All the games in this collection have always defined their graphics
[sgt/puzzles] / mines.c
1 /*
2 * mines.c: Minesweeper clone with sophisticated grid generation.
3 *
4 * Still TODO:
5 *
6 * - think about configurably supporting question marks. Once,
7 * that is, we've thought about configurability in general!
8 */
9
10 #include <stdio.h>
11 #include <stdlib.h>
12 #include <string.h>
13 #include <assert.h>
14 #include <ctype.h>
15 #include <math.h>
16
17 #include "tree234.h"
18 #include "puzzles.h"
19
20 enum {
21 COL_BACKGROUND, COL_BACKGROUND2,
22 COL_1, COL_2, COL_3, COL_4, COL_5, COL_6, COL_7, COL_8,
23 COL_MINE, COL_BANG, COL_CROSS, COL_FLAG, COL_FLAGBASE, COL_QUERY,
24 COL_HIGHLIGHT, COL_LOWLIGHT,
25 NCOLOURS
26 };
27
28 #define PREFERRED_TILE_SIZE 20
29 #define TILE_SIZE (ds->tilesize)
30 #define BORDER (TILE_SIZE * 3 / 2)
31 #define HIGHLIGHT_WIDTH (TILE_SIZE / 10)
32 #define OUTER_HIGHLIGHT_WIDTH (BORDER / 10)
33 #define COORD(x) ( (x) * TILE_SIZE + BORDER )
34 #define FROMCOORD(x) ( ((x) - BORDER + TILE_SIZE) / TILE_SIZE - 1 )
35
36 #define FLASH_FRAME 0.13F
37
38 struct game_params {
39 int w, h, n;
40 int unique;
41 };
42
43 struct mine_layout {
44 /*
45 * This structure is shared between all the game_states for a
46 * given instance of the puzzle, so we reference-count it.
47 */
48 int refcount;
49 char *mines;
50 /*
51 * If we haven't yet actually generated the mine layout, here's
52 * all the data we will need to do so.
53 */
54 int n, unique;
55 random_state *rs;
56 midend_data *me; /* to give back the new game desc */
57 };
58
59 struct game_state {
60 int w, h, n, dead, won;
61 int used_solve, just_used_solve;
62 struct mine_layout *layout; /* real mine positions */
63 signed char *grid; /* player knowledge */
64 /*
65 * Each item in the `grid' array is one of the following values:
66 *
67 * - 0 to 8 mean the square is open and has a surrounding mine
68 * count.
69 *
70 * - -1 means the square is marked as a mine.
71 *
72 * - -2 means the square is unknown.
73 *
74 * - -3 means the square is marked with a question mark
75 * (FIXME: do we even want to bother with this?).
76 *
77 * - 64 means the square has had a mine revealed when the game
78 * was lost.
79 *
80 * - 65 means the square had a mine revealed and this was the
81 * one the player hits.
82 *
83 * - 66 means the square has a crossed-out mine because the
84 * player had incorrectly marked it.
85 */
86 };
87
88 static game_params *default_params(void)
89 {
90 game_params *ret = snew(game_params);
91
92 ret->w = ret->h = 9;
93 ret->n = 10;
94 ret->unique = TRUE;
95
96 return ret;
97 }
98
99 static const struct game_params mines_presets[] = {
100 {9, 9, 10, TRUE},
101 {9, 9, 35, TRUE},
102 {16, 16, 40, TRUE},
103 {16, 16, 99, TRUE},
104 {30, 16, 99, TRUE},
105 {30, 16, 170, TRUE},
106 };
107
108 static int game_fetch_preset(int i, char **name, game_params **params)
109 {
110 game_params *ret;
111 char str[80];
112
113 if (i < 0 || i >= lenof(mines_presets))
114 return FALSE;
115
116 ret = snew(game_params);
117 *ret = mines_presets[i];
118
119 sprintf(str, "%dx%d, %d mines", ret->w, ret->h, ret->n);
120
121 *name = dupstr(str);
122 *params = ret;
123 return TRUE;
124 }
125
126 static void free_params(game_params *params)
127 {
128 sfree(params);
129 }
130
131 static game_params *dup_params(game_params *params)
132 {
133 game_params *ret = snew(game_params);
134 *ret = *params; /* structure copy */
135 return ret;
136 }
137
138 static void decode_params(game_params *params, char const *string)
139 {
140 char const *p = string;
141
142 params->w = atoi(p);
143 while (*p && isdigit((unsigned char)*p)) p++;
144 if (*p == 'x') {
145 p++;
146 params->h = atoi(p);
147 while (*p && isdigit((unsigned char)*p)) p++;
148 } else {
149 params->h = params->w;
150 }
151 if (*p == 'n') {
152 p++;
153 params->n = atoi(p);
154 while (*p && (*p == '.' || isdigit((unsigned char)*p))) p++;
155 } else {
156 params->n = params->w * params->h / 10;
157 }
158
159 while (*p) {
160 if (*p == 'a') {
161 p++;
162 params->unique = FALSE;
163 } else
164 p++; /* skip any other gunk */
165 }
166 }
167
168 static char *encode_params(game_params *params, int full)
169 {
170 char ret[400];
171 int len;
172
173 len = sprintf(ret, "%dx%d", params->w, params->h);
174 /*
175 * Mine count is a generation-time parameter, since it can be
176 * deduced from the mine bitmap!
177 */
178 if (full)
179 len += sprintf(ret+len, "n%d", params->n);
180 if (full && !params->unique)
181 ret[len++] = 'a';
182 assert(len < lenof(ret));
183 ret[len] = '\0';
184
185 return dupstr(ret);
186 }
187
188 static config_item *game_configure(game_params *params)
189 {
190 config_item *ret;
191 char buf[80];
192
193 ret = snewn(5, config_item);
194
195 ret[0].name = "Width";
196 ret[0].type = C_STRING;
197 sprintf(buf, "%d", params->w);
198 ret[0].sval = dupstr(buf);
199 ret[0].ival = 0;
200
201 ret[1].name = "Height";
202 ret[1].type = C_STRING;
203 sprintf(buf, "%d", params->h);
204 ret[1].sval = dupstr(buf);
205 ret[1].ival = 0;
206
207 ret[2].name = "Mines";
208 ret[2].type = C_STRING;
209 sprintf(buf, "%d", params->n);
210 ret[2].sval = dupstr(buf);
211 ret[2].ival = 0;
212
213 ret[3].name = "Ensure solubility";
214 ret[3].type = C_BOOLEAN;
215 ret[3].sval = NULL;
216 ret[3].ival = params->unique;
217
218 ret[4].name = NULL;
219 ret[4].type = C_END;
220 ret[4].sval = NULL;
221 ret[4].ival = 0;
222
223 return ret;
224 }
225
226 static game_params *custom_params(config_item *cfg)
227 {
228 game_params *ret = snew(game_params);
229
230 ret->w = atoi(cfg[0].sval);
231 ret->h = atoi(cfg[1].sval);
232 ret->n = atoi(cfg[2].sval);
233 if (strchr(cfg[2].sval, '%'))
234 ret->n = ret->n * (ret->w * ret->h) / 100;
235 ret->unique = cfg[3].ival;
236
237 return ret;
238 }
239
240 static char *validate_params(game_params *params)
241 {
242 /*
243 * Lower limit on grid size: each dimension must be at least 3.
244 * 1 is theoretically workable if rather boring, but 2 is a
245 * real problem: there is often _no_ way to generate a uniquely
246 * solvable 2xn Mines grid. You either run into two mines
247 * blocking the way and no idea what's behind them, or one mine
248 * and no way to know which of the two rows it's in. If the
249 * mine count is even you can create a soluble grid by packing
250 * all the mines at one end (so what when you hit a two-mine
251 * wall there are only as many covered squares left as there
252 * are mines); but if it's odd, you are doomed, because you
253 * _have_ to have a gap somewhere which you can't determine the
254 * position of.
255 */
256 if (params->w <= 2 || params->h <= 2)
257 return "Width and height must both be greater than two";
258 if (params->n > params->w * params->h - 9)
259 return "Too many mines for grid size";
260
261 /*
262 * FIXME: Need more constraints here. Not sure what the
263 * sensible limits for Minesweeper actually are. The limits
264 * probably ought to change, however, depending on uniqueness.
265 */
266
267 return NULL;
268 }
269
270 /* ----------------------------------------------------------------------
271 * Minesweeper solver, used to ensure the generated grids are
272 * solvable without having to take risks.
273 */
274
275 /*
276 * Count the bits in a word. Only needs to cope with 16 bits.
277 */
278 static int bitcount16(int word)
279 {
280 word = ((word & 0xAAAA) >> 1) + (word & 0x5555);
281 word = ((word & 0xCCCC) >> 2) + (word & 0x3333);
282 word = ((word & 0xF0F0) >> 4) + (word & 0x0F0F);
283 word = ((word & 0xFF00) >> 8) + (word & 0x00FF);
284
285 return word;
286 }
287
288 /*
289 * We use a tree234 to store a large number of small localised
290 * sets, each with a mine count. We also keep some of those sets
291 * linked together into a to-do list.
292 */
293 struct set {
294 short x, y, mask, mines;
295 int todo;
296 struct set *prev, *next;
297 };
298
299 static int setcmp(void *av, void *bv)
300 {
301 struct set *a = (struct set *)av;
302 struct set *b = (struct set *)bv;
303
304 if (a->y < b->y)
305 return -1;
306 else if (a->y > b->y)
307 return +1;
308 else if (a->x < b->x)
309 return -1;
310 else if (a->x > b->x)
311 return +1;
312 else if (a->mask < b->mask)
313 return -1;
314 else if (a->mask > b->mask)
315 return +1;
316 else
317 return 0;
318 }
319
320 struct setstore {
321 tree234 *sets;
322 struct set *todo_head, *todo_tail;
323 };
324
325 static struct setstore *ss_new(void)
326 {
327 struct setstore *ss = snew(struct setstore);
328 ss->sets = newtree234(setcmp);
329 ss->todo_head = ss->todo_tail = NULL;
330 return ss;
331 }
332
333 /*
334 * Take two input sets, in the form (x,y,mask). Munge the first by
335 * taking either its intersection with the second or its difference
336 * with the second. Return the new mask part of the first set.
337 */
338 static int setmunge(int x1, int y1, int mask1, int x2, int y2, int mask2,
339 int diff)
340 {
341 /*
342 * Adjust the second set so that it has the same x,y
343 * coordinates as the first.
344 */
345 if (abs(x2-x1) >= 3 || abs(y2-y1) >= 3) {
346 mask2 = 0;
347 } else {
348 while (x2 > x1) {
349 mask2 &= ~(4|32|256);
350 mask2 <<= 1;
351 x2--;
352 }
353 while (x2 < x1) {
354 mask2 &= ~(1|8|64);
355 mask2 >>= 1;
356 x2++;
357 }
358 while (y2 > y1) {
359 mask2 &= ~(64|128|256);
360 mask2 <<= 3;
361 y2--;
362 }
363 while (y2 < y1) {
364 mask2 &= ~(1|2|4);
365 mask2 >>= 3;
366 y2++;
367 }
368 }
369
370 /*
371 * Invert the second set if `diff' is set (we're after A &~ B
372 * rather than A & B).
373 */
374 if (diff)
375 mask2 ^= 511;
376
377 /*
378 * Now all that's left is a logical AND.
379 */
380 return mask1 & mask2;
381 }
382
383 static void ss_add_todo(struct setstore *ss, struct set *s)
384 {
385 if (s->todo)
386 return; /* already on it */
387
388 #ifdef SOLVER_DIAGNOSTICS
389 printf("adding set on todo list: %d,%d %03x %d\n",
390 s->x, s->y, s->mask, s->mines);
391 #endif
392
393 s->prev = ss->todo_tail;
394 if (s->prev)
395 s->prev->next = s;
396 else
397 ss->todo_head = s;
398 ss->todo_tail = s;
399 s->next = NULL;
400 s->todo = TRUE;
401 }
402
403 static void ss_add(struct setstore *ss, int x, int y, int mask, int mines)
404 {
405 struct set *s;
406
407 assert(mask != 0);
408
409 /*
410 * Normalise so that x and y are genuinely the bounding
411 * rectangle.
412 */
413 while (!(mask & (1|8|64)))
414 mask >>= 1, x++;
415 while (!(mask & (1|2|4)))
416 mask >>= 3, y++;
417
418 /*
419 * Create a set structure and add it to the tree.
420 */
421 s = snew(struct set);
422 s->x = x;
423 s->y = y;
424 s->mask = mask;
425 s->mines = mines;
426 s->todo = FALSE;
427 if (add234(ss->sets, s) != s) {
428 /*
429 * This set already existed! Free it and return.
430 */
431 sfree(s);
432 return;
433 }
434
435 /*
436 * We've added a new set to the tree, so put it on the todo
437 * list.
438 */
439 ss_add_todo(ss, s);
440 }
441
442 static void ss_remove(struct setstore *ss, struct set *s)
443 {
444 struct set *next = s->next, *prev = s->prev;
445
446 #ifdef SOLVER_DIAGNOSTICS
447 printf("removing set %d,%d %03x\n", s->x, s->y, s->mask);
448 #endif
449 /*
450 * Remove s from the todo list.
451 */
452 if (prev)
453 prev->next = next;
454 else if (s == ss->todo_head)
455 ss->todo_head = next;
456
457 if (next)
458 next->prev = prev;
459 else if (s == ss->todo_tail)
460 ss->todo_tail = prev;
461
462 s->todo = FALSE;
463
464 /*
465 * Remove s from the tree.
466 */
467 del234(ss->sets, s);
468
469 /*
470 * Destroy the actual set structure.
471 */
472 sfree(s);
473 }
474
475 /*
476 * Return a dynamically allocated list of all the sets which
477 * overlap a provided input set.
