Don't use payload strings directly as the format for printf.
[sgt/puzzles] / singles.c
1 /*
2 * singles.c: implementation of Hitori ('let me alone') from Nikoli.
3 *
4 * Make single-get able to fetch a specific puzzle ID from menneske.no?
5 *
6 * www.menneske.no solving methods:
7 *
8 * Done:
9 * SC: if you circle a cell, any cells in same row/col with same no --> black
10 * -- solver_op_circle
11 * SB: if you make a cell black, any cells around it --> white
12 * -- solver_op_blacken
13 * ST: 3 identical cells in row, centre is white and outer two black.
14 * SP: 2 identical cells with single-cell gap, middle cell is white.
15 * -- solver_singlesep (both ST and SP)
16 * PI: if you have a pair of same number in row/col, any other
17 * cells of same number must be black.
18 * -- solve_doubles
19 * CC: if you have a black on edge one cell away from corner, cell
20 * on edge diag. adjacent must be white.
21 * CE: if you have 2 black cells of triangle on edge, third cell must
22 * be white.
23 * QM: if you have 3 black cells of diagonal square in middle, fourth
24 * cell must be white.
25 * -- solve_allblackbutone (CC, CE, and QM).
26 * QC: a corner with 4 identical numbers (or 2 and 2) must have the
27 * corner cell (and cell diagonal to that) black.
28 * TC: a corner with 3 identical numbers (with the L either way)
29 * must have the apex of L black, and other two white.
30 * DC: a corner with 2 identical numbers in domino can set a white
31 * cell along wall.
32 * -- solve_corners (QC, TC, DC)
33 * IP: pair with one-offset-pair force whites by offset pair
34 * -- solve_offsetpair
35 * MC: any cells diag. adjacent to black cells that would split board
36 * into separate white regions must be white.
37 * -- solve_removesplits
38 *
39 * Still to do:
40 *
41 * TEP: 3 pairs of dominos parallel to side, can mark 4 white cells
42 * alongside.
43 * DEP: 2 pairs of dominos parallel to side, can mark 2 white cells.
44 * FI: if you have two sets of double-cells packed together, singles
45 * in that row/col must be white (qv. PI)
46 * QuM: four identical cells (or 2 and 2) in middle of grid only have
47 * two possible solutions each.
48 * FDE: doubles one row/column away from edge can force a white cell.
49 * FDM: doubles in centre (next to bits of diag. square) can force a white cell.
50 * MP: two pairs with same number between force number to black.
51 * CnC: if circling a cell leads to impossible board, cell is black.
52 * MC: if we have two possiblilities, can we force a white circle?
53 *
54 */
55
56 #include <stdio.h>
57 #include <stdlib.h>
58 #include <string.h>
59 #include <assert.h>
60 #include <ctype.h>
61 #include <math.h>
62
63 #include "puzzles.h"
64 #include "latin.h"
65
66 #ifdef STANDALONE_SOLVER
67 int verbose = 0;
68 #endif
69
70 #define PREFERRED_TILE_SIZE 32
71 #define TILE_SIZE (ds->tilesize)
72 #define BORDER (TILE_SIZE / 2)
73
74 #define CRAD ((TILE_SIZE / 2) - 1)
75 #define TEXTSZ ((14*CRAD/10) - 1) /* 2 * sqrt(2) of CRAD */
76
77 #define COORD(x) ( (x) * TILE_SIZE + BORDER )
78 #define FROMCOORD(x) ( ((x) - BORDER + TILE_SIZE) / TILE_SIZE - 1 )
79
80 #define INGRID(s,x,y) ((x) >= 0 && (x) < (s)->w && (y) >= 0 && (y) < (s)->h)
81
82 #define FLASH_TIME 0.7F
83
84 enum {
85 COL_BACKGROUND, COL_HIGHLIGHT, COL_LOWLIGHT,
86 COL_BLACK, COL_WHITE, COL_BLACKNUM, COL_GRID,
87 COL_CURSOR, COL_ERROR,
88 NCOLOURS
89 };
90
91 struct game_params {
92 int w, h, diff;
93 };
94
95 #define F_BLACK 0x1
96 #define F_CIRCLE 0x2
97 #define F_ERROR 0x4
98 #define F_SCRATCH 0x8
99
100 struct game_state {
101 int w, h, n, o; /* n = w*h; o = max(w, h) */
102 int completed, used_solve, impossible;
103 int *nums; /* size w*h */
104 unsigned int *flags; /* size w*h */
105 };
106
107 /* top, right, bottom, left */
108 static const int dxs[4] = { 0, 1, 0, -1 };
109 static const int dys[4] = { -1, 0, 1, 0 };
110
111 /* --- Game parameters and preset functions --- */
112
113 #define DIFFLIST(A) \
114 A(EASY,Easy,e) \
115 A(TRICKY,Tricky,k)
116
117 #define ENUM(upper,title,lower) DIFF_ ## upper,
118 #define TITLE(upper,title,lower) #title,
119 #define ENCODE(upper,title,lower) #lower
120 #define CONFIG(upper,title,lower) ":" #title
121
122 enum { DIFFLIST(ENUM) DIFF_MAX, DIFF_ANY };
123 static char const *const singles_diffnames[] = { DIFFLIST(TITLE) };
124 static char const singles_diffchars[] = DIFFLIST(ENCODE);
125 #define DIFFCOUNT lenof(singles_diffchars)
126 #define DIFFCONFIG DIFFLIST(CONFIG)
127
128 static game_params *default_params(void)
129 {
130 game_params *ret = snew(game_params);
131 ret->w = ret->h = 5;
132 ret->diff = DIFF_EASY;
133
134 return ret;
135 }
136
137 static const struct game_params singles_presets[] = {
138 { 5, 5, DIFF_EASY },
139 { 5, 5, DIFF_TRICKY },
140 { 6, 6, DIFF_EASY },
141 { 6, 6, DIFF_TRICKY },
142 { 8, 8, DIFF_EASY },
143 { 8, 8, DIFF_TRICKY },
144 { 10, 10, DIFF_EASY },
145 { 10, 10, DIFF_TRICKY },
146 { 12, 12, DIFF_EASY },
147 { 12, 12, DIFF_TRICKY }
148 };
149
150 static int game_fetch_preset(int i, char **name, game_params **params)
151 {
152 game_params *ret;
153 char buf[80];
154
155 if (i < 0 || i >= lenof(singles_presets))
156 return FALSE;
157
158 ret = default_params();
159 *ret = singles_presets[i];
160 *params = ret;
161
162 sprintf(buf, "%dx%d %s", ret->w, ret->h, singles_diffnames[ret->diff]);
163 *name = dupstr(buf);
164
165 return TRUE;
166 }
167
168 static void free_params(game_params *params)
169 {
170 sfree(params);
171 }
172
173 static game_params *dup_params(game_params *params)
174 {
175 game_params *ret = snew(game_params);
176 *ret = *params; /* structure copy */
177 return ret;
178 }
179
180 static void decode_params(game_params *ret, char const *string)
181 {
182 char const *p = string;
183 int i;
184
185 ret->w = ret->h = atoi(p);
186 while (*p && isdigit((unsigned char)*p)) p++;
187 if (*p == 'x') {
188 p++;
189 ret->h = atoi(p);
190 while (*p && isdigit((unsigned char)*p)) p++;
191 }
192 if (*p == 'd') {
193 ret->diff = DIFF_MAX; /* which is invalid */
194 p++;
195 for (i = 0; i < DIFFCOUNT; i++) {
196 if (*p == singles_diffchars[i])
197 ret->diff = i;
198 }
199 p++;
200 }
201 }
202
203 static char *encode_params(game_params *params, int full)
204 {
205 char data[256];
206
207 if (full)
208 sprintf(data, "%dx%dd%c", params->w, params->h, singles_diffchars[params->diff]);
209 else
210 sprintf(data, "%dx%d", params->w, params->h);
211
212 return dupstr(data);
213 }
214
215 static config_item *game_configure(game_params *params)
216 {
217 config_item *ret;
218 char buf[80];
219
220 ret = snewn(4, config_item);
221
222 ret[0].name = "Width";
223 ret[0].type = C_STRING;
224 sprintf(buf, "%d", params->w);
225 ret[0].sval = dupstr(buf);
226 ret[0].ival = 0;
227
228 ret[1].name = "Height";
229 ret[1].type = C_STRING;
230 sprintf(buf, "%d", params->h);
231 ret[1].sval = dupstr(buf);
232 ret[1].ival = 0;
233
234 ret[2].name = "Difficulty";
235 ret[2].type = C_CHOICES;
236 ret[2].sval = DIFFCONFIG;
237 ret[2].ival = params->diff;
238
239 ret[3].name = NULL;
240 ret[3].type = C_END;
241 ret[3].sval = NULL;
242 ret[3].ival = 0;
243
244 return ret;
245 }
246
247 static game_params *custom_params(config_item *cfg)
248 {
249 game_params *ret = snew(game_params);
250
251 ret->w = atoi(cfg[0].sval);
252 ret->h = atoi(cfg[1].sval);
253 ret->diff = cfg[2].ival;
254
255 return ret;
256 }
