr, ds, x, y,
2632 X(dir)+X(A(dir)), Y(dir)+Y(A(dir)),
2633 phase);
2634 }
2635 }
2636
2637 for (dir = 1; dir < 0x10; dir <<= 1)
2638 if (barrier(state, GX(x), GY(y)) & dir)
2639 draw_barrier(dr, ds, x, y, dir, phase);
2640 }
2641
2642 unclip(dr);
2643
2644 draw_update(dr, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER);
2645 }
2646
2647 static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
2648 game_state *state, int dir, game_ui *ui, float t, float ft)
2649 {
2650 int x, y, tx, ty, frame, last_rotate_dir, moved_origin = FALSE;
2651 unsigned char *active;
2652 float angle = 0.0;
2653
2654 /*
2655 * Clear the screen, and draw the exterior barrier lines, if
2656 * this is our first call or if the origin has changed.
2657 */
2658 if (!ds->started || ui->org_x != ds->org_x || ui->org_y != ds->org_y) {
2659 int phase;
2660
2661 ds->started = TRUE;
2662
2663 draw_rect(dr, 0, 0,
2664 WINDOW_OFFSET * 2 + TILE_SIZE * state->width + TILE_BORDER,
2665 WINDOW_OFFSET * 2 + TILE_SIZE * state->height + TILE_BORDER,
2666 COL_BACKGROUND);
2667
2668 ds->org_x = ui->org_x;
2669 ds->org_y = ui->org_y;
2670 moved_origin = TRUE;
2671
2672 draw_update(dr, 0, 0,
2673 WINDOW_OFFSET*2 + TILE_SIZE*state->width + TILE_BORDER,
2674 WINDOW_OFFSET*2 + TILE_SIZE*state->height + TILE_BORDER);
2675
2676 for (phase = 0; phase < 2; phase++) {
2677
2678 for (x = 0; x < ds->width; x++) {
2679 if (x+1 < ds->width) {
2680 if (barrier(state, GX(x), GY(0)) & R)
2681 draw_barrier_corner(dr, ds, x, -1, +1, +1, phase);
2682 if (barrier(state, GX(x), GY(ds->height-1)) & R)
2683 draw_barrier_corner(dr, ds, x, ds->height, +1, -1, phase);
2684 }
2685 if (barrier(state, GX(x), GY(0)) & U) {
2686 draw_barrier_corner(dr, ds, x, -1, -1, +1, phase);
2687 draw_barrier_corner(dr, ds, x, -1, +1, +1, phase);
2688 draw_barrier(dr, ds, x, -1, D, phase);
2689 }
2690 if (barrier(state, GX(x), GY(ds->height-1)) & D) {
2691 draw_barrier_corner(dr, ds, x, ds->height, -1, -1, phase);
2692 draw_barrier_corner(dr, ds, x, ds->height, +1, -1, phase);
2693 draw_barrier(dr, ds, x, ds->height, U, phase);
2694 }
2695 }
2696
2697 for (y = 0; y < ds->height; y++) {
2698 if (y+1 < ds->height) {
2699 if (barrier(state, GX(0), GY(y)) & D)
2700 draw_barrier_corner(dr, ds, -1, y, +1, +1, phase);
2701 if (barrier(state, GX(ds->width-1), GY(y)) & D)
2702 draw_barrier_corner(dr, ds, ds->width, y, -1, +1, phase);
2703 }
2704 if (barrier(state, GX(0), GY(y)) & L) {
2705 draw_barrier_corner(dr, ds, -1, y, +1, -1, phase);
2706 draw_barrier_corner(dr, ds, -1, y, +1, +1, phase);
2707 draw_barrier(dr, ds, -1, y, R, phase);
2708 }
2709 if (barrier(state, GX(ds->width-1), GY(y)) & R) {
2710 draw_barrier_corner(dr, ds, ds->width, y, -1, -1, phase);
2711 draw_barrier_corner(dr, ds, ds->width, y, -1, +1, phase);
2712 draw_barrier(dr, ds, ds->width, y, L, phase);
2713 }
2714 }
2715 }
2716 }
2717
2718 tx = ty = -1;
2719 last_rotate_dir = dir==-1 ? oldstate->last_rotate_dir :
2720 state->last_rotate_dir;
2721 if (oldstate && (t < ROTATE_TIME) && last_rotate_dir) {
2722 /*
2723 * We're animating a single tile rotation. Find the turning
2724 * tile.