478 */
479 static struct set **ss_overlap(struct setstore *ss, int x, int y, int mask)
480 {
481 struct set **ret = NULL;
482 int nret = 0, retsize = 0;
483 int xx, yy;
484
485 for (xx = x-3; xx < x+3; xx++)
486 for (yy = y-3; yy < y+3; yy++) {
487 struct set stmp, *s;
488 int pos;
489
490 /*
491 * Find the first set with these top left coordinates.
492 */
493 stmp.x = xx;
494 stmp.y = yy;
495 stmp.mask = 0;
496
497 if (findrelpos234(ss->sets, &stmp, NULL, REL234_GE, &pos)) {
498 while ((s = index234(ss->sets, pos)) != NULL &&
499 s->x == xx && s->y == yy) {
500 /*
501 * This set potentially overlaps the input one.
502 * Compute the intersection to see if they
503 * really overlap, and add it to the list if
504 * so.
505 */
506 if (setmunge(x, y, mask, s->x, s->y, s->mask, FALSE)) {
507 /*
508 * There's an overlap.
509 */
510 if (nret >= retsize) {
511 retsize = nret + 32;
512 ret = sresize(ret, retsize, struct set *);
513 }
514 ret[nret++] = s;
515 }
516
517 pos++;
518 }
519 }
520 }
521
522 ret = sresize(ret, nret+1, struct set *);
523 ret[nret] = NULL;
524
525 return ret;
526 }
527
528 /*
529 * Get an element from the head of the set todo list.
530 */
531 static struct set *ss_todo(struct setstore *ss)
532 {
533 if (ss->todo_head) {
534 struct set *ret = ss->todo_head;
535 ss->todo_head = ret->next;
536 if (ss->todo_head)
537 ss->todo_head->prev = NULL;
538 else
539 ss->todo_tail = NULL;
540 ret->next = ret->prev = NULL;
541 ret->todo = FALSE;
542 return ret;
543 } else {
544 return NULL;
545 }
546 }
547
548 struct squaretodo {
549 int *next;
550 int head, tail;
551 };
552
553 static void std_add(struct squaretodo *std, int i)
554 {
555 if (std->tail >= 0)
556 std->next[std->tail] = i;
557 else
558 std->head = i;
559 std->tail = i;
560 std->next[i] = -1;
561 }
562
563 typedef int (*open_cb)(void *, int, int);
564
565 static void known_squares(int w, int h, struct squaretodo *std,
566 signed char *grid,
567 open_cb open, void *openctx,
568 int x, int y, int mask, int mine)
569 {
570 int xx, yy, bit;
571
572 bit = 1;
573
574 for (yy = 0; yy < 3; yy++)
575 for (xx = 0; xx < 3; xx++) {
576 if (mask & bit) {
577 int i = (y + yy) * w + (x + xx);
578
579 /*
580 * It's possible that this square is _already_
581 * known, in which case we don't try to add it to
582 * the list twice.
583 */
584 if (grid[i] == -2) {
585
586 if (mine) {
587 grid[i] = -1; /* and don't open it! */
588 } else {
589 grid[i] = open(openctx, x + xx, y + yy);
590 assert(grid[i] != -1); /* *bang* */
591 }
592 std_add(std, i);
593
594 }
595 }
596 bit <<= 1;
597 }
598 }
599
600 /*
601 * This is data returned from the `perturb' function. It details
602 * which squares have become mines and which have become clear. The
603 * solver is (of course) expected to honourably not use that
604 * knowledge directly, but to efficently adjust its internal data
605 * structures and proceed based on only the information it
606 * legitimately has.
607 */
608 struct perturbation {
609 int x, y;
610 int delta; /* +1 == become a mine; -1 == cleared */
611 };
612 struct perturbations {
613 int n;
614 struct perturbation *changes;
615 };
616
617 /*
618 * Main solver entry point. You give it a grid of existing
619 * knowledge (-1 for a square known to be a mine, 0-8 for empty
620 * squares with a given number of neighbours, -2 for completely
621 * unknown), plus a function which you can call to open new squares
622 * once you're confident of them. It fills in as much more of the
623 * grid as it can.
624 *
625 * Return value is:
626 *
627 * - -1 means deduction stalled and nothing could be done
628 * - 0 means deduction succeeded fully
629 * - >0 means deduction succeeded but some number of perturbation
630 * steps were required; the exact return value is the number of
631 * perturb calls.
632 */
633
634 typedef struct perturbations *(*perturb_cb) (void *, signed char *, int, int, int);
635
636 static int minesolve(int w, int h, int n, signed char *grid,
637 open_cb open,
638 perturb_cb perturb,
639 void *ctx, random_state *rs)
640 {
641 struct setstore *ss = ss_new();
642 struct set **list;
643 struct squaretodo astd, *std = &astd;
644 int x, y, i, j;
645 int nperturbs = 0;
646
647 /*
648 * Set up a linked list of squares with known contents, so that
649 * we can process them one by one.
650 */
651 std->next = snewn(w*h, int);
652 std->head = std->tail = -1;
653
654 /*
655 * Initialise that list with all known squares in the input
656 * grid.
657 */
658 for (y = 0; y < h; y++) {
659 for (x = 0; x < w; x++) {
660 i = y*w+x;
661 if (grid[i] != -2)
662 std_add(std, i);
663 }
664 }
665
666 /*
667 * Main deductive loop.
668 */
669 while (1) {
670 int done_something = FALSE;
671 struct set *s;
672
673 /*
674 * If there are any known squares on the todo list, process
675 * them and construct a set for each.
676 */
677 while (std->head != -1) {
678 i = std->head;
679 #ifdef SOLVER_DIAGNOSTICS
680 printf("known square at %d,%d [%d]\n", i%w, i/w, grid[i]);
681 #endif
682 std->head = std->next[i];
683 if (std->head == -1)
684 std->tail = -1;
685
686 x = i % w;
687 y = i / w;
688
689 if (grid[i] >= 0) {
690 int dx, dy, mines, bit, val;
691 #ifdef SOLVER_DIAGNOSTICS
692 printf("creating set around this square\n");
693 #endif
694 /*
695 * Empty square. Construct the set of non-known squares
696 * around this one, and determine its mine count.
697 */
698 mines = grid[i];
699 bit = 1;
700 val = 0;
701 for (dy = -1; dy <= +1; dy++) {
702 for (dx = -1; dx <= +1; dx++) {
703 #ifdef SOLVER_DIAGNOSTICS
704 printf("grid %d,%d = %d\n", x+dx, y+dy, grid[i+dy*w+dx]);
705 #endif
706 if (x+dx < 0 || x+dx >= w || y+dy < 0 || y+dy >= h)
707 /* ignore this one */;
708 else if (grid[i+dy*w+dx] == -1)
709 mines--;
710 else if (grid[i+dy*w+dx] == -2)
711 val |= bit;
712 bit <<= 1;
713 }
714 }
715 if (val)
716 ss_add(ss, x-1, y-1, val, mines);
717 }
718
719 /*
720 * Now, whether the square is empty or full, we must
721 * find any set which contains it and replace it with
722 * one which does not.
723 */
724 {
725 #ifdef SOLVER_DIAGNOSTICS
726 printf("finding sets containing known square %d,%d\n", x, y);
727 #endif
728 list = ss_overlap(ss, x, y, 1);
729
730 for (j = 0; list[j]; j++) {
731 int newmask, newmines;
732
733 s = list[j];
734
735 /*
736 * Compute the mask for this set minus the
737 * newly known square.
738 */
739 newmask = setmunge(s->x, s->y, s->mask, x, y, 1, TRUE);
740
741 /*
742 * Compute the new mine count.
743 */
744 newmines = s->mines - (grid[i] == -1);
745
746 /*
747 * Insert the new set into the collection,
748 * unless it's been whittled right down to
749 * nothing.
750 */
751 if (newmask)
752 ss_add(ss, s->x, s->y, newmask, newmines);
753
754 /*
755 * Destroy the old one; it is actually obsolete.
756 */
757 ss_remove(ss, s);
758 }
759
760 sfree(list);
761 }
762
763 /*
764 * Marking a fresh square as known certainly counts as
765 * doing something.
766 */
767 done_something = TRUE;
768 }
769
770 /*
771 * Now pick a set off the to-do list and attempt deductions
772 * based on it.
773 */
774 if ((s = ss_todo(ss)) != NULL) {
775
776 #ifdef SOLVER_DIAGNOSTICS
777 printf("set to do: %d,%d %03x %d\n", s->x, s->y, s->mask, s->mines);
778 #endif
779 /*
780 * Firstly, see if this set has a mine count of zero or
781 * of its own cardinality.
782 */
783 if (s->mines == 0 || s->mines == bitcount16(s->mask)) {
784 /*
785 * If so, we can immediately mark all the squares
786 * in the set as known.
787 */
788 #ifdef SOLVER_DIAGNOSTICS
789 printf("easy\n");
790 #endif
791 known_squares(w, h, std, grid, open, ctx,
792 s->x, s->y, s->mask, (s->mines != 0));
793
794 /*
795 * Having done that, we need do nothing further
796 * with this set; marking all the squares in it as
797 * known will eventually eliminate it, and will
798 * also permit further deductions about anything
799 * that overlaps it.
800 */
801 continue;
802 }
803
804 /*
805 * Failing that, we now search through all the sets
806 * which overlap this one.
807 */
808 list = ss_overlap(ss, s->x, s->y, s->mask);
809
810 for (j = 0; list[j]; j++) {
811 struct set *s2 = list[j];
812 int swing, s2wing, swc, s2wc;
813
814 /*
815 * Find the non-overlapping parts s2-s and s-s2,
816 * and their cardinalities.
817 *
818 * I'm going to refer to these parts as `wings'
819 * surrounding the central part common to both
820 * sets. The `s wing' is s-s2; the `s2 wing' is
821 * s2-s.
822 */
823 swing = setmunge(s->x, s->y, s->mask, s2->x, s2->y, s2->mask,
824 TRUE);
825 s2wing = setmunge(s2->x, s2->y, s2->mask, s->x, s->y, s->mask,
826 TRUE);
827 swc = bitcount16(swing);
828 s2wc = bitcount16(s2wing);
829
830 /*
831 * If one set has more mines than the other, and
832 * the number of extra mines is equal to the
833 * cardinality of that set's wing, then we can mark
834 * every square in the wing as a known mine, and
835 * every square in the other wing as known clear.
836 */
837 if (swc == s->mines - s2->mines ||
838 s2wc == s2->mines - s->mines) {
839 known_squares(w, h, std, grid, open, ctx,
840 s->x, s->y, swing,
841 (swc == s->mines - s2->mines));
842 known_squares(w, h, std, grid, open, ctx,
843 s2->x, s2->y, s2wing,
844 (s2wc == s2->mines - s->mines));
845 continue;
846 }
847
848 /*
849 * Failing that, see if one set is a subset of the
850 * other. If so, we can divide up the mine count of
851 * the larger set between the smaller set and its
852 * complement, even if neither smaller set ends up
853 * being immediately clearable.
854 */
855 if (swc == 0 && s2wc != 0) {
856 /* s is a subset of s2. */
857 assert(s2->mines > s->mines);
858 ss_add(ss, s2->x, s2->y, s2wing, s2->mines - s->mines);
859 } else if (s2wc == 0 && swc != 0) {
860 /* s2 is a subset of s. */
861 assert(s->mines > s2->mines);
862 ss_add(ss, s->x, s->y, swing, s->mines - s2->mines);
863 }
864 }
865
866 sfree(list);
867
868 /*
869 * In this situation we have definitely done
870 * _something_, even if it's only reducing the size of
871 * our to-do list.
872 */
873 done_something = TRUE;
874 } else if (n >= 0) {
875 /*
876 * We have nothing left on our todo list, which means
877 * all localised deductions have failed. Our next step
878 * is to resort to global deduction based on the total
879 * mine count. This is computationally expensive
880 * compared to any of the above deductions, which is
881 * why we only ever do it when all else fails, so that
882 * hopefully it won't have to happen too often.
883 *
884 * If you pass n<0 into this solver, that informs it
885 * that you do not know the total mine count, so it
886 * won't even attempt these deductions.
887 */
888
889 int minesleft, squaresleft;
890 int nsets, setused[10], cursor;
891
892 /*
893 * Start by scanning the current grid state to work out
894 * how many unknown squares we still have, and how many
895 * mines are to be placed in them.
896 */
897 squaresleft = 0;
898 minesleft = n;
899 for (i = 0; i < w*h; i++) {
900 if (grid[i] == -1)
901 minesleft--;
902 else if (grid[i] == -2)
903 squaresleft++;
904 }
905
906 #ifdef SOLVER_DIAGNOSTICS
907 printf("global deduction time: squaresleft=%d minesleft=%d\n",
908 squaresleft, minesleft);
909 for (y = 0; y < h; y++) {
910 for (x = 0; x < w; x++) {
911 int v = grid[y*w+x];
912 if (v == -1)
913 putchar('*');
914 else if (v == -2)
915 putchar('?');
916 else if (v == 0)
917 putchar('-');
918 else
919 putchar('0' + v);
920 }
921 putchar('\n');
922 }
923 #endif
924
925 /*
926 * If there _are_ no unknown squares, we have actually
927 * finished.
928 */
929 if (squaresleft == 0) {
930 assert(minesleft == 0);
931 break;
932 }
933
934 /*
935 * First really simple case: if there are no more mines
936 * left, or if there are exactly as many mines left as
937 * squares to play them in, then it's all easy.
938 */
939 if (minesleft == 0 || minesleft == squaresleft) {
940 for (i = 0; i < w*h; i++)
941 if (grid[i] == -2)
942 known_squares(w, h, std, grid, open, ctx,
943 i % w, i / w, 1, minesleft != 0);
944 continue; /* now go back to main deductive loop */
945 }
946
947 /*
948 * Failing that, we have to do some _real_ work.