257
258 static char *validate_params(game_params *params, int full)
259 {
260 if (params->w < 2 || params->h < 2)
261 return "Width and neight must be at least two";
262 if (params->w > 10+26+26 || params->h > 10+26+26)
263 return "Puzzle is too large";
264 if (full) {
265 if (params->diff < 0 || params->diff >= DIFF_MAX)
266 return "Unknown difficulty rating";
267 }
268
269 return NULL;
270 }
271
272 /* --- Game description string generation and unpicking --- */
273
274 static game_state *blank_game(int w, int h)
275 {
276 game_state *state = snew(game_state);
277
278 memset(state, 0, sizeof(game_state));
279 state->w = w;
280 state->h = h;
281 state->n = w*h;
282 state->o = max(w,h);
283
284 state->completed = state->used_solve = state->impossible = 0;
285
286 state->nums = snewn(state->n, int);
287 state->flags = snewn(state->n, unsigned int);
288
289 memset(state->nums, 0, state->n*sizeof(int));
290 memset(state->flags, 0, state->n*sizeof(unsigned int));
291
292 return state;
293 }
294
295 static game_state *dup_game(game_state *state)
296 {
297 game_state *ret = blank_game(state->w, state->h);
298
299 ret->completed = state->completed;
300 ret->used_solve = state->used_solve;
301 ret->impossible = state->impossible;
302
303 memcpy(ret->nums, state->nums, state->n*sizeof(int));
304 memcpy(ret->flags, state->flags, state->n*sizeof(unsigned int));
305
306 return ret;
307 }
308
309 static void free_game(game_state *state)
310 {
311 sfree(state->nums);
312 sfree(state->flags);
313 sfree(state);
314 }
315
316 static char n2c(int num) {
317 if (num < 10)
318 return '0' + num;
319 else if (num < 10+26)
320 return 'a' + num - 10;
321 else
322 return 'A' + num - 10 - 26;
323 return '?';
324 }
325
326 static int c2n(char c) {
327 if (isdigit(c))
328 return (int)(c - '0');
329 else if (c >= 'a' && c <= 'z')
330 return (int)(c - 'a' + 10);
331 else if (c >= 'A' && c <= 'Z')
332 return (int)(c - 'A' + 10 + 26);
333 return -1;
334 }
335
336 static void unpick_desc(game_params *params, char *desc,
337 game_state **sout, char **mout)
338 {
339 game_state *state = blank_game(params->w, params->h);
340 char *msg = NULL;
341 int num = 0, i = 0;
342
343 if (strlen(desc) != state->n) {
344 msg = "Game description is wrong length";
345 goto done;
346 }
347 for (i = 0; i < state->n; i++) {
348 num = c2n(desc[i]);
349 if (num <= 0 || num > state->o) {
350 msg = "Game description contains unexpected characters";
351 goto done;
352 }
353 state->nums[i] = num;
354 }
355 done:
356 if (msg) { /* sth went wrong. */
357 if (mout) *mout = msg;
358 free_game(state);
359 } else {
360 if (mout) *mout = NULL;
361 if (sout) *sout = state;
362 else free_game(state);
363 }
364 }
365
366 static char *generate_desc(game_state *state, int issolve)
367 {
368 char *ret = snewn(state->n+1+(issolve?1:0), char);
369 int i, p=0;
370
371 if (issolve)
372 ret[p++] = 'S';
373 for (i = 0; i < state->n; i++)
374 ret[p++] = n2c(state->nums[i]);
375 ret[p] = '\0';
376 return ret;
377 }
378
379 /* --- Useful game functions (completion, etc.) --- */
380
381 static int game_can_format_as_text_now(game_params *params)
382 {
383 return TRUE;
384 }
385
386 static char *game_text_format(game_state *state)
387 {
388 int len, x, y, i;
389 char *ret, *p;
390
391 len = (state->w)*2; /* one row ... */
392 len = len * (state->h*2); /* ... h rows, including gaps ... */
393 len += 1; /* ... final NL */
394 p = ret = snewn(len, char);
395
396 for (y = 0; y < state->h; y++) {
397 for (x = 0; x < state->w; x++) {
398 i = y*state->w + x;
399 if (x > 0) *p++ = ' ';
400 *p++ = (state->flags[i] & F_BLACK) ? '*' : n2c(state->nums[i]);
401 }
402 *p++ = '\n';
403 for (x = 0; x < state->w; x++) {
404 i = y*state->w + x;
405 if (x > 0) *p++ = ' ';
406 *p++ = (state->flags[i] & F_CIRCLE) ? '~' : ' ';
407 }
408 *p++ = '\n';
409 }
410 *p++ = '\0';
411 assert(p - ret == len);
412
413 return ret;
414 }
415
416 static void debug_state(const char *desc, game_state *state) {
417 char *dbg = game_text_format(state);
418 debug(("%s:\n%s", desc, dbg));
419 sfree(dbg);
420 }
421
422 static void connect_if_same(game_state *state, int *dsf, int i1, int i2)
423 {
424 int c1, c2;
425
426 if ((state->flags[i1] & F_BLACK) != (state->flags[i2] & F_BLACK))
427 return;
428
429 c1 = dsf_canonify(dsf, i1);
430 c2 = dsf_canonify(dsf, i2);
431 dsf_merge(dsf, c1, c2);
432 }
433
434 static void connect_dsf(game_state *state, int *dsf)
435 {
436 int x, y, i;
437
438 /* Construct a dsf array for connected blocks; connections
439 * tracked to right and down. */
440 dsf_init(dsf, state->n);
441 for (x = 0; x < state->w; x++) {
442 for (y = 0; y < state->h; y++) {
443 i = y*state->w + x;
444
445 if (x < state->w-1)
446 connect_if_same(state, dsf, i, i+1); /* right */
447 if (y < state->h-1)
448 connect_if_same(state, dsf, i, i+state->w); /* down */
449 }
450 }
451 }
452
453 static int check_rowcol(game_state *state, int starti, int di, int sz, int mark_errors)
454 {
455 int nerr = 0, n, m, i, j;
456
457 /* if any circled numbers have identical non-circled numbers on
458 * same row/column, error (non-circled)
459 * if any circled numbers in same column are same number, highlight them.
460 * if any rows/columns have >1 of same number, not complete. */
461
462 for (n = 0, i = starti; n < sz; n++, i += di) {
463 if (state->flags[i] & F_BLACK) continue;
464 for (m = n+1, j = i+di; m < sz; m++, j += di) {
465 if (state->flags[j] & F_BLACK) continue;
466 if (state->nums[i] != state->nums[j]) continue;
467
468 nerr++; /* ok, we have two numbers the same in a row. */
469 if (!mark_errors) continue;
470
471 /* If we have two circles in the same row around
472 * two identical numbers, they are _both_ wrong. */
473 if ((state->flags[i] & F_CIRCLE) &&
474 (state->flags[j] & F_CIRCLE)) {
475 state->flags[i] |= F_ERROR;
476 state->flags[j] |= F_ERROR;
477 }
478 /* Otherwise, if we have a circle, any other identical
479 * numbers in that row are obviously wrong. We don't
480 * highlight this, however, since it makes the process
481 * of solving the puzzle too easy (you circle a number
482 * and it promptly tells you which numbers to blacken! */
483 #if 0
484 else if (state->flags[i] & F_CIRCLE)
485 state->flags[j] |= F_ERROR;
486 else if (state->flags[j] & F_CIRCLE)
487 state->flags[i] |= F_ERROR;
488 #endif
489 }
490 }
491 return nerr;
492 }
493
494 static int check_complete(game_state *state, int mark_errors)
495 {
496 int *dsf = snewn(state->n, int);
497 int x, y, i, error = 0, nwhite, w = state->w, h = state->h;
498
499 if (mark_errors) {
500 for (i = 0; i < state->n; i++)
501 state->flags[i] &= ~F_ERROR;
502 }
503 connect_dsf(state, dsf);
504
505 /* Mark any black squares in groups of >1 as errors.
506 * Count number of white squares. */
507 nwhite = 0;
508 for (i = 0; i < state->n; i++) {
509 if (state->flags[i] & F_BLACK) {
510 if (dsf_size(dsf, i) > 1) {
511 error += 1;
512 if (mark_errors)
513 state->flags[i] |= F_ERROR;
514 }
515 } else
516 nwhite += 1;
517 }
518
519 /* Check attributes of white squares, row- and column-wise. */
520 for (x = 0; x < w; x++) /* check cols from (x,0) */
521 error += check_rowcol(state, x, w, h, mark_errors);
522 for (y = 0; y < h; y++) /* check rows from (0,y) */
523 error += check_rowcol(state, y*w, 1, w, mark_errors);
524
525 /* mark (all) white regions as an error if there is more than one.
