How did I manage to check this in without actually trying to build
[sgt/puzzles] / loopy.c
1 /*
2 * loopy.c:
3 *
4 * An implementation of the Nikoli game 'Loop the loop'.
5 * (c) Mike Pinna, 2005, 2006
6 * Substantially rewritten to allowing for more general types of grid.
7 * (c) Lambros Lambrou 2008
8 *
9 * vim: set shiftwidth=4 :set textwidth=80:
10 */
11
12 /*
13 *
14 * - There's an interesting deductive technique which makes use of topology
15 * rather than just graph theory. Each _square_ in the grid is either inside
16 * or outside the loop; you can tell that two squares are on the same side
17 * of the loop if they're separated by an x (or, more generally, by a path
18 * crossing no LINE_UNKNOWNs and an even number of LINE_YESes), and on the
19 * opposite side of the loop if they're separated by a line (or an odd
20 * number of LINE_YESes and no LINE_UNKNOWNs). Oh, and any square separated
21 * from the outside of the grid by a LINE_YES or a LINE_NO is on the inside
22 * or outside respectively. So if you can track this for all squares, you
23 * figure out the state of the line between a pair once their relative
24 * insideness is known.
25 *
26 * - (Just a speed optimisation.) Consider some todo list queue where every
27 * time we modify something we mark it for consideration by other bits of
28 * the solver, to save iteration over things that have already been done.
29 */
30
31 #include <stdio.h>
32 #include <stdlib.h>
33 #include <string.h>
34 #include <assert.h>
35 #include <ctype.h>
36 #include <math.h>
37
38 #include "puzzles.h"
39 #include "tree234.h"
40 #include "grid.h"
41
42 /* Debugging options */
43
44 /*
45 #define DEBUG_CACHES
46 #define SHOW_WORKING
47 #define DEBUG_DLINES
48 */
49
50 /* ----------------------------------------------------------------------
51 * Struct, enum and function declarations
52 */
53
54 enum {
55 COL_BACKGROUND,
56 COL_FOREGROUND,
57 COL_LINEUNKNOWN,
58 COL_HIGHLIGHT,
59 COL_MISTAKE,
60 COL_SATISFIED,
61 NCOLOURS
62 };
63
64 struct game_state {
65 grid *game_grid;
66
67 /* Put -1 in a face that doesn't get a clue */
68 signed char *clues;
69
70 /* Array of line states, to store whether each line is
71 * YES, NO or UNKNOWN */
72 char *lines;
73
74 int solved;
75 int cheated;
76
77 /* Used in game_text_format(), so that it knows what type of
78 * grid it's trying to render as ASCII text. */
79 int grid_type;
80 };
81
82 enum solver_status {
83 SOLVER_SOLVED, /* This is the only solution the solver could find */
84 SOLVER_MISTAKE, /* This is definitely not a solution */
85 SOLVER_AMBIGUOUS, /* This _might_ be an ambiguous solution */
86 SOLVER_INCOMPLETE /* This may be a partial solution */
87 };
88
89 /* ------ Solver state ------ */
90 typedef struct normal {
91 /* For each dline, store a bitmask for whether we know:
92 * (bit 0) at least one is YES
93 * (bit 1) at most one is YES */
94 char *dlines;
95 } normal_mode_state;
96
97 typedef struct hard {
98 int *linedsf;
99 } hard_mode_state;
100
101 typedef struct solver_state {
102 game_state *state;
103 enum solver_status solver_status;
104 /* NB looplen is the number of dots that are joined together at a point, ie a
105 * looplen of 1 means there are no lines to a particular dot */
106 int *looplen;
107
108 /* caches */
109 char *dot_yes_count;
110 char *dot_no_count;
111 char *face_yes_count;
112 char *face_no_count;
113 char *dot_solved, *face_solved;
114 int *dotdsf;
115
116 normal_mode_state *normal;
117 hard_mode_state *hard;
118 } solver_state;
119
120 /*
121 * Difficulty levels. I do some macro ickery here to ensure that my
122 * enum and the various forms of my name list always match up.
123 */
124
125 #define DIFFLIST(A) \
126 A(EASY,Easy,e,easy_mode_deductions) \
127 A(NORMAL,Normal,n,normal_mode_deductions) \
128 A(HARD,Hard,h,hard_mode_deductions)
129 #define ENUM(upper,title,lower,fn) DIFF_ ## upper,
130 #define TITLE(upper,title,lower,fn) #title,
131 #define ENCODE(upper,title,lower,fn) #lower
132 #define CONFIG(upper,title,lower,fn) ":" #title
133 #define SOLVER_FN_DECL(upper,title,lower,fn) static int fn(solver_state *);
134 #define SOLVER_FN(upper,title,lower,fn) &fn,
135 enum { DIFFLIST(ENUM) DIFF_MAX };
136 static char const *const diffnames[] = { DIFFLIST(TITLE) };
137 static char const diffchars[] = DIFFLIST(ENCODE);
138 #define DIFFCONFIG DIFFLIST(CONFIG)
139 DIFFLIST(SOLVER_FN_DECL);
140 static int (*(solver_fns[]))(solver_state *) = { DIFFLIST(SOLVER_FN) };
141
142 struct game_params {
143 int w, h;
144 int diff;
145 int type;
146
147 /* Grid generation is expensive, so keep a (ref-counted) reference to the
148 * grid for these parameters, and only generate when required. */
149 grid *game_grid;
150 };
151
152 enum line_state { LINE_YES, LINE_UNKNOWN, LINE_NO };
153
154 #define OPP(line_state) \
155 (2 - line_state)
156
157
158 struct game_drawstate {
159 int started;
160 int tilesize;
161 int flashing;
162 char *lines;
163 char *clue_error;
164 char *clue_satisfied;
165 };
166
167 static char *validate_desc(game_params *params, char *desc);
168 static int dot_order(const game_state* state, int i, char line_type);
169 static int face_order(const game_state* state, int i, char line_type);
170 static solver_state *solve_game_rec(const solver_state *sstate,
171 int diff);
172
173 #ifdef DEBUG_CACHES
174 static void check_caches(const solver_state* sstate);
175 #else
176 #define check_caches(s)
177 #endif
178
179 /* ------- List of grid generators ------- */
180 #define GRIDLIST(A) \
181 A(Squares,grid_new_square) \
182 A(Triangular,grid_new_triangular) \
183 A(Honeycomb,grid_new_honeycomb) \
184 A(Snub-Square,grid_new_snubsquare) \
185 A(Cairo,grid_new_cairo) \
186 A(Great-Hexagonal,grid_new_greathexagonal) \
187 A(Octagonal,grid_new_octagonal) \
188 A(Kites,grid_new_kites)
189
190 #define GRID_NAME(title,fn) #title,
191 #define GRID_CONFIG(title,fn) ":" #title
192 #define GRID_FN(title,fn) &fn,
193 static char const *const gridnames[] = { GRIDLIST(GRID_NAME) };
194 #define GRID_CONFIGS GRIDLIST(GRID_CONFIG)
195 static grid * (*(grid_fns[]))(int w, int h) = { GRIDLIST(GRID_FN) };
196 static const int NUM_GRID_TYPES = sizeof(grid_fns) / sizeof(grid_fns[0]);
197
198 /* Generates a (dynamically allocated) new grid, according to the
199 * type and size requested in params. Does nothing if the grid is already
200 * generated. The allocated grid is owned by the params object, and will be
201 * freed in free_params(). */
202 static void params_generate_grid(game_params *params)
203 {
204 if (!params->game_grid) {
205 params->game_grid = grid_fns[params->type](params->w, params->h);
206 }
207 }
208
209 /* ----------------------------------------------------------------------
210 * Preprocessor magic
211 */
212
213 /* General constants */
214 #define PREFERRED_TILE_SIZE 32
215 #define BORDER(tilesize) ((tilesize) / 2)
216 #define FLASH_TIME 0.5F
217
218 #define BIT_SET(field, bit) ((field) & (1<<(bit)))
219
220 #define SET_BIT(field, bit) (BIT_SET(field, bit) ? FALSE : \
221 ((field) |= (1<<(bit)), TRUE))
222
223 #define CLEAR_BIT(field, bit) (BIT_SET(field, bit) ? \
224 ((field) &= ~(1<<(bit)), TRUE) : FALSE)
225
226 #define CLUE2CHAR(c) \
227 ((c < 0) ? ' ' : c + '0')
228
229 /* ----------------------------------------------------------------------
230 * General struct manipulation and other straightforward code
231 */
232
233 static game_state *dup_game(game_state *state)
234 {
235 game_state *ret = snew(game_state);
236
237 ret->game_grid = state->game_grid;
238 ret->game_grid->refcount++;
239
240 ret->solved = state->solved;
241 ret->cheated = state->cheated;
242
243 ret->clues = snewn(state->game_grid->num_faces, signed char);
244 memcpy(ret->clues, state->clues, state->game_grid->num_faces);
245
246 ret->lines = snewn(state->game_grid->num_edges, char);
247 memcpy(ret->lines, state->lines, state->game_grid->num_edges);
248
249 ret->grid_type = state->grid_type;
250 return ret;
251 }
252
253 static void free_game(game_state *state)
254 {
255 if (state) {
256 grid_free(state->game_grid);
257 sfree(state->clues);
258 sfree(state->lines);
259 sfree(state);
260 }
261 }
262
