All the games in this collection have always defined their graphics
[sgt/puzzles] / twiddle.c
1 /*
2 * twiddle.c: Puzzle involving rearranging a grid of squares by
3 * rotating subsquares. Adapted and generalised from a
4 * door-unlocking puzzle in Metroid Prime 2 (the one in the Main
5 * Gyro Chamber).
6 */
7
8 #include <stdio.h>
9 #include <stdlib.h>
10 #include <string.h>
11 #include <assert.h>
12 #include <ctype.h>
13 #include <math.h>
14
15 #include "puzzles.h"
16
17 #define PREFERRED_TILE_SIZE 48
18 #define TILE_SIZE (ds->tilesize)
19 #define BORDER (TILE_SIZE / 2)
20 #define HIGHLIGHT_WIDTH (TILE_SIZE / 20)
21 #define COORD(x) ( (x) * TILE_SIZE + BORDER )
22 #define FROMCOORD(x) ( ((x) - BORDER + TILE_SIZE) / TILE_SIZE - 1 )
23
24 #define ANIM_PER_RADIUS_UNIT 0.13F
25 #define FLASH_FRAME 0.13F
26
27 enum {
28 COL_BACKGROUND,
29 COL_TEXT,
30 COL_HIGHLIGHT,
31 COL_HIGHLIGHT_GENTLE,
32 COL_LOWLIGHT,
33 COL_LOWLIGHT_GENTLE,
34 NCOLOURS
35 };
36
37 struct game_params {
38 int w, h, n;
39 int rowsonly;
40 int orientable;
41 int movetarget;
42 };
43
44 struct game_state {
45 int w, h, n;
46 int orientable;
47 int *grid;
48 int completed;
49 int just_used_solve; /* used to suppress undo animation */
50 int used_solve; /* used to suppress completion flash */
51 int movecount, movetarget;
52 int lastx, lasty, lastr; /* coordinates of last rotation */
53 };
54
55 static game_params *default_params(void)
56 {
57 game_params *ret = snew(game_params);
58
59 ret->w = ret->h = 3;
60 ret->n = 2;
61 ret->rowsonly = ret->orientable = FALSE;
62 ret->movetarget = 0;
63
64 return ret;
65 }
66
67
68 static void free_params(game_params *params)
69 {
70 sfree(params);
71 }
72
73 static game_params *dup_params(game_params *params)
74 {
75 game_params *ret = snew(game_params);
76 *ret = *params; /* structure copy */
77 return ret;
78 }
79
80 static int game_fetch_preset(int i, char **name, game_params **params)
81 {
82 static struct {
83 char *title;
84 game_params params;
85 } presets[] = {
86 { "3x3 rows only", { 3, 3, 2, TRUE, FALSE } },
87 { "3x3 normal", { 3, 3, 2, FALSE, FALSE } },
88 { "3x3 orientable", { 3, 3, 2, FALSE, TRUE } },
89 { "4x4 normal", { 4, 4, 2, FALSE } },
90 { "4x4 orientable", { 4, 4, 2, FALSE, TRUE } },
91 { "4x4 radius 3", { 4, 4, 3, FALSE } },
92 { "5x5 radius 3", { 5, 5, 3, FALSE } },
93 { "6x6 radius 4", { 6, 6, 4, FALSE } },
94 };
95
96 if (i < 0 || i >= lenof(presets))
97 return FALSE;
98
99 *name = dupstr(presets[i].title);
100 *params = dup_params(&presets[i].params);
101
102 return TRUE;
103 }
104
105 static void decode_params(game_params *ret, char const *string)
106 {
107 ret->w = ret->h = atoi(string);
108 ret->n = 2;
109 ret->rowsonly = ret->orientable = FALSE;
110 ret->movetarget = 0;
111 while (*string && isdigit(*string)) string++;
112 if (*string == 'x') {
113 string++;
114 ret->h = atoi(string);
115 while (*string && isdigit(*string)) string++;
116 }
117 if (*string == 'n') {
118 string++;
119 ret->n = atoi(string);
120 while (*string && isdigit(*string)) string++;
121 }
122 while (*string) {
123 if (*string == 'r') {
124 ret->rowsonly = TRUE;
125 } else if (*string == 'o') {
126 ret->orientable = TRUE;
127 } else if (*string == 'm') {
128 string++;
129 ret->movetarget = atoi(string);
130 while (string[1] && isdigit(string[1])) string++;
131 }
132 string++;
133 }
134 }
135
136 static char *encode_params(game_params *params, int full)
137 {
138 char buf[256];
139 sprintf(buf, "%dx%dn%d%s%s", params->w, params->h, params->n,
140 params->rowsonly ? "r" : "",
141 params->orientable ? "o" : "");
142 /* Shuffle limit is part of the limited parameters, because we have to
143 * supply the target move count. */
144 if (params->movetarget)
145 sprintf(buf + strlen(buf), "m%d", params->movetarget);
146 return dupstr(buf);
147 }
148
149 static config_item *game_configure(game_params *params)
150 {
151 config_item *ret;
152 char buf[80];
153
154 ret = snewn(7, config_item);
155
156 ret[0].name = "Width";
157 ret[0].type = C_STRING;
158 sprintf(buf, "%d", params->w);
159 ret[0].sval = dupstr(buf);
160 ret[0].ival = 0;
161
162 ret[1].name = "Height";
163 ret[1].type = C_STRING;
164 sprintf(buf, "%d", params->h);
165 ret[1].sval = dupstr(buf);
166 ret[1].ival = 0;
167
168 ret[2].name = "Rotation radius";
169 ret[2].type = C_STRING;
170 sprintf(buf, "%d", params->n);
171 ret[2].sval = dupstr(buf);
172 ret[2].ival = 0;
173