526 * may want to make this less in-your-face (by only marking
527 * the smallest region as an error, for example -- but what if we
528 * have two regions of identical size?) */
529 for (i = 0; i < state->n; i++) {
530 if (!(state->flags[i] & F_BLACK) &&
531 dsf_size(dsf, i) < nwhite) {
532 error += 1;
533 if (mark_errors)
534 state->flags[i] |= F_ERROR;
535 }
536 }
537
538 sfree(dsf);
539 return (error > 0) ? 0 : 1;
540 }
541
542 static char *game_state_diff(game_state *src, game_state *dst, int issolve)
543 {
544 char *ret = NULL, buf[80], c;
545 int retlen = 0, x, y, i, k;
546 unsigned int fmask = F_BLACK | F_CIRCLE;
547
548 assert(src->n == dst->n);
549
550 if (issolve) {
551 ret = sresize(ret, 3, char);
552 ret[0] = 'S'; ret[1] = ';'; ret[2] = '\0';
553 retlen += 2;
554 }
555
556 for (x = 0; x < dst->w; x++) {
557 for (y = 0; y < dst->h; y++) {
558 i = y*dst->w + x;
559 if ((src->flags[i] & fmask) != (dst->flags[i] & fmask)) {
560 assert((dst->flags[i] & fmask) != fmask);
561 if (dst->flags[i] & F_BLACK)
562 c = 'B';
563 else if (dst->flags[i] & F_CIRCLE)
564 c = 'C';
565 else
566 c = 'E';
567 k = sprintf(buf, "%c%d,%d;", (int)c, x, y);
568 ret = sresize(ret, retlen + k + 1, char);
569 strcpy(ret + retlen, buf);
570 retlen += k;
571 }
572 }
573 }
574 return ret;
575 }
576
577 /* --- Solver --- */
578
579 enum { BLACK, CIRCLE };
580
581 struct solver_op {
582 int x, y, op; /* op one of BLACK or CIRCLE. */
583 const char *desc; /* must be non-malloced. */
584 };
585
586 struct solver_state {
587 struct solver_op *ops;
588 int n_ops, n_alloc;
589 int *scratch;
590 };
591
592 static struct solver_state *solver_state_new(game_state *state)
593 {
594 struct solver_state *ss = snew(struct solver_state);
595
596 ss->ops = NULL;
597 ss->n_ops = ss->n_alloc = 0;
598 ss->scratch = snewn(state->n, int);
599
600 return ss;
601 }
602
603 static void solver_state_free(struct solver_state *ss)
604 {
605 sfree(ss->scratch);
606 if (ss->ops) sfree(ss->ops);
607 sfree(ss);
608 }
609
610 static void solver_op_add(struct solver_state *ss, int x, int y, int op, const char *desc)
611 {
612 struct solver_op *sop;
613
614 if (ss->n_alloc < ss->n_ops + 1) {
615 ss->n_alloc = (ss->n_alloc + 1) * 2;
616 ss->ops = sresize(ss->ops, ss->n_alloc, struct solver_op);
617 }
618 sop = &(ss->ops[ss->n_ops++]);
619 sop->x = x; sop->y = y; sop->op = op; sop->desc = desc;
620 debug(("added solver op %s ('%s') at (%d,%d)",
621 op == BLACK ? "BLACK" : "CIRCLE", desc, x, y));
622 }
623
624 static void solver_op_circle(game_state *state, struct solver_state *ss,
625 int x, int y)
626 {
627 int i = y*state->w + x;
628
629 if (!INGRID(state, x, y)) return;
630 if (state->flags[i] & F_BLACK) {
631 debug(("... solver wants to add auto-circle on black (%d,%d)", x, y));
632 state->impossible = 1;
633 return;
634 }
635 /* Only add circle op if it's not already circled. */
636 if (!(state->flags[i] & F_CIRCLE)) {
637 solver_op_add(ss, x, y, CIRCLE, "SB - adjacent to black square");
638 }
639 }
640
641 static void solver_op_blacken(game_state *state, struct solver_state *ss,
642 int x, int y, int num)
643 {
644 int i = y*state->w + x;
645
646 if (!INGRID(state, x, y)) return;
647 if (state->nums[i] != num) return;
648 if (state->flags[i] & F_CIRCLE) {
649 debug(("... solver wants to add auto-black on circled(%d,%d)", x, y));
650 state->impossible = 1;
651 return;
652 }
653 /* Only add black op if it's not already black. */
654 if (!(state->flags[i] & F_BLACK)) {
655 solver_op_add(ss, x, y, BLACK, "SC - number on same row/col as circled");
656 }
657 }
658
659 static int solver_ops_do(game_state *state, struct solver_state *ss)
660 {
661 int next_op = 0, i, x, y, n_ops = 0;
662 struct solver_op op;
663
664 /* Care here: solver_op_* may call solver_op_add which may extend the
665 * ss->n_ops. */
666
667 while (next_op < ss->n_ops) {
668 op = ss->ops[next_op++]; /* copy this away, it may get reallocated. */
669 i = op.y*state->w + op.x;
670
671 if (op.op == BLACK) {
672 if (state->flags[i] & F_CIRCLE) {
673 debug(("Solver wants to blacken circled square (%d,%d)!", op.x, op.y));
674 state->impossible = 1;
675 return n_ops;
676 }
677 if (!(state->flags[i] & F_BLACK)) {
678 debug(("... solver adding black at (%d,%d): %s", op.x, op.y, op.desc));
679 #ifdef STANDALONE_SOLVER
680 if (verbose)
681 printf("Adding black at (%d,%d): %s\n", op.x, op.y, op.desc);
682 #endif
683 state->flags[i] |= F_BLACK;
684 /*debug_state("State after adding black", state);*/
685 n_ops++;
686 solver_op_circle(state, ss, op.x-1, op.y);
687 solver_op_circle(state, ss, op.x+1, op.y);
688 solver_op_circle(state, ss, op.x, op.y-1);
689 solver_op_circle(state, ss, op.x, op.y+1);
690 }
691 } else {
692 if (state->flags[i] & F_BLACK) {
693 debug(("Solver wants to circle blackened square (%d,%d)!", op.x, op.y));
694 state->impossible = 1;
695 return n_ops;
696 }
697 if (!(state->flags[i] & F_CIRCLE)) {
698 debug(("... solver adding circle at (%d,%d): %s", op.x, op.y, op.desc));
699 #ifdef STANDALONE_SOLVER
700 if (verbose)
701 printf("Adding circle at (%d,%d): %s\n", op.x, op.y, op.desc);
702 #endif
703 state->flags[i] |= F_CIRCLE;
704 /*debug_state("State after adding circle", state);*/
705 n_ops++;
706 for (x = 0; x < state->w; x++) {
707 if (x != op.x)
708 solver_op_blacken(state, ss, x, op.y, state->nums[i]);
709 }
710 for (y = 0; y < state->h; y++) {
711 if (y != op.y)
712 solver_op_blacken(state, ss, op.x, y, state->nums[i]);
713 }
714 }
715 }
716 }
717 ss->n_ops = 0;
718 return n_ops;
719 }
720
721 /* If the grid has two identical numbers with one cell between them, the inner
722 * cell _must_ be white (and thus circled); (at least) one of the two must be
723 * black (since they're in the same column or row) and thus the middle cell is
724 * next to a black cell. */
725 static int solve_singlesep(game_state *state, struct solver_state *ss)
726 {
727 int x, y, i, ir, irr, id, idd, n_ops = ss->n_ops;
728
729 for (x = 0; x < state->w; x++) {
730 for (y = 0; y < state->h; y++) {
731 i = y*state->w + x;
732
733 /* Cell two to our right? */
734 ir = i + 1; irr = ir + 1;
735 if (x < (state->w-2) &&
736 state->nums[i] == state->nums[irr] &&
737 !(state->flags[ir] & F_CIRCLE)) {
738 solver_op_add(ss, x+1, y, CIRCLE, "SP/ST - between identical nums");
739 }
740 /* Cell two below us? */
741 id = i + state->w; idd = id + state->w;
742 if (y < (state->h-2) &&
743 state->nums[i] == state->nums[idd] &&
744 !(state->flags[id] & F_CIRCLE)) {
745 solver_op_add(ss, x, y+1, CIRCLE, "SP/ST - between identical nums");
746 }
747 }
748 }
749 return ss->n_ops - n_ops;
750 }
751
752 /* If we have two identical numbers next to each other (in a row or column),
753 * any other identical numbers in that column must be black. */
754 static int solve_doubles(game_state *state, struct solver_state *ss)
755 {
756 int x, y, i, ii, n_ops = ss->n_ops, xy;
757
758 for (y = 0, i = 0; y < state->h; y++) {
759 for (x = 0; x < state->w; x++, i++) {
760 assert(i == y*state->w+x);
761 if (state->flags[i] & F_BLACK) continue;
762
763 ii = i+1; /* check cell to our right. */
764 if (x < (state->w-1) &&
765 !(state->flags[ii] & F_BLACK) &&
766 state->nums[i] == state->nums[ii]) {
767 for (xy = 0; xy < state->w; xy++) {
768 if (xy == x || xy == (x+1)) continue;
769 if (state->nums[y*state->w + xy] == state->nums[i] &&
770 !(state->flags[y*state->w + xy] & F_BLACK))
771 solver_op_add(ss, xy, y, BLACK, "PI - same row as pair");
772 }
773 }
774
775 ii = i+state->w; /* check cell below us */
776 if (y < (state->h-1) &&
777 !(state->flags[ii] & F_BLACK) &&
778 state->nums[i] == state->nums[ii]) {
779 for (xy = 0; xy < state->h; xy++) {
780 if (xy == y || xy == (y+1)) continue;
781 if (state->nums[xy*state->w + x] == state->nums[i] &&
782 !(state->flags[xy*state->w + x] & F_BLACK))
783 solver_op_add(ss, x, xy, BLACK, "PI - same col as pair");
784 }
785 }
786 }
787 }
788 return ss->n_ops - n_ops;
789 }
790
791 /* If a white square has all-but-one possible adjacent squares black, the
792 * one square left over must be white. */
793 static int solve_allblackbutone(game_state *state, struct solver_state *ss)
794 {
795 int x, y, i, n_ops = ss->n_ops, xd, yd, id, ifree;
796 int dis[4], d;
797
798 dis[0] = -state->w;
799 dis[1] = 1;
800 dis[2] = state->w;
801 dis[3] = -1;
802
803 for (y = 0, i = 0; y < state->h; y++) {
804 for (x = 0; x < state->w; x++, i++) {
805 assert(i == y*state->w+x);
806 if (state->flags[i] & F_BLACK) continue;
807
808 ifree = -1;
809 for (d = 0; d < 4; d++) {
810 xd = x + dxs[d]; yd = y + dys[d]; id = i + dis[d];
811 if (!INGRID(state, xd, yd)) continue;
812
813 if (state->flags[id] & F_CIRCLE)
814 goto skip; /* this cell already has a way out */
815 if (!(state->flags[id] & F_BLACK)) {
816 if (ifree != -1)
817 goto skip; /* this cell has >1 white cell around it. */
818 ifree = id;
819 }
820 }
821 if (ifree != -1)
822 solver_op_add(ss, ifree%state->w, ifree/state->w, CIRCLE,
823 "CC/CE/QM: white cell with single non-black around it");
824 else {
825 debug(("White cell with no escape at (%d,%d)", x, y));
826 state->impossible = 1;
827 return 0;
828 }
829 skip: ;
830 }
831 }
832 return ss->n_ops - n_ops;
833 }
834
835 /* If we have 4 numbers the same in a 2x2 corner, the far corner and the
836 * diagonally-adjacent square must both be black.