263 static solver_state *new_solver_state(game_state *state, int diff) {
264 int i;
265 int num_dots = state->game_grid->num_dots;
266 int num_faces = state->game_grid->num_faces;
267 int num_edges = state->game_grid->num_edges;
268 solver_state *ret = snew(solver_state);
269
270 ret->state = dup_game(state);
271
272 ret->solver_status = SOLVER_INCOMPLETE;
273
274 ret->dotdsf = snew_dsf(num_dots);
275 ret->looplen = snewn(num_dots, int);
276
277 for (i = 0; i < num_dots; i++) {
278 ret->looplen[i] = 1;
279 }
280
281 ret->dot_solved = snewn(num_dots, char);
282 ret->face_solved = snewn(num_faces, char);
283 memset(ret->dot_solved, FALSE, num_dots);
284 memset(ret->face_solved, FALSE, num_faces);
285
286 ret->dot_yes_count = snewn(num_dots, char);
287 memset(ret->dot_yes_count, 0, num_dots);
288 ret->dot_no_count = snewn(num_dots, char);
289 memset(ret->dot_no_count, 0, num_dots);
290 ret->face_yes_count = snewn(num_faces, char);
291 memset(ret->face_yes_count, 0, num_faces);
292 ret->face_no_count = snewn(num_faces, char);
293 memset(ret->face_no_count, 0, num_faces);
294
295 if (diff < DIFF_NORMAL) {
296 ret->normal = NULL;
297 } else {
298 ret->normal = snew(normal_mode_state);
299 ret->normal->dlines = snewn(2*num_edges, char);
300 memset(ret->normal->dlines, 0, 2*num_edges);
301 }
302
303 if (diff < DIFF_HARD) {
304 ret->hard = NULL;
305 } else {
306 ret->hard = snew(hard_mode_state);
307 ret->hard->linedsf = snew_dsf(state->game_grid->num_edges);
308 }
309
310 return ret;
311 }
312
313 static void free_solver_state(solver_state *sstate) {
314 if (sstate) {
315 free_game(sstate->state);
316 sfree(sstate->dotdsf);
317 sfree(sstate->looplen);
318 sfree(sstate->dot_solved);
319 sfree(sstate->face_solved);
320 sfree(sstate->dot_yes_count);
321 sfree(sstate->dot_no_count);
322 sfree(sstate->face_yes_count);
323 sfree(sstate->face_no_count);
324
325 if (sstate->normal) {
326 sfree(sstate->normal->dlines);
327 sfree(sstate->normal);
328 }
329
330 if (sstate->hard) {
331 sfree(sstate->hard->linedsf);
332 sfree(sstate->hard);
333 }
334
335 sfree(sstate);
336 }
337 }
338
339 static solver_state *dup_solver_state(const solver_state *sstate) {
340 game_state *state = sstate->state;
341 int num_dots = state->game_grid->num_dots;
342 int num_faces = state->game_grid->num_faces;
343 int num_edges = state->game_grid->num_edges;
344 solver_state *ret = snew(solver_state);
345
346 ret->state = state = dup_game(sstate->state);
347
348 ret->solver_status = sstate->solver_status;
349
350 ret->dotdsf = snewn(num_dots, int);
351 ret->looplen = snewn(num_dots, int);
352 memcpy(ret->dotdsf, sstate->dotdsf,
353 num_dots * sizeof(int));
354 memcpy(ret->looplen, sstate->looplen,
355 num_dots * sizeof(int));
356
357 ret->dot_solved = snewn(num_dots, char);
358 ret->face_solved = snewn(num_faces, char);
359 memcpy(ret->dot_solved, sstate->dot_solved, num_dots);
360 memcpy(ret->face_solved, sstate->face_solved, num_faces);
361
362 ret->dot_yes_count = snewn(num_dots, char);
363 memcpy(ret->dot_yes_count, sstate->dot_yes_count, num_dots);
364 ret->dot_no_count = snewn(num_dots, char);
365 memcpy(ret->dot_no_count, sstate->dot_no_count, num_dots);
366
367 ret->face_yes_count = snewn(num_faces, char);
368 memcpy(ret->face_yes_count, sstate->face_yes_count, num_faces);
369 ret->face_no_count = snewn(num_faces, char);
370 memcpy(ret->face_no_count, sstate->face_no_count, num_faces);
371
372 if (sstate->normal) {
373 ret->normal = snew(normal_mode_state);
374 ret->normal->dlines = snewn(2*num_edges, char);
375 memcpy(ret->normal->dlines, sstate->normal->dlines,
376 2*num_edges);
377 } else {
378 ret->normal = NULL;
379 }
380
381 if (sstate->hard) {
382 ret->hard = snew(hard_mode_state);
383 ret->hard->linedsf = snewn(num_edges, int);
384 memcpy(ret->hard->linedsf, sstate->hard->linedsf,
385 num_edges * sizeof(int));
386 } else {
387 ret->hard = NULL;
388 }
389
390 return ret;
391 }
392
393 static game_params *default_params(void)
394 {
395 game_params *ret = snew(game_params);
396
397 #ifdef SLOW_SYSTEM
398 ret->h = 7;
399 ret->w = 7;
400 #else
401 ret->h = 10;
402 ret->w = 10;
403 #endif
404 ret->diff = DIFF_EASY;
405 ret->type = 0;
406
407 ret->game_grid = NULL;
408
409 return ret;
410 }
411
412 static game_params *dup_params(game_params *params)
413 {
414 game_params *ret = snew(game_params);
415
416 *ret = *params; /* structure copy */
417 if (ret->game_grid) {
418 ret->game_grid->refcount++;
419 }
420 return ret;
421 }
422
423 static const game_params presets[] = {
424 { 7, 7, DIFF_EASY, 0, NULL },
425 { 10, 10, DIFF_EASY, 0, NULL },
426 { 7, 7, DIFF_NORMAL, 0, NULL },
427 { 10, 10, DIFF_NORMAL, 0, NULL },
428 { 7, 7, DIFF_HARD, 0, NULL },
429 { 10, 10, DIFF_HARD, 0, NULL },
430 { 10, 10, DIFF_HARD, 1, NULL },
431 { 12, 10, DIFF_HARD, 2, NULL },
432 { 7, 7, DIFF_HARD, 3, NULL },
433 { 9, 9, DIFF_HARD, 4, NULL },
434 { 5, 4, DIFF_HARD, 5, NULL },
435 { 7, 7, DIFF_HARD, 6, NULL },
436 { 5, 5, DIFF_HARD, 7, NULL },
437 };
438
439 static int game_fetch_preset(int i, char **name, game_params **params)
440 {
441 game_params *tmppar;
442 char buf[80];
443
444 if (i < 0 || i >= lenof(presets))
445 return FALSE;
446
447 tmppar = snew(game_params);
448 *tmppar = presets[i];
449 *params = tmppar;
450 sprintf(buf, "%dx%d %s - %s", tmppar->h, tmppar->w,
451 gridnames[tmppar->type], diffnames[tmppar->diff]);
452 *name = dupstr(buf);
453
454 return TRUE;
455 }
456
457 static void free_params(game_params *params)
458 {
459 if (params->game_grid) {
460 grid_free(params->game_grid);
461 }
462 sfree(params);
463 }
464
465 static void decode_params(game_params *params, char const *string)
466 {
467 if (params->game_grid) {
468 grid_free(params->game_grid);
469 params->game_grid = NULL;
470 }
471 params->h = params->w = atoi(string);
472 params->diff = DIFF_EASY;
473 while (*string && isdigit((unsigned char)*string)) string++;
474 if (*string == 'x') {
475 string++;
476 params->h = atoi(string);
477 while (*string && isdigit((unsigned char)*string)) string++;
478 }
479 if (*string == 't') {
480 string++;
481 params->type = atoi(string);
482 while (*string && isdigit((unsigned char)*string)) string++;
483 }
484 if (*string == 'd') {
485 int i;
486 string++;
487 for (i = 0; i < DIFF_MAX; i++)
488 if (*string == diffchars[i])
489 params->diff = i;
490 if (*string) string++;
491 }
492 }
493
494 static char *encode_params(game_params *params, int full)
495 {
496 char str[80];
497 sprintf(str, "%dx%dt%d", params->w, params->h, params->type);
498 if (full)
499 sprintf(str + strlen(str), "d%c", diffchars[params->diff]);
500 return dupstr(str);
501 }
502
503 static config_item *game_configure(game_params *params)
504 {
505 config_item *ret;
506 char buf[80];
507
508 ret = snewn(5, config_item);
509
510 ret[0].name = "Width";
511 ret[0].type = C_STRING;
512 sprintf(buf, "%d", params->w);
513 ret[0].sval = dupstr(buf);
514 ret[0].ival = 0;
515
516 ret[1].name = "Height";
517 ret[1].type = C_STRING;
518 sprintf(buf, "%d", params->h);
519 ret[1].sval = dupstr(buf);
520 ret[1].ival = 0;
521
522 ret[2].name = "Grid type";
523 ret[2].type = C_CHOICES;
524 ret[2].sval = GRID_CONFIGS;
525 ret[2].ival = params->type;
526
527 ret[3].name = "Difficulty";
528 ret[3].type = C_CHOICES;
529 ret[3].sval = DIFFCONFIG;
530 ret[3].ival = params->diff;
531
532 ret[4].name = NULL;
533 ret[4].type = C_END;
534 ret[4].sval = NULL;
535 ret[4].ival = 0;
536
537 return ret;
538 }
539
540 static game_params *custom_params(config_item *cfg)
541 {
542 game_params *ret = snew(game_params);
543
544 ret->w = atoi(cfg[0].sval);
545 ret->h = atoi(cfg[1].sval);
546 ret->type = cfg[2].ival;
547 ret->diff = cfg[3].ival;
548
549 ret->game_grid = NULL;
550 return ret;
551 }
552
553 static char *validate_params(game_params *params, int full)
554 {
555 if (params->w < 3 || params->h < 3)
556 return "Width and height must both be at least 3";
557 if (params->type < 0 || params->type >= NUM_GRID_TYPES)
558 return "Illegal grid type";
559
560 /*
561 * This shouldn't be able to happen at all, since decode_params
562 * and custom_params will never generate anything that isn't
563 * within range.