174 ret[3].name = "One number per row";
175 ret[3].type = C_BOOLEAN;
176 ret[3].sval = NULL;
177 ret[3].ival = params->rowsonly;
178
179 ret[4].name = "Orientation matters";
180 ret[4].type = C_BOOLEAN;
181 ret[4].sval = NULL;
182 ret[4].ival = params->orientable;
183
184 ret[5].name = "Number of shuffling moves";
185 ret[5].type = C_STRING;
186 sprintf(buf, "%d", params->movetarget);
187 ret[5].sval = dupstr(buf);
188 ret[5].ival = 0;
189
190 ret[6].name = NULL;
191 ret[6].type = C_END;
192 ret[6].sval = NULL;
193 ret[6].ival = 0;
194
195 return ret;
196 }
197
198 static game_params *custom_params(config_item *cfg)
199 {
200 game_params *ret = snew(game_params);
201
202 ret->w = atoi(cfg[0].sval);
203 ret->h = atoi(cfg[1].sval);
204 ret->n = atoi(cfg[2].sval);
205 ret->rowsonly = cfg[3].ival;
206 ret->orientable = cfg[4].ival;
207 ret->movetarget = atoi(cfg[5].sval);
208
209 return ret;
210 }
211
212 static char *validate_params(game_params *params)
213 {
214 if (params->n < 2)
215 return "Rotation radius must be at least two";
216 if (params->w < params->n)
217 return "Width must be at least the rotation radius";
218 if (params->h < params->n)
219 return "Height must be at least the rotation radius";
220 return NULL;
221 }
222
223 /*
224 * This function actually performs a rotation on a grid. The `x'
225 * and `y' coordinates passed in are the coordinates of the _top
226 * left corner_ of the rotated region. (Using the centre would have
227 * involved half-integers and been annoyingly fiddly. Clicking in
228 * the centre is good for a user interface, but too inconvenient to
229 * use internally.)
230 */
231 static void do_rotate(int *grid, int w, int h, int n, int orientable,
232 int x, int y, int dir)
233 {
234 int i, j;
235
236 assert(x >= 0 && x+n <= w);
237 assert(y >= 0 && y+n <= h);
238 dir &= 3;
239 if (dir == 0)
240 return; /* nothing to do */
241
242 grid += y*w+x; /* translate region to top corner */
243
244 /*
245 * If we were leaving the result of the rotation in a separate
246 * grid, the simple thing to do would be to loop over each
247 * square within the rotated region and assign it from its
248 * source square. However, to do it in place without taking
249 * O(n^2) memory, we need to be marginally more clever. What
250 * I'm going to do is loop over about one _quarter_ of the
251 * rotated region and permute each element within that quarter
252 * with its rotational coset.
253 *
254 * The size of the region I need to loop over is (n+1)/2 by
255 * n/2, which is an obvious exact quarter for even n and is a
256 * rectangle for odd n. (For odd n, this technique leaves out
257 * one element of the square, which is of course the central
258 * one that never moves anyway.)
259 */
260 for (i = 0; i < (n+1)/2; i++) {
261 for (j = 0; j < n/2; j++) {
262 int k;
263 int g[4];
264 int p[4];
265
266 p[0] = j*w+i;
267 p[1] = i*w+(n-j-1);
268 p[2] = (n-j-1)*w+(n-i-1);
269 p[3] = (n-i-1)*w+j;
270
271 for (k = 0; k < 4; k++)
272 g[k] = grid[p[k]];
273
274 for (k = 0; k < 4; k++) {
275 int v = g[(k+dir) & 3];
276 if (orientable)
277 v ^= ((v+dir) ^ v) & 3; /* alter orientation */
278 grid[p[k]] = v;
279 }
280 }
281 }
282
283 /*
284 * Don't forget the orientation on the centre square, if n is
285 * odd.
286 */
287 if (orientable && (n & 1)) {
288 int v = grid[n/2*(w+1)];
289 v ^= ((v+dir) ^ v) & 3; /* alter orientation */
290 grid[n/2*(w+1)] = v;
291 }
292 }
293
294 static int grid_complete(int *grid, int wh, int orientable)
295 {
296 int ok = TRUE;
297 int i;
298 for (i = 1; i < wh; i++)
299 if (grid[i] < grid[i-1])
300 ok = FALSE;
301 if (orientable) {
302 for (i = 0; i < wh; i++)
303 if (grid[i] & 3)
304 ok = FALSE;
305 }
306 return ok;
307 }
308
309 static char *new_game_desc(game_params *params, random_state *rs,
310 game_aux_info **aux, int interactive)
311 {
312 int *grid;
313 int w = params->w, h = params->h, n = params->n, wh = w*h;
314 int i;
315 char *ret;
316 int retlen;
317 int total_moves;
318
319 /*
320 * Set up a solved grid.
321 */
322 grid = snewn(wh, int);
323 for (i = 0; i < wh; i++)
324 grid[i] = ((params->rowsonly ? i/w : i) + 1) * 4;
325
326 /*
327 * Shuffle it. This game is complex enough that I don't feel up
328 * to analysing its full symmetry properties (particularly at
329 * n=4 and above!), so I'm going to do it the pedestrian way
330 * and simply shuffle the grid by making a long sequence of
331 * randomly chosen moves.