949 * Ideally what we do here is to try every single
950 * combination of the currently available sets, in an
951 * attempt to find a disjoint union (i.e. a set of
952 * squares with a known mine count between them) such
953 * that the remaining unknown squares _not_ contained
954 * in that union either contain no mines or are all
955 * mines.
956 *
957 * Actually enumerating all 2^n possibilities will get
958 * a bit slow for large n, so I artificially cap this
959 * recursion at n=10 to avoid too much pain.
960 */
961 nsets = count234(ss->sets);
962 if (nsets <= lenof(setused)) {
963 /*
964 * Doing this with actual recursive function calls
965 * would get fiddly because a load of local
966 * variables from this function would have to be
967 * passed down through the recursion. So instead
968 * I'm going to use a virtual recursion within this
969 * function. The way this works is:
970 *
971 * - we have an array `setused', such that
972 * setused[n] is 0 or 1 depending on whether set
973 * n is currently in the union we are
974 * considering.
975 *
976 * - we have a value `cursor' which indicates how
977 * much of `setused' we have so far filled in.
978 * It's conceptually the recursion depth.
979 *
980 * We begin by setting `cursor' to zero. Then:
981 *
982 * - if cursor can advance, we advance it by one.
983 * We set the value in `setused' that it went
984 * past to 1 if that set is disjoint from
985 * anything else currently in `setused', or to 0
986 * otherwise.
987 *
988 * - If cursor cannot advance because it has
989 * reached the end of the setused list, then we
990 * have a maximal disjoint union. Check to see
991 * whether its mine count has any useful
992 * properties. If so, mark all the squares not
993 * in the union as known and terminate.
994 *
995 * - If cursor has reached the end of setused and
996 * the algorithm _hasn't_ terminated, back
997 * cursor up to the nearest 1, turn it into a 0
998 * and advance cursor just past it.
999 *
1000 * - If we attempt to back up to the nearest 1 and
1001 * there isn't one at all, then we have gone
1002 * through all disjoint unions of sets in the
1003 * list and none of them has been helpful, so we
1004 * give up.
1005 */
1006 struct set *sets[lenof(setused)];
1007 for (i = 0; i < nsets; i++)
1008 sets[i] = index234(ss->sets, i);
1009
1010 cursor = 0;
1011 while (1) {
1012
1013 if (cursor < nsets) {
1014 int ok = TRUE;
1015
1016 /* See if any existing set overlaps this one. */
1017 for (i = 0; i < cursor; i++)
1018 if (setused[i] &&
1019 setmunge(sets[cursor]->x,
1020 sets[cursor]->y,
1021 sets[cursor]->mask,
1022 sets[i]->x, sets[i]->y, sets[i]->mask,
1023 FALSE)) {
1024 ok = FALSE;
1025 break;
1026 }
1027
1028 if (ok) {
1029 /*
1030 * We're adding this set to our union,
1031 * so adjust minesleft and squaresleft
1032 * appropriately.
1033 */
1034 minesleft -= sets[cursor]->mines;
1035 squaresleft -= bitcount16(sets[cursor]->mask);
1036 }
1037
1038 setused[cursor++] = ok;
1039 } else {
1040 #ifdef SOLVER_DIAGNOSTICS
1041 printf("trying a set combination with %d %d\n",
1042 squaresleft, minesleft);
1043 #endif /* SOLVER_DIAGNOSTICS */
1044
1045 /*
1046 * We've reached the end. See if we've got
1047 * anything interesting.
1048 */
1049 if (squaresleft > 0 &&
1050 (minesleft == 0 || minesleft == squaresleft)) {
1051 /*
1052 * We have! There is at least one
1053 * square not contained within the set
1054 * union we've just found, and we can
1055 * deduce that either all such squares
1056 * are mines or all are not (depending
1057 * on whether minesleft==0). So now all
1058 * we have to do is actually go through
1059 * the grid, find those squares, and
1060 * mark them.
1061 */
1062 for (i = 0; i < w*h; i++)
1063 if (grid[i] == -2) {
1064 int outside = TRUE;
1065 y = i / w;
1066 x = i % w;
1067 for (j = 0; j < nsets; j++)
1068 if (setused[j] &&
1069 setmunge(sets[j]->x, sets[j]->y,
1070 sets[j]->mask, x, y, 1,
1071 FALSE)) {
1072 outside = FALSE;
1073 break;
1074 }
1075 if (outside)
1076 known_squares(w, h, std, grid,
1077 open, ctx,
1078 x, y, 1, minesleft != 0);
1079 }
1080
1081 done_something = TRUE;
1082 break; /* return to main deductive loop */
1083 }
1084
1085 /*
1086 * If we reach here, then this union hasn't
1087 * done us any good, so move on to the
1088 * next. Backtrack cursor to the nearest 1,
1089 * change it to a 0 and continue.
1090 */
1091 while (--cursor >= 0 && !setused[cursor]);
1092 if (cursor >= 0) {
1093 assert(setused[cursor]);
1094
1095 /*
1096 * We're removing this set from our
1097 * union, so re-increment minesleft and
1098 * squaresleft.
1099 */
1100 minesleft += sets[cursor]->mines;
1101 squaresleft += bitcount16(sets[cursor]->mask);
1102
1103 setused[cursor++] = 0;
1104 } else {
1105 /*
1106 * We've backtracked all the way to the
1107 * start without finding a single 1,
1108 * which means that our virtual
1109 * recursion is complete and nothing
1110 * helped.
1111 */
1112 break;
1113 }
1114 }
1115
1116 }
1117
1118 }
1119 }
1120
1121 if (done_something)
1122 continue;
1123
1124 #ifdef SOLVER_DIAGNOSTICS
1125 /*
1126 * Dump the current known state of the grid.
1127 */
1128 printf("solver ran out of steam, ret=%d, grid:\n", nperturbs);
1129 for (y = 0; y < h; y++) {
1130 for (x = 0; x < w; x++) {
1131 int v = grid[y*w+x];
1132 if (v == -1)
1133 putchar('*');
1134 else if (v == -2)
1135 putchar('?');
1136 else if (v == 0)
1137 putchar('-');
1138 else
1139 putchar('0' + v);
1140 }
1141 putchar('\n');
1142 }
1143
1144 {
1145 struct set *s;
1146
1147 for (i = 0; (s = index234(ss->sets, i)) != NULL; i++)
1148 printf("remaining set: %d,%d %03x %d\n", s->x, s->y, s->mask, s->mines);
1149 }
1150 #endif
1151
1152 /*
1153 * Now we really are at our wits' end as far as solving
1154 * this grid goes. Our only remaining option is to call
1155 * a perturb function and ask it to modify the grid to
1156 * make it easier.
1157 */
1158 if (perturb) {
1159 struct perturbations *ret;
1160 struct set *s;
1161
1162 nperturbs++;
1163
1164 /*
1165 * Choose a set at random from the current selection,
1166 * and ask the perturb function to either fill or empty
1167 * it.
1168 *
1169 * If we have no sets at all, we must give up.
1170 */
1171 if (count234(ss->sets) == 0) {
1172 #ifdef SOLVER_DIAGNOSTICS
1173 printf("perturbing on entire unknown set\n");
1174 #endif
1175 ret = perturb(ctx, grid, 0, 0, 0);
1176 } else {
1177 s = index234(ss->sets, random_upto(rs, count234(ss->sets)));
1178 #ifdef SOLVER_DIAGNOSTICS
1179 printf("perturbing on set %d,%d %03x\n", s->x, s->y, s->mask);
1180 #endif
1181 ret = perturb(ctx, grid, s->x, s->y, s->mask);
1182 }
1183
1184 if (ret) {
1185 assert(ret->n > 0); /* otherwise should have been NULL */
1186
1187 /*
1188 * A number of squares have been fiddled with, and
1189 * the returned structure tells us which. Adjust
1190 * the mine count in any set which overlaps one of
1191 * those squares, and put them back on the to-do
1192 * list. Also, if the square itself is marked as a
1193 * known non-mine, put it back on the squares-to-do
1194 * list.
1195 */
1196 for (i = 0; i < ret->n; i++) {
1197 #ifdef SOLVER_DIAGNOSTICS
1198 printf("perturbation %s mine at %d,%d\n",
1199 ret->changes[i].delta > 0 ? "added" : "removed",
1200 ret->changes[i].x, ret->changes[i].y);
1201 #endif
1202
1203 if (ret->changes[i].delta < 0 &&
1204 grid[ret->changes[i].y*w+ret->changes[i].x] != -2) {
1205 std_add(std, ret->changes[i].y*w+ret->changes[i].x);
1206 }
1207
1208 list = ss_overlap(ss,
1209 ret->changes[i].x, ret->changes[i].y, 1);
1210
1211 for (j = 0; list[j]; j++) {
1212 list[j]->mines += ret->changes[i].delta;
1213 ss_add_todo(ss, list[j]);
1214 }
1215
1216 sfree(list);
1217 }
1218
1219 /*
1220 * Now free the returned data.
1221 */
1222 sfree(ret->changes);
1223 sfree(ret);
1224
1225 #ifdef SOLVER_DIAGNOSTICS
1226 /*
1227 * Dump the current known state of the grid.
1228 */
1229 printf("state after perturbation:\n");
1230 for (y = 0; y < h; y++) {
1231 for (x = 0; x < w; x++) {
1232 int v = grid[y*w+x];
1233 if (v == -1)
1234 putchar('*');
1235 else if (v == -2)
1236 putchar('?');
1237 else if (v == 0)
1238 putchar('-');
1239 else
1240 putchar('0' + v);
1241 }
1242 putchar('\n');
1243 }
1244
1245 {
1246 struct set *s;
1247
1248 for (i = 0; (s = index234(ss->sets, i)) != NULL; i++)
1249 printf("remaining set: %d,%d %03x %d\n", s->x, s->y, s->mask, s->mines);
1250 }
1251 #endif
1252
1253 /*
1254 * And now we can go back round the deductive loop.
1255 */
1256 continue;
1257 }
1258 }
1259
1260 /*
1261 * If we get here, even that didn't work (either we didn't
1262 * have a perturb function or it returned failure), so we
1263 * give up entirely.
1264 */
1265 break;
1266 }
1267
1268 /*
1269 * See if we've got any unknown squares left.
1270 */
1271 for (y = 0; y < h; y++)
1272 for (x = 0; x < w; x++)
1273 if (grid[y*w+x] == -2) {
1274 nperturbs = -1; /* failed to complete */
1275 break;
1276 }
1277
1278 /*
1279 * Free the set list and square-todo list.
1280 */
1281 {
1282 struct set *s;
1283 while ((s = delpos234(ss->sets, 0)) != NULL)
1284 sfree(s);
1285 freetree234(ss->sets);
1286 sfree(ss);
1287 sfree(std->next);
1288 }
1289
1290 return nperturbs;
1291 }
1292
1293 /* ----------------------------------------------------------------------
1294 * Grid generator which uses the above solver.
1295 */
1296
1297 struct minectx {
1298 char *grid;
1299 int w, h;
1300 int sx, sy;
1301 int allow_big_perturbs;
1302 random_state *rs;
1303 };
1304
1305 static int mineopen(void *vctx, int x, int y)
1306 {
1307 struct minectx *ctx = (struct minectx *)vctx;
1308 int i, j, n;
1309
1310 assert(x >= 0 && x < ctx->w && y >= 0 && y < ctx->h);
1311 if (ctx->grid[y * ctx->w + x])
1312 return -1; /* *bang* */
1313
1314 n = 0;
1315 for (i = -1; i <= +1; i++) {
1316 if (x + i < 0 || x + i >= ctx->w)
1317 continue;
1318 for (j = -1; j <= +1; j++) {
1319 if (y + j < 0 || y + j >= ctx->h)
1320 continue;
1321 if (i == 0 && j == 0)
1322 continue;
1323 if (ctx->grid[(y+j) * ctx->w + (x+i)])
1324 n++;
1325 }
1326 }
1327
1328 return n;
1329 }
1330
1331 /* Structure used internally to mineperturb(). */
1332 struct square {
1333 int x, y, type, random;
1334 };
1335 static int squarecmp(const void *av, const void *bv)
1336 {
1337 const struct square *a = (const struct square *)av;
1338 const struct square *b = (const struct square *)bv;
1339 if (a->type < b->type)
1340 return -1;
1341 else if (a->type > b->type)
1342 return +1;
1343 else if (a->random < b->random)
1344 return -1;
1345 else if (a->random > b->random)
1346 return +1;
1347 else if (a->y < b->y)
1348 return -1;
1349 else if (a->y > b->y)
1350 return +1;
1351 else if (a->x < b->x)
1352 return -1;
1353 else if (a->x > b->x)
1354 return +1;
1355 return 0;
1356 }
1357
1358 /*
1359 * Normally this function is passed an (x,y,mask) set description.
1360 * On occasions, though, there is no _localised_ set being used,
1361 * and the set being perturbed is supposed to be the entirety of
1362 * the unreachable area. This is signified by the special case
1363 * mask==0: in this case, anything labelled -2 in the grid is part
1364 * of the set.
1365 *
1366 * Allowing perturbation in this special case appears to make it
1367 * guaranteeably possible to generate a workable grid for any mine
1368 * density, but they tend to be a bit boring, with mines packed
1369 * densely into far corners of the grid and the remainder being
1370 * less dense than one might like. Therefore, to improve overall
1371 * grid quality I disable this feature for the first few attempts,
1372 * and fall back to it after no useful grid has been generated.