564 */
565 assert(params->diff < DIFF_MAX);
566
567 return NULL;
568 }
569
570 /* Returns a newly allocated string describing the current puzzle */
571 static char *state_to_text(const game_state *state)
572 {
573 grid *g = state->game_grid;
574 char *retval;
575 int num_faces = g->num_faces;
576 char *description = snewn(num_faces + 1, char);
577 char *dp = description;
578 int empty_count = 0;
579 int i;
580
581 for (i = 0; i < num_faces; i++) {
582 if (state->clues[i] < 0) {
583 if (empty_count > 25) {
584 dp += sprintf(dp, "%c", (int)(empty_count + 'a' - 1));
585 empty_count = 0;
586 }
587 empty_count++;
588 } else {
589 if (empty_count) {
590 dp += sprintf(dp, "%c", (int)(empty_count + 'a' - 1));
591 empty_count = 0;
592 }
593 dp += sprintf(dp, "%c", (int)CLUE2CHAR(state->clues[i]));
594 }
595 }
596
597 if (empty_count)
598 dp += sprintf(dp, "%c", (int)(empty_count + 'a' - 1));
599
600 retval = dupstr(description);
601 sfree(description);
602
603 return retval;
604 }
605
606 /* We require that the params pass the test in validate_params and that the
607 * description fills the entire game area */
608 static char *validate_desc(game_params *params, char *desc)
609 {
610 int count = 0;
611 grid *g;
612 params_generate_grid(params);
613 g = params->game_grid;
614
615 for (; *desc; ++desc) {
616 if (*desc >= '0' && *desc <= '9') {
617 count++;
618 continue;
619 }
620 if (*desc >= 'a') {
621 count += *desc - 'a' + 1;
622 continue;
623 }
624 return "Unknown character in description";
625 }
626
627 if (count < g->num_faces)
628 return "Description too short for board size";
629 if (count > g->num_faces)
630 return "Description too long for board size";
631
632 return NULL;
633 }
634
635 /* Sums the lengths of the numbers in range [0,n) */
636 /* See equivalent function in solo.c for justification of this. */
637 static int len_0_to_n(int n)
638 {
639 int len = 1; /* Counting 0 as a bit of a special case */
640 int i;
641
642 for (i = 1; i < n; i *= 10) {
643 len += max(n - i, 0);
644 }
645
646 return len;
647 }
648
649 static char *encode_solve_move(const game_state *state)
650 {
651 int len;
652 char *ret, *p;
653 int i;
654 int num_edges = state->game_grid->num_edges;
655
656 /* This is going to return a string representing the moves needed to set
657 * every line in a grid to be the same as the ones in 'state'. The exact
658 * length of this string is predictable. */
659
660 len = 1; /* Count the 'S' prefix */
661 /* Numbers in all lines */
662 len += len_0_to_n(num_edges);
663 /* For each line we also have a letter */
664 len += num_edges;
665
666 ret = snewn(len + 1, char);
667 p = ret;
668
669 p += sprintf(p, "S");
670
671 for (i = 0; i < num_edges; i++) {
672 switch (state->lines[i]) {
673 case LINE_YES:
674 p += sprintf(p, "%dy", i);
675 break;
676 case LINE_NO:
677 p += sprintf(p, "%dn", i);
678 break;
679 }
680 }
681
682 /* No point in doing sums like that if they're going to be wrong */
683 assert(strlen(ret) <= (size_t)len);
684 return ret;
685 }
686
687 static game_ui *new_ui(game_state *state)
688 {
689 return NULL;
690 }
691
692 static void free_ui(game_ui *ui)
693 {
694 }
695
696 static char *encode_ui(game_ui *ui)
697 {
698 return NULL;
699 }
700
701 static void decode_ui(game_ui *ui, char *encoding)
702 {
703 }
704
705 static void game_changed_state(game_ui *ui, game_state *oldstate,
706 game_state *newstate)
707 {
708 }
709
710 static void game_compute_size(game_params *params, int tilesize,
711 int *x, int *y)
712 {
713 grid *g;
714 int grid_width, grid_height, rendered_width, rendered_height;
715
716 params_generate_grid(params);
717 g = params->game_grid;
718 grid_width = g->highest_x - g->lowest_x;
719 grid_height = g->highest_y - g->lowest_y;
720 /* multiply first to minimise rounding error on integer division */
721 rendered_width = grid_width * tilesize / g->tilesize;
722 rendered_height = grid_height * tilesize / g->tilesize;
723 *x = rendered_width + 2 * BORDER(tilesize) + 1;
724 *y = rendered_height + 2 * BORDER(tilesize) + 1;
725 }
726
727 static void game_set_size(drawing *dr, game_drawstate *ds,
728 game_params *params, int tilesize)
729 {
730 ds->tilesize = tilesize;
731 }
732
733 static float *game_colours(frontend *fe, int *ncolours)
734 {
735 float *ret = snewn(4 * NCOLOURS, float);
736
737 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
738
739 ret[COL_FOREGROUND * 3 + 0] = 0.0F;
740 ret[COL_FOREGROUND * 3 + 1] = 0.0F;
741 ret[COL_FOREGROUND * 3 + 2] = 0.0F;
742
743 ret[COL_LINEUNKNOWN * 3 + 0] = 0.8F;
744 ret[COL_LINEUNKNOWN * 3 + 1] = 0.8F;
745 ret[COL_LINEUNKNOWN * 3 + 2] = 0.0F;
746
747 ret[COL_HIGHLIGHT * 3 + 0] = 1.0F;
748 ret[COL_HIGHLIGHT * 3 + 1] = 1.0F;
749 ret[COL_HIGHLIGHT * 3 + 2] = 1.0F;
750
751 ret[COL_MISTAKE * 3 + 0] = 1.0F;
752 ret[COL_MISTAKE * 3 + 1] = 0.0F;
753 ret[COL_MISTAKE * 3 + 2] = 0.0F;
754
755 ret[COL_SATISFIED * 3 + 0] = 0.0F;
756 ret[COL_SATISFIED * 3 + 1] = 0.0F;
757 ret[COL_SATISFIED * 3 + 2] = 0.0F;
758
759 *ncolours = NCOLOURS;
760 return ret;
761 }
762
763 static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
764 {
765 struct game_drawstate *ds = snew(struct game_drawstate);
766 int num_faces = state->game_grid->num_faces;
767 int num_edges = state->game_grid->num_edges;
768
769 ds->tilesize = 0;
770 ds->started = 0;
771 ds->lines = snewn(num_edges, char);
772 ds->clue_error = snewn(num_faces, char);
773 ds->clue_satisfied = snewn(num_faces, char);
774 ds->flashing = 0;
775
776 memset(ds->lines, LINE_UNKNOWN, num_edges);
777 memset(ds->clue_error, 0, num_faces);
778 memset(ds->clue_satisfied, 0, num_faces);
779
780 return ds;
781 }
782
783 static void game_free_drawstate(drawing *dr, game_drawstate *ds)
784 {
785 sfree(ds->clue_error);
786 sfree(ds->clue_satisfied);
787 sfree(ds->lines);
788 sfree(ds);
789 }
790
791 static int game_timing_state(game_state *state, game_ui *ui)
792 {
793 return TRUE;
794 }
795
796 static float game_anim_length(game_state *oldstate, game_state *newstate,
797 int dir, game_ui *ui)
798 {
799 return 0.0F;
800 }
801
802 static int game_can_format_as_text_now(game_params *params)
803 {
804 if (params->type != 0)
805 return FALSE;
806 return TRUE;
807 }
808
809 static char *game_text_format(game_state *state)
810 {
811 int w, h, W, H;
812 int x, y, i;
813 int cell_size;
814 char *ret;
815 grid *g = state->game_grid;
816 grid_face *f;
817
818 assert(state->grid_type == 0);
819
820 /* Work out the basic size unit */
821 f = g->faces; /* first face */
822 assert(f->order == 4);
823 /* The dots are ordered clockwise, so the two opposite
824 * corners are guaranteed to span the square */
825 cell_size = abs(f->dots[0]->x - f->dots[2]->x);
826
827 w = (g->highest_x - g->lowest_x) / cell_size;
828 h = (g->highest_y - g->lowest_y) / cell_size;
829
830 /* Create a blank "canvas" to "draw" on */
831 W = 2 * w + 2;
832 H = 2 * h + 1;
833 ret = snewn(W * H + 1, char);
834 for (y = 0; y < H; y++) {
835 for (x = 0; x < W-1; x++) {
836 ret[y*W + x] = ' ';
837 }
838 ret[y*W + W-1] = '\n';
839 }
840 ret[H*W] = '\0';
841
842 /* Fill in edge info */
843 for (i = 0; i < g->num_edges; i++) {
844 grid_edge *e = g->edges + i;
845 /* Cell coordinates, from (0,0) to (w-1,h-1) */
846 int x1 = (e->dot1->x - g->lowest_x) / cell_size;
847 int x2 = (e->dot2->x - g->lowest_x) / cell_size;
848 int y1 = (e->dot1->y - g->lowest_y) / cell_size;
849 int y2 = (e->dot2->y - g->lowest_y) / cell_size;
850 /* Midpoint, in canvas coordinates (canvas coordinates are just twice
851 * cell coordinates) */
852 x = x1 + x2;
853 y = y1 + y2;
854 switch (state->lines[i]) {
855 case LINE_YES:
856 ret[y*W + x] = (y1 == y2) ? '-' : '|';
857 break;
858 case LINE_NO:
859 ret[y*W + x] = 'x';
860 break;
861 case LINE_UNKNOWN:
862 break; /* already a space */
863 default:
864 assert(!"Illegal line state");
865 }
866 }
867
868 /* Fill in clues */
869 for (i = 0; i < g->num_faces; i++) {
870 int x1, x2, y1, y2;
871
872 f = g->faces + i;
873 assert(f->order == 4);
874 /* Cell coordinates, from (0,0) to (w-1,h-1) */
875 x1 = (f->dots[0]->x - g->lowest_x) / cell_size;
876 x2 = (f->dots[2]->x - g->lowest_x) / cell_size;
877 y1 = (f->dots[0]->y - g->lowest_y) / cell_size;
878 y2 = (f->dots[2]->y - g->lowest_y) / cell_size;
879 /* Midpoint, in canvas coordinates */
880 x = x1 + x2;
881 y = y1 + y2;
882 ret[y*W + x] = CLUE2CHAR(state->clues[i]);
883 }
884 return ret;
885 }
886
887 /* ----------------------------------------------------------------------
888 * Debug code
889 */
890
891 #ifdef DEBUG_CACHES
892 static void check_caches(const solver_state* sstate)
893 {
894 int i;
895 const game_state *state = sstate->state;
896 const grid *g = state->game_grid;
897
898 for (i = 0; i < g->num_dots; i++) {
899 assert(dot_order(state, i, LINE_YES) == sstate->dot_yes_count[i]);
900 assert(dot_order(state, i, LINE_NO) == sstate->dot_no_count[i]);
901 }
902
903 for (i = 0; i < g->num_faces; i++) {
904 assert(face_order(state, i, LINE_YES) == sstate->face_yes_count[i]);
905 assert(face_order(state, i, LINE_NO) == sstate->face_no_count[i]);
906 }
907 }
908
909 #if 0
910 #define check_caches(s) \
911 do { \
912 fprintf(stderr, "check_caches at line %d\n", __LINE__); \
913 check_caches(s); \
914 } while (0)
915 #endif
916 #endif /* DEBUG_CACHES */
917
918 /* ----------------------------------------------------------------------
919 * Solver utility functions
920 */
921
922 /* Sets the line (with index i) to the new state 'line_new', and updates
923 * the cached counts of any affected faces and dots.