332 */
333 total_moves = params->movetarget;
334 if (!total_moves)
335 /* Add a random move to avoid parity issues. */
336 total_moves = w*h*n*n*2 + random_upto(rs, 2);
337
338 do {
339 int *prevmoves;
340 int rw, rh; /* w/h of rotation centre space */
341
342 rw = w - n + 1;
343 rh = h - n + 1;
344 prevmoves = snewn(rw * rh, int);
345 for (i = 0; i < rw * rh; i++)
346 prevmoves[i] = 0;
347
348 for (i = 0; i < total_moves; i++) {
349 int x, y, r, oldtotal, newtotal, dx, dy;
350
351 do {
352 x = random_upto(rs, w - n + 1);
353 y = random_upto(rs, h - n + 1);
354 r = 2 * random_upto(rs, 2) - 1;
355
356 /*
357 * See if any previous rotations has happened at
358 * this point which nothing has overlapped since.
359 * If so, ensure we haven't either undone a
360 * previous move or repeated one so many times that
361 * it turns into fewer moves in the inverse
362 * direction (i.e. three identical rotations).
363 */
364 oldtotal = prevmoves[y*rw+x];
365 newtotal = oldtotal + r;
366 } while (abs(newtotal) < abs(oldtotal) || abs(newtotal) > 2);
367
368 do_rotate(grid, w, h, n, params->orientable, x, y, r);
369
370 /*
371 * Log the rotation we've just performed at this point,
372 * for inversion detection in the next move.
373 *
374 * Also zero a section of the prevmoves array, because
375 * any rotation area which _overlaps_ this one is now
376 * entirely safe to perform further moves in.
377 *
378 * Two rotation areas overlap if their top left
379 * coordinates differ by strictly less than n in both
380 * directions
381 */
382 prevmoves[y*rw+x] += r;
383 for (dy = -n+1; dy <= n-1; dy++) {
384 if (y + dy < 0 || y + dy >= rh)
385 continue;
386 for (dx = -n+1; dx <= n-1; dx++) {
387 if (x + dx < 0 || x + dx >= rw)
388 continue;
389 if (dx == 0 && dy == 0)
390 continue;
391 prevmoves[(y+dy)*rw+(x+dx)] = 0;
392 }
393 }
394 }
395
396 sfree(prevmoves);
397
398 } while (grid_complete(grid, wh, params->orientable));
399
400 /*
401 * Now construct the game description, by describing the grid
402 * as a simple sequence of integers. They're comma-separated,
403 * unless the puzzle is orientable in which case they're
404 * separated by orientation letters `u', `d', `l' and `r'.
405 */
406 ret = NULL;
407 retlen = 0;
408 for (i = 0; i < wh; i++) {
409 char buf[80];
410 int k;
411
412 k = sprintf(buf, "%d%c", grid[i] / 4,
413 (char)(params->orientable ? "uldr"[grid[i] & 3] : ','));
414
415 ret = sresize(ret, retlen + k + 1, char);
416 strcpy(ret + retlen, buf);
417 retlen += k;
418 }
419 if (!params->orientable)
420 ret[retlen-1] = '\0'; /* delete last comma */
421
422 sfree(grid);
423 return ret;
424 }
425
426 static void game_free_aux_info(game_aux_info *aux)
427 {
428 assert(!"Shouldn't happen");
429 }
430
431 static char *validate_desc(game_params *params, char *desc)
432 {
433 char *p, *err;
434 int w = params->w, h = params->h, wh = w*h;
435 int i;
436
437 p = desc;
438 err = NULL;
439
440 for (i = 0; i < wh; i++) {
441 if (*p < '0' || *p > '9')
442 return "Not enough numbers in string";
443 while (*p >= '0' && *p <= '9')
444 p++;
445 if (!params->orientable && i < wh-1) {
446 if (*p != ',')
447 return "Expected comma after number";
448 } else if (params->orientable && i < wh) {
449 if (*p != 'l' && *p != 'r' && *p != 'u' && *p != 'd')
450 return "Expected orientation letter after number";
451 } else if (i == wh-1 && *p) {
452 return "Excess junk at end of string";
453 }
454
455 if (*p) p++; /* eat comma */
456 }
457
458 return NULL;
459 }
460
461 static game_state *new_game(midend_data *me, game_params *params, char *desc)
462 {
463 game_state *state = snew(game_state);
464 int w = params->w, h = params->h, n = params->n, wh = w*h;
465 int i;
466 char *p;
467
468 state->w = w;
469 state->h = h;
470 state->n = n;
471 state->orientable = params->orientable;
472 state->completed = 0;
473 state->used_solve = state->just_used_solve = FALSE;
474 state->movecount = 0;
475 state->movetarget = params->movetarget;
476 state->lastx = state->lasty = state->lastr = -1;
477
478 state->grid = snewn(wh, int);
479
480 p = desc;
481
482 for (i = 0; i < wh; i++) {
483 state->grid[i] = 4 * atoi(p);
484 while (*p >= '0' && *p <= '9')
485 p++;
486 if (*p) {
487 if (params->orientable) {
488 switch (*p) {
489 case 'l': state->grid[i] |= 1; break;
490 case 'd': state->grid[i] |= 2; break;
491 case 'r': state->grid[i] |= 3; break;
492 }
493 }
494 p++;
495 }
496 }
497
498 return state;
499 }
500
501 static game_state *dup_game(game_state *state)
502 {
503 game_state *ret = snew(game_state);
504
505 ret->w = state->w;
506 ret->h = state->h;
507 ret->n = state->n;
508 ret->orientable = state->orientable;
509 ret->completed = state->completed;
510 ret->movecount = state->movecount;
511 ret->movetarget = state->movetarget;
512 ret->lastx = state->lastx;
513 ret->lasty = state->lasty;
514 ret->lastr = state->lastr;
515 ret->used_solve = state->used_solve;
516 ret->just_used_solve = state->just_used_solve;
517
518 ret->grid = snewn(ret->w * ret->h, int);
519 memcpy(ret->grid, state->grid, ret->w * ret->h * sizeof(int));
520
521 return ret;
522 }
523
524 static void free_game(game_state *state)
525 {
526 sfree(state->grid);
527 sfree(state);
528 }
529
530 static int compare_int(const void *av, const void *bv)
531 {
532 const int *a = (const int *)av;
533 const int *b = (const int *)bv;
534 if (*a < *b)
535 return -1;
536 else if (*a > *b)
537 return +1;
538 else
539 return 0;
540 }
541
542 static game_state *solve_game(game_state *state, game_aux_info *aux,
543 char **error)
544 {
545 game_state *ret = dup_game(state);
546 int i;
547
548 /*
549 * Simply replace the grid with a solved one. For this game,
550 * this isn't a useful operation for actually telling the user
551 * what they should have done, but it is useful for
552 * conveniently being able to get hold of a clean state from
553 * which to practise manoeuvres.