1373 */
1374 static struct perturbations *mineperturb(void *vctx, signed char *grid,
1375 int setx, int sety, int mask)
1376 {
1377 struct minectx *ctx = (struct minectx *)vctx;
1378 struct square *sqlist;
1379 int x, y, dx, dy, i, n, nfull, nempty;
1380 struct square **tofill, **toempty, **todo;
1381 int ntofill, ntoempty, ntodo, dtodo, dset;
1382 struct perturbations *ret;
1383 int *setlist;
1384
1385 if (!mask && !ctx->allow_big_perturbs)
1386 return NULL;
1387
1388 /*
1389 * Make a list of all the squares in the grid which we can
1390 * possibly use. This list should be in preference order, which
1391 * means
1392 *
1393 * - first, unknown squares on the boundary of known space
1394 * - next, unknown squares beyond that boundary
1395 * - as a very last resort, known squares, but not within one
1396 * square of the starting position.
1397 *
1398 * Each of these sections needs to be shuffled independently.
1399 * We do this by preparing list of all squares and then sorting
1400 * it with a random secondary key.
1401 */
1402 sqlist = snewn(ctx->w * ctx->h, struct square);
1403 n = 0;
1404 for (y = 0; y < ctx->h; y++)
1405 for (x = 0; x < ctx->w; x++) {
1406 /*
1407 * If this square is too near the starting position,
1408 * don't put it on the list at all.
1409 */
1410 if (abs(y - ctx->sy) <= 1 && abs(x - ctx->sx) <= 1)
1411 continue;
1412
1413 /*
1414 * If this square is in the input set, also don't put
1415 * it on the list!
1416 */
1417 if ((mask == 0 && grid[y*ctx->w+x] == -2) ||
1418 (x >= setx && x < setx + 3 &&
1419 y >= sety && y < sety + 3 &&
1420 mask & (1 << ((y-sety)*3+(x-setx)))))
1421 continue;
1422
1423 sqlist[n].x = x;
1424 sqlist[n].y = y;
1425
1426 if (grid[y*ctx->w+x] != -2) {
1427 sqlist[n].type = 3; /* known square */
1428 } else {
1429 /*
1430 * Unknown square. Examine everything around it and
1431 * see if it borders on any known squares. If it
1432 * does, it's class 1, otherwise it's 2.
1433 */
1434
1435 sqlist[n].type = 2;
1436
1437 for (dy = -1; dy <= +1; dy++)
1438 for (dx = -1; dx <= +1; dx++)
1439 if (x+dx >= 0 && x+dx < ctx->w &&
1440 y+dy >= 0 && y+dy < ctx->h &&
1441 grid[(y+dy)*ctx->w+(x+dx)] != -2) {
1442 sqlist[n].type = 1;
1443 break;
1444 }
1445 }
1446
1447 /*
1448 * Finally, a random number to cause qsort to
1449 * shuffle within each group.
1450 */
1451 sqlist[n].random = random_bits(ctx->rs, 31);
1452
1453 n++;
1454 }
1455
1456 qsort(sqlist, n, sizeof(struct square), squarecmp);
1457
1458 /*
1459 * Now count up the number of full and empty squares in the set
1460 * we've been provided.
1461 */
1462 nfull = nempty = 0;
1463 if (mask) {
1464 for (dy = 0; dy < 3; dy++)
1465 for (dx = 0; dx < 3; dx++)
1466 if (mask & (1 << (dy*3+dx))) {
1467 assert(setx+dx <= ctx->w);
1468 assert(sety+dy <= ctx->h);
1469 if (ctx->grid[(sety+dy)*ctx->w+(setx+dx)])
1470 nfull++;
1471 else
1472 nempty++;
1473 }
1474 } else {
1475 for (y = 0; y < ctx->h; y++)
1476 for (x = 0; x < ctx->w; x++)
1477 if (grid[y*ctx->w+x] == -2) {
1478 if (ctx->grid[y*ctx->w+x])
1479 nfull++;
1480 else
1481 nempty++;
1482 }
1483 }
1484
1485 /*
1486 * Now go through our sorted list until we find either `nfull'
1487 * empty squares, or `nempty' full squares; these will be
1488 * swapped with the appropriate squares in the set to either
1489 * fill or empty the set while keeping the same number of mines
1490 * overall.
1491 */
1492 ntofill = ntoempty = 0;
1493 if (mask) {
1494 tofill = snewn(9, struct square *);
1495 toempty = snewn(9, struct square *);
1496 } else {
1497 tofill = snewn(ctx->w * ctx->h, struct square *);
1498 toempty = snewn(ctx->w * ctx->h, struct square *);
1499 }
1500 for (i = 0; i < n; i++) {
1501 struct square *sq = &sqlist[i];
1502 if (ctx->grid[sq->y * ctx->w + sq->x])
1503 toempty[ntoempty++] = sq;
1504 else
1505 tofill[ntofill++] = sq;
1506 if (ntofill == nfull || ntoempty == nempty)
1507 break;
1508 }
1509
1510 /*
1511 * If we haven't found enough empty squares outside the set to
1512 * empty it into _or_ enough full squares outside it to fill it
1513 * up with, we'll have to settle for doing only a partial job.
1514 * In this case we choose to always _fill_ the set (because
1515 * this case will tend to crop up when we're working with very
1516 * high mine densities and the only way to get a solvable grid
1517 * is going to be to pack most of the mines solidly around the
1518 * edges). So now our job is to make a list of the empty
1519 * squares in the set, and shuffle that list so that we fill a
1520 * random selection of them.
1521 */
1522 if (ntofill != nfull && ntoempty != nempty) {
1523 int k;
1524
1525 assert(ntoempty != 0);
1526
1527 setlist = snewn(ctx->w * ctx->h, int);
1528 i = 0;
1529 if (mask) {
1530 for (dy = 0; dy < 3; dy++)
1531 for (dx = 0; dx < 3; dx++)
1532 if (mask & (1 << (dy*3+dx))) {
1533 assert(setx+dx <= ctx->w);
1534 assert(sety+dy <= ctx->h);
1535 if (!ctx->grid[(sety+dy)*ctx->w+(setx+dx)])
1536 setlist[i++] = (sety+dy)*ctx->w+(setx+dx);
1537 }
1538 } else {
1539 for (y = 0; y < ctx->h; y++)
1540 for (x = 0; x < ctx->w; x++)
1541 if (grid[y*ctx->w+x] == -2) {
1542 if (!ctx->grid[y*ctx->w+x])
1543 setlist[i++] = y*ctx->w+x;
1544 }
1545 }
1546 assert(i > ntoempty);
1547 /*
1548 * Now pick `ntoempty' items at random from the list.
1549 */
1550 for (k = 0; k < ntoempty; k++) {
1551 int index = k + random_upto(ctx->rs, i - k);
1552 int tmp;
1553
1554 tmp = setlist[k];
1555 setlist[k] = setlist[index];
1556 setlist[index] = tmp;
1557 }
1558 } else
1559 setlist = NULL;
1560
1561 /*
1562 * Now we're pretty much there. We need to either
1563 * (a) put a mine in each of the empty squares in the set, and
1564 * take one out of each square in `toempty'
1565 * (b) take a mine out of each of the full squares in the set,
1566 * and put one in each square in `tofill'
1567 * depending on which one we've found enough squares to do.
1568 *
1569 * So we start by constructing our list of changes to return to
1570 * the solver, so that it can update its data structures
1571 * efficiently rather than having to rescan the whole grid.
1572 */
1573 ret = snew(struct perturbations);
1574 if (ntofill == nfull) {
1575 todo = tofill;
1576 ntodo = ntofill;
1577 dtodo = +1;
1578 dset = -1;
1579 sfree(toempty);
1580 } else {
1581 /*
1582 * (We also fall into this case if we've constructed a
1583 * setlist.)
1584 */
1585 todo = toempty;
1586 ntodo = ntoempty;
1587 dtodo = -1;
1588 dset = +1;
1589 sfree(tofill);
1590 }
1591 ret->n = 2 * ntodo;
1592 ret->changes = snewn(ret->n, struct perturbation);
1593 for (i = 0; i < ntodo; i++) {
1594 ret->changes[i].x = todo[i]->x;
1595 ret->changes[i].y = todo[i]->y;
1596 ret->changes[i].delta = dtodo;
1597 }
1598 /* now i == ntodo */
1599 if (setlist) {
1600 int j;
1601 assert(todo == toempty);
1602 for (j = 0; j < ntoempty; j++) {
1603 ret->changes[i].x = setlist[j] % ctx->w;
1604 ret->changes[i].y = setlist[j] / ctx->w;
1605 ret->changes[i].delta = dset;
1606 i++;
1607 }
1608 sfree(setlist);
1609 } else if (mask) {
1610 for (dy = 0; dy < 3; dy++)
1611 for (dx = 0; dx < 3; dx++)
1612 if (mask & (1 << (dy*3+dx))) {
1613 int currval = (ctx->grid[(sety+dy)*ctx->w+(setx+dx)] ? +1 : -1);
1614 if (dset == -currval) {
1615 ret->changes[i].x = setx + dx;
1616 ret->changes[i].y = sety + dy;
1617 ret->changes[i].delta = dset;
1618 i++;
1619 }
1620 }
1621 } else {
1622 for (y = 0; y < ctx->h; y++)
1623 for (x = 0; x < ctx->w; x++)
1624 if (grid[y*ctx->w+x] == -2) {
1625 int currval = (ctx->grid[y*ctx->w+x] ? +1 : -1);
1626 if (dset == -currval) {
1627 ret->changes[i].x = x;
1628 ret->changes[i].y = y;
1629 ret->changes[i].delta = dset;
1630 i++;
1631 }
1632 }
1633 }
1634 assert(i == ret->n);
1635
1636 sfree(sqlist);
1637 sfree(todo);
1638
1639 /*
1640 * Having set up the precise list of changes we're going to
1641 * make, we now simply make them and return.
1642 */
1643 for (i = 0; i < ret->n; i++) {
1644 int delta;
1645
1646 x = ret->changes[i].x;
1647 y = ret->changes[i].y;
1648 delta = ret->changes[i].delta;
1649
1650 /*
1651 * Check we're not trying to add an existing mine or remove
1652 * an absent one.
1653 */
1654 assert((delta < 0) ^ (ctx->grid[y*ctx->w+x] == 0));
1655
1656 /*
1657 * Actually make the change.
1658 */
1659 ctx->grid[y*ctx->w+x] = (delta > 0);
1660
1661 /*
1662 * Update any numbers already present in the grid.
1663 */
1664 for (dy = -1; dy <= +1; dy++)
1665 for (dx = -1; dx <= +1; dx++)
1666 if (x+dx >= 0 && x+dx < ctx->w &&
1667 y+dy >= 0 && y+dy < ctx->h &&
1668 grid[(y+dy)*ctx->w+(x+dx)] != -2) {
1669 if (dx == 0 && dy == 0) {
1670 /*
1671 * The square itself is marked as known in
1672 * the grid. Mark it as a mine if it's a
1673 * mine, or else work out its number.
1674 */
1675 if (delta > 0) {
1676 grid[y*ctx->w+x] = -1;
1677 } else {
1678 int dx2, dy2, minecount = 0;
1679 for (dy2 = -1; dy2 <= +1; dy2++)
1680 for (dx2 = -1; dx2 <= +1; dx2++)
1681 if (x+dx2 >= 0 && x+dx2 < ctx->w &&
1682 y+dy2 >= 0 && y+dy2 < ctx->h &&
1683 ctx->grid[(y+dy2)*ctx->w+(x+dx2)])
1684 minecount++;
1685 grid[y*ctx->w+x] = minecount;
1686 }
1687 } else {
1688 if (grid[(y+dy)*ctx->w+(x+dx)] >= 0)
1689 grid[(y+dy)*ctx->w+(x+dx)] += delta;
1690 }
1691 }
1692 }
1693
1694 #ifdef GENERATION_DIAGNOSTICS
1695 {
1696 int yy, xx;
1697 printf("grid after perturbing:\n");
1698 for (yy = 0; yy < ctx->h; yy++) {
1699 for (xx = 0; xx < ctx->w; xx++) {
1700 int v = ctx->grid[yy*ctx->w+xx];
1701 if (yy == ctx->sy && xx == ctx->sx) {
1702 assert(!v);
1703 putchar('S');
1704 } else if (v) {
1705 putchar('*');
1706 } else {
1707 putchar('-');
1708 }
1709 }
1710 putchar('\n');
1711 }
1712 printf("\n");
1713 }
1714 #endif
1715
1716 return ret;
1717 }
1718
1719 static char *minegen(int w, int h, int n, int x, int y, int unique,
1720 random_state *rs)
1721 {
1722 char *ret = snewn(w*h, char);
1723 int success;
1724 int ntries = 0;
1725
1726 do {
1727 success = FALSE;
1728 ntries++;
1729
1730 memset(ret, 0, w*h);
1731
1732 /*
1733 * Start by placing n mines, none of which is at x,y or within
1734 * one square of it.
1735 */
1736 {
1737 int *tmp = snewn(w*h, int);
1738 int i, j, k, nn;
1739
1740 /*
1741 * Write down the list of possible mine locations.
1742 */
1743 k = 0;
1744 for (i = 0; i < h; i++)
1745 for (j = 0; j < w; j++)
1746 if (abs(i - y) > 1 || abs(j - x) > 1)
1747 tmp[k++] = i*w+j;
1748
1749 /*
1750 * Now pick n off the list at random.