837 * If we have 3 numbers the same in a 2x2 corner, the apex of the L
838 * thus formed must be black.
839 * If we have 2 numbers the same in a 2x2 corner, the non-same cell
840 * one away from the corner must be white. */
841 static void solve_corner(game_state *state, struct solver_state *ss,
842 int x, int y, int dx, int dy)
843 {
844 int is[4], ns[4], xx, yy, w = state->w;
845
846 for (yy = 0; yy < 2; yy++) {
847 for (xx = 0; xx < 2; xx++) {
848 is[yy*2+xx] = (y + dy*yy) * w + (x + dx*xx);
849 ns[yy*2+xx] = state->nums[is[yy*2+xx]];
850 }
851 } /* order is now (corner, side 1, side 2, inner) */
852
853 if (ns[0] == ns[1] && ns[0] == ns[2] && ns[0] == ns[3]) {
854 solver_op_add(ss, is[0]%w, is[0]/w, BLACK, "QC: corner with 4 matching");
855 solver_op_add(ss, is[3]%w, is[3]/w, BLACK, "QC: corner with 4 matching");
856 } else if (ns[0] == ns[1] && ns[0] == ns[2]) {
857 /* corner and 2 sides: apex is corner. */
858 solver_op_add(ss, is[0]%w, is[0]/w, BLACK, "TC: corner apex from 3 matching");
859 } else if (ns[1] == ns[2] && ns[1] == ns[3]) {
860 /* side, side, fourth: apex is fourth. */
861 solver_op_add(ss, is[3]%w, is[3]/w, BLACK, "TC: inside apex from 3 matching");
862 } else if (ns[0] == ns[1] || ns[1] == ns[3]) {
863 /* either way here we match the non-identical side. */
864 solver_op_add(ss, is[2]%w, is[2]/w, CIRCLE, "DC: corner with 2 matching");
865 } else if (ns[0] == ns[2] || ns[2] == ns[3]) {
866 /* ditto */
867 solver_op_add(ss, is[1]%w, is[1]/w, CIRCLE, "DC: corner with 2 matching");
868 }
869 }
870
871 static int solve_corners(game_state *state, struct solver_state *ss)
872 {
873 int n_ops = ss->n_ops;
874
875 solve_corner(state, ss, 0, 0, 1, 1);
876 solve_corner(state, ss, state->w-1, 0, -1, 1);
877 solve_corner(state, ss, state->w-1, state->h-1, -1, -1);
878 solve_corner(state, ss, 0, state->h-1, 1, -1);
879
880 return ss->n_ops - n_ops;
881 }
882
883 /* If you have the following situation:
884 * ...
885 * ...x A x x y A x...
886 * ...x B x x B y x...
887 * ...
888 * then both squares marked 'y' must be white. One of the left-most A or B must
889 * be white (since two side-by-side black cells are disallowed), which means
890 * that the corresponding right-most A or B must be black (since you can't
891 * have two of the same number on one line); thus, the adjacent squares
892 * to that right-most A or B must be white, which include the two marked 'y'
893 * in either case.
894 * Obviously this works in any row or column. It also works if A == B.
895 * It doesn't work for the degenerate case:
896 * ...x A A x x
897 * ...x B y x x
898 * where the square marked 'y' isn't necessarily white (consider the left-most A
899 * is black).
900 *
901 * */
902 static void solve_offsetpair_pair(game_state *state, struct solver_state *ss,
903 int x1, int y1, int x2, int y2)
904 {
905 int ox, oy, w = state->w, ax, ay, an, d, dx[2], dy[2], dn, xd, yd;
906
907 if (x1 == x2) { /* same column */
908 ox = 1; oy = 0;
909 } else {
910 assert(y1 == y2);
911 ox = 0; oy = 1;
912 }
913
914 /* We try adjacent to (x1,y1) and the two diag. adjacent to (x2, y2).
915 * We expect to be called twice, once each way around. */
916 ax = x1+ox; ay = y1+oy;
917 assert(INGRID(state, ax, ay));
918 an = state->nums[ay*w + ax];
919
920 dx[0] = x2 + ox + oy; dx[1] = x2 + ox - oy;
921 dy[0] = y2 + oy + ox; dy[1] = y2 + oy - ox;
922
923 for (d = 0; d < 2; d++) {
924 if (INGRID(state, dx[d], dy[d]) && (dx[d] != ax || dy[d] != ay)) {
925 /* The 'dx != ax || dy != ay' removes the degenerate case,
926 * mentioned above. */
927 dn = state->nums[dy[d]*w + dx[d]];
928 if (an == dn) {
929 /* We have a match; so (WLOG) the 'A' marked above are at
930 * (x1,y1) and (x2,y2), and the 'B' are at (ax,ay) and (dx,dy). */
931 debug(("Found offset-pair: %d at (%d,%d) and (%d,%d)",
932 state->nums[y1*w + x1], x1, y1, x2, y2));
933 debug((" and: %d at (%d,%d) and (%d,%d)",
934 an, ax, ay, dx[d], dy[d]));
935
936 xd = dx[d] - x2; yd = dy[d] - y2;
937 solver_op_add(ss, x2 + xd, y2, CIRCLE, "IP: next to offset-pair");
938 solver_op_add(ss, x2, y2 + yd, CIRCLE, "IP: next to offset-pair");
939 }
940 }
941 }
942 }
943
944 static int solve_offsetpair(game_state *state, struct solver_state *ss)
945 {
946 int n_ops = ss->n_ops, x, xx, y, yy, n1, n2;
947
948 for (x = 0; x < state->w-1; x++) {
949 for (y = 0; y < state->h; y++) {
950 n1 = state->nums[y*state->w + x];
951 for (yy = y+1; yy < state->h; yy++) {
952 n2 = state->nums[yy*state->w + x];
953 if (n1 == n2) {
954 solve_offsetpair_pair(state, ss, x, y, x, yy);
955 solve_offsetpair_pair(state, ss, x, yy, x, y);
956 }
957 }
958 }
959 }
960 for (y = 0; y < state->h-1; y++) {
961 for (x = 0; x < state->w; x++) {
962 n1 = state->nums[y*state->w + x];
963 for (xx = x+1; xx < state->w; xx++) {
964 n2 = state->nums[y*state->w + xx];
965 if (n1 == n2) {
966 solve_offsetpair_pair(state, ss, x, y, xx, y);
967 solve_offsetpair_pair(state, ss, xx, y, x, y);
968 }
969 }
970 }
971 }
972 return ss->n_ops - n_ops;
973 }
974
975 static int solve_hassinglewhiteregion(game_state *state, struct solver_state *ss)
976 {
977 int i, j, nwhite = 0, lwhite = -1, szwhite, start, end, next, a, d, x, y;
978
979 for (i = 0; i < state->n; i++) {
980 if (!(state->flags[i] & F_BLACK)) {
981 nwhite++;
982 lwhite = i;
983 }
984 state->flags[i] &= ~F_SCRATCH;
985 }
986 if (lwhite == -1) {
987 debug(("solve_hassinglewhite: no white squares found!"));
988 state->impossible = 1;
989 return 0;
990 }
991 /* We don't use connect_dsf here; it's too slow, and there's a quicker
992 * algorithm if all we want is the size of one region. */
993 /* Having written this, this algorithm is only about 5% faster than
994 * using a dsf. */
995 memset(ss->scratch, -1, state->n * sizeof(int));
996 ss->scratch[0] = lwhite;
997 state->flags[lwhite] |= F_SCRATCH;
998 start = 0; end = next = 1;
999 while (start < end) {
1000 for (a = start; a < end; a++) {
1001 i = ss->scratch[a]; assert(i != -1);
1002 for (d = 0; d < 4; d++) {
1003 x = (i % state->w) + dxs[d];
1004 y = (i / state->w) + dys[d];
1005 j = y*state->w + x;
1006 if (!INGRID(state, x, y)) continue;
1007 if (state->flags[j] & (F_BLACK | F_SCRATCH)) continue;
1008 ss->scratch[next++] = j;
1009 state->flags[j] |= F_SCRATCH;
1010 }
1011 }
1012 start = end; end = next;
1013 }
1014 szwhite = next;
1015 return (szwhite == nwhite) ? 1 : 0;
1016 }
1017
1018 static void solve_removesplits_check(game_state *state, struct solver_state *ss,
1019 int x, int y)
1020 {
1021 int i = y*state->w + x, issingle;
1022
1023 if (!INGRID(state, x, y)) return;
1024 if ((state->flags[i] & F_CIRCLE) || (state->flags[i] & F_BLACK))
1025 return;
1026
1027 /* If putting a black square at (x,y) would make the white region