554 */
555 qsort(ret->grid, ret->w*ret->h, sizeof(int), compare_int);
556 for (i = 0; i < ret->w*ret->h; i++)
557 ret->grid[i] &= ~3;
558 ret->used_solve = ret->just_used_solve = TRUE;
559 ret->completed = ret->movecount = 1;
560
561 return ret;
562 }
563
564 static char *game_text_format(game_state *state)
565 {
566 char *ret, *p, buf[80];
567 int i, x, y, col, o, maxlen;
568
569 /*
570 * First work out how many characters we need to display each
571 * number. We're pretty flexible on grid contents here, so we
572 * have to scan the entire grid.
573 */
574 col = 0;
575 for (i = 0; i < state->w * state->h; i++) {
576 x = sprintf(buf, "%d", state->grid[i] / 4);
577 if (col < x) col = x;
578 }
579 o = (state->orientable ? 1 : 0);
580
581 /*
582 * Now we know the exact total size of the grid we're going to
583 * produce: it's got h rows, each containing w lots of col+o,
584 * w-1 spaces and a trailing newline.
585 */
586 maxlen = state->h * state->w * (col+o+1);
587
588 ret = snewn(maxlen+1, char);
589 p = ret;
590
591 for (y = 0; y < state->h; y++) {
592 for (x = 0; x < state->w; x++) {
593 int v = state->grid[state->w*y+x];
594 sprintf(buf, "%*d", col, v/4);
595 memcpy(p, buf, col);
596 p += col;
597 if (o)
598 *p++ = "^<v>"[v & 3];
599 if (x+1 == state->w)
600 *p++ = '\n';
601 else
602 *p++ = ' ';
603 }
604 }
605
606 assert(p - ret == maxlen);
607 *p = '\0';
608 return ret;
609 }
610
611 static game_ui *new_ui(game_state *state)
612 {
613 return NULL;
614 }
615
616 static void free_ui(game_ui *ui)
617 {
618 }
619
620 static void game_changed_state(game_ui *ui, game_state *oldstate,
621 game_state *newstate)
622 {
623 }
624
625 struct game_drawstate {
626 int started;
627 int w, h, bgcolour;
628 int *grid;
629 int tilesize;
630 };
631
632 static game_state *make_move(game_state *from, game_ui *ui, game_drawstate *ds,
633 int x, int y, int button)
634 {
635 int w = from->w, h = from->h, n = from->n, wh = w*h;
636 game_state *ret;
637 int dir;
638
639 button = button & (~MOD_MASK | MOD_NUM_KEYPAD);
640
641 if (button == LEFT_BUTTON || button == RIGHT_BUTTON) {
642 /*
643 * Determine the coordinates of the click. We offset by n-1
644 * half-blocks so that the user must click at the centre of
645 * a rotation region rather than at the corner.