1751 */
1752 nn = n;
1753 while (nn-- > 0) {
1754 i = random_upto(rs, k);
1755 ret[tmp[i]] = 1;
1756 tmp[i] = tmp[--k];
1757 }
1758
1759 sfree(tmp);
1760 }
1761
1762 #ifdef GENERATION_DIAGNOSTICS
1763 {
1764 int yy, xx;
1765 printf("grid after initial generation:\n");
1766 for (yy = 0; yy < h; yy++) {
1767 for (xx = 0; xx < w; xx++) {
1768 int v = ret[yy*w+xx];
1769 if (yy == y && xx == x) {
1770 assert(!v);
1771 putchar('S');
1772 } else if (v) {
1773 putchar('*');
1774 } else {
1775 putchar('-');
1776 }
1777 }
1778 putchar('\n');
1779 }
1780 printf("\n");
1781 }
1782 #endif
1783
1784 /*
1785 * Now set up a results grid to run the solver in, and a
1786 * context for the solver to open squares. Then run the solver
1787 * repeatedly; if the number of perturb steps ever goes up or
1788 * it ever returns -1, give up completely.
1789 *
1790 * We bypass this bit if we're not after a unique grid.
1791 */
1792 if (unique) {
1793 signed char *solvegrid = snewn(w*h, signed char);
1794 struct minectx actx, *ctx = &actx;
1795 int solveret, prevret = -2;
1796
1797 ctx->grid = ret;
1798 ctx->w = w;
1799 ctx->h = h;
1800 ctx->sx = x;
1801 ctx->sy = y;
1802 ctx->rs = rs;
1803 ctx->allow_big_perturbs = (ntries > 100);
1804
1805 while (1) {
1806 memset(solvegrid, -2, w*h);
1807 solvegrid[y*w+x] = mineopen(ctx, x, y);
1808 assert(solvegrid[y*w+x] == 0); /* by deliberate arrangement */
1809
1810 solveret =
1811 minesolve(w, h, n, solvegrid, mineopen, mineperturb, ctx, rs);
1812 if (solveret < 0 || (prevret >= 0 && solveret >= prevret)) {
1813 success = FALSE;
1814 break;
1815 } else if (solveret == 0) {
1816 success = TRUE;
1817 break;
1818 }
1819 }
1820
1821 sfree(solvegrid);
1822 } else {
1823 success = TRUE;
1824 }
1825
1826 } while (!success);
1827
1828 return ret;
1829 }
1830
1831 /*
1832 * The Mines game descriptions contain the location of every mine,
1833 * and can therefore be used to cheat.
1834 *
1835 * It would be pointless to attempt to _prevent_ this form of
1836 * cheating by encrypting the description, since Mines is
1837 * open-source so anyone can find out the encryption key. However,
1838 * I think it is worth doing a bit of gentle obfuscation to prevent
1839 * _accidental_ spoilers: if you happened to note that the game ID
1840 * starts with an F, for example, you might be unable to put the
1841 * knowledge of those mines out of your mind while playing. So,
1842 * just as discussions of film endings are rot13ed to avoid
1843 * spoiling it for people who don't want to be told, we apply a
1844 * keyless, reversible, but visually completely obfuscatory masking
1845 * function to the mine bitmap.
1846 */
1847 static void obfuscate_bitmap(unsigned char *bmp, int bits, int decode)
1848 {
1849 int bytes, firsthalf, secondhalf;
1850 struct step {
1851 unsigned char *seedstart;
1852 int seedlen;
1853 unsigned char *targetstart;
1854 int targetlen;
1855 } steps[2];
1856 int i, j;
1857
1858 /*
1859 * My obfuscation algorithm is similar in concept to the OAEP
1860 * encoding used in some forms of RSA. Here's a specification
1861 * of it:
1862 *
1863 * + We have a `masking function' which constructs a stream of
1864 * pseudorandom bytes from a seed of some number of input
1865 * bytes.
1866 *
1867 * + We pad out our input bit stream to a whole number of
1868 * bytes by adding up to 7 zero bits on the end. (In fact
1869 * the bitmap passed as input to this function will already
1870 * have had this done in practice.)
1871 *
1872 * + We divide the _byte_ stream exactly in half, rounding the
1873 * half-way position _down_. So an 81-bit input string, for
1874 * example, rounds up to 88 bits or 11 bytes, and then
1875 * dividing by two gives 5 bytes in the first half and 6 in
1876 * the second half.
1877 *
1878 * + We generate a mask from the second half of the bytes, and
1879 * XOR it over the first half.
1880 *
1881 * + We generate a mask from the (encoded) first half of the
1882 * bytes, and XOR it over the second half. Any null bits at
1883 * the end which were added as padding are cleared back to
1884 * zero even if this operation would have made them nonzero.
1885 *
1886 * To de-obfuscate, the steps are precisely the same except
1887 * that the final two are reversed.
1888 *
1889 * Finally, our masking function. Given an input seed string of
1890 * bytes, the output mask consists of concatenating the SHA-1
1891 * hashes of the seed string and successive decimal integers,
1892 * starting from 0.
1893 */
1894
1895 bytes = (bits + 7) / 8;
1896 firsthalf = bytes / 2;
1897 secondhalf = bytes - firsthalf;
1898
1899 steps[decode ? 1 : 0].seedstart = bmp + firsthalf;
1900 steps[decode ? 1 : 0].seedlen = secondhalf;
1901 steps[decode ? 1 : 0].targetstart = bmp;
1902 steps[decode ? 1 : 0].targetlen = firsthalf;
1903
1904 steps[decode ? 0 : 1].seedstart = bmp;
1905 steps[decode ? 0 : 1].seedlen = firsthalf;
1906 steps[decode ? 0 : 1].targetstart = bmp + firsthalf;
1907 steps[decode ? 0 : 1].targetlen = secondhalf;
1908
1909 for (i = 0; i < 2; i++) {
1910 SHA_State base, final;
1911 unsigned char digest[20];
1912 char numberbuf[80];
1913 int digestpos = 20, counter = 0;
1914
1915 SHA_Init(&base);
1916 SHA_Bytes(&base, steps[i].seedstart, steps[i].seedlen);
1917
1918 for (j = 0; j < steps[i].targetlen; j++) {
1919 if (digestpos >= 20) {
1920 sprintf(numberbuf, "%d", counter++);
1921 final = base;
1922 SHA_Bytes(&final, numberbuf, strlen(numberbuf));
1923 SHA_Final(&final, digest);
1924 digestpos = 0;
1925 }
1926 steps[i].targetstart[j] ^= digest[digestpos++];
1927 }
1928
1929 /*
1930 * Mask off the pad bits in the final byte after both steps.
1931 */
1932 if (bits % 8)
1933 bmp[bits / 8] &= 0xFF & (0xFF00 >> (bits % 8));
1934 }
1935 }
1936
1937 static char *describe_layout(char *grid, int area, int x, int y,
1938 int obfuscate)
1939 {
1940 char *ret, *p;
1941 unsigned char *bmp;
1942 int i;
1943
1944 /*
1945 * Set up the mine bitmap and obfuscate it.
1946 */
1947 bmp = snewn((area + 7) / 8, unsigned char);
1948 memset(bmp, 0, (area + 7) / 8);
1949 for (i = 0; i < area; i++) {
1950 if (grid[i])
1951 bmp[i / 8] |= 0x80 >> (i % 8);
1952 }
1953 if (obfuscate)
1954 obfuscate_bitmap(bmp, area, FALSE);
1955
1956 /*
1957 * Now encode the resulting bitmap in hex. We can work to
1958 * nibble rather than byte granularity, since the obfuscation
1959 * function guarantees to return a bit string of the same
1960 * length as its input.
1961 */
1962 ret = snewn((area+3)/4 + 100, char);
1963 p = ret + sprintf(ret, "%d,%d,%s", x, y,
1964 obfuscate ? "m" : ""); /* 'm' == masked */
1965 for (i = 0; i < (area+3)/4; i++) {
1966 int v = bmp[i/2];
1967 if (i % 2 == 0)
1968 v >>= 4;
1969 *p++ = "0123456789abcdef"[v & 0xF];
1970 }
1971 *p = '\0';
1972
1973 sfree(bmp);
1974
1975 return ret;
1976 }
1977
1978 static char *new_mine_layout(int w, int h, int n, int x, int y, int unique,
1979 random_state *rs, char **game_desc)
1980 {
1981 char *grid;
1982
1983 #ifdef TEST_OBFUSCATION
1984 static int tested_obfuscation = FALSE;
1985 if (!tested_obfuscation) {
1986 /*
1987 * A few simple test vectors for the obfuscator.
1988 *
1989 * First test: the 28-bit stream 1234567. This divides up
1990 * into 1234 and 567[0]. The SHA of 56 70 30 (appending
1991 * "0") is 15ce8ab946640340bbb99f3f48fd2c45d1a31d30. Thus,
1992 * we XOR the 16-bit string 15CE into the input 1234 to get
1993 * 07FA. Next, we SHA that with "0": the SHA of 07 FA 30 is
1994 * 3370135c5e3da4fed937adc004a79533962b6391. So we XOR the
1995 * 12-bit string 337 into the input 567 to get 650. Thus
1996 * our output is 07FA650.
1997 */
1998 {
1999 unsigned char bmp1[] = "\x12\x34\x56\x70";
2000 obfuscate_bitmap(bmp1, 28, FALSE);
2001 printf("test 1 encode: %s\n",
2002 memcmp(bmp1, "\x07\xfa\x65\x00", 4) ? "failed" : "passed");
2003 obfuscate_bitmap(bmp1, 28, TRUE);
2004 printf("test 1 decode: %s\n",
2005 memcmp(bmp1, "\x12\x34\x56\x70", 4) ? "failed" : "passed");
2006 }
2007 /*
2008 * Second test: a long string to make sure we switch from
2009 * one SHA to the next correctly. My input string this time
2010 * is simply fifty bytes of zeroes.
2011 */
2012 {
2013 unsigned char bmp2[50];
2014 unsigned char bmp2a[50];
2015 memset(bmp2, 0, 50);
2016 memset(bmp2a, 0, 50);
2017 obfuscate_bitmap(bmp2, 50 * 8, FALSE);
2018 /*
2019 * SHA of twenty-five zero bytes plus "0" is
2020 * b202c07b990c01f6ff2d544707f60e506019b671. SHA of
2021 * twenty-five zero bytes plus "1" is
2022 * fcb1d8b5a2f6b592fe6780b36aa9d65dd7aa6db9. Thus our
2023 * first half becomes
2024 * b202c07b990c01f6ff2d544707f60e506019b671fcb1d8b5a2.
2025 *
2026 * SHA of that lot plus "0" is
2027 * 10b0af913db85d37ca27f52a9f78bba3a80030db. SHA of the
2028 * same string plus "1" is
2029 * 3d01d8df78e76d382b8106f480135a1bc751d725. So the
2030 * second half becomes
2031 * 10b0af913db85d37ca27f52a9f78bba3a80030db3d01d8df78.
2032 */
2033 printf("test 2 encode: %s\n",
2034 memcmp(bmp2, "\xb2\x02\xc0\x7b\x99\x0c\x01\xf6\xff\x2d\x54"
2035 "\x47\x07\xf6\x0e\x50\x60\x19\xb6\x71\xfc\xb1\xd8"
2036 "\xb5\xa2\x10\xb0\xaf\x91\x3d\xb8\x5d\x37\xca\x27"
2037 "\xf5\x2a\x9f\x78\xbb\xa3\xa8\x00\x30\xdb\x3d\x01"
2038 "\xd8\xdf\x78", 50) ? "failed" : "passed");
2039 obfuscate_bitmap(bmp2, 50 * 8, TRUE);
2040 printf("test 2 decode: %s\n",
2041 memcmp(bmp2, bmp2a, 50) ? "failed" : "passed");
2042 }
2043 }
2044 #endif
2045
2046 grid = minegen(w, h, n, x, y, unique, rs);
2047
2048 if (game_desc)
2049 *game_desc = describe_layout(grid, w * h, x, y, TRUE);
2050
2051 return grid;
2052 }
2053
2054 static char *new_game_desc(game_params *params, random_state *rs,
2055 game_aux_info **aux, int interactive)
2056 {
2057 /*
2058 * We generate the coordinates of an initial click even if they
2059 * aren't actually used. This has the effect of harmonising the
2060 * random number usage between interactive and batch use: if
2061 * you use `mines --generate' with an explicit random seed, you
2062 * should get exactly the same results as if you type the same
2063 * random seed into the interactive game and click in the same
2064 * initial location. (Of course you won't get the same grid if
2065 * you click in a _different_ initial location, but there's
2066 * nothing to be done about that.)
2067 */
2068 int x = random_upto(rs, params->w);
2069 int y = random_upto(rs, params->h);
2070
2071 if (!interactive) {
2072 /*
2073 * For batch-generated grids, pre-open one square.