1028 * non-contiguous, it must be circled. */
1029 state->flags[i] |= F_BLACK;
1030 issingle = solve_hassinglewhiteregion(state, ss);
1031 state->flags[i] &= ~F_BLACK;
1032
1033 if (!issingle)
1034 solver_op_add(ss, x, y, CIRCLE, "MC: black square here would split white region");
1035 }
1036
1037 /* For all black squares, search in squares diagonally adjacent to see if
1038 * we can rule out putting a black square there (because it would make the
1039 * white region non-contiguous). */
1040 /* This function is likely to be somewhat slow. */
1041 static int solve_removesplits(game_state *state, struct solver_state *ss)
1042 {
1043 int i, x, y, n_ops = ss->n_ops;
1044
1045 if (!solve_hassinglewhiteregion(state, ss)) {
1046 debug(("solve_removesplits: white region is not contiguous at start!"));
1047 state->impossible = 1;
1048 return 0;
1049 }
1050
1051 for (i = 0; i < state->n; i++) {
1052 if (!(state->flags[i] & F_BLACK)) continue;
1053
1054 x = i%state->w; y = i/state->w;
1055 solve_removesplits_check(state, ss, x-1, y-1);
1056 solve_removesplits_check(state, ss, x+1, y-1);
1057 solve_removesplits_check(state, ss, x+1, y+1);
1058 solve_removesplits_check(state, ss, x-1, y+1);
1059 }
1060 return ss->n_ops - n_ops;
1061 }
1062
1063 /*
1064 * This function performs a solver step that isn't implicit in the rules
1065 * of the game and is thus treated somewhat differently.
1066 *
1067 * It marks cells whose number does not exist elsewhere in its row/column
1068 * with circles. As it happens the game generator here does mean that this
1069 * is always correct, but it's a solving method that people should not have
1070 * to rely upon (except in the hidden 'sneaky' difficulty setting) and so
1071 * all grids at 'tricky' and above are checked to make sure that the grid
1072 * is no easier if this solving step is performed beforehand.
1073 *
1074 * Calling with ss=NULL just returns the number of sneaky deductions that
1075 * would have been made.
1076 */
1077 static int solve_sneaky(game_state *state, struct solver_state *ss)
1078 {
1079 int i, ii, x, xx, y, yy, nunique = 0;
1080
1081 /* Clear SCRATCH flags. */
1082 for (i = 0; i < state->n; i++) state->flags[i] &= ~F_SCRATCH;
1083
1084 for (x = 0; x < state->w; x++) {
1085 for (y = 0; y < state->h; y++) {
1086 i = y*state->w + x;
1087
1088 /* Check for duplicate numbers on our row, mark (both) if so */
1089 for (xx = x; xx < state->w; xx++) {
1090 ii = y*state->w + xx;
1091 if (i == ii) continue;
1092
1093 if (state->nums[i] == state->nums[ii]) {
1094 state->flags[i] |= F_SCRATCH;
1095 state->flags[ii] |= F_SCRATCH;
1096 }
1097 }
1098
1099 /* Check for duplicate numbers on our col, mark (both) if so */
1100 for (yy = y; yy < state->h; yy++) {
1101 ii = yy*state->w + x;
1102 if (i == ii) continue;
1103
1104 if (state->nums[i] == state->nums[ii]) {
1105 state->flags[i] |= F_SCRATCH;
1106 state->flags[ii] |= F_SCRATCH;
1107 }
1108 }
1109 }
1110 }
1111
1112 /* Any cell with no marking has no duplicates on its row or column:
1113 * set its CIRCLE. */
1114 for (i = 0; i < state->n; i++) {
1115 if (!(state->flags[i] & F_SCRATCH)) {
1116 if (ss) solver_op_add(ss, i%state->w, i/state->w, CIRCLE,
1117 "SNEAKY: only one of its number in row and col");
1118 nunique += 1;
1119 } else
1120 state->flags[i] &= ~F_SCRATCH;
1121 }
1122 return nunique;
1123 }
1124
1125 static int solve_specific(game_state *state, int diff, int sneaky)
1126 {
1127 struct solver_state *ss = solver_state_new(state);
1128
1129 if (sneaky) solve_sneaky(state, ss);
1130
1131 /* Some solver operations we only have to perform once --
1132 * they're only based on the numbers available, and not black
1133 * squares or circles which may be added later. */
1134
1135 solve_singlesep(state, ss); /* never sets impossible */
1136 solve_doubles(state, ss); /* ditto */
1137 solve_corners(state, ss); /* ditto */
1138
1139 if (diff >= DIFF_TRICKY)
1140 solve_offsetpair(state, ss); /* ditto */
1141
1142 while (1) {
1143 if (ss->n_ops > 0) solver_ops_do(state, ss);
1144 if (state->impossible) break;
1145
1146 if (solve_allblackbutone(state, ss) > 0) continue;
1147 if (state->impossible) break;
1148
1149 if (diff >= DIFF_TRICKY) {
1150 if (solve_removesplits(state, ss) > 0) continue;
1151 if (state->impossible) break;
1152 }
1153
1154 break;
1155 }
1156
1157 solver_state_free(ss);
1158 return state->impossible ? -1 : check_complete(state, 0);
1159 }
1160
1161 static char *solve_game(game_state *state, game_state *currstate,
1162 char *aux, char **error)
1163 {
1164 game_state *solved = dup_game(currstate);
1165 char *move = NULL;
1166
1167 if (solve_specific(solved, DIFF_ANY, 0) > 0) goto solved;
1168 free_game(solved);
1169
1170 solved = dup_game(state);
1171 if (solve_specific(solved, DIFF_ANY, 0) > 0) goto solved;
1172 free_game(solved);
1173
1174 *error = "Unable to solve puzzle.";
1175 return NULL;
1176
1177 solved:
1178 move = game_state_diff(currstate, solved, 1);
1179 free_game(solved);
1180 return move;
1181 }
1182
1183 /* --- Game generation --- */
1184
1185 /* A correctly completed Hitori board is essentially a latin square
1186 * (no duplicated numbers in any row or column) with black squares
1187 * added such that no black square touches another, and the white
1188 * squares make a contiguous region.
1189 *
1190 * So we can generate it by:
1191 * constructing a latin square
1192 * adding black squares at random (minding the constraints)
1193 * altering the numbers under the new black squares such that
1194 the solver gets a headstart working out where they are.
1195 */
1196
1197 static int new_game_is_good(game_params *params,
1198 game_state *state, game_state *tosolve)
1199 {
1200 int sret, sret_easy = 0;
1201
1202 memcpy(tosolve->nums, state->nums, state->n * sizeof(int));
1203 memset(tosolve->flags, 0, state->n * sizeof(unsigned int));
1204 tosolve->completed = tosolve->impossible = 0;
1205
1206 /*
1207 * We try and solve it twice, once at our requested difficulty level
1208 * (ensuring it's soluble at all) and once at the level below (if
1209 * it exists), which we hope to fail: if you can also solve it at
1210 * the level below then it's too easy and we have to try again.
1211 *
1212 * With this puzzle in particular there's an extra finesse, which is
1213 * that we check that the generated puzzle isn't too easy _with
1214 * an extra solver step first_, which is the 'sneaky' mode of deductions
1215 * (asserting that any number which fulfils the latin-square rules
1216 * on its row/column must be white). This is an artefact of the
1217 * generation process and not implicit in the rules, so we don't want
1218 * people to be able to use it to make the puzzle easier.