2725 */
2726 tx = (dir==-1 ? oldstate->last_rotate_x : state->last_rotate_x);
2727 ty = (dir==-1 ? oldstate->last_rotate_y : state->last_rotate_y);
2728 angle = last_rotate_dir * dir * 90.0F * (t / ROTATE_TIME);
2729 state = oldstate;
2730 }
2731
2732 frame = -1;
2733 if (ft > 0) {
2734 /*
2735 * We're animating a completion flash. Find which frame
2736 * we're at.
2737 */
2738 frame = (int)(ft / FLASH_FRAME);
2739 }
2740
2741 /*
2742 * Draw any tile which differs from the way it was last drawn.
2743 */
2744 active = compute_active(state, ui->cx, ui->cy);
2745
2746 for (x = 0; x < ds->width; x++)
2747 for (y = 0; y < ds->height; y++) {
2748 unsigned char c = tile(state, GX(x), GY(y)) |
2749 index(state, active, GX(x), GY(y));
2750 int is_src = GX(x) == ui->cx && GY(y) == ui->cy;
2751 int is_anim = GX(x) == tx && GY(y) == ty;
2752 int is_cursor = ui->cur_visible &&
2753 GX(x) == ui->cur_x && GY(y) == ui->cur_y;
2754
2755 /*
2756 * In a completion flash, we adjust the LOCKED bit
2757 * depending on our distance from the centre point and
2758 * the frame number.
2759 */
2760 if (frame >= 0) {
2761 int rcx = RX(ui->cx), rcy = RY(ui->cy);
2762 int xdist, ydist, dist;
2763 xdist = (x < rcx ? rcx - x : x - rcx);
2764 ydist = (y < rcy ? rcy - y : y - rcy);
2765 dist = (xdist > ydist ? xdist : ydist);
2766
2767 if (frame >= dist && frame < dist+4) {
2768 int lock = (frame - dist) & 1;
2769 lock = lock ? LOCKED : 0;
2770 c = (c &~ LOCKED) | lock;
2771 }
2772 }
2773
2774 if (moved_origin ||
2775 index(state, ds->visible, x, y) != c ||
2776 index(state, ds->visible, x, y) == 0xFF ||
2777 is_src || is_anim || is_cursor) {
2778 draw_tile(dr, state, ds, x, y, c,
2779 is_src, (is_anim ? angle : 0.0F), is_cursor);
2780 if (is_src || is_anim || is_cursor)
2781 index(state, ds->visible, x, y) = 0xFF;
2782 else
2783 index(state, ds->visible, x, y) = c;
2784 }
2785 }
2786
2787 /*
2788 * Update the status bar.
2789 */
2790 {
2791 char statusbuf[256];
2792 int i, n, n2, a;
2793
2794 n = state->width * state->height;
2795 for (i = a = n2 = 0; i < n; i++) {
2796 if (active[i])
2797 a++;
2798 if (state->tiles[i] & 0xF)
2799 n2++;
2800 }
2801
2802 sprintf(statusbuf, "%sActive: %d/%d",
2803 (state->used_solve ? "Auto-solved. " :
2804 state->completed ? "COMPLETED! " : ""), a, n2);
2805
2806 status_bar(dr, statusbuf);
2807 }
2808
2809 sfree(active);
2810 }
2811
2812 static float game_anim_length(game_state *oldstate,
2813 game_state *newstate, int dir, game_ui *ui)
2814 {
2815 int last_rotate_dir;
2816
2817 /*
2818 * Don't animate if last_rotate_dir is zero.