2074 */
2075 char *grid;
2076 char *desc;
2077
2078 grid = new_mine_layout(params->w, params->h, params->n,
2079 x, y, params->unique, rs, &desc);
2080 sfree(grid);
2081 return desc;
2082 } else {
2083 char *rsdesc, *desc;
2084
2085 rsdesc = random_state_encode(rs);
2086 desc = snewn(strlen(rsdesc) + 100, char);
2087 sprintf(desc, "r%d,%c,%s", params->n, (char)(params->unique ? 'u' : 'a'), rsdesc);
2088 sfree(rsdesc);
2089 return desc;
2090 }
2091 }
2092
2093 static void game_free_aux_info(game_aux_info *aux)
2094 {
2095 assert(!"Shouldn't happen");
2096 }
2097
2098 static char *validate_desc(game_params *params, char *desc)
2099 {
2100 int wh = params->w * params->h;
2101 int x, y;
2102
2103 if (*desc == 'r') {
2104 if (!*desc || !isdigit((unsigned char)*desc))
2105 return "No initial mine count in game description";
2106 while (*desc && isdigit((unsigned char)*desc))
2107 desc++; /* skip over mine count */
2108 if (*desc != ',')
2109 return "No ',' after initial x-coordinate in game description";
2110 desc++;
2111 if (*desc != 'u' && *desc != 'a')
2112 return "No uniqueness specifier in game description";
2113 desc++;
2114 if (*desc != ',')
2115 return "No ',' after uniqueness specifier in game description";
2116 /* now ignore the rest */
2117 } else {
2118 if (!*desc || !isdigit((unsigned char)*desc))
2119 return "No initial x-coordinate in game description";
2120 x = atoi(desc);
2121 if (x < 0 || x >= params->w)
2122 return "Initial x-coordinate was out of range";
2123 while (*desc && isdigit((unsigned char)*desc))
2124 desc++; /* skip over x coordinate */
2125 if (*desc != ',')
2126 return "No ',' after initial x-coordinate in game description";
2127 desc++; /* eat comma */
2128 if (!*desc || !isdigit((unsigned char)*desc))
2129 return "No initial y-coordinate in game description";
2130 y = atoi(desc);
2131 if (y < 0 || y >= params->h)
2132 return "Initial y-coordinate was out of range";
2133 while (*desc && isdigit((unsigned char)*desc))
2134 desc++; /* skip over y coordinate */
2135 if (*desc != ',')
2136 return "No ',' after initial y-coordinate in game description";
2137 desc++; /* eat comma */
2138 /* eat `m', meaning `masked', if present */
2139 if (*desc == 'm')
2140 desc++;
2141 /* now just check length of remainder */
2142 if (strlen(desc) != (wh+3)/4)
2143 return "Game description is wrong length";
2144 }
2145
2146 return NULL;
2147 }
2148
2149 static int open_square(game_state *state, int x, int y)
2150 {
2151 int w = state->w, h = state->h;
2152 int xx, yy, nmines, ncovered;
2153
2154 if (!state->layout->mines) {
2155 /*
2156 * We have a preliminary game in which the mine layout
2157 * hasn't been generated yet. Generate it based on the
2158 * initial click location.
2159 */
2160 char *desc;
2161 state->layout->mines = new_mine_layout(w, h, state->layout->n,
2162 x, y, state->layout->unique,
2163 state->layout->rs,
2164 &desc);
2165 midend_supersede_game_desc(state->layout->me, desc);
2166 sfree(desc);
2167 random_free(state->layout->rs);
2168 state->layout->rs = NULL;
2169 }
2170
2171 if (state->layout->mines[y*w+x]) {
2172 /*
2173 * The player has landed on a mine. Bad luck. Expose the
2174 * mine that killed them, but not the rest (in case they
2175 * want to Undo and carry on playing).
2176 */
2177 state->dead = TRUE;
2178 state->grid[y*w+x] = 65;
2179 return -1;
2180 }
2181
2182 /*
2183 * Otherwise, the player has opened a safe square. Mark it to-do.
2184 */
2185 state->grid[y*w+x] = -10; /* `todo' value internal to this func */
2186
2187 /*
2188 * Now go through the grid finding all `todo' values and
2189 * opening them. Every time one of them turns out to have no
2190 * neighbouring mines, we add all its unopened neighbours to
2191 * the list as well.
2192 *
2193 * FIXME: We really ought to be able to do this better than
2194 * using repeated N^2 scans of the grid.
2195 */
2196 while (1) {
2197 int done_something = FALSE;
2198
2199 for (yy = 0; yy < h; yy++)
2200 for (xx = 0; xx < w; xx++)
2201 if (state->grid[yy*w+xx] == -10) {
2202 int dx, dy, v;
2203
2204 assert(!state->layout->mines[yy*w+xx]);
2205
2206 v = 0;
2207
2208 for (dx = -1; dx <= +1; dx++)
2209 for (dy = -1; dy <= +1; dy++)
2210 if (xx+dx >= 0 && xx+dx < state->w &&
2211 yy+dy >= 0 && yy+dy < state->h &&
2212 state->layout->mines[(yy+dy)*w+(xx+dx)])
2213 v++;
2214
2215 state->grid[yy*w+xx] = v;
2216
2217 if (v == 0) {
2218 for (dx = -1; dx <= +1; dx++)
2219 for (dy = -1; dy <= +1; dy++)
2220 if (xx+dx >= 0 && xx+dx < state->w &&
2221 yy+dy >= 0 && yy+dy < state->h &&
2222 state->grid[(yy+dy)*w+(xx+dx)] == -2)
2223 state->grid[(yy+dy)*w+(xx+dx)] = -10;
2224 }
2225
2226 done_something = TRUE;
2227 }
2228
2229 if (!done_something)
2230 break;
2231 }
2232
2233 /*
2234 * Finally, scan the grid and see if exactly as many squares
2235 * are still covered as there are mines. If so, set the `won'
2236 * flag and fill in mine markers on all covered squares.
2237 */
2238 nmines = ncovered = 0;
2239 for (yy = 0; yy < h; yy++)
2240 for (xx = 0; xx < w; xx++) {
2241 if (state->grid[yy*w+xx] < 0)
2242 ncovered++;
2243 if (state->layout->mines[yy*w+xx])
2244 nmines++;
2245 }
2246 assert(ncovered >= nmines);
2247 if (ncovered == nmines) {
2248 for (yy = 0; yy < h; yy++)
2249 for (xx = 0; xx < w; xx++) {
2250 if (state->grid[yy*w+xx] < 0)
2251 state->grid[yy*w+xx] = -1;
2252 }
2253 state->won = TRUE;
2254 }
2255
2256 return 0;
2257 }
2258
2259 static game_state *new_game(midend_data *me, game_params *params, char *desc)
2260 {
2261 game_state *state = snew(game_state);
2262 int i, wh, x, y, ret, masked;
2263 unsigned char *bmp;
2264
2265 state->w = params->w;
2266 state->h = params->h;
2267 state->n = params->n;
2268 state->dead = state->won = FALSE;
2269 state->used_solve = state->just_used_solve = FALSE;
2270
2271 wh = state->w * state->h;
2272
2273 state->layout = snew(struct mine_layout);
2274 memset(state->layout, 0, sizeof(struct mine_layout));
2275 state->layout->refcount = 1;
2276
2277 state->grid = snewn(wh, signed char);
2278 memset(state->grid, -2, wh);
2279
2280 if (*desc == 'r') {
2281 desc++;
2282 state->layout->n = atoi(desc);
2283 while (*desc && isdigit((unsigned char)*desc))
2284 desc++; /* skip over mine count */
2285 if (*desc) desc++; /* eat comma */
2286 if (*desc == 'a')
2287 state->layout->unique = FALSE;
2288 else
2289 state->layout->unique = TRUE;
2290 desc++;
2291 if (*desc) desc++; /* eat comma */
2292
2293 state->layout->mines = NULL;
2294 state->layout->rs = random_state_decode(desc);
2295 state->layout->me = me;
2296
2297 } else {
2298 state->layout->rs = NULL;
2299 state->layout->me = NULL;
2300
2301 state->layout->mines = snewn(wh, char);
2302 x = atoi(desc);
2303 while (*desc && isdigit((unsigned char)*desc))
2304 desc++; /* skip over x coordinate */
2305 if (*desc) desc++; /* eat comma */
2306 y = atoi(desc);
2307 while (*desc && isdigit((unsigned char)*desc))
2308 desc++; /* skip over y coordinate */
2309 if (*desc) desc++; /* eat comma */
2310
2311 if (*desc == 'm') {
2312 masked = TRUE;
2313 desc++;
2314 } else {
2315 /*
2316 * We permit game IDs to be entered by hand without the
2317 * masking transformation.
2318 */
2319 masked = FALSE;
2320 }
2321
2322 bmp = snewn((wh + 7) / 8, unsigned char);
2323 memset(bmp, 0, (wh + 7) / 8);
2324 for (i = 0; i < (wh+3)/4; i++) {
2325 int c = desc[i];
2326 int v;
2327
2328 assert(c != 0); /* validate_desc should have caught */
2329 if (c >= '0' && c <= '9')
2330 v = c - '0';
2331 else if (c >= 'a' && c <= 'f')
2332 v = c - 'a' + 10;
2333 else if (c >= 'A' && c <= 'F')
2334 v = c - 'A' + 10;
2335 else
2336 v = 0;
2337
2338 bmp[i / 2] |= v << (4 * (1 - (i % 2)));
2339 }
2340
2341 if (masked)
2342 obfuscate_bitmap(bmp, wh, TRUE);
2343
2344 memset(state->layout->mines, 0, wh);
2345 for (i = 0; i < wh; i++) {
2346 if (bmp[i / 8] & (0x80 >> (i % 8)))
2347 state->layout->mines[i] = 1;
2348 }
2349
2350 ret = open_square(state, x, y);
2351 sfree(bmp);
2352 }
2353
2354 return state;
2355 }
2356
2357 static game_state *dup_game(game_state *state)
2358 {
2359 game_state *ret = snew(game_state);
2360
2361 ret->w = state->w;
2362 ret->h = state->h;
2363 ret->n = state->n;
2364 ret->dead = state->dead;
2365 ret->won = state->won;
2366 ret->used_solve = state->used_solve;
2367 ret->just_used_solve = state->just_used_solve;
2368 ret->layout = state->layout;
2369 ret->layout->refcount++;
2370 ret->grid = snewn(ret->w * ret->h, signed char);
2371 memcpy(ret->grid, state->grid, ret->w * ret->h);
2372
2373 return ret;
2374 }
2375
2376 static void free_game(game_state *state)
2377 {
2378 if (--state->layout->refcount <= 0) {
2379 sfree(state->layout->mines);
2380 if (state->layout->rs)
2381 random_free(state->layout->rs);
2382 sfree(state->layout);
2383 }
2384 sfree(state->grid);
2385 sfree(state);
2386 }
2387
2388 static game_state *solve_game(game_state *state, game_aux_info *aux,
2389 char **error)
2390 {
2391 /*
2392 * Simply expose the entire grid as if it were a completed
2393 * solution.
2394 */
2395 game_state *ret;
2396 int yy, xx;
2397
2398 if (!state->layout->mines) {
2399 *error = "Game has not been started yet";
2400 return NULL;
2401 }
2402
2403 ret = dup_game(state);
2404 for (yy = 0; yy < ret->h; yy++)
2405 for (xx = 0; xx < ret->w; xx++) {
2406
2407 if (ret->layout->mines[yy*ret->w+xx]) {
2408 ret->grid[yy*ret->w+xx] = -1;
2409 } else {
2410 int dx, dy, v;
2411
2412 v = 0;
2413
2414 for (dx = -1; dx <= +1; dx++)
2415 for (dy = -1; dy <= +1; dy++)
2416 if (xx+dx >= 0 && xx+dx < ret->w &&
2417 yy+dy >= 0 && yy+dy < ret->h &&
2418 ret->layout->mines[(yy+dy)*ret->w+(xx+dx)])
2419 v++;
2420
2421 ret->grid[yy*ret->w+xx] = v;
2422 }
2423 }
2424 ret->used_solve = ret->just_used_solve = TRUE;
2425 ret->won = TRUE;
2426
2427 return ret;
2428 }
2429
2430 static char *game_text_format(game_state *state)
2431 {
2432 char *ret;
2433 int x, y;
2434
2435 ret = snewn((state->w + 1) * state->h + 1, char);
2436 for (y = 0; y < state->h; y++) {
2437 for (x = 0; x < state->w; x++) {
2438 int v = state->grid[y*state->w+x];
2439 if (v == 0)
2440 v = '-';
2441 else if (v >= 1 && v <= 8)
2442 v = '0' + v;
2443 else if (v == -1)
2444 v = '*';
2445 else if (v == -2 || v == -3)
2446 v = '?';
2447 else if (v >= 64)
2448 v = '!';
2449 ret[y * (state->w+1) + x] = v;
2450 }
2451 ret[y * (state->w+1) + state->w] = '\n';
2452 }
2453 ret[(state->w + 1) * state->h] = '\0';
2454
2455 return ret;
2456 }
2457
2458 struct game_ui {
2459 int hx, hy, hradius; /* for mouse-down highlights */
2460 int flash_is_death;
2461 int deaths;
2462 };
2463
2464 static game_ui *new_ui(game_state *state)
2465 {
2466 game_ui *ui = snew(game_ui);
2467 ui->hx = ui->hy = -1;
2468 ui->hradius = 0;
2469 ui->deaths = 0;
2470 ui->flash_is_death = FALSE; /* *shrug* */
2471 return ui;
2472 }
2473
2474 static void free_ui(game_ui *ui)
2475 {
2476 sfree(ui);
2477 }
2478
2479 static void game_changed_state(game_ui *ui, game_state *oldstate,
2480 game_state *newstate)
2481 {
2482 }
2483
2484 struct game_drawstate {
2485 int w, h, started, tilesize;
2486 signed char *grid;
2487 /*
2488 * Items in this `grid' array have all the same values as in
2489 * the game_state grid, and in addition:
2490 *
2491 * - -10 means the tile was drawn `specially' as a result of a
2492 * flash, so it will always need redrawing.
2493 *
2494 * - -22 and -23 mean the tile is highlighted for a possible
2495 * click.
2496 */
2497 };
2498
2499 static game_state *make_move(game_state *from, game_ui *ui, game_drawstate *ds,
2500 int x, int y, int button)
2501 {
2502 game_state *ret;
2503 int cx, cy;
2504
2505 if (from->dead || from->won)
2506 return NULL; /* no further moves permitted */
2507
2508 if (!IS_MOUSE_DOWN(button) && !IS_MOUSE_DRAG(button) &&
2509 !IS_MOUSE_RELEASE(button))
2510 return NULL;
2511
2512 cx = FROMCOORD(x);
2513 cy = FROMCOORD(y);
2514
2515 if (button == LEFT_BUTTON || button == LEFT_DRAG ||
2516 button == MIDDLE_BUTTON || button == MIDDLE_DRAG) {
2517 if (cx < 0 || cx >= from->w || cy < 0 || cy >= from->h)
2518 return NULL;
2519
2520 /*
2521 * Mouse-downs and mouse-drags just cause highlighting
2522 * updates.