646 */
647 x -= (n-1) * TILE_SIZE / 2;
648 y -= (n-1) * TILE_SIZE / 2;
649 x = FROMCOORD(x);
650 y = FROMCOORD(y);
651 dir = (button == LEFT_BUTTON ? 1 : -1);
652 if (x < 0 || x > w-n || y < 0 || y > h-n)
653 return NULL;
654 } else if (button == 'a' || button == 'A' || button==MOD_NUM_KEYPAD+'7') {
655 x = y = 0;
656 dir = (button == 'A' ? -1 : +1);
657 } else if (button == 'b' || button == 'B' || button==MOD_NUM_KEYPAD+'9') {
658 x = w-n;
659 y = 0;
660 dir = (button == 'B' ? -1 : +1);
661 } else if (button == 'c' || button == 'C' || button==MOD_NUM_KEYPAD+'1') {
662 x = 0;
663 y = h-n;
664 dir = (button == 'C' ? -1 : +1);
665 } else if (button == 'd' || button == 'D' || button==MOD_NUM_KEYPAD+'3') {
666 x = w-n;
667 y = h-n;
668 dir = (button == 'D' ? -1 : +1);
669 } else if (button==MOD_NUM_KEYPAD+'8' && (w-n) % 2 == 0) {
670 x = (w-n) / 2;
671 y = 0;
672 dir = +1;
673 } else if (button==MOD_NUM_KEYPAD+'2' && (w-n) % 2 == 0) {
674 x = (w-n) / 2;
675 y = h-n;
676 dir = +1;
677 } else if (button==MOD_NUM_KEYPAD+'4' && (h-n) % 2 == 0) {
678 x = 0;
679 y = (h-n) / 2;
680 dir = +1;
681 } else if (button==MOD_NUM_KEYPAD+'6' && (h-n) % 2 == 0) {
682 x = w-n;
683 y = (h-n) / 2;
684 dir = +1;
685 } else if (button==MOD_NUM_KEYPAD+'5' && (w-n) % 2 == 0 && (h-n) % 2 == 0){
686 x = (w-n) / 2;
687 y = (h-n) / 2;
688 dir = +1;
689 } else {
690 return NULL; /* no move to be made */
691 }
692
693 /*
694 * This is a valid move. Make it.
695 */
696 ret = dup_game(from);
697 ret->just_used_solve = FALSE; /* zero this in a hurry */
698 ret->movecount++;
699 do_rotate(ret->grid, w, h, n, ret->orientable, x, y, dir);
700 ret->lastx = x;
701 ret->lasty = y;
702 ret->lastr = dir;
703
704 /*
705 * See if the game has been completed. To do this we simply
706 * test that the grid contents are in increasing order.
707 */
708 if (!ret->completed && grid_complete(ret->grid, wh, ret->orientable))
709 ret->completed = ret->movecount;
710 return ret;
711 }
712
713 /* ----------------------------------------------------------------------
714 * Drawing routines.
715 */
716
717 static void game_size(game_params *params, game_drawstate *ds,
718 int *x, int *y, int expand)
719 {
720 int tsx, tsy, ts;
721 /*
722 * Each window dimension equals the tile size times one more
723 * than the grid dimension (the border is half the width of the
724 * tiles).
725 */
726 tsx = *x / (params->w + 1);
727 tsy = *y / (params->h + 1);
728 ts = min(tsx, tsy);
729 if (expand)
730 ds->tilesize = ts;
731 else
732 ds->tilesize = min(ts, PREFERRED_TILE_SIZE);
733
734 *x = TILE_SIZE * params->w + 2 * BORDER;
735 *y = TILE_SIZE * params->h + 2 * BORDER;
736 }
737
738 static float *game_colours(frontend *fe, game_state *state, int *ncolours)
739 {
740 float *ret = snewn(3 * NCOLOURS, float);
741 int i;
742 float max;
743
744 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
745
746 /*
747 * Drop the background colour so that the highlight is
748 * noticeably brighter than it while still being under 1.
749 */
750 max = ret[COL_BACKGROUND*3];
751 for (i = 1; i < 3; i++)
752 if (ret[COL_BACKGROUND*3+i] > max)
753 max = ret[COL_BACKGROUND*3+i];
754 if (max * 1.2F > 1.0F) {
755 for (i = 0; i < 3; i++)
756 ret[COL_BACKGROUND*3+i] /= (max * 1.2F);
757 }
758
759 for (i = 0; i < 3; i++) {
760 ret[COL_HIGHLIGHT * 3 + i] = ret[COL_BACKGROUND * 3 + i] * 1.2F;
761 ret[COL_HIGHLIGHT_GENTLE * 3 + i] = ret[COL_BACKGROUND * 3 + i] * 1.1F;
762 ret[COL_LOWLIGHT * 3 + i] = ret[COL_BACKGROUND * 3 + i] * 0.8F;
763 ret[COL_LOWLIGHT_GENTLE * 3 + i] = ret[COL_BACKGROUND * 3 + i] * 0.9F;
764 ret[COL_TEXT * 3 + i] = 0.0;
765 }
766
767 *ncolours = NCOLOURS;
768 return ret;
769 }
770
771 static game_drawstate *game_new_drawstate(game_state *state)
772 {
773 struct game_drawstate *ds = snew(struct game_drawstate);
774 int i;
775
776 ds->started = FALSE;
777 ds->w = state->w;
778 ds->h = state->h;
779 ds->bgcolour = COL_BACKGROUND;
780 ds->grid = snewn(ds->w*ds->h, int);
781 ds->tilesize = 0; /* haven't decided yet */
782 for (i = 0; i < ds->w*ds->h; i++)
783 ds->grid[i] = -1;
784
785 return ds;
786 }
787
788 static void game_free_drawstate(game_drawstate *ds)
789 {
790 sfree(ds->grid);
791 sfree(ds);
792 }
793
794 struct rotation {
795 int cx, cy, cw, ch; /* clip region */
796 int ox, oy; /* rotation origin */
797 float c, s; /* cos and sin of rotation angle */
798 int lc, rc, tc, bc; /* colours of tile edges */
799 };
800
801 static void rotate(int *xy, struct rotation *rot)
802 {
803 if (rot) {
804 float xf = xy[0] - rot->ox, yf = xy[1] - rot->oy;
805 float xf2, yf2;
806
807 xf2 = rot->c * xf + rot->s * yf;
808 yf2 = - rot->s * xf + rot->c * yf;
809
810 xy[0] = xf2 + rot->ox + 0.5; /* round to nearest */
811 xy[1] = yf2 + rot->oy + 0.5; /* round to nearest */
812 }
813 }
814
815 static void draw_tile(frontend *fe, game_drawstate *ds, game_state *state,
816 int x, int y, int tile, int flash_colour,
817 struct rotation *rot)
818 {
819 int coords[8];
820 char str[40];
821
822 /*
823 * If we've been passed a rotation region but we're drawing a
824 * tile which is outside it, we must draw it normally. This can
825 * occur if we're cleaning up after a completion flash while a
826 * new move is also being made.