924 * Returns TRUE if this actually changed the line's state. */
925 static int solver_set_line(solver_state *sstate, int i,
926 enum line_state line_new
927 #ifdef SHOW_WORKING
928 , const char *reason
929 #endif
930 )
931 {
932 game_state *state = sstate->state;
933 grid *g;
934 grid_edge *e;
935
936 assert(line_new != LINE_UNKNOWN);
937
938 check_caches(sstate);
939
940 if (state->lines[i] == line_new) {
941 return FALSE; /* nothing changed */
942 }
943 state->lines[i] = line_new;
944
945 #ifdef SHOW_WORKING
946 fprintf(stderr, "solver: set line [%d] to %s (%s)\n",
947 i, line_new == LINE_YES ? "YES" : "NO",
948 reason);
949 #endif
950
951 g = state->game_grid;
952 e = g->edges + i;
953
954 /* Update the cache for both dots and both faces affected by this. */
955 if (line_new == LINE_YES) {
956 sstate->dot_yes_count[e->dot1 - g->dots]++;
957 sstate->dot_yes_count[e->dot2 - g->dots]++;
958 if (e->face1) {
959 sstate->face_yes_count[e->face1 - g->faces]++;
960 }
961 if (e->face2) {
962 sstate->face_yes_count[e->face2 - g->faces]++;
963 }
964 } else {
965 sstate->dot_no_count[e->dot1 - g->dots]++;
966 sstate->dot_no_count[e->dot2 - g->dots]++;
967 if (e->face1) {
968 sstate->face_no_count[e->face1 - g->faces]++;
969 }
970 if (e->face2) {
971 sstate->face_no_count[e->face2 - g->faces]++;
972 }
973 }
974
975 check_caches(sstate);
976 return TRUE;
977 }
978
979 #ifdef SHOW_WORKING
980 #define solver_set_line(a, b, c) \
981 solver_set_line(a, b, c, __FUNCTION__)
982 #endif
983
984 /*
985 * Merge two dots due to the existence of an edge between them.
986 * Updates the dsf tracking equivalence classes, and keeps track of
987 * the length of path each dot is currently a part of.
988 * Returns TRUE if the dots were already linked, ie if they are part of a
989 * closed loop, and false otherwise.
990 */
991 static int merge_dots(solver_state *sstate, int edge_index)
992 {
993 int i, j, len;
994 grid *g = sstate->state->game_grid;
995 grid_edge *e = g->edges + edge_index;
996
997 i = e->dot1 - g->dots;
998 j = e->dot2 - g->dots;
999
1000 i = dsf_canonify(sstate->dotdsf, i);
1001 j = dsf_canonify(sstate->dotdsf, j);
1002
1003 if (i == j) {
1004 return TRUE;
1005 } else {
1006 len = sstate->looplen[i] + sstate->looplen[j];
1007 dsf_merge(sstate->dotdsf, i, j);
1008 i = dsf_canonify(sstate->dotdsf, i);
1009 sstate->looplen[i] = len;
1010 return FALSE;
1011 }
1012 }
1013
1014 /* Merge two lines because the solver has deduced that they must be either
1015 * identical or opposite. Returns TRUE if this is new information, otherwise
1016 * FALSE. */
1017 static int merge_lines(solver_state *sstate, int i, int j, int inverse
1018 #ifdef SHOW_WORKING
1019 , const char *reason
1020 #endif
1021 )
1022 {
1023 int inv_tmp;
1024
1025 assert(i < sstate->state->game_grid->num_edges);
1026 assert(j < sstate->state->game_grid->num_edges);
1027
1028 i = edsf_canonify(sstate->hard->linedsf, i, &inv_tmp);
1029 inverse ^= inv_tmp;
1030 j = edsf_canonify(sstate->hard->linedsf, j, &inv_tmp);
1031 inverse ^= inv_tmp;
1032
1033 edsf_merge(sstate->hard->linedsf, i, j, inverse);
1034
1035 #ifdef SHOW_WORKING
1036 if (i != j) {
1037 fprintf(stderr, "%s [%d] [%d] %s(%s)\n",
1038 __FUNCTION__, i, j,
1039 inverse ? "inverse " : "", reason);
1040 }
1041 #endif
1042 return (i != j);
1043 }
1044
1045 #ifdef SHOW_WORKING
1046 #define merge_lines(a, b, c, d) \
1047 merge_lines(a, b, c, d, __FUNCTION__)
1048 #endif
1049
1050 /* Count the number of lines of a particular type currently going into the
1051 * given dot. */
1052 static int dot_order(const game_state* state, int dot, char line_type)
1053 {
1054 int n = 0;
1055 grid *g = state->game_grid;
1056 grid_dot *d = g->dots + dot;
1057 int i;
1058
1059 for (i = 0; i < d->order; i++) {
1060 grid_edge *e = d->edges[i];
1061 if (state->lines[e - g->edges] == line_type)
1062 ++n;
1063 }
1064 return n;
1065 }
1066
1067 /* Count the number of lines of a particular type currently surrounding the
1068 * given face */
1069 static int face_order(const game_state* state, int face, char line_type)
1070 {
1071 int n = 0;
1072 grid *g = state->game_grid;
1073 grid_face *f = g->faces + face;
1074 int i;
1075
1076 for (i = 0; i < f->order; i++) {
1077 grid_edge *e = f->edges[i];
1078 if (state->lines[e - g->edges] == line_type)
1079 ++n;
1080 }
1081 return n;
1082 }
1083
1084 /* Set all lines bordering a dot of type old_type to type new_type
1085 * Return value tells caller whether this function actually did anything */
1086 static int dot_setall(solver_state *sstate, int dot,
1087 char old_type, char new_type)
1088 {
1089 int retval = FALSE, r;
1090 game_state *state = sstate->state;
1091 grid *g;
1092 grid_dot *d;
1093 int i;
1094
1095 if (old_type == new_type)
1096 return FALSE;
1097
1098 g = state->game_grid;
1099 d = g->dots + dot;
1100
1101 for (i = 0; i < d->order; i++) {
1102 int line_index = d->edges[i] - g->edges;
1103 if (state->lines[line_index] == old_type) {
1104 r = solver_set_line(sstate, line_index, new_type);
1105 assert(r == TRUE);
1106 retval = TRUE;
1107 }
1108 }
1109 return retval;
1110 }
1111
1112 /* Set all lines bordering a face of type old_type to type new_type */
1113 static int face_setall(solver_state *sstate, int face,
1114 char old_type, char new_type)
1115 {
1116 int retval = FALSE, r;
1117 game_state *state = sstate->state;
1118 grid *g;
1119 grid_face *f;
1120 int i;
1121
1122 if (old_type == new_type)
1123 return FALSE;
1124
1125 g = state->game_grid;
1126 f = g->faces + face;
1127
1128 for (i = 0; i < f->order; i++) {
1129 int line_index = f->edges[i] - g->edges;
1130 if (state->lines[line_index] == old_type) {
1131 r = solver_set_line(sstate, line_index, new_type);
1132 assert(r == TRUE);
1133 retval = TRUE;
1134 }
1135 }
1136 return retval;
1137 }
1138
1139 /* ----------------------------------------------------------------------
1140 * Loop generation and clue removal
1141 */
1142
1143 /* We're going to store a list of current candidate faces for lighting.
1144 * Each face gets a 'score', which tells us how adding that face right
1145 * now would affect the length of the solution loop. We're trying to
1146 * maximise that quantity so will bias our random selection of faces to
1147 * light towards those with high scores */
1148 struct face {
1149 int score;
1150 unsigned long random;
1151 grid_face *f;
1152 };
1153
1154 static int get_face_cmpfn(void *v1, void *v2)
1155 {
1156 struct face *f1 = v1;
1157 struct face *f2 = v2;
1158 /* These grid_face pointers always point into the same list of
1159 * 'grid_face's, so it's valid to subtract them. */
1160 return f1->f - f2->f;
1161 }
1162
1163 static int face_sort_cmpfn(void *v1, void *v2)
1164 {
1165 struct face *f1 = v1;
1166 struct face *f2 = v2;
1167 int r;
1168
1169 r = f2->score - f1->score;
1170 if (r) {
1171 return r;
1172 }
1173
1174 if (f1->random < f2->random)
1175 return -1;
1176 else if (f1->random > f2->random)
1177 return 1;
1178
1179 /*
1180 * It's _just_ possible that two faces might have been given
1181 * the same random value. In that situation, fall back to
1182 * comparing based on the positions within the grid's face-list.
1183 * This introduces a tiny directional bias, but not a significant one.
1184 */
1185 return get_face_cmpfn(f1, f2);
1186 }
1187
1188 enum { FACE_LIT, FACE_UNLIT };
1189
1190 /* face should be of type grid_face* here. */
1191 #define FACE_LIT_STATE(face) \
1192 ( (face) == NULL ? FACE_UNLIT : \
1193 board[(face) - g->faces] )
1194
1195 /* 'board' is an array of these enums, indicating which faces are
1196 * currently lit. Returns whether it's legal to light up the
1197 * given face. */
1198 static int can_light_face(grid *g, char* board, int face_index)
1199 {
1200 int i, j;
1201 grid_face *test_face = g->faces + face_index;
1202 grid_face *starting_face, *current_face;
1203 int transitions;
1204 int current_state, s;
1205 int found_lit_neighbour = FALSE;
1206 assert(board[face_index] == FACE_UNLIT);
1207
1208 /* Can only consider a face for lighting if it's adjacent to an
1209 * already lit face. */
1210 for (i = 0; i < test_face->order; i++) {
1211 grid_edge *e = test_face->edges[i];
1212 grid_face *f = (e->face1 == test_face) ? e->face2 : e->face1;
1213 if (FACE_LIT_STATE(f) == FACE_LIT) {
1214 found_lit_neighbour = TRUE;
1215 break;
1216 }
1217 }
1218 if (!found_lit_neighbour)
1219 return FALSE;
1220
1221 /* Need to avoid creating a loop of lit faces around some unlit faces.