1219 */
1220
1221 assert(params->diff < DIFF_MAX);
1222 sret = solve_specific(tosolve, params->diff, 0);
1223 if (params->diff > DIFF_EASY) {
1224 memset(tosolve->flags, 0, state->n * sizeof(unsigned int));
1225 tosolve->completed = tosolve->impossible = 0;
1226
1227 /* this is the only time the 'sneaky' flag is set to 1. */
1228 sret_easy = solve_specific(tosolve, params->diff-1, 1);
1229 }
1230
1231 if (sret <= 0 || sret_easy > 0) {
1232 debug(("Generated puzzle %s at chosen difficulty %s",
1233 sret <= 0 ? "insoluble" : "too easy",
1234 singles_diffnames[params->diff]));
1235 return 0;
1236 }
1237 return 1;
1238 }
1239
1240 #define MAXTRIES 20
1241
1242 static int best_black_col(game_state *state, random_state *rs, int *scratch,
1243 int i, int *rownums, int *colnums)
1244 {
1245 int w = state->w, x = i%w, y = i/w, j, o = state->o;
1246
1247 /* Randomise the list of numbers to try. */
1248 for (i = 0; i < o; i++) scratch[i] = i;
1249 shuffle(scratch, o, sizeof(int), rs);
1250
1251 /* Try each number in turn, first giving preference to removing
1252 * latin-square characteristics (i.e. those numbers which only
1253 * occur once in a row/column). The '&&' here, although intuitively
1254 * wrong, results in a smaller number of 'sneaky' deductions on
1255 * solvable boards. */
1256 for (i = 0; i < o; i++) {
1257 j = scratch[i] + 1;
1258 if (rownums[y*o + j-1] == 1 && colnums[x*o + j-1] == 1)
1259 goto found;
1260 }
1261
1262 /* Then try each number in turn returning the first one that's
1263 * not actually unique in its row/column (see comment below) */
1264 for (i = 0; i < o; i++) {
1265 j = scratch[i] + 1;
1266 if (rownums[y*o + j-1] != 0 || colnums[x*o + j-1] != 0)
1267 goto found;
1268 }
1269 assert(!"unable to place number under black cell.");
1270 return 0;
1271
1272 found:
1273 /* Update column and row counts assuming this number will be placed. */
1274 rownums[y*o + j-1] += 1;
1275 colnums[x*o + j-1] += 1;
1276 return j;
1277 }
1278
1279 static char *new_game_desc(game_params *params, random_state *rs,
1280 char **aux, int interactive)
1281 {
1282 game_state *state = blank_game(params->w, params->h);
1283 game_state *tosolve = blank_game(params->w, params->h);
1284 int i, j, *scratch, *rownums, *colnums, x, y, ntries;
1285 int w = state->w, h = state->h, o = state->o;
1286 char *ret;
1287 digit *latin;
1288 struct solver_state *ss = solver_state_new(state);
1289
1290 scratch = snewn(state->n, int);
1291 rownums = snewn(h*o, int);
1292 colnums = snewn(w*o, int);
1293
1294 generate:
1295 ss->n_ops = 0;
1296 debug(("Starting game generation, size %dx%d", w, h));
1297
1298 memset(state->flags, 0, state->n*sizeof(unsigned int));
1299
1300 /* First, generate the latin rectangle.
1301 * The order of this, o, is max(w,h). */
1302 latin = latin_generate_rect(w, h, rs);
1303 for (i = 0; i < state->n; i++)
1304 state->nums[i] = (int)latin[i];
1305 sfree(latin);
1306 debug_state("State after latin square", state);
1307
1308 /* Add black squares at random, using bits of solver as we go (to lay
1309 * white squares), until we can lay no more blacks. */
1310 for (i = 0; i < state->n; i++)
1311 scratch[i] = i;
1312 shuffle(scratch, state->n, sizeof(int), rs);
1313 for (j = 0; j < state->n; j++) {
1314 i = scratch[j];
1315 if ((state->flags[i] & F_CIRCLE) || (state->flags[i] & F_BLACK)) {
1316 debug(("generator skipping (%d,%d): %s", i%w, i/w,
1317 (state->flags[i] & F_CIRCLE) ? "CIRCLE" : "BLACK"));
1318 continue; /* solver knows this must be one or the other already. */
1319 }
1320
1321 /* Add a random black cell... */
1322 solver_op_add(ss, i%w, i/w, BLACK, "Generator: adding random black cell");
1323 solver_ops_do(state, ss);
1324
1325 /* ... and do as well as we know how to lay down whites that are now forced. */
1326 solve_allblackbutone(state, ss);
1327 solver_ops_do(state, ss);
1328
1329 solve_removesplits(state, ss);
1330 solver_ops_do(state, ss);
1331
1332 if (state->impossible) {
1333 debug(("generator made impossible, restarting..."));
1334 goto generate;
1335 }
1336 }
1337 debug_state("State after adding blacks", state);
1338
1339 /* Now we know which squares are white and which are black, we lay numbers
1340 * under black squares at random, except that the number must appear in
1341 * white cells at least once more in the same column or row as that [black]
1342 * square. That's necessary to avoid multiple solutions, where blackening
1343 * squares in the finished puzzle becomes optional. We use two arrays:
1344 *
1345 * rownums[ROW * o + NUM-1] is the no. of white cells containing NUM in y=ROW
1346 * colnums[COL * o + NUM-1] is the no. of white cells containing NUM in x=COL
1347 */
1348
1349 memset(rownums, 0, h*o * sizeof(int));
1350 memset(colnums, 0, w*o * sizeof(int));
1351 for (i = 0; i < state->n; i++) {
1352 if (state->flags[i] & F_BLACK) continue;
1353 j = state->nums[i];
1354 x = i%w; y = i/w;
1355 rownums[y * o + j-1] += 1;
1356 colnums[x * o + j-1] += 1;
1357 }
1358
1359 ntries = 0;
1360 randomise:
1361 for (i = 0; i < state->n; i++) {
1362 if (!(state->flags[i] & F_BLACK)) continue;
1363 state->nums[i] = best_black_col(state, rs, scratch, i, rownums, colnums);
1364 }
1365 debug_state("State after adding numbers", state);
1366
1367 /* DIFF_ANY just returns whatever we first generated, for testing purposes. */
1368 if (params->diff != DIFF_ANY &&
1369 !new_game_is_good(params, state, tosolve)) {
1370 ntries++;
1371 if (ntries > MAXTRIES) {
1372 debug(("Ran out of randomisation attempts, re-generating."));
1373 goto generate;
1374 }
1375 debug(("Re-randomising numbers under black squares."));
1376 goto randomise;
1377 }
1378
1379 ret = generate_desc(state, 0);
1380
1381 free_game(tosolve);
1382 free_game(state);
1383 solver_state_free(ss);
1384 sfree(scratch);
1385 sfree(rownums);
1386 sfree(colnums);
1387
1388 return ret;
1389 }
1390
1391 static char *validate_desc(game_params *params, char *desc)
1392 {
1393 char *ret = NULL;
1394
1395 unpick_desc(params, desc, NULL, &ret);
1396 return ret;
1397 }
1398
1399 static game_state *new_game(midend *me, game_params *params, char *desc)
1400 {
1401 game_state *state = NULL;
1402
1403 unpick_desc(params, desc, &state, NULL);
1404 if (!state) assert(!"new_game failed to unpick");
1405 return state;
1406 }
1407
1408 /* --- Game UI and move routines --- */
1409
1410 struct game_ui {
1411 int cx, cy, cshow;
1412 int show_black_nums;
1413 };
1414
1415 static game_ui *new_ui(game_state *state)
1416 {
1417 game_ui *ui = snew(game_ui);
1418
1419 ui->cx = ui->cy = ui->cshow = 0;
1420 ui->show_black_nums = 0;
1421
1422 return ui;
1423 }
1424
1425 static void free_ui(game_ui *ui)
1426 {
1427 sfree(ui);
1428 }
1429
1430 static char *encode_ui(game_ui *ui)
1431 {
1432 return NULL;
1433 }
1434
1435 static void decode_ui(game_ui *ui, char *encoding)
1436 {
1437 }
1438
1439 static void game_changed_state(game_ui *ui, game_state *oldstate,