827 */
828 if (rot && (x < rot->cx || y < rot->cy ||
829 x >= rot->cx+rot->cw || y >= rot->cy+rot->ch))
830 rot = NULL;
831
832 if (rot)
833 clip(fe, rot->cx, rot->cy, rot->cw, rot->ch);
834
835 /*
836 * We must draw each side of the tile's highlight separately,
837 * because in some cases (during rotation) they will all need
838 * to be different colours.
839 */
840
841 /* The centre point is common to all sides. */
842 coords[4] = x + TILE_SIZE / 2;
843 coords[5] = y + TILE_SIZE / 2;
844 rotate(coords+4, rot);
845
846 /* Right side. */
847 coords[0] = x + TILE_SIZE - 1;
848 coords[1] = y + TILE_SIZE - 1;
849 rotate(coords+0, rot);
850 coords[2] = x + TILE_SIZE - 1;
851 coords[3] = y;
852 rotate(coords+2, rot);
853 draw_polygon(fe, coords, 3, TRUE, rot ? rot->rc : COL_LOWLIGHT);
854 draw_polygon(fe, coords, 3, FALSE, rot ? rot->rc : COL_LOWLIGHT);
855
856 /* Bottom side. */
857 coords[2] = x;
858 coords[3] = y + TILE_SIZE - 1;
859 rotate(coords+2, rot);
860 draw_polygon(fe, coords, 3, TRUE, rot ? rot->bc : COL_LOWLIGHT);
861 draw_polygon(fe, coords, 3, FALSE, rot ? rot->bc : COL_LOWLIGHT);
862
863 /* Left side. */
864 coords[0] = x;
865 coords[1] = y;
866 rotate(coords+0, rot);
867 draw_polygon(fe, coords, 3, TRUE, rot ? rot->lc : COL_HIGHLIGHT);
868 draw_polygon(fe, coords, 3, FALSE, rot ? rot->lc : COL_HIGHLIGHT);
869
870 /* Top side. */
871 coords[2] = x + TILE_SIZE - 1;
872 coords[3] = y;
873 rotate(coords+2, rot);
874 draw_polygon(fe, coords, 3, TRUE, rot ? rot->tc : COL_HIGHLIGHT);
875 draw_polygon(fe, coords, 3, FALSE, rot ? rot->tc : COL_HIGHLIGHT);
876
877 /*
878 * Now the main blank area in the centre of the tile.
879 */
880 if (rot) {
881 coords[0] = x + HIGHLIGHT_WIDTH;
882 coords[1] = y + HIGHLIGHT_WIDTH;
883 rotate(coords+0, rot);
884 coords[2] = x + HIGHLIGHT_WIDTH;
885 coords[3] = y + TILE_SIZE - 1 - HIGHLIGHT_WIDTH;
886 rotate(coords+2, rot);
887 coords[4] = x + TILE_SIZE - 1 - HIGHLIGHT_WIDTH;
888 coords[5] = y + TILE_SIZE - 1 - HIGHLIGHT_WIDTH;
889 rotate(coords+4, rot);
890 coords[6] = x + TILE_SIZE - 1 - HIGHLIGHT_WIDTH;
891 coords[7] = y + HIGHLIGHT_WIDTH;
892 rotate(coords+6, rot);
893 draw_polygon(fe, coords, 4, TRUE, flash_colour);
894 draw_polygon(fe, coords, 4, FALSE, flash_colour);
895 } else {
896 draw_rect(fe, x + HIGHLIGHT_WIDTH, y + HIGHLIGHT_WIDTH,
897 TILE_SIZE - 2*HIGHLIGHT_WIDTH, TILE_SIZE - 2*HIGHLIGHT_WIDTH,
898 flash_colour);
899 }
900
901 /*
902 * Next, the triangles for orientation.