2523 */
2524 ui->hx = cx;
2525 ui->hy = cy;
2526 ui->hradius = (from->grid[cy*from->w+cx] >= 0 ? 1 : 0);
2527 return from;
2528 }
2529
2530 if (button == RIGHT_BUTTON) {
2531 if (cx < 0 || cx >= from->w || cy < 0 || cy >= from->h)
2532 return NULL;
2533
2534 /*
2535 * Right-clicking only works on a covered square, and it
2536 * toggles between -1 (marked as mine) and -2 (not marked
2537 * as mine).
2538 *
2539 * FIXME: question marks.
2540 */
2541 if (from->grid[cy * from->w + cx] != -2 &&
2542 from->grid[cy * from->w + cx] != -1)
2543 return NULL;
2544
2545 ret = dup_game(from);
2546 ret->just_used_solve = FALSE;
2547 ret->grid[cy * from->w + cx] ^= (-2 ^ -1);
2548
2549 return ret;
2550 }
2551
2552 if (button == LEFT_RELEASE || button == MIDDLE_RELEASE) {
2553 ui->hx = ui->hy = -1;
2554 ui->hradius = 0;
2555
2556 /*
2557 * At this stage we must never return NULL: we have adjusted
2558 * the ui, so at worst we return `from'.
2559 */
2560 if (cx < 0 || cx >= from->w || cy < 0 || cy >= from->h)
2561 return from;
2562
2563 /*
2564 * Left-clicking on a covered square opens a tile. Not
2565 * permitted if the tile is marked as a mine, for safety.
2566 * (Unmark it and _then_ open it.)
2567 */
2568 if (button == LEFT_RELEASE &&
2569 (from->grid[cy * from->w + cx] == -2 ||
2570 from->grid[cy * from->w + cx] == -3)) {
2571 ret = dup_game(from);
2572 ret->just_used_solve = FALSE;
2573 open_square(ret, cx, cy);
2574 if (ret->dead)
2575 ui->deaths++;
2576 return ret;
2577 }
2578
2579 /*
2580 * Left-clicking or middle-clicking on an uncovered tile:
2581 * first we check to see if the number of mine markers
2582 * surrounding the tile is equal to its mine count, and if
2583 * so then we open all other surrounding squares.
2584 */
2585 if (from->grid[cy * from->w + cx] > 0) {
2586 int dy, dx, n;
2587
2588 /* Count mine markers. */
2589 n = 0;
2590 for (dy = -1; dy <= +1; dy++)
2591 for (dx = -1; dx <= +1; dx++)
2592 if (cx+dx >= 0 && cx+dx < from->w &&
2593 cy+dy >= 0 && cy+dy < from->h) {
2594 if (from->grid[(cy+dy)*from->w+(cx+dx)] == -1)
2595 n++;
2596 }
2597
2598 if (n == from->grid[cy * from->w + cx]) {
2599 ret = dup_game(from);
2600 ret->just_used_solve = FALSE;
2601 for (dy = -1; dy <= +1; dy++)
2602 for (dx = -1; dx <= +1; dx++)
2603 if (cx+dx >= 0 && cx+dx < ret->w &&
2604 cy+dy >= 0 && cy+dy < ret->h &&
2605 (ret->grid[(cy+dy)*ret->w+(cx+dx)] == -2 ||
2606 ret->grid[(cy+dy)*ret->w+(cx+dx)] == -3))
2607 open_square(ret, cx+dx, cy+dy);
2608 if (ret->dead)
2609 ui->deaths++;
2610 return ret;
2611 }
2612 }
2613
2614 return from;
2615 }
2616
2617 return NULL;
2618 }
2619
2620 /* ----------------------------------------------------------------------
2621 * Drawing routines.
2622 */
2623
2624 static void game_size(game_params *params, game_drawstate *ds,
2625 int *x, int *y, int expand)
2626 {
2627 int tsx, tsy, ts;
2628 /*
2629 * Each window dimension equals the tile size times 3 more than
2630 * the grid dimension (the border is 3/2 the width of the
2631 * tiles).
2632 */
2633 tsx = *x / (params->w + 3);
2634 tsy = *y / (params->h + 3);
2635 ts = min(tsx, tsy);
2636 if (expand)
2637 ds->tilesize = ts;
2638 else
2639 ds->tilesize = min(ts, PREFERRED_TILE_SIZE);
2640
2641 *x = BORDER * 2 + TILE_SIZE * params->w;
2642 *y = BORDER * 2 + TILE_SIZE * params->h;
2643 }
2644
2645 static float *game_colours(frontend *fe, game_state *state, int *ncolours)
2646 {
2647 float *ret = snewn(3 * NCOLOURS, float);
2648
2649 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
2650
2651 ret[COL_BACKGROUND2 * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] * 19.0 / 20.0;
2652 ret[COL_BACKGROUND2 * 3 + 1] = ret[COL_BACKGROUND * 3 + 1] * 19.0 / 20.0;
2653 ret[COL_BACKGROUND2 * 3 + 2] = ret[COL_BACKGROUND * 3 + 2] * 19.0 / 20.0;
2654
2655 ret[COL_1 * 3 + 0] = 0.0F;
2656 ret[COL_1 * 3 + 1] = 0.0F;
2657 ret[COL_1 * 3 + 2] = 1.0F;
2658
2659 ret[COL_2 * 3 + 0] = 0.0F;
2660 ret[COL_2 * 3 + 1] = 0.5F;
2661 ret[COL_2 * 3 + 2] = 0.0F;
2662
2663 ret[COL_3 * 3 + 0] = 1.0F;
2664 ret[COL_3 * 3 + 1] = 0.0F;
2665 ret[COL_3 * 3 + 2] = 0.0F;
2666
2667 ret[COL_4 * 3 + 0] = 0.0F;
2668 ret[COL_4 * 3 + 1] = 0.0F;
2669 ret[COL_4 * 3 + 2] = 0.5F;
2670
2671 ret[COL_5 * 3 + 0] = 0.5F;
2672 ret[COL_5 * 3 + 1] = 0.0F;
2673 ret[COL_5 * 3 + 2] = 0.0F;
2674
2675 ret[COL_6 * 3 + 0] = 0.0F;
2676 ret[COL_6 * 3 + 1] = 0.5F;
2677 ret[COL_6 * 3 + 2] = 0.5F;
2678
2679 ret[COL_7 * 3 + 0] = 0.0F;
2680 ret[COL_7 * 3 + 1] = 0.0F;
2681 ret[COL_7 * 3 + 2] = 0.0F;
2682
2683 ret[COL_8 * 3 + 0] = 0.5F;
2684 ret[COL_8 * 3 + 1] = 0.5F;
2685 ret[COL_8 * 3 + 2] = 0.5F;
2686
2687 ret[COL_MINE * 3 + 0] = 0.0F;
2688 ret[COL_MINE * 3 + 1] = 0.0F;
2689 ret[COL_MINE * 3 + 2] = 0.0F;
2690
2691 ret[COL_BANG * 3 + 0] = 1.0F;
2692 ret[COL_BANG * 3 + 1] = 0.0F;
2693 ret[COL_BANG * 3 + 2] = 0.0F;
2694
2695 ret[COL_CROSS * 3 + 0] = 1.0F;
2696 ret[COL_CROSS * 3 + 1] = 0.0F;
2697 ret[COL_CROSS * 3 + 2] = 0.0F;
2698
2699 ret[COL_FLAG * 3 + 0] = 1.0F;
2700 ret[COL_FLAG * 3 + 1] = 0.0F;
2701 ret[COL_FLAG * 3 + 2] = 0.0F;
2702
2703 ret[COL_FLAGBASE * 3 + 0] = 0.0F;
2704 ret[COL_FLAGBASE * 3 + 1] = 0.0F;
2705 ret[COL_FLAGBASE * 3 + 2] = 0.0F;
2706
2707 ret[COL_QUERY * 3 + 0] = 0.0F;
2708 ret[COL_QUERY * 3 + 1] = 0.0F;
2709 ret[COL_QUERY * 3 + 2] = 0.0F;
2710
2711 ret[COL_HIGHLIGHT * 3 + 0] = 1.0F;
2712 ret[COL_HIGHLIGHT * 3 + 1] = 1.0F;
2713 ret[COL_HIGHLIGHT * 3 + 2] = 1.0F;
2714
2715 ret[COL_LOWLIGHT * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] * 2.0 / 3.0;
2716 ret[COL_LOWLIGHT * 3 + 1] = ret[COL_BACKGROUND * 3 + 1] * 2.0 / 3.0;
2717 ret[COL_LOWLIGHT * 3 + 2] = ret[COL_BACKGROUND * 3 + 2] * 2.0 / 3.0;
2718
2719 *ncolours = NCOLOURS;
2720 return ret;
2721 }
2722
2723 static game_drawstate *game_new_drawstate(game_state *state)
2724 {
2725 struct game_drawstate *ds = snew(struct game_drawstate);
2726
2727 ds->w = state->w;
2728 ds->h = state->h;
2729 ds->started = FALSE;
2730 ds->tilesize = 0; /* not decided yet */
2731 ds->grid = snewn(ds->w * ds->h, signed char);
2732
2733 memset(ds->grid, -99, ds->w * ds->h);
2734
2735 return ds;
2736 }
2737
2738 static void game_free_drawstate(game_drawstate *ds)
2739 {
2740 sfree(ds->grid);
2741 sfree(ds);
2742 }
2743
2744 static void draw_tile(frontend *fe, game_drawstate *ds,
2745 int x, int y, int v, int bg)
2746 {
2747 if (v < 0) {
2748 int coords[12];
2749 int hl = 0;
2750
2751 if (v == -22 || v == -23) {
2752 v += 20;
2753
2754 /*
2755 * Omit the highlights in this case.
2756 */
2757 draw_rect(fe, x, y, TILE_SIZE, TILE_SIZE,
2758 bg == COL_BACKGROUND ? COL_BACKGROUND2 : bg);
2759 draw_line(fe, x, y, x + TILE_SIZE - 1, y, COL_LOWLIGHT);
2760 draw_line(fe, x, y, x, y + TILE_SIZE - 1, COL_LOWLIGHT);
2761 } else {
2762 /*
2763 * Draw highlights to indicate the square is covered.
2764 */
2765 coords[0] = x + TILE_SIZE - 1;
2766 coords[1] = y + TILE_SIZE - 1;
2767 coords[2] = x + TILE_SIZE - 1;
2768 coords[3] = y;
2769 coords[4] = x;
2770 coords[5] = y + TILE_SIZE - 1;
2771 draw_polygon(fe, coords, 3, TRUE, COL_LOWLIGHT ^ hl);
2772 draw_polygon(fe, coords, 3, FALSE, COL_LOWLIGHT ^ hl);
2773
2774 coords[0] = x;
2775 coords[1] = y;
2776 draw_polygon(fe, coords, 3, TRUE, COL_HIGHLIGHT ^ hl);
2777 draw_polygon(fe, coords, 3, FALSE, COL_HIGHLIGHT ^ hl);
2778
2779 draw_rect(fe, x + HIGHLIGHT_WIDTH, y + HIGHLIGHT_WIDTH,
2780 TILE_SIZE - 2*HIGHLIGHT_WIDTH, TILE_SIZE - 2*HIGHLIGHT_WIDTH,
2781 bg);
2782 }
2783
2784 if (v == -1) {
2785 /*
2786 * Draw a flag.
2787 */
2788 #define SETCOORD(n, dx, dy) do { \
2789 coords[(n)*2+0] = x + TILE_SIZE * (dx); \
2790 coords[(n)*2+1] = y + TILE_SIZE * (dy); \
2791 } while (0)
2792 SETCOORD(0, 0.6, 0.35);
2793 SETCOORD(1, 0.6, 0.7);
2794 SETCOORD(2, 0.8, 0.8);
2795 SETCOORD(3, 0.25, 0.8);
2796 SETCOORD(4, 0.55, 0.7);
2797 SETCOORD(5, 0.55, 0.35);
2798 draw_polygon(fe, coords, 6, TRUE, COL_FLAGBASE);
2799 draw_polygon(fe, coords, 6, FALSE, COL_FLAGBASE);
2800
2801 SETCOORD(0, 0.6, 0.2);
2802 SETCOORD(1, 0.6, 0.5);
2803 SETCOORD(2, 0.2, 0.35);
2804 draw_polygon(fe, coords, 3, TRUE, COL_FLAG);
2805 draw_polygon(fe, coords, 3, FALSE, COL_FLAG);
2806 #undef SETCOORD
2807
2808 } else if (v == -3) {
2809 /*
2810 * Draw a question mark.
2811 */
2812 draw_text(fe, x + TILE_SIZE / 2, y + TILE_SIZE / 2,
2813 FONT_VARIABLE, TILE_SIZE * 6 / 8,
2814 ALIGN_VCENTRE | ALIGN_HCENTRE,
2815 COL_QUERY, "?");
2816 }
2817 } else {
2818 /*
2819 * Clear the square to the background colour, and draw thin
2820 * grid lines along the top and left.
2821 *
2822 * Exception is that for value 65 (mine we've just trodden
2823 * on), we clear the square to COL_BANG.
2824 */
2825 draw_rect(fe, x, y, TILE_SIZE, TILE_SIZE,
2826 (v == 65 ? COL_BANG :
2827 bg == COL_BACKGROUND ? COL_BACKGROUND2 : bg));
2828 draw_line(fe, x, y, x + TILE_SIZE - 1, y, COL_LOWLIGHT);
2829 draw_line(fe, x, y, x, y + TILE_SIZE - 1, COL_LOWLIGHT);
2830
2831 if (v > 0 && v <= 8) {
2832 /*
2833 * Mark a number.