1440 game_state *newstate)
1441 {
1442 if (!oldstate->completed && newstate->completed)
1443 ui->cshow = 0;
1444 }
1445
1446 #define DS_BLACK 0x1
1447 #define DS_CIRCLE 0x2
1448 #define DS_CURSOR 0x4
1449 #define DS_BLACK_NUM 0x8
1450 #define DS_ERROR 0x10
1451 #define DS_FLASH 0x20
1452 #define DS_IMPOSSIBLE 0x40
1453
1454 struct game_drawstate {
1455 int tilesize, started, solved;
1456 int w, h, n;
1457
1458 unsigned int *flags;
1459 };
1460
1461 static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
1462 int mx, int my, int button)
1463 {
1464 char buf[80], c;
1465 int i, x = FROMCOORD(mx), y = FROMCOORD(my);
1466 enum { NONE, TOGGLE_BLACK, TOGGLE_CIRCLE, UI } action = NONE;
1467
1468 if (IS_CURSOR_MOVE(button)) {
1469 move_cursor(button, &ui->cx, &ui->cy, state->w, state->h, 1);
1470 ui->cshow = 1;
1471 action = UI;
1472 } else if (IS_CURSOR_SELECT(button)) {
1473 x = ui->cx; y = ui->cy;
1474 if (!ui->cshow) {
1475 action = UI;
1476 ui->cshow = 1;
1477 }
1478 if (button == CURSOR_SELECT) {
1479 action = TOGGLE_BLACK;
1480 } else if (button == CURSOR_SELECT2) {
1481 action = TOGGLE_CIRCLE;
1482 }
1483 } else if (IS_MOUSE_DOWN(button)) {
1484 if (ui->cshow) {
1485 ui->cshow = 0;
1486 action = UI;
1487 }
1488 if (!INGRID(state, x, y)) {
1489 ui->show_black_nums = 1 - ui->show_black_nums;
1490 action = UI; /* this wants to be a per-game option. */
1491 } else if (button == LEFT_BUTTON) {
1492 action = TOGGLE_BLACK;
1493 } else if (button == RIGHT_BUTTON) {
1494 action = TOGGLE_CIRCLE;
1495 }
1496 }
1497 if (action == UI) return "";
1498
1499 if (action == TOGGLE_BLACK || action == TOGGLE_CIRCLE) {
1500 i = y * state->w + x;
1501 if (state->flags[i] & (F_BLACK | F_CIRCLE))
1502 c = 'E';
1503 else
1504 c = (action == TOGGLE_BLACK) ? 'B' : 'C';
1505 sprintf(buf, "%c%d,%d", (int)c, x, y);
1506 return dupstr(buf);
1507 }
1508
1509 return NULL;
1510 }
1511
1512 static game_state *execute_move(game_state *state, char *move)
1513 {
1514 game_state *ret = dup_game(state);
1515 int x, y, i, n;
1516
1517 debug(("move: %s", move));
1518
1519 while (*move) {
1520 char c = *move;
1521 if (c == 'B' || c == 'C' || c == 'E') {
1522 move++;
1523 if (sscanf(move, "%d,%d%n", &x, &y, &n) != 2 ||
1524 !INGRID(state, x, y))
1525 goto badmove;
1526
1527 i = y*ret->w + x;
1528 ret->flags[i] &= ~(F_CIRCLE | F_BLACK); /* empty first, always. */
1529 if (c == 'B')
1530 ret->flags[i] |= F_BLACK;
1531 else if (c == 'C')
1532 ret->flags[i] |= F_CIRCLE;
1533 move += n;
1534 } else if (c == 'S') {
1535 move++;
1536 ret->used_solve = 1;
1537 } else
1538 goto badmove;
1539
1540 if (*move == ';')
1541 move++;
1542 else if (*move)
1543 goto badmove;
1544 }
1545 if (check_complete(ret, 1)) ret->completed = 1;
1546 return ret;
1547
1548 badmove:
1549 free_game(ret);
1550 return NULL;
1551 }
1552
1553 /* ----------------------------------------------------------------------
1554 * Drawing routines.
1555 */
1556
1557 static void game_compute_size(game_params *params, int tilesize,
1558 int *x, int *y)
1559 {
1560 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
1561 struct { int tilesize; } ads, *ds = &ads;
1562 ads.tilesize = tilesize;
1563
1564 *x = TILE_SIZE * params->w + 2 * BORDER;
1565 *y = TILE_SIZE * params->h + 2 * BORDER;
1566 }
1567
1568 static void game_set_size(drawing *dr, game_drawstate *ds,
1569 game_params *params, int tilesize)
1570 {
1571 ds->tilesize = tilesize;
1572 }
1573
1574 static float *game_colours(frontend *fe, int *ncolours)
1575 {
1576 float *ret = snewn(3 * NCOLOURS, float);
1577 int i;
1578
1579 game_mkhighlight(fe, ret, COL_BACKGROUND, COL_HIGHLIGHT, COL_LOWLIGHT);
1580 for (i = 0; i < 3; i++) {
1581 ret[COL_BLACK * 3 + i] = 0.0F;
1582 ret[COL_BLACKNUM * 3 + i] = 0.4F;
1583 ret[COL_WHITE * 3 + i] = 1.0F;
1584 ret[COL_GRID * 3 + i] = ret[COL_LOWLIGHT * 3 + i];
1585 }
1586 ret[COL_CURSOR * 3 + 0] = 0.2F;
1587 ret[COL_CURSOR * 3 + 1] = 0.8F;
1588 ret[COL_CURSOR * 3 + 2] = 0.0F;
1589
1590 ret[COL_ERROR * 3 + 0] = 1.0F;
1591 ret[COL_ERROR * 3 + 1] = 0.0F;
1592 ret[COL_ERROR * 3 + 2] = 0.0F;
1593
1594 *ncolours = NCOLOURS;
1595 return ret;
1596 }
1597
1598 static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
1599 {
1600 struct game_drawstate *ds = snew(struct game_drawstate);
1601
1602 ds->tilesize = ds->started = ds->solved = 0;
1603 ds->w = state->w;
1604 ds->h = state->h;
1605 ds->n = state->n;
1606
1607 ds->flags = snewn(state->n, unsigned int);
1608
1609 memset(ds->flags, 0, state->n*sizeof(unsigned int));
1610
1611 return ds;
1612 }
1613
1614 static void game_free_drawstate(drawing *dr, game_drawstate *ds)
1615 {
1616 sfree(ds->flags);
1617 sfree(ds);
1618 }
1619
1620 static void tile_redraw(drawing *dr, game_drawstate *ds, int x, int y,
1621 int num, unsigned int f)
1622 {
1623 int tcol, bg, dnum, cx, cy, tsz;
1624 char buf[32];
1625
1626 if (f & DS_BLACK) {
1627 bg = (f & DS_ERROR) ? COL_ERROR : COL_BLACK;
1628 tcol = COL_BLACKNUM;
1629 dnum = (f & DS_BLACK_NUM) ? 1 : 0;
1630 } else {
1631 bg = (f & DS_FLASH) ? COL_LOWLIGHT : COL_BACKGROUND;
1632 tcol = (f & DS_ERROR) ? COL_ERROR : COL_BLACK;
1633 dnum = 1;
1634 }
1635
1636 cx = x + TILE_SIZE/2; cy = y + TILE_SIZE/2;
1637
1638 draw_rect(dr, x, y, TILE_SIZE, TILE_SIZE, bg);
1639 draw_rect_outline(dr, x, y, TILE_SIZE, TILE_SIZE,
1640 (f & DS_IMPOSSIBLE) ? COL_ERROR : COL_GRID);
1641
1642 if (f & DS_CIRCLE) {
1643 draw_circle(dr, cx, cy, CRAD, tcol, tcol);
1644 draw_circle(dr, cx, cy, CRAD-1, bg, tcol);
1645 }
1646
1647 if (dnum) {
1648 sprintf(buf, "%d", num);
1649 if (strlen(buf) == 1)
1650 tsz = TEXTSZ;
1651 else
1652 tsz = (CRAD*2 - 1) / strlen(buf);
1653 draw_text(dr, cx, cy, FONT_VARIABLE, tsz,
1654 ALIGN_VCENTRE | ALIGN_HCENTRE, tcol, buf);
1655 }
1656
1657 if (f & DS_CURSOR)
1658 draw_rect_corners(dr, cx, cy, TEXTSZ/2, COL_CURSOR);
1659
1660 draw_update(dr, x, y, TILE_SIZE, TILE_SIZE);
1661 }
1662
1663 static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
1664 game_state *state, int dir, game_ui *ui,
1665 float animtime, float flashtime)
1666 {
1667 int x, y, i, flash;
1668 unsigned int f;
1669
1670 flash = (int)(flashtime * 5 / FLASH_TIME) % 2;
1671
1672 if (!ds->started) {
1673 int wsz = TILE_SIZE * state->w + 2 * BORDER;
1674 int hsz = TILE_SIZE * state->h + 2 * BORDER;
1675 draw_rect(dr, 0, 0, wsz, hsz, COL_BACKGROUND);
1676 draw_rect_outline(dr, COORD(0)-1, COORD(0)-1,
1677 TILE_SIZE * state->w + 2, TILE_SIZE * state->h + 2,
1678 COL_GRID);
1679 draw_update(dr, 0, 0, wsz, hsz);
1680 }
1681 for (x = 0; x < state->w; x++) {
1682 for (y = 0; y < state->h; y++) {
1683 i = y*state->w + x;
1684 f = 0;
1685
1686 if (flash) f |= DS_FLASH;
1687 if (state->impossible) f |= DS_IMPOSSIBLE;
1688
1689 if (ui->cshow && x == ui->cx && y == ui->cy)
1690 f |= DS_CURSOR;
1691 if (state->flags[i] & F_BLACK) {
1692 f |= DS_BLACK;
1693 if (ui->show_black_nums) f |= DS_BLACK_NUM;
1694 }
1695 if (state->flags[i] & F_CIRCLE)
1696 f |= DS_CIRCLE;