903 */
904 if (state->orientable) {
905 int xdx, xdy, ydx, ydy;
906 int cx, cy, displ, displ2;
907 switch (tile & 3) {
908 case 0:
909 xdx = 1, xdy = 0;
910 ydx = 0, ydy = 1;
911 break;
912 case 1:
913 xdx = 0, xdy = -1;
914 ydx = 1, ydy = 0;
915 break;
916 case 2:
917 xdx = -1, xdy = 0;
918 ydx = 0, ydy = -1;
919 break;
920 default /* case 3 */:
921 xdx = 0, xdy = 1;
922 ydx = -1, ydy = 0;
923 break;
924 }
925
926 cx = x + TILE_SIZE / 2;
927 cy = y + TILE_SIZE / 2;
928 displ = TILE_SIZE / 2 - HIGHLIGHT_WIDTH - 2;
929 displ2 = TILE_SIZE / 3 - HIGHLIGHT_WIDTH;
930
931 coords[0] = cx - displ * xdx + displ2 * ydx;
932 coords[1] = cy - displ * xdy + displ2 * ydy;
933 rotate(coords+0, rot);
934 coords[2] = cx + displ * xdx + displ2 * ydx;
935 coords[3] = cy + displ * xdy + displ2 * ydy;
936 rotate(coords+2, rot);
937 coords[4] = cx - displ * ydx;
938 coords[5] = cy - displ * ydy;
939 rotate(coords+4, rot);
940 draw_polygon(fe, coords, 3, TRUE, COL_LOWLIGHT_GENTLE);
941 draw_polygon(fe, coords, 3, FALSE, COL_LOWLIGHT_GENTLE);
942 }
943
944 coords[0] = x + TILE_SIZE/2;
945 coords[1] = y + TILE_SIZE/2;
946 rotate(coords+0, rot);
947 sprintf(str, "%d", tile / 4);
948 draw_text(fe, coords[0], coords[1],
949 FONT_VARIABLE, TILE_SIZE/3, ALIGN_VCENTRE | ALIGN_HCENTRE,
950 COL_TEXT, str);
951
952 if (rot)
953 unclip(fe);
954
955 draw_update(fe, x, y, TILE_SIZE, TILE_SIZE);
956 }
957
958 static int highlight_colour(float angle)
959 {
960 int colours[32] = {
961 COL_LOWLIGHT,
962 COL_LOWLIGHT_GENTLE,
963 COL_LOWLIGHT_GENTLE,
964 COL_LOWLIGHT_GENTLE,
965 COL_HIGHLIGHT_GENTLE,
966 COL_HIGHLIGHT_GENTLE,
967 COL_HIGHLIGHT_GENTLE,
968 COL_HIGHLIGHT,
969 COL_HIGHLIGHT,
970 COL_HIGHLIGHT,
971 COL_HIGHLIGHT,
972 COL_HIGHLIGHT,
973 COL_HIGHLIGHT,
974 COL_HIGHLIGHT,
975 COL_HIGHLIGHT,
976 COL_HIGHLIGHT,
977 COL_HIGHLIGHT,
978 COL_HIGHLIGHT_GENTLE,
979 COL_HIGHLIGHT_GENTLE,
980 COL_HIGHLIGHT_GENTLE,
981 COL_LOWLIGHT_GENTLE,
982 COL_LOWLIGHT_GENTLE,
983 COL_LOWLIGHT_GENTLE,
984 COL_LOWLIGHT,
985 COL_LOWLIGHT,
986 COL_LOWLIGHT,
987 COL_LOWLIGHT,
988 COL_LOWLIGHT,
989 COL_LOWLIGHT,
990 COL_LOWLIGHT,
991 COL_LOWLIGHT,
992 COL_LOWLIGHT,
993 };
994
995 return colours[(int)((angle + 2*PI) / (PI/16)) & 31];
996 }
997
998 static float game_anim_length(game_state *oldstate, game_state *newstate,
999 int dir, game_ui *ui)
1000 {
1001 if ((dir > 0 && newstate->just_used_solve) ||
1002 (dir < 0 && oldstate->just_used_solve))
1003 return 0.0F;
1004 else
1005 return ANIM_PER_RADIUS_UNIT * sqrt(newstate->n-1);
1006 }
1007
1008 static float game_flash_length(game_state *oldstate, game_state *newstate,
1009 int dir, game_ui *ui)
1010 {
1011 if (!oldstate->completed && newstate->completed &&
1012 !oldstate->used_solve && !newstate->used_solve)
1013 return 2 * FLASH_FRAME;
1014 else
1015 return 0.0F;
1016 }
1017
1018 static void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate,
1019 game_state *state, int dir, game_ui *ui,
1020 float animtime, float flashtime)
1021 {
1022 int i, bgcolour;
1023 struct rotation srot, *rot;
1024 int lastx = -1, lasty = -1, lastr = -1;
1025
1026 if (flashtime > 0) {
1027 int frame = (int)(flashtime / FLASH_FRAME);
1028 bgcolour = (frame % 2 ? COL_LOWLIGHT : COL_HIGHLIGHT);
1029 } else
1030 bgcolour = COL_BACKGROUND;
1031
1032 if (!ds->started) {
1033 int coords[10];
1034
1035 draw_rect(fe, 0, 0,
1036 TILE_SIZE * state->w + 2 * BORDER,
1037 TILE_SIZE * state->h + 2 * BORDER, COL_BACKGROUND);
1038 draw_update(fe, 0, 0,
1039 TILE_SIZE * state->w + 2 * BORDER,
1040 TILE_SIZE * state->h + 2 * BORDER);
1041
1042 /*
1043 * Recessed area containing the whole puzzle.
1044 */
1045 coords[0] = COORD(state->w) + HIGHLIGHT_WIDTH - 1;
1046 coords[1] = COORD(state->h) + HIGHLIGHT_WIDTH - 1;
1047 coords[2] = COORD(state->w) + HIGHLIGHT_WIDTH - 1;
1048 coords[3] = COORD(0) - HIGHLIGHT_WIDTH;
1049 coords[4] = coords[2] - TILE_SIZE;
1050 coords[5] = coords[3] + TILE_SIZE;
1051 coords[8] = COORD(0) - HIGHLIGHT_WIDTH;
1052 coords[9] = COORD(state->h) + HIGHLIGHT_WIDTH - 1;
1053 coords[6] = coords[8] + TILE_SIZE;
1054 coords[7] = coords[9] - TILE_SIZE;
1055 draw_polygon(fe, coords, 5, TRUE, COL_HIGHLIGHT);
1056 draw_polygon(fe, coords, 5, FALSE, COL_HIGHLIGHT);
1057
1058 coords[1] = COORD(0) - HIGHLIGHT_WIDTH;
1059 coords[0] = COORD(0) - HIGHLIGHT_WIDTH;
1060 draw_polygon(fe, coords, 5, TRUE, COL_LOWLIGHT);
1061 draw_polygon(fe, coords, 5, FALSE, COL_LOWLIGHT);
1062
1063 ds->started = TRUE;
1064 }
1065
1066 /*
1067 * If we're drawing any rotated tiles, sort out the rotation
1068 * parameters, and also zap the rotation region to the
1069 * background colour before doing anything else.