1222 * Also need to avoid meeting another lit face at a corner, with
1223 * unlit faces in between. Here's a simple test that (I believe) takes
1224 * care of both these conditions:
1225 *
1226 * Take the circular path formed by this face's edges, and inflate it
1227 * slightly outwards. Imagine walking around this path and consider
1228 * the faces that you visit in sequence. This will include all faces
1229 * touching the given face, either along an edge or just at a corner.
1230 * Count the number of LIT/UNLIT transitions you encounter, as you walk
1231 * along the complete loop. This will obviously turn out to be an even
1232 * number.
1233 * If 0, we're either in a completely unlit zone, or this face is a hole
1234 * in a completely lit zone. If the former, we would create a brand new
1235 * island by lighting this face. And the latter ought to be impossible -
1236 * it would mean there's already a lit loop, so something went wrong
1237 * earlier.
1238 * If 4 or greater, there are too many separate lit regions touching this
1239 * face, and lighting it up would create a loop or a corner-violation.
1240 * The only allowed case is when the count is exactly 2. */
1241
1242 /* i points to a dot around the test face.
1243 * j points to a face around the i^th dot.
1244 * The current face will always be:
1245 * test_face->dots[i]->faces[j]
1246 * We assume dots go clockwise around the test face,
1247 * and faces go clockwise around dots. */
1248 i = j = 0;
1249 starting_face = test_face->dots[0]->faces[0];
1250 if (starting_face == test_face) {
1251 j = 1;
1252 starting_face = test_face->dots[0]->faces[1];
1253 }
1254 current_face = starting_face;
1255 transitions = 0;
1256 current_state = FACE_LIT_STATE(current_face);
1257
1258 do {
1259 /* Advance to next face.
1260 * Need to loop here because it might take several goes to
1261 * find it. */
1262 while (TRUE) {
1263 j++;
1264 if (j == test_face->dots[i]->order)
1265 j = 0;
1266
1267 if (test_face->dots[i]->faces[j] == test_face) {
1268 /* Advance to next dot round test_face, then
1269 * find current_face around new dot
1270 * and advance to the next face clockwise */
1271 i++;
1272 if (i == test_face->order)
1273 i = 0;
1274 for (j = 0; j < test_face->dots[i]->order; j++) {
1275 if (test_face->dots[i]->faces[j] == current_face)
1276 break;
1277 }
1278 /* Must actually find current_face around new dot,
1279 * or else something's wrong with the grid. */
1280 assert(j != test_face->dots[i]->order);
1281 /* Found, so advance to next face and try again */
1282 } else {
1283 break;
1284 }
1285 }
1286 /* (i,j) are now advanced to next face */
1287 current_face = test_face->dots[i]->faces[j];
1288 s = FACE_LIT_STATE(current_face);
1289 if (s != current_state) {
1290 ++transitions;
1291 current_state = s;
1292 if (transitions > 2)
1293 return FALSE; /* no point in continuing */
1294 }
1295 } while (current_face != starting_face);
1296
1297 return (transitions == 2) ? TRUE : FALSE;
1298 }
1299
1300 /* The 'score' of a face reflects its current desirability for selection
1301 * as the next face to light. We want to encourage moving into uncharted
1302 * areas so we give scores according to how many of the face's neighbours
1303 * are currently unlit. */
1304 static int face_score(grid *g, char *board, grid_face *face)
1305 {
1306 /* Simple formula: score = neighbours unlit - neighbours lit */
1307 int lit_count = 0, unlit_count = 0;
1308 int i;
1309 grid_face *f;
1310 grid_edge *e;
1311 for (i = 0; i < face->order; i++) {
1312 e = face->edges[i];
1313 f = (e->face1 == face) ? e->face2 : e->face1;
1314 if (FACE_LIT_STATE(f) == FACE_LIT)
1315 ++lit_count;
1316 else
1317 ++unlit_count;
1318 }
1319 return unlit_count - lit_count;
1320 }
1321
1322 /* Generate a new complete set of clues for the given game_state. */
1323 static void add_full_clues(game_state *state, random_state *rs)
1324 {
1325 signed char *clues = state->clues;
1326 char *board;
1327 grid *g = state->game_grid;
1328 int i, j, c;
1329 int num_faces = g->num_faces;
1330 int first_time = TRUE;
1331
1332 struct face *face, *tmpface;
1333 struct face face_pos;
1334
1335 /* These will contain exactly the same information, sorted into different
1336 * orders */
1337 tree234 *lightable_faces_sorted, *lightable_faces_gettable;
1338
1339 #define IS_LIGHTING_CANDIDATE(i) \
1340 (board[i] == FACE_UNLIT && \
1341 can_light_face(g, board, i))
1342
1343 board = snewn(num_faces, char);
1344
1345 /* Make a board */
1346 memset(board, FACE_UNLIT, num_faces);
1347
1348 /* We need a way of favouring faces that will increase our loopiness.
1349 * We do this by maintaining a list of all candidate faces sorted by
1350 * their score and choose randomly from that with appropriate skew.
1351 * In order to avoid consistently biasing towards particular faces, we
1352 * need the sort order _within_ each group of scores to be completely
1353 * random. But it would be abusing the hospitality of the tree234 data
1354 * structure if our comparison function were nondeterministic :-). So with
1355 * each face we associate a random number that does not change during a
1356 * particular run of the generator, and use that as a secondary sort key.
1357 * Yes, this means we will be biased towards particular random faces in
1358 * any one run but that doesn't actually matter. */
1359
1360 lightable_faces_sorted = newtree234(face_sort_cmpfn);
1361 lightable_faces_gettable = newtree234(get_face_cmpfn);
1362 #define ADD_FACE(f) \
1363 do { \
1364 struct face *x = add234(lightable_faces_sorted, f); \
1365 assert(x == f); \
1366 x = add234(lightable_faces_gettable, f); \
1367 assert(x == f); \
1368 } while (0)
1369
1370 #define REMOVE_FACE(f) \
1371 do { \
1372 struct face *x = del234(lightable_faces_sorted, f); \
1373 assert(x); \
1374 x = del234(lightable_faces_gettable, f); \
1375 assert(x); \
1376 } while (0)
1377
1378 /* Light faces one at a time until the board is interesting enough */
1379 while (TRUE)
1380 {
1381 if (first_time) {
1382 first_time = FALSE;
1383 /* lightable_faces_xxx are empty, so start the process by
1384 * lighting up the middle face. These tree234s should
1385 * remain empty, consistent with what would happen if
1386 * first_time were FALSE. */
1387 board[g->middle_face - g->faces] = FACE_LIT;
1388 face = snew(struct face);
1389 face->f = g->middle_face;
1390 /* No need to initialise any more of 'face' here, no other fields
1391 * are used in this case. */
1392 } else {
1393 /* We have count234(lightable_faces_gettable) possibilities, and in
1394 * lightable_faces_sorted they are sorted with the most desirable
1395 * first. */
1396 c = count234(lightable_faces_sorted);
1397 if (c == 0)
1398 break;
1399 assert(c == count234(lightable_faces_gettable));
1400
1401 /* Check that the best face available is any good */
1402 face = (struct face *)index234(lightable_faces_sorted, 0);
1403 assert(face);
1404
1405 /*
1406 * The situation for a general grid is slightly different from
1407 * a square grid. Decreasing the perimeter should be allowed
1408 * sometimes (think about creating a hexagon of lit triangles,
1409 * for example). For if it were _never_ done, then the user would
1410 * be able to illicitly deduce certain things. So we do it
1411 * sometimes but not always.