1697 if (state->flags[i] & F_ERROR)
1698 f |= DS_ERROR;
1699
1700 if (!ds->started || ds->flags[i] != f) {
1701 tile_redraw(dr, ds, COORD(x), COORD(y),
1702 state->nums[i], f);
1703 ds->flags[i] = f;
1704 }
1705 }
1706 }
1707 ds->started = 1;
1708 }
1709
1710 static float game_anim_length(game_state *oldstate, game_state *newstate,
1711 int dir, game_ui *ui)
1712 {
1713 return 0.0F;
1714 }
1715
1716 static float game_flash_length(game_state *oldstate, game_state *newstate,
1717 int dir, game_ui *ui)
1718 {
1719 if (!oldstate->completed &&
1720 newstate->completed && !newstate->used_solve)
1721 return FLASH_TIME;
1722 return 0.0F;
1723 }
1724
1725 static int game_timing_state(game_state *state, game_ui *ui)
1726 {
1727 return TRUE;
1728 }
1729
1730 static void game_print_size(game_params *params, float *x, float *y)
1731 {
1732 int pw, ph;
1733
1734 /* 8mm squares by default. */
1735 game_compute_size(params, 800, &pw, &ph);
1736 *x = pw / 100.0F;
1737 *y = ph / 100.0F;
1738 }
1739
1740 static void game_print(drawing *dr, game_state *state, int tilesize)
1741 {
1742 int ink = print_mono_colour(dr, 0);
1743 int paper = print_mono_colour(dr, 1);
1744 int x, y, ox, oy, i;
1745 char buf[32];
1746
1747 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
1748 game_drawstate ads, *ds = &ads;
1749 game_set_size(dr, ds, NULL, tilesize);
1750
1751 print_line_width(dr, 2 * TILE_SIZE / 40);
1752
1753 for (x = 0; x < state->w; x++) {
1754 for (y = 0; y < state->h; y++) {
1755 ox = COORD(x); oy = COORD(y);
1756 i = y*state->w+x;
1757
1758 if (state->flags[i] & F_BLACK) {
1759 draw_rect(dr, ox, oy, TILE_SIZE, TILE_SIZE, ink);
1760 } else {
1761 draw_rect_outline(dr, ox, oy, TILE_SIZE, TILE_SIZE, ink);
1762
1763 if (state->flags[i] & DS_CIRCLE)
1764 draw_circle(dr, ox+TILE_SIZE/2, oy+TILE_SIZE/2, CRAD,
1765 paper, ink);
1766
1767 sprintf(buf, "%d", state->nums[i]);
1768 draw_text(dr, ox+TILE_SIZE/2, oy+TILE_SIZE/2, FONT_VARIABLE,
1769 TEXTSZ/strlen(buf), ALIGN_VCENTRE | ALIGN_HCENTRE,
1770 ink, buf);
1771 }
1772 }
1773 }
1774 }
1775
1776 #ifdef COMBINED
1777 #define thegame singles
1778 #endif
1779
1780 const struct game thegame = {
1781 "Singles", "games.singles", "singles",
1782 default_params,
1783 game_fetch_preset,
1784 decode_params,
1785 encode_params,
1786 free_params,
1787 dup_params,
1788 TRUE, game_configure, custom_params,
1789 validate_params,
1790 new_game_desc,
1791 validate_desc,
1792 new_game,
1793 dup_game,
1794 free_game,
1795 TRUE, solve_game,
1796 TRUE, game_can_format_as_text_now, game_text_format,
1797 new_ui,
1798 free_ui,
1799 encode_ui,
1800 decode_ui,
1801 game_changed_state,
1802 interpret_move,
1803 execute_move,
1804 PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
1805 game_colours,
1806 game_new_drawstate,
1807 game_free_drawstate,
1808 game_redraw,
1809 game_anim_length,
1810 game_flash_length,
1811 TRUE, FALSE, game_print_size, game_print,
1812 FALSE, /* wants_statusbar */
1813 FALSE, game_timing_state,
1814 REQUIRE_RBUTTON, /* flags */
1815 };
1816
1817 #ifdef STANDALONE_SOLVER
1818
1819 #include <time.h>
1820 #include <stdarg.h>
1821
1822 static void start_soak(game_params *p, random_state *rs)
1823 {
1824 time_t tt_start, tt_now, tt_last;
1825 char *desc, *aux;
1826 game_state *s;
1827 int i, n = 0, ndiff[DIFF_MAX], diff, sret, nblack = 0, nsneaky = 0;
1828
1829 tt_start = tt_now = time(NULL);
1830
1831 printf("Soak-testing a %dx%d grid.\n", p->w, p->h);
1832 p->diff = DIFF_ANY;
1833
1834 memset(ndiff, 0, DIFF_MAX * sizeof(int));
1835
1836 while (1) {
1837 n++;
1838 desc = new_game_desc(p, rs, &aux, 0);
1839 s = new_game(NULL, p, desc);
1840 nsneaky += solve_sneaky(s, NULL);
1841
1842 for (diff = 0; diff < DIFF_MAX; diff++) {
1843 memset(s->flags, 0, s->n * sizeof(unsigned int));
1844 s->completed = s->impossible = 0;
1845 sret = solve_specific(s, diff, 0);
1846 if (sret > 0) {
1847 ndiff[diff]++;
1848 break;
1849 } else if (sret < 0)
1850 fprintf(stderr, "Impossible! %s\n", desc);
1851 }
1852 for (i = 0; i < s->n; i++) {
1853 if (s->flags[i] & F_BLACK) nblack++;
1854 }
1855 free_game(s);
1856 sfree(desc);
1857
1858 tt_last = time(NULL);
1859 if (tt_last > tt_now) {
1860 tt_now = tt_last;
1861 printf("%d total, %3.1f/s, bl/sn %3.1f%%/%3.1f%%: ",
1862 n, (double)n / ((double)tt_now - tt_start),
1863 ((double)nblack * 100.0) / (double)(n * p->w * p->h),
1864 ((double)nsneaky * 100.0) / (double)(n * p->w * p->h));
1865 for (diff = 0; diff < DIFF_MAX; diff++) {
1866 if (diff > 0) printf(", ");
1867 printf("%d (%3.1f%%) %s",
1868 ndiff[diff], (double)ndiff[diff] * 100.0 / (double)n,
1869 singles_diffnames[diff]);
1870 }
1871 printf("\n");
1872 }
1873 }
1874 }
1875
1876 int main(int argc, char **argv)
1877 {
1878 char *id = NULL, *desc, *desc_gen = NULL, *tgame, *err, *aux;
1879 game_state *s = NULL;
1880 game_params *p = NULL;
1881 int soln, soak = 0, ret = 1;
1882 time_t seed = time(NULL);
1883 random_state *rs = NULL;
1884
1885 setvbuf(stdout, NULL, _IONBF, 0);
1886
1887 while (--argc > 0) {
1888 char *p = *++argv;
1889 if (!strcmp(p, "-v")) {
1890 verbose = 1;
1891 } else if (!strcmp(p, "--soak")) {
1892 soak = 1;
1893 } else if (!strcmp(p, "--seed")) {
1894 if (argc == 0) {
1895 fprintf(stderr, "%s: --seed needs an argument", argv[0]);
1896 goto done;
1897 }
1898 seed = (time_t)atoi(*++argv);
1899 argc--;
1900 } else if (*p == '-') {
1901 fprintf(stderr, "%s: unrecognised option `%s'\n", argv[0], p);
1902 return 1;
1903 } else {
1904 id = p;
1905 }
1906 }
1907
1908 rs = random_new((void*)&seed, sizeof(time_t));
1909
1910 if (!id) {
1911 fprintf(stderr, "usage: %s [-v] [--soak] <params> | <game_id>\n", argv[0]);
1912 goto done;
1913 }
1914 desc = strchr(id, ':');
1915 if (desc) *desc++ = '\0';
1916
1917 p = default_params();
1918 decode_params(p, id);
1919 err = validate_params(p, 1);
1920 if (err) {
1921 fprintf(stderr, "%s: %s", argv[0], err);
1922 goto done;
1923 }
1924
1925 if (soak) {
1926 if (desc) {
1927 fprintf(stderr, "%s: --soak only needs params, not game desc.\n", argv[0]);
1928 goto done;
1929 }
1930 start_soak(p, rs);
1931 } else {
1932 if (!desc) desc = desc_gen = new_game_desc(p, rs, &aux, 0);
1933
1934 err = validate_desc(p, desc);
1935 if (err) {
1936 fprintf(stderr, "%s: %s\n", argv[0], err);
1937 free_params(p);
1938 goto done;
1939 }
1940 s = new_game(NULL, p, desc);
1941
1942 if (verbose) {
1943 tgame = game_text_format(s);
1944 fputs(tgame, stdout);
1945 sfree(tgame);
1946 }
1947
1948 soln = solve_specific(s, DIFF_ANY, 0);
1949 tgame = game_text_format(s);
1950 fputs(tgame, stdout);
1951 sfree(tgame);
1952 printf("Game was %s.\n\n",
1953 soln < 0 ? "impossible" : soln > 0 ? "solved" : "not solved");
1954 }
1955 ret = 0;
1956
1957 done:
1958 if (desc_gen) sfree(desc_gen);
1959 if (p) free_params(p);
1960 if (s) free_game(s);
1961 if (rs) random_free(rs);
1962
1963 return ret;
1964 }
1965
1966 #endif
1967
1968
1969 /* vim: set shiftwidth=4 tabstop=8: */