2819 */
2820 last_rotate_dir = dir==-1 ? oldstate->last_rotate_dir :
2821 newstate->last_rotate_dir;
2822 if (last_rotate_dir)
2823 return ROTATE_TIME;
2824
2825 return 0.0F;
2826 }
2827
2828 static float game_flash_length(game_state *oldstate,
2829 game_state *newstate, int dir, game_ui *ui)
2830 {
2831 /*
2832 * If the game has just been completed, we display a completion
2833 * flash.
2834 */
2835 if (!oldstate->completed && newstate->completed &&
2836 !oldstate->used_solve && !newstate->used_solve) {
2837 int size = 0;
2838 if (size < newstate->width)
2839 size = newstate->width;
2840 if (size < newstate->height)
2841 size = newstate->height;
2842 return FLASH_FRAME * (size+4);
2843 }
2844
2845 return 0.0F;
2846 }
2847
2848 static int game_timing_state(game_state *state, game_ui *ui)
2849 {
2850 return TRUE;
2851 }
2852
2853 static void game_print_size(game_params *params, float *x, float *y)
2854 {
2855 int pw, ph;
2856
2857 /*
2858 * I'll use 8mm squares by default.
2859 */
2860 game_compute_size(params, 800, &pw, &ph);
2861 *x = pw / 100.0;
2862 *y = ph / 100.0;
2863 }
2864
2865 static void draw_diagram(drawing *dr, game_drawstate *ds, int x, int y,
2866 int topleft, int v, int drawlines, int ink)
2867 {
2868 int tx, ty, cx, cy, r, br, k, thick;
2869
2870 tx = WINDOW_OFFSET + TILE_SIZE * x;
2871 ty = WINDOW_OFFSET + TILE_SIZE * y;
2872
2873 /*
2874 * Find our centre point.
2875 */
2876 if (topleft) {
2877 cx = tx + (v & L ? TILE_SIZE / 4 : TILE_SIZE / 6);
2878 cy = ty + (v & U ? TILE_SIZE / 4 : TILE_SIZE / 6);
2879 r = TILE_SIZE / 8;
2880 br = TILE_SIZE / 32;
2881 } else {
2882 cx = tx + TILE_SIZE / 2;
2883 cy = ty + TILE_SIZE / 2;
2884 r = TILE_SIZE / 2;
2885 br = TILE_SIZE / 8;
2886 }
2887 thick = r / 20;
2888
2889 /*
2890 * Draw the square block if we have an endpoint.
2891 */
2892 if (v == 1 || v == 2 || v == 4 || v == 8)
2893 draw_rect(dr, cx - br, cy - br, br*2, br*2, ink);
2894
2895 /*
2896 * Draw each radial line.
2897 */
2898 if (drawlines) {
2899 for (k = 1; k < 16; k *= 2)
2900 if (v & k) {
2901 int x1 = min(cx, cx + (r-thick) * X(k));
2902 int x2 = max(cx, cx + (r-thick) * X(k));
2903 int y1 = min(cy, cy + (r-thick) * Y(k));
2904 int y2 = max(cy, cy + (r-thick) * Y(k));
2905 draw_rect(dr, x1 - thick, y1 - thick,
2906 (x2 - x1) + 2*thick, (y2 - y1) + 2*thick, ink);
2907 }
2908 }
2909 }
2910
2911 static void game_print(drawing *dr, game_state *state, int tilesize)
2912 {
2913 int w = state->width, h = state->height;
2914 int ink = print_mono_colour(dr, 0);
2915 int x, y;
2916
2917 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
2918 game_drawstate ads, *ds = &ads;
2919 game_set_size(dr, ds, NULL, tilesize);
2920
2921 /*
2922 * Border.