1412 */
1413 if (face->score <= 0 && random_upto(rs, 2) == 0) {
1414 break;
1415 }
1416
1417 assert(face->f); /* not the infinite face */
1418 assert(FACE_LIT_STATE(face->f) == FACE_UNLIT);
1419
1420 /* Update data structures */
1421 /* Light up the face and remove it from the lists */
1422 board[face->f - g->faces] = FACE_LIT;
1423 REMOVE_FACE(face);
1424 }
1425
1426 /* The face we've just lit up potentially affects the lightability
1427 * of any neighbouring faces (touching at a corner or edge). So the
1428 * search needs to be conducted around all faces touching the one
1429 * we've just lit. Iterate over its corners, then over each corner's
1430 * faces. */
1431 for (i = 0; i < face->f->order; i++) {
1432 grid_dot *d = face->f->dots[i];
1433 for (j = 0; j < d->order; j++) {
1434 grid_face *f2 = d->faces[j];
1435 if (f2 == NULL)
1436 continue;
1437 if (f2 == face->f)
1438 continue;
1439 face_pos.f = f2;
1440 tmpface = find234(lightable_faces_gettable, &face_pos, NULL);
1441 if (tmpface) {
1442 assert(tmpface->f == face_pos.f);
1443 assert(FACE_LIT_STATE(tmpface->f) == FACE_UNLIT);
1444 REMOVE_FACE(tmpface);
1445 } else {
1446 tmpface = snew(struct face);
1447 tmpface->f = face_pos.f;
1448 tmpface->random = random_bits(rs, 31);
1449 }
1450 tmpface->score = face_score(g, board, tmpface->f);
1451
1452 if (IS_LIGHTING_CANDIDATE(tmpface->f - g->faces)) {
1453 ADD_FACE(tmpface);
1454 } else {
1455 sfree(tmpface);
1456 }
1457 }
1458 }
1459 sfree(face);
1460 }
1461
1462 /* Clean up */
1463 while ((face = delpos234(lightable_faces_gettable, 0)) != NULL)
1464 sfree(face);
1465 freetree234(lightable_faces_gettable);
1466 freetree234(lightable_faces_sorted);
1467
1468 /* Fill out all the clues by initialising to 0, then iterating over
1469 * all edges and incrementing each clue as we find edges that border
1470 * between LIT/UNLIT faces */
1471 memset(clues, 0, num_faces);
1472 for (i = 0; i < g->num_edges; i++) {
1473 grid_edge *e = g->edges + i;
1474 grid_face *f1 = e->face1;
1475 grid_face *f2 = e->face2;
1476 if (FACE_LIT_STATE(f1) != FACE_LIT_STATE(f2)) {
1477 if (f1) clues[f1 - g->faces]++;
1478 if (f2) clues[f2 - g->faces]++;
1479 }
1480 }
1481
1482 sfree(board);
1483 }
1484
1485
1486 static int game_has_unique_soln(const game_state *state, int diff)
1487 {
1488 int ret;
1489 solver_state *sstate_new;
1490 solver_state *sstate = new_solver_state((game_state *)state, diff);
1491
1492 sstate_new = solve_game_rec(sstate, diff);
1493
1494 assert(sstate_new->solver_status != SOLVER_MISTAKE);
1495 ret = (sstate_new->solver_status == SOLVER_SOLVED);
1496
1497 free_solver_state(sstate_new);
1498 free_solver_state(sstate);
1499
1500 return ret;
1501 }
1502
1503
1504 /* Remove clues one at a time at random. */
1505 static game_state *remove_clues(game_state *state, random_state *rs,
1506 int diff)
1507 {
1508 int *face_list;
1509 int num_faces = state->game_grid->num_faces;
1510 game_state *ret = dup_game(state), *saved_ret;
1511 int n;
1512
1513 /* We need to remove some clues. We'll do this by forming a list of all
1514 * available clues, shuffling it, then going along one at a
1515 * time clearing each clue in turn for which doing so doesn't render the
1516 * board unsolvable. */
1517 face_list = snewn(num_faces, int);
1518 for (n = 0; n < num_faces; ++n) {
1519 face_list[n] = n;
1520 }
1521
1522 shuffle(face_list, num_faces, sizeof(int), rs);
1523
1524 for (n = 0; n < num_faces; ++n) {
1525 saved_ret = dup_game(ret);
1526 ret->clues[face_list[n]] = -1;
1527
1528 if (game_has_unique_soln(ret, diff)) {
1529 free_game(saved_ret);
1530 } else {
1531 free_game(ret);
1532 ret = saved_ret;
1533 }
1534 }
1535 sfree(face_list);
1536
1537 return ret;
1538 }
1539
1540
1541 static char *new_game_desc(game_params *params, random_state *rs,
1542 char **aux, int interactive)
1543 {
1544 /* solution and description both use run-length encoding in obvious ways */
1545 char *retval;
1546 grid *g;
1547 game_state *state = snew(game_state);
1548 game_state *state_new;
1549 params_generate_grid(params);
1550 state->game_grid = g = params->game_grid;
1551 g->refcount++;
1552 state->clues = snewn(g->num_faces, signed char);
1553 state->lines = snewn(g->num_edges, char);
1554
1555 state->grid_type = params->type;
1556
1557 newboard_please:
1558
1559 memset(state->lines, LINE_UNKNOWN, g->num_edges);
1560
1561 state->solved = state->cheated = FALSE;
1562
1563 /* Get a new random solvable board with all its clues filled in. Yes, this
1564 * can loop for ever if the params are suitably unfavourable, but
1565 * preventing games smaller than 4x4 seems to stop this happening */
1566 do {
1567 add_full_clues(state, rs);
1568 } while (!game_has_unique_soln(state, params->diff));
1569
1570 state_new = remove_clues(state, rs, params->diff);
1571 free_game(state);
1572 state = state_new;
1573
1574
1575 if (params->diff > 0 && game_has_unique_soln(state, params->diff-1)) {
1576 #ifdef SHOW_WORKING
1577 fprintf(stderr, "Rejecting board, it is too easy\n");
1578 #endif
1579 goto newboard_please;
1580 }
1581
1582 retval = state_to_text(state);
1583
1584 free_game(state);
1585
1586 assert(!validate_desc(params, retval));
1587
1588 return retval;
1589 }
1590
1591 static game_state *new_game(midend *me, game_params *params, char *desc)
1592 {
1593 int i;
1594 game_state *state = snew(game_state);
1595 int empties_to_make = 0;
1596 int n;
1597 const char *dp = desc;
1598 grid *g;
1599 int num_faces, num_edges;
1600
1601 params_generate_grid(params);
1602 state->game_grid = g = params->game_grid;
1603 g->refcount++;
1604 num_faces = g->num_faces;
1605 num_edges = g->num_edges;
1606
1607 state->clues = snewn(num_faces, signed char);
1608 state->lines = snewn(num_edges, char);
1609
1610 state->solved = state->cheated = FALSE;
1611
1612 state->grid_type = params->type;
1613
1614 for (i = 0; i < num_faces; i++) {
1615 if (empties_to_make) {
1616 empties_to_make--;
1617 state->clues[i] = -1;
1618 continue;
1619 }
1620
1621 assert(*dp);
1622 n = *dp - '0';
1623 if (n >= 0 && n < 10) {
1624 state->clues[i] = n;
1625 } else {
1626 n = *dp - 'a' + 1;
1627 assert(n > 0);
1628 state->clues[i] = -1;
1629 empties_to_make = n - 1;
1630 }
1631 ++dp;
1632 }
1633
1634 memset(state->lines, LINE_UNKNOWN, num_edges);
1635
1636 return state;
1637 }
1638
1639 enum { LOOP_NONE=0, LOOP_SOLN, LOOP_NOT_SOLN };
1640
1641 /* ----------------------------------------------------------------------
1642 * Solver logic
1643 *
1644 * Our solver modes operate as follows. Each mode also uses the modes above it.
1645 *
1646 * Easy Mode
1647 * Just implement the rules of the game.
1648 *
1649 * Normal Mode
1650 * For each (adjacent) pair of lines through each dot we store a bit for
1651 * whether at least one of them is on and whether at most one is on. (If we
1652 * know both or neither is on that's already stored more directly.)
1653 *
1654 * Advanced Mode
1655 * Use edsf data structure to make equivalence classes of lines that are
1656 * known identical to or opposite to one another.
1657 */
1658
1659
1660 /* DLines:
1661 * For general grids, we consider "dlines" to be pairs of lines joined
1662 * at a dot. The lines must be adjacent around the dot, so we can think of
1663 * a dline as being a dot+face combination. Or, a dot+edge combination where
1664 * the second edge is taken to be the next clockwise edge from the dot.
1665 * Original loopy code didn't have this extra restriction of the lines being
1666 * adjacent. From my tests with square grids, this extra restriction seems to
1667 * take little, if anything, away from the quality of the puzzles.
1668 * A dline can be uniquely identified by an edge/dot combination, given that
1669 * a dline-pair always goes clockwise around its common dot. The edge/dot
1670 * combination can be represented by an edge/bool combination - if bool is
1671 * TRUE, use edge->dot1 else use edge->dot2. So the total number of dlines is
1672 * exactly twice the number of edges in the grid - although the dlines
1673 * spanning the infinite face are not all that useful to the solver.
1674 * Note that, by convention, a dline goes clockwise around its common dot,
1675 * which means the dline goes anti-clockwise around its common face.
1676 */
1677
1678 /* Helper functions for obtaining an index into an array of dlines, given
1679 * various information. We assume the grid layout conventions about how
1680 * the various lists are interleaved - see grid_make_consistent() for
1681 * details. */
1682
1683 /* i points to the first edge of the dline pair, reading clockwise around
1684 * the dot. */
1685 static int dline_index_from_dot(grid *g, grid_dot *d, int i)
1686 {
1687 grid_edge *e = d->edges[i];
1688 int ret;
1689 #ifdef DEBUG_DLINES
1690 grid_edge *e2;
1691 int i2 = i+1;
1692 if (i2 == d->order) i2 = 0;
1693 e2 = d->edges[i2];
1694 #endif
1695 ret = 2 * (e - g->edges) + ((e->dot1 == d) ? 1 : 0);
1696 #ifdef DEBUG_DLINES
1697 printf("dline_index_from_dot: d=%d,i=%d, edges [%d,%d] - %d\n",
1698 (int)(d - g->dots), i, (int)(e - g->edges),
1699 (int)(e2 - g->edges), ret);
1700 #endif
1701 return ret;
1702 }
1703 /* i points to the second edge of the dline pair, reading clockwise around
1704 * the face. That is, the edges of the dline, starting at edge{i}, read
1705 * anti-clockwise around the face. By layout conventions, the common dot
1706 * of the dline will be f->dots[i] */
1707 static int dline_index_from_face(grid *g, grid_face *f, int i)
1708 {
1709 grid_edge *e = f->edges[i];
1710 grid_dot *d = f->dots[i];
1711 int ret;
1712 #ifdef DEBUG_DLINES
1713 grid_edge *e2;
1714 int i2 = i - 1;
1715 if (i2 < 0) i2 += f->order;
1716 e2 = f->edges[i2];
1717 #endif
1718 ret = 2 * (e - g->edges) + ((e->dot1 == d) ? 1 : 0);
1719 #ifdef DEBUG_DLINES
1720 printf("dline_index_from_face: f=%d,i=%d, edges [%d,%d] - %d\n",
1721 (int)(f - g->faces), i, (int)(e - g->edges),
1722 (int)(e2 - g->edges), ret);
1723 #endif
1724 return ret;
1725 }
1726 static int is_atleastone(const char *dline_array, int index)
1727 {
1728 return BIT_SET(dline_array[index], 0);
1729 }
1730 static int set_atleastone(char *dline_array, int index)
1731 {
1732 return SET_BIT(dline_array[index], 0);
1733 }
1734 static int is_atmostone(const char *dline_array, int index)
1735 {
1736 return BIT_SET(dline_array[index], 1);
1737 }
1738 static int set_atmostone(char *dline_array, int index)
1739 {
1740 return SET_BIT(dline_array[index], 1);
1741 }
1742
1743 static void array_setall(char *array, char from, char to, int len)
1744 {
1745 char *p = array, *p_old = p;
1746 int len_remaining = len;
1747
1748 while ((p = memchr(p, from, len_remaining))) {
1749 *p = to;
1750 len_remaining -= p - p_old;
1751 p_old = p;
1752 }
1753 }
1754
1755 /* Helper, called when doing dline dot deductions, in the case where we
1756 * have 4 UNKNOWNs, and two of them (adjacent) have *exactly* one YES between
1757 * them (because of dline atmostone/atleastone).