1070 */
1071 if (oldstate) {
1072 float angle;
1073 float anim_max = game_anim_length(oldstate, state, dir, ui);
1074
1075 if (dir > 0) {
1076 lastx = state->lastx;
1077 lasty = state->lasty;
1078 lastr = state->lastr;
1079 } else {
1080 lastx = oldstate->lastx;
1081 lasty = oldstate->lasty;
1082 lastr = -oldstate->lastr;
1083 }
1084
1085 rot = &srot;
1086 rot->cx = COORD(lastx);
1087 rot->cy = COORD(lasty);
1088 rot->cw = rot->ch = TILE_SIZE * state->n;
1089 rot->ox = rot->cx + rot->cw/2;
1090 rot->oy = rot->cy + rot->ch/2;
1091 angle = (-PI/2 * lastr) * (1.0 - animtime / anim_max);
1092 rot->c = cos(angle);
1093 rot->s = sin(angle);
1094
1095 /*
1096 * Sort out the colours of the various sides of the tile.
1097 */
1098 rot->lc = highlight_colour(PI + angle);
1099 rot->rc = highlight_colour(angle);
1100 rot->tc = highlight_colour(PI/2 + angle);
1101 rot->bc = highlight_colour(-PI/2 + angle);
1102
1103 draw_rect(fe, rot->cx, rot->cy, rot->cw, rot->ch, bgcolour);
1104 } else
1105 rot = NULL;
1106
1107 /*
1108 * Now draw each tile.
1109 */
1110 for (i = 0; i < state->w * state->h; i++) {
1111 int t;
1112 int tx = i % state->w, ty = i / state->w;
1113
1114 /*
1115 * Figure out what should be displayed at this location.
1116 * Usually it will be state->grid[i], unless we're in the
1117 * middle of animating an actual rotation and this cell is
1118 * within the rotation region, in which case we set -1
1119 * (always display).
1120 */
1121 if (oldstate && lastx >= 0 && lasty >= 0 &&
1122 tx >= lastx && tx < lastx + state->n &&
1123 ty >= lasty && ty < lasty + state->n)
1124 t = -1;
1125 else
1126 t = state->grid[i];
1127
1128 if (ds->bgcolour != bgcolour || /* always redraw when flashing */
1129 ds->grid[i] != t || ds->grid[i] == -1 || t == -1) {
1130 int x = COORD(tx), y = COORD(ty);
1131
1132 draw_tile(fe, ds, state, x, y, state->grid[i], bgcolour, rot);
1133 ds->grid[i] = t;
1134 }
1135 }
1136 ds->bgcolour = bgcolour;
1137
1138 /*
1139 * Update the status bar.
1140 */
1141 {
1142 char statusbuf[256];
1143
1144 /*
1145 * Don't show the new status until we're also showing the
1146 * new _state_ - after the game animation is complete.
1147 */
1148 if (oldstate)
1149 state = oldstate;
1150
1151 if (state->used_solve)
1152 sprintf(statusbuf, "Moves since auto-solve: %d",
1153 state->movecount - state->completed);
1154 else {
1155 sprintf(statusbuf, "%sMoves: %d",
1156 (state->completed ? "COMPLETED! " : ""),
1157 (state->completed ? state->completed : state->movecount));
1158 if (state->movetarget)
1159 sprintf(statusbuf+strlen(statusbuf), " (target %d)",
1160 state->movetarget);
1161 }
1162
1163 status_bar(fe, statusbuf);
1164 }
1165 }
1166
1167 static int game_wants_statusbar(void)
1168 {
1169 return TRUE;
1170 }
1171
1172 static int game_timing_state(game_state *state)
1173 {
1174 return TRUE;
1175 }
1176
1177 #ifdef COMBINED
1178 #define thegame twiddle
1179 #endif
1180
1181 const struct game thegame = {
1182 "Twiddle", "games.twiddle",
1183 default_params,
1184 game_fetch_preset,
1185 decode_params,
1186 encode_params,
1187 free_params,
1188 dup_params,
1189 TRUE, game_configure, custom_params,
1190 validate_params,
1191 new_game_desc,
1192 game_free_aux_info,
1193 validate_desc,
1194 new_game,
1195 dup_game,
1196 free_game,
1197 TRUE, solve_game,
1198 TRUE, game_text_format,
1199 new_ui,
1200 free_ui,
1201 game_changed_state,
1202 make_move,
1203 game_size,
1204 game_colours,
1205 game_new_drawstate,
1206 game_free_drawstate,
1207 game_redraw,
1208 game_anim_length,
1209 game_flash_length,
1210 game_wants_statusbar,
1211 FALSE, game_timing_state,
1212 0, /* mouse_priorities */
1213 };