2834 */
2835 char str[2];
2836 str[0] = v + '0';
2837 str[1] = '\0';
2838 draw_text(fe, x + TILE_SIZE / 2, y + TILE_SIZE / 2,
2839 FONT_VARIABLE, TILE_SIZE * 7 / 8,
2840 ALIGN_VCENTRE | ALIGN_HCENTRE,
2841 (COL_1 - 1) + v, str);
2842
2843 } else if (v >= 64) {
2844 /*
2845 * Mark a mine.
2846 *
2847 * FIXME: this could be done better!
2848 */
2849 #if 0
2850 draw_text(fe, x + TILE_SIZE / 2, y + TILE_SIZE / 2,
2851 FONT_VARIABLE, TILE_SIZE * 7 / 8,
2852 ALIGN_VCENTRE | ALIGN_HCENTRE,
2853 COL_MINE, "*");
2854 #else
2855 {
2856 int cx = x + TILE_SIZE / 2;
2857 int cy = y + TILE_SIZE / 2;
2858 int r = TILE_SIZE / 2 - 3;
2859 int coords[4*5*2];
2860 int xdx = 1, xdy = 0, ydx = 0, ydy = 1;
2861 int tdx, tdy, i;
2862
2863 for (i = 0; i < 4*5*2; i += 5*2) {
2864 coords[i+2*0+0] = cx - r/6*xdx + r*4/5*ydx;
2865 coords[i+2*0+1] = cy - r/6*xdy + r*4/5*ydy;
2866 coords[i+2*1+0] = cx - r/6*xdx + r*ydx;
2867 coords[i+2*1+1] = cy - r/6*xdy + r*ydy;
2868 coords[i+2*2+0] = cx + r/6*xdx + r*ydx;
2869 coords[i+2*2+1] = cy + r/6*xdy + r*ydy;
2870 coords[i+2*3+0] = cx + r/6*xdx + r*4/5*ydx;
2871 coords[i+2*3+1] = cy + r/6*xdy + r*4/5*ydy;
2872 coords[i+2*4+0] = cx + r*3/5*xdx + r*3/5*ydx;
2873 coords[i+2*4+1] = cy + r*3/5*xdy + r*3/5*ydy;
2874
2875 tdx = ydx;
2876 tdy = ydy;
2877 ydx = xdx;
2878 ydy = xdy;
2879 xdx = -tdx;
2880 xdy = -tdy;
2881 }
2882
2883 draw_polygon(fe, coords, 5*4, TRUE, COL_MINE);
2884 draw_polygon(fe, coords, 5*4, FALSE, COL_MINE);
2885
2886 draw_rect(fe, cx-r/3, cy-r/3, r/3, r/4, COL_HIGHLIGHT);
2887 }
2888 #endif
2889
2890 if (v == 66) {
2891 /*
2892 * Cross through the mine.
2893 */
2894 int dx;
2895 for (dx = -1; dx <= +1; dx++) {
2896 draw_line(fe, x + 3 + dx, y + 2,
2897 x + TILE_SIZE - 3 + dx,
2898 y + TILE_SIZE - 2, COL_CROSS);
2899 draw_line(fe, x + TILE_SIZE - 3 + dx, y + 2,
2900 x + 3 + dx, y + TILE_SIZE - 2,
2901 COL_CROSS);
2902 }
2903 }
2904 }
2905 }
2906
2907 draw_update(fe, x, y, TILE_SIZE, TILE_SIZE);
2908 }
2909
2910 static void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate,
2911 game_state *state, int dir, game_ui *ui,
2912 float animtime, float flashtime)
2913 {
2914 int x, y;
2915 int mines, markers, bg;
2916
2917 if (flashtime) {
2918 int frame = (flashtime / FLASH_FRAME);
2919 if (frame % 2)
2920 bg = (ui->flash_is_death ? COL_BACKGROUND : COL_LOWLIGHT);
2921 else
2922 bg = (ui->flash_is_death ? COL_BANG : COL_HIGHLIGHT);
2923 } else
2924 bg = COL_BACKGROUND;
2925
2926 if (!ds->started) {
2927 int coords[10];
2928
2929 draw_rect(fe, 0, 0,
2930 TILE_SIZE * state->w + 2 * BORDER,
2931 TILE_SIZE * state->h + 2 * BORDER, COL_BACKGROUND);
2932 draw_update(fe, 0, 0,
2933 TILE_SIZE * state->w + 2 * BORDER,
2934 TILE_SIZE * state->h + 2 * BORDER);
2935
2936 /*
2937 * Recessed area containing the whole puzzle.
2938 */
2939 coords[0] = COORD(state->w) + OUTER_HIGHLIGHT_WIDTH - 1;
2940 coords[1] = COORD(state->h) + OUTER_HIGHLIGHT_WIDTH - 1;
2941 coords[2] = COORD(state->w) + OUTER_HIGHLIGHT_WIDTH - 1;
2942 coords[3] = COORD(0) - OUTER_HIGHLIGHT_WIDTH;
2943 coords[4] = coords[2] - TILE_SIZE;
2944 coords[5] = coords[3] + TILE_SIZE;
2945 coords[8] = COORD(0) - OUTER_HIGHLIGHT_WIDTH;
2946 coords[9] = COORD(state->h) + OUTER_HIGHLIGHT_WIDTH - 1;
2947 coords[6] = coords[8] + TILE_SIZE;
2948 coords[7] = coords[9] - TILE_SIZE;
2949 draw_polygon(fe, coords, 5, TRUE, COL_HIGHLIGHT);
2950 draw_polygon(fe, coords, 5, FALSE, COL_HIGHLIGHT);
2951
2952 coords[1] = COORD(0) - OUTER_HIGHLIGHT_WIDTH;
2953 coords[0] = COORD(0) - OUTER_HIGHLIGHT_WIDTH;
2954 draw_polygon(fe, coords, 5, TRUE, COL_LOWLIGHT);
2955 draw_polygon(fe, coords, 5, FALSE, COL_LOWLIGHT);
2956
2957 ds->started = TRUE;
2958 }
2959
2960 /*
2961 * Now draw the tiles. Also in this loop, count up the number
2962 * of mines and mine markers.
2963 */
2964 mines = markers = 0;
2965 for (y = 0; y < ds->h; y++)
2966 for (x = 0; x < ds->w; x++) {
2967 int v = state->grid[y*ds->w+x];
2968
2969 if (v == -1)
2970 markers++;
2971 if (state->layout->mines && state->layout->mines[y*ds->w+x])
2972 mines++;
2973
2974 if ((v == -2 || v == -3) &&
2975 (abs(x-ui->hx) <= ui->hradius && abs(y-ui->hy) <= ui->hradius))
2976 v -= 20;
2977
2978 if (ds->grid[y*ds->w+x] != v || bg != COL_BACKGROUND) {
2979 draw_tile(fe, ds, COORD(x), COORD(y), v, bg);
2980 ds->grid[y*ds->w+x] = (bg == COL_BACKGROUND ? v : -10);
2981 }
2982 }
2983
2984 if (!state->layout->mines)
2985 mines = state->layout->n;
2986
2987 /*
2988 * Update the status bar.
2989 */
2990 {
2991 char statusbar[512];
2992 if (state->dead) {
2993 sprintf(statusbar, "DEAD!");
2994 } else if (state->won) {
2995 if (state->used_solve)
2996 sprintf(statusbar, "Auto-solved.");
2997 else
2998 sprintf(statusbar, "COMPLETED!");
2999 } else {
3000 sprintf(statusbar, "Marked: %d / %d", markers, mines);
3001 }
3002 if (ui->deaths)
3003 sprintf(statusbar + strlen(statusbar),
3004 " Deaths: %d", ui->deaths);
3005 status_bar(fe, statusbar);
3006 }
3007 }
3008
3009 static float game_anim_length(game_state *oldstate, game_state *newstate,
3010 int dir, game_ui *ui)
3011 {
3012 return 0.0F;
3013 }
3014
3015 static float game_flash_length(game_state *oldstate, game_state *newstate,
3016 int dir, game_ui *ui)
3017 {
3018 if (oldstate->used_solve || newstate->used_solve)
3019 return 0.0F;
3020
3021 if (dir > 0 && !oldstate->dead && !oldstate->won) {
3022 if (newstate->dead) {
3023 ui->flash_is_death = TRUE;
3024 return 3 * FLASH_FRAME;
3025 }
3026 if (newstate->won) {
3027 ui->flash_is_death = FALSE;
3028 return 2 * FLASH_FRAME;
3029 }
3030 }
3031 return 0.0F;
3032 }
3033
3034 static int game_wants_statusbar(void)
3035 {
3036 return TRUE;
3037 }
3038
3039 static int game_timing_state(game_state *state)
3040 {
3041 if (state->dead || state->won || !state->layout->mines)
3042 return FALSE;
3043 return TRUE;
3044 }
3045
3046 #ifdef COMBINED
3047 #define thegame mines
3048 #endif
3049
3050 const struct game thegame = {
3051 "Mines", "games.mines",
3052 default_params,
3053 game_fetch_preset,
3054 decode_params,
3055 encode_params,
3056 free_params,
3057 dup_params,
3058 TRUE, game_configure, custom_params,
3059 validate_params,
3060 new_game_desc,
3061 game_free_aux_info,
3062 validate_desc,
3063 new_game,
3064 dup_game,
3065 free_game,
3066 TRUE, solve_game,
3067 TRUE, game_text_format,
3068 new_ui,
3069 free_ui,
3070 game_changed_state,
3071 make_move,
3072 game_size,
3073 game_colours,
3074 game_new_drawstate,
3075 game_free_drawstate,
3076 game_redraw,
3077 game_anim_length,
3078 game_flash_length,
3079 game_wants_statusbar,
3080 TRUE, game_timing_state,
3081 BUTTON_BEATS(LEFT_BUTTON, RIGHT_BUTTON),
3082 };
3083
3084 #ifdef STANDALONE_OBFUSCATOR
3085
3086 /*
3087 * Vaguely useful stand-alone program which translates between
3088 * obfuscated and clear Mines game descriptions. Pass in a game
3089 * description on the command line, and if it's clear it will be
3090 * obfuscated and vice versa. The output text should also be a
3091 * valid game ID describing the same game. Like this:
3092 *
3093 * $ ./mineobfusc 9x9:4,4,mb071b49fbd1cb6a0d5868
3094 * 9x9:4,4,004000007c00010022080
3095 * $ ./mineobfusc 9x9:4,4,004000007c00010022080
3096 * 9x9:4,4,mb071b49fbd1cb6a0d5868
3097 *
3098 * gcc -DSTANDALONE_OBFUSCATOR -o mineobfusc mines.c malloc.c random.c tree234.c
3099 */
3100
3101 #include <stdarg.h>
3102
3103 void frontend_default_colour(frontend *fe, float *output) {}
3104 void draw_text(frontend *fe, int x, int y, int fonttype, int fontsize,
3105 int align, int colour, char *text) {}
3106 void draw_rect(frontend *fe, int x, int y, int w, int h, int colour) {}
3107 void draw_line(frontend *fe, int x1, int y1, int x2, int y2, int colour) {}
3108 void draw_polygon(frontend *fe, int *coords, int npoints,
3109 int fill, int colour) {}
3110 void clip(frontend *fe, int x, int y, int w, int h) {}
3111 void unclip(frontend *fe) {}
3112 void start_draw(frontend *fe) {}
3113 void draw_update(frontend *fe, int x, int y, int w, int h) {}
3114 void end_draw(frontend *fe) {}
3115 void midend_supersede_game_desc(midend_data *me, char *desc) {}
3116 void status_bar(frontend *fe, char *text) {}
3117
3118 void fatal(char *fmt, ...)
3119 {
3120 va_list ap;
3121
3122 fprintf(stderr, "fatal error: ");
3123
3124 va_start(ap, fmt);
3125 vfprintf(stderr, fmt, ap);
3126 va_end(ap);
3127
3128 fprintf(stderr, "\n");
3129 exit(1);
3130 }
3131
3132 int main(int argc, char **argv)
3133 {
3134 game_params *p;
3135 game_state *s;
3136 int recurse = TRUE;
3137 char *id = NULL, *desc, *err;
3138 int y, x;
3139 int grade = FALSE;
3140
3141 while (--argc > 0) {
3142 char *p = *++argv;
3143 if (*p == '-') {
3144 fprintf(stderr, "%s: unrecognised option `%s'\n", argv[0]);
3145 return 1;
3146 } else {
3147 id = p;
3148 }
3149 }
3150
3151 if (!id) {
3152 fprintf(stderr, "usage: %s <game_id>\n", argv[0]);
3153 return 1;
3154 }
3155
3156 desc = strchr(id, ':');
3157 if (!desc) {
3158 fprintf(stderr, "%s: game id expects a colon in it\n", argv[0]);
3159 return 1;
3160 }
3161 *desc++ = '\0';
3162
3163 p = default_params();
3164 decode_params(p, id);
3165 err = validate_desc(p, desc);
3166 if (err) {
3167 fprintf(stderr, "%s: %s\n", argv[0], err);
3168 return 1;
3169 }
3170 s = new_game(NULL, p, desc);
3171
3172 x = atoi(desc);
3173 while (*desc && *desc != ',') desc++;
3174 if (*desc) desc++;
3175 y = atoi(desc);
3176 while (*desc && *desc != ',') desc++;
3177 if (*desc) desc++;
3178
3179 printf("%s:%s\n", id, describe_layout(s->layout->mines,
3180 p->w * p->h,
3181 x, y,
3182 (*desc != 'm')));
3183
3184 return 0;
3185 }
3186
3187 #endif