1758 * On entry, edge points to the first of these two UNKNOWNs. This function
1759 * will find the opposite UNKNOWNS (if they are adjacent to one another)
1760 * and set their corresponding dline to atleastone. (Setting atmostone
1761 * already happens in earlier dline deductions) */
1762 static int dline_set_opp_atleastone(solver_state *sstate,
1763 grid_dot *d, int edge)
1764 {
1765 game_state *state = sstate->state;
1766 grid *g = state->game_grid;
1767 int N = d->order;
1768 int opp, opp2;
1769 for (opp = 0; opp < N; opp++) {
1770 int opp_dline_index;
1771 if (opp == edge || opp == edge+1 || opp == edge-1)
1772 continue;
1773 if (opp == 0 && edge == N-1)
1774 continue;
1775 if (opp == N-1 && edge == 0)
1776 continue;
1777 opp2 = opp + 1;
1778 if (opp2 == N) opp2 = 0;
1779 /* Check if opp, opp2 point to LINE_UNKNOWNs */
1780 if (state->lines[d->edges[opp] - g->edges] != LINE_UNKNOWN)
1781 continue;
1782 if (state->lines[d->edges[opp2] - g->edges] != LINE_UNKNOWN)
1783 continue;
1784 /* Found opposite UNKNOWNS and they're next to each other */
1785 opp_dline_index = dline_index_from_dot(g, d, opp);
1786 return set_atleastone(sstate->normal->dlines, opp_dline_index);
1787 }
1788 return FALSE;
1789 }
1790
1791
1792 /* Set pairs of lines around this face which are known to be identical, to
1793 * the given line_state */
1794 static int face_setall_identical(solver_state *sstate, int face_index,
1795 enum line_state line_new)
1796 {
1797 /* can[dir] contains the canonical line associated with the line in
1798 * direction dir from the square in question. Similarly inv[dir] is
1799 * whether or not the line in question is inverse to its canonical
1800 * element. */
1801 int retval = FALSE;
1802 game_state *state = sstate->state;
1803 grid *g = state->game_grid;
1804 grid_face *f = g->faces + face_index;
1805 int N = f->order;
1806 int i, j;
1807 int can1, can2, inv1, inv2;
1808
1809 for (i = 0; i < N; i++) {
1810 int line1_index = f->edges[i] - g->edges;
1811 if (state->lines[line1_index] != LINE_UNKNOWN)
1812 continue;
1813 for (j = i + 1; j < N; j++) {
1814 int line2_index = f->edges[j] - g->edges;
1815 if (state->lines[line2_index] != LINE_UNKNOWN)
1816 continue;
1817
1818 /* Found two UNKNOWNS */
1819 can1 = edsf_canonify(sstate->hard->linedsf, line1_index, &inv1);
1820 can2 = edsf_canonify(sstate->hard->linedsf, line2_index, &inv2);
1821 if (can1 == can2 && inv1 == inv2) {
1822 solver_set_line(sstate, line1_index, line_new);
1823 solver_set_line(sstate, line2_index, line_new);
1824 }
1825 }
1826 }
1827 return retval;
1828 }
1829
1830 /* Given a dot or face, and a count of LINE_UNKNOWNs, find them and
1831 * return the edge indices into e. */
1832 static void find_unknowns(game_state *state,
1833 grid_edge **edge_list, /* Edge list to search (from a face or a dot) */
1834 int expected_count, /* Number of UNKNOWNs (comes from solver's cache) */
1835 int *e /* Returned edge indices */)
1836 {
1837 int c = 0;
1838 grid *g = state->game_grid;
1839 while (c < expected_count) {
1840 int line_index = *edge_list - g->edges;
1841 if (state->lines[line_index] == LINE_UNKNOWN) {
1842 e[c] = line_index;
1843 c++;
1844 }
1845 ++edge_list;
1846 }
1847 }
1848
1849 /* If we have a list of edges, and we know whether the number of YESs should
1850 * be odd or even, and there are only a few UNKNOWNs, we can do some simple
1851 * linedsf deductions. This can be used for both face and dot deductions.
1852 * Returns the difficulty level of the next solver that should be used,
1853 * or DIFF_MAX if no progress was made. */
1854 static int parity_deductions(solver_state *sstate,
1855 grid_edge **edge_list, /* Edge list (from a face or a dot) */
1856 int total_parity, /* Expected number of YESs modulo 2 (either 0 or 1) */
1857 int unknown_count)
1858 {
1859 game_state *state = sstate->state;
1860 int diff = DIFF_MAX;
1861 int *linedsf = sstate->hard->linedsf;
1862
1863 if (unknown_count == 2) {
1864 /* Lines are known alike/opposite, depending on inv. */
1865 int e[2];
1866 find_unknowns(state, edge_list, 2, e);
1867 if (merge_lines(sstate, e[0], e[1], total_parity))
1868 diff = min(diff, DIFF_HARD);
1869 } else if (unknown_count == 3) {
1870 int e[3];
1871 int can[3]; /* canonical edges */
1872 int inv[3]; /* whether can[x] is inverse to e[x] */
1873 find_unknowns(state, edge_list, 3, e);
1874 can[0] = edsf_canonify(linedsf, e[0], inv);
1875 can[1] = edsf_canonify(linedsf, e[1], inv+1);
1876 can[2] = edsf_canonify(linedsf, e[2], inv+2);
1877 if (can[0] == can[1]) {
1878 if (solver_set_line(sstate, e[2], (total_parity^inv[0]^inv[1]) ?
1879 LINE_YES : LINE_NO))
1880 diff = min(diff, DIFF_EASY);
1881 }
1882 if (can[0] == can[2]) {
1883 if (solver_set_line(sstate, e[1], (total_parity^inv[0]^inv[2]) ?
1884 LINE_YES : LINE_NO))
1885 diff = min(diff, DIFF_EASY);
1886 }
1887 if (can[1] == can[2]) {
1888 if (solver_set_line(sstate, e[0], (total_parity^inv[1]^inv[2]) ?
1889 LINE_YES : LINE_NO))
1890 diff = min(diff, DIFF_EASY);
1891 }
1892 } else if (unknown_count == 4) {
1893 int e[4];
1894 int can[4]; /* canonical edges */
1895 int inv[4]; /* whether can[x] is inverse to e[x] */
1896 find_unknowns(state, edge_list, 4, e);
1897 can[0] = edsf_canonify(linedsf, e[0], inv);
1898 can[1] = edsf_canonify(linedsf, e[1], inv+1);
1899 can[2] = edsf_canonify(linedsf, e[2], inv+2);
1900 can[3] = edsf_canonify(linedsf, e[3], inv+3);
1901 if (can[0] == can[1]) {
1902 if (merge_lines(sstate, e[2], e[3], total_parity^inv[0]^inv[1]))
1903 diff = min(diff, DIFF_HARD);
1904 } else if (can[0] == can[2]) {
1905 if (merge_lines(sstate, e[1], e[3], total_parity^inv[0]^inv[2]))
1906 diff = min(diff, DIFF_HARD);
1907 } else if (can[0] == can[3]) {
1908 if (merge_lines(sstate, e[1], e[2], total_parity^inv[0]^inv[3]))
1909 diff = min(diff, DIFF_HARD);
1910 } else if (can[1] == can[2]) {
1911 if (merge_lines(sstate, e[0], e[3], total_parity^inv[1]^inv[2]))
1912 diff = min(diff, DIFF_HARD);
1913 } else if (can[1] == can[3]) {
1914 if (merge_lines(sstate, e[0], e[2], total_parity^inv[1]^inv[3]))
1915 diff = min(diff, DIFF_HARD);
1916 } else if (can[2] == can[3]) {
1917 if (merge_lines(sstate, e[0], e[1], total_parity^inv[2]^inv[3]))
1918 diff = min(diff, DIFF_HARD);
1919 }
1920 }
1921 return diff;
1922 }
1923
1924
1925 /*
1926 * These are the main solver functions.
1927 *
1928 * Their return values are diff values corresponding to the lowest mode solver
1929 * that would notice the work that they have done. For example if the normal
1930 * mode solver adds actual lines or crosses, it will return DIFF_EASY as the
1931 * easy mode solver might be able to make progress using that. It doesn't make
1932 * sense for one of them to return a diff value higher than that of the
1933 * function itself.
1934 *
1935 * Each function returns the lowest value it can, as early as possible, in
1936 * order to try and pass as much work as possible back to the lower level
1937 * solvers which progress more quickly.
1938 */
1939
1940 /* PROPOSED NEW DESIGN:
1941 * We have a work queue consisting of 'events' notifying us that something has
1942 * happened that a particular solver mode might be interested in. For example
1943 * the hard mode solver might do something that helps the normal mode solver at
1944 * dot [x,y] in which case it will enqueue an event recording this fact. Then
1945 * we pull events off the work queue, and hand each in turn to the solver that
1946 * is interested in them. If a solver reports that it failed we pass the same
1947 * event on to progressively more advanced solvers and the loop detector. Once
1948 * we've exhausted an event, or it has helped us progress, we drop it and
1949 * continue to the next one. The events are sorted first in order of solver
1950 * complexity (easy first) then order of insertion (oldest first).
1951 * Once we run out of events we loop over each permitted solver in turn
1952 * (easiest first) until either a deduction is made (and an event therefore
1953 * emerges) or no further deductions can be made (in which case we've failed).
1954 *
1955 * QUESTIONS:
1956 * * How do we 'loop over' a solver when both dots and squares are concerned.
1957 * Answer: first all squares then all dots.