2923 */
2924 print_line_width(dr, TILE_SIZE / (state->wrapping ? 128 : 12));
2925 draw_rect_outline(dr, WINDOW_OFFSET, WINDOW_OFFSET,
2926 TILE_SIZE * w, TILE_SIZE * h, ink);
2927
2928 /*
2929 * Grid.
2930 */
2931 print_line_width(dr, TILE_SIZE / 128);
2932 for (x = 1; x < w; x++)
2933 draw_line(dr, WINDOW_OFFSET + TILE_SIZE * x, WINDOW_OFFSET,
2934 WINDOW_OFFSET + TILE_SIZE * x, WINDOW_OFFSET + TILE_SIZE * h,
2935 ink);
2936 for (y = 1; y < h; y++)
2937 draw_line(dr, WINDOW_OFFSET, WINDOW_OFFSET + TILE_SIZE * y,
2938 WINDOW_OFFSET + TILE_SIZE * w, WINDOW_OFFSET + TILE_SIZE * y,
2939 ink);
2940
2941 /*
2942 * Barriers.
2943 */
2944 for (y = 0; y <= h; y++)
2945 for (x = 0; x <= w; x++) {
2946 int b = barrier(state, x % w, y % h);
2947 if (x < w && (b & U))
2948 draw_rect(dr, WINDOW_OFFSET + TILE_SIZE * x - TILE_SIZE/24,
2949 WINDOW_OFFSET + TILE_SIZE * y - TILE_SIZE/24,
2950 TILE_SIZE + TILE_SIZE/24 * 2, TILE_SIZE/24 * 2, ink);
2951 if (y < h && (b & L))
2952 draw_rect(dr, WINDOW_OFFSET + TILE_SIZE * x - TILE_SIZE/24,
2953 WINDOW_OFFSET + TILE_SIZE * y - TILE_SIZE/24,
2954 TILE_SIZE/24 * 2, TILE_SIZE + TILE_SIZE/24 * 2, ink);
2955 }
2956
2957 /*
2958 * Grid contents.
2959 */
2960 for (y = 0; y < h; y++)
2961 for (x = 0; x < w; x++) {
2962 int vx, v = tile(state, x, y);
2963 int locked = v & LOCKED;
2964
2965 v &= 0xF;
2966
2967 /*
2968 * Rotate into a standard orientation for the top left
2969 * corner diagram.
2970 */
2971 vx = v;
2972 while (vx != 0 && vx != 15 && vx != 1 && vx != 9 && vx != 13 &&
2973 vx != 5)
2974 vx = A(vx);
2975
2976 /*
2977 * Draw the top left corner diagram.
2978 */
2979 draw_diagram(dr, ds, x, y, TRUE, vx, TRUE, ink);
2980
2981 /*
2982 * Draw the real solution diagram, if we're doing so.
2983 */
2984 draw_diagram(dr, ds, x, y, FALSE, v, locked, ink);
2985 }
2986 }
2987
2988 #ifdef COMBINED
2989 #define thegame net
2990 #endif
2991
2992 const struct game thegame = {
2993 "Net", "games.net", "net",
2994 default_params,
2995 game_fetch_preset,
2996 decode_params,
2997 encode_params,
2998 free_params,
2999 dup_params,
3000 TRUE, game_configure, custom_params,
3001 validate_params,
3002 new_game_desc,
3003 validate_desc,
3004 new_game,
3005 dup_game,
3006 free_game,
3007 TRUE, solve_game,
3008 FALSE, game_text_format,
3009 new_ui,
3010 free_ui,
3011 encode_ui,
3012 decode_ui,
3013 game_changed_state,
3014 interpret_move,
3015 execute_move,
3016 PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
3017 game_colours,
3018 game_new_drawstate,
3019 game_free_drawstate,
3020 game_redraw,
3021 game_anim_length,
3022 game_flash_length,
3023 TRUE, FALSE, game_print_size, game_print,
3024 TRUE, /* wants_statusbar */
3025 FALSE, game_timing_state,
3026 0, /* flags */
3027 };