1958 */
1959
1960 static int easy_mode_deductions(solver_state *sstate)
1961 {
1962 int i, current_yes, current_no;
1963 game_state *state = sstate->state;
1964 grid *g = state->game_grid;
1965 int diff = DIFF_MAX;
1966
1967 /* Per-face deductions */
1968 for (i = 0; i < g->num_faces; i++) {
1969 grid_face *f = g->faces + i;
1970
1971 if (sstate->face_solved[i])
1972 continue;
1973
1974 current_yes = sstate->face_yes_count[i];
1975 current_no = sstate->face_no_count[i];
1976
1977 if (current_yes + current_no == f->order) {
1978 sstate->face_solved[i] = TRUE;
1979 continue;
1980 }
1981
1982 if (state->clues[i] < 0)
1983 continue;
1984
1985 if (state->clues[i] < current_yes) {
1986 sstate->solver_status = SOLVER_MISTAKE;
1987 return DIFF_EASY;
1988 }
1989 if (state->clues[i] == current_yes) {
1990 if (face_setall(sstate, i, LINE_UNKNOWN, LINE_NO))
1991 diff = min(diff, DIFF_EASY);
1992 sstate->face_solved[i] = TRUE;
1993 continue;
1994 }
1995
1996 if (f->order - state->clues[i] < current_no) {
1997 sstate->solver_status = SOLVER_MISTAKE;
1998 return DIFF_EASY;
1999 }
2000 if (f->order - state->clues[i] == current_no) {
2001 if (face_setall(sstate, i, LINE_UNKNOWN, LINE_YES))
2002 diff = min(diff, DIFF_EASY);
2003 sstate->face_solved[i] = TRUE;
2004 continue;
2005 }
2006 }
2007
2008 check_caches(sstate);
2009
2010 /* Per-dot deductions */
2011 for (i = 0; i < g->num_dots; i++) {
2012 grid_dot *d = g->dots + i;
2013 int yes, no, unknown;
2014
2015 if (sstate->dot_solved[i])
2016 continue;
2017
2018 yes = sstate->dot_yes_count[i];
2019 no = sstate->dot_no_count[i];
2020 unknown = d->order - yes - no;
2021
2022 if (yes == 0) {
2023 if (unknown == 0) {
2024 sstate->dot_solved[i] = TRUE;
2025 } else if (unknown == 1) {
2026 dot_setall(sstate, i, LINE_UNKNOWN, LINE_NO);
2027 diff = min(diff, DIFF_EASY);
2028 sstate->dot_solved[i] = TRUE;
2029 }
2030 } else if (yes == 1) {
2031 if (unknown == 0) {
2032 sstate->solver_status = SOLVER_MISTAKE;
2033 return DIFF_EASY;
2034 } else if (unknown == 1) {
2035 dot_setall(sstate, i, LINE_UNKNOWN, LINE_YES);
2036 diff = min(diff, DIFF_EASY);
2037 }
2038 } else if (yes == 2) {
2039 if (unknown > 0) {
2040 dot_setall(sstate, i, LINE_UNKNOWN, LINE_NO);
2041 diff = min(diff, DIFF_EASY);
2042 }
2043 sstate->dot_solved[i] = TRUE;
2044 } else {
2045 sstate->solver_status = SOLVER_MISTAKE;
2046 return DIFF_EASY;
2047 }
2048 }
2049
2050 check_caches(sstate);
2051
2052 return diff;
2053 }
2054
2055 static int normal_mode_deductions(solver_state *sstate)
2056 {
2057 game_state *state = sstate->state;
2058 grid *g = state->game_grid;
2059 char *dlines = sstate->normal->dlines;
2060 int i;
2061 int diff = DIFF_MAX;
2062
2063 /* ------ Face deductions ------ */
2064
2065 /* Given a set of dline atmostone/atleastone constraints, need to figure
2066 * out if we can deduce any further info. For more general faces than
2067 * squares, this turns out to be a tricky problem.
2068 * The approach taken here is to define (per face) NxN matrices:
2069 * "maxs" and "mins".
2070 * The entries maxs(j,k) and mins(j,k) define the upper and lower limits
2071 * for the possible number of edges that are YES between positions j and k
2072 * going clockwise around the face. Can think of j and k as marking dots
2073 * around the face (recall the labelling scheme: edge0 joins dot0 to dot1,
2074 * edge1 joins dot1 to dot2 etc).
2075 * Trivially, mins(j,j) = maxs(j,j) = 0, and we don't even bother storing
2076 * these. mins(j,j+1) and maxs(j,j+1) are determined by whether edge{j}
2077 * is YES, NO or UNKNOWN. mins(j,j+2) and maxs(j,j+2) are related to
2078 * the dline atmostone/atleastone status for edges j and j+1.
2079 *
2080 * Then we calculate the remaining entries recursively. We definitely
2081 * know that
2082 * mins(j,k) >= { mins(j,u) + mins(u,k) } for any u between j and k.
2083 * This is because any valid placement of YESs between j and k must give
2084 * a valid placement between j and u, and also between u and k.
2085 * I believe it's sufficient to use just the two values of u:
2086 * j+1 and j+2. Seems to work well in practice - the bounds we compute
2087 * are rigorous, even if they might not be best-possible.
2088 *
2089 * Once we have maxs and mins calculated, we can make inferences about
2090 * each dline{j,j+1} by looking at the possible complementary edge-counts
2091 * mins(j+2,j) and maxs(j+2,j) and comparing these with the face clue.
2092 * As well as dlines, we can make similar inferences about single edges.
2093 * For example, consider a pentagon with clue 3, and we know at most one
2094 * of (edge0, edge1) is YES, and at most one of (edge2, edge3) is YES.
2095 * We could then deduce edge4 is YES, because maxs(0,4) would be 2, so
2096 * that final edge would have to be YES to make the count up to 3.
2097 */
2098
2099 /* Much quicker to allocate arrays on the stack than the heap, so
2100 * define the largest possible face size, and base our array allocations
2101 * on that. We check this with an assertion, in case someone decides to
2102 * make a grid which has larger faces than this. Note, this algorithm
2103 * could get quite expensive if there are many large faces. */
2104 #define MAX_FACE_SIZE 8
2105
2106 for (i = 0; i < g->num_faces; i++) {
2107 int maxs[MAX_FACE_SIZE][MAX_FACE_SIZE];
2108 int mins[MAX_FACE_SIZE][MAX_FACE_SIZE];
2109 grid_face *f = g->faces + i;
2110 int N = f->order;
2111 int j,m;
2112 int clue = state->clues[i];
2113 assert(N <= MAX_FACE_SIZE);
2114 if (sstate->face_solved[i])
2115 continue;
2116 if (clue < 0) continue;
2117
2118 /* Calculate the (j,j+1) entries */
2119 for (j = 0; j < N; j++) {
2120 int edge_index = f->edges[j] - g->edges;
2121 int dline_index;
2122 enum line_state line1 = state->lines[edge_index];
2123 enum line_state line2;
2124 int tmp;
2125 int k = j + 1;
2126 if (k >= N) k = 0;
2127 maxs[j][k] = (line1 == LINE_NO) ? 0 : 1;
2128 mins[j][k] = (line1 == LINE_YES) ? 1 : 0;
2129 /* Calculate the (j,j+2) entries */
2130 dline_index = dline_index_from_face(g, f, k);
2131 edge_index = f->edges[k] - g->edges;
2132 line2 = state->lines[edge_index];
2133 k++;
2134 if (k >= N) k = 0;
2135
2136 /* max */
2137 tmp = 2;
2138 if (line1 == LINE_NO) tmp--;
2139 if (line2 == LINE_NO) tmp--;
2140 if (tmp == 2 && is_atmostone(dlines, dline_index))
2141 tmp = 1;
2142 maxs[j][k] = tmp;
2143
2144 /* min */
2145 tmp = 0;
2146 if (line1 == LINE_YES) tmp++;
2147 if (line2 == LINE_YES) tmp++;
2148 if (tmp == 0 && is_atleastone(dlines, dline_index))
2149 tmp = 1;
2150 mins[j][k] = tmp;
2151 }
2152
2153 /* Calculate the (j,j+m) entries for m between 3 and N-1 */
2154 for (m = 3; m < N; m++) {
2155 for (j = 0; j < N; j++) {
2156 int k = j + m;
2157 int u = j + 1;
2158 int v = j + 2;
2159 int tmp;
2160 if (k >= N) k -= N;
2161 if (u >= N) u -= N;
2162 if (v >= N) v -= N;
2163 maxs[j][k] = maxs[j][u] + maxs[u][k];
2164 mins[j][k] = mins[j][u] + mins[u][k];
2165 tmp = maxs[j][v] + maxs[v][k];
2166 maxs[j][k] = min(maxs[j][k], tmp);
2167 tmp = mins[j][v] + mins[v][k];
2168 mins[j][k] = max(mins[j][k], tmp);
2169 }
2170 }
2171
2172 /* See if we can make any deductions */
2173 for (j = 0; j < N; j++) {
2174 int k;
2175 grid_edge *e = f->edges[j];
2176 int line_index = e - g->edges;
2177 int dline_index;
2178
2179 if (state->lines[line_index] != LINE_UNKNOWN)
2180 continue;
2181 k = j + 1;
2182 if (k >= N) k = 0;
2183
2184 /* minimum YESs in the complement of this edge */
2185 if (mins[k][j] > clue) {
2186 sstate->solver_status = SOLVER_MISTAKE;
2187 return DIFF_EASY;
2188 }
2189 if (mins[k][j] == clue) {
2190 /* setting this edge to YES would make at least
2191 * (clue+1) edges - contradiction */
2192 solver_set_line(sstate, line_index, LINE_NO);
2193 diff = min(diff, DIFF_EASY);
2194 }
2195 if (maxs[k][j] < clue - 1) {
2196 sstate->solver_status = SOLVER_MISTAKE;
2197 return DIFF_EASY;
2198 }
2199 if (maxs[k][j] == clue - 1) {
2200 /* Only way to satisfy the clue is to set edge{j} as YES */
2201 solver_set_line(sstate, line_index, LINE_YES);
2202 diff = min(diff, DIFF_EASY);
2203 }
2204
2205 /* Now see if we can make dline deduction for edges{j,j+1} */
2206 e = f->edges[k];
2207 if (state->lines[e - g->edges] != LINE_UNKNOWN)
2208 /* Only worth doing this for an UNKNOWN,UNKNOWN pair.
2209 * Dlines where one of the edges is known, are handled in the
2210 * dot-deductions */
2211 continue;
2212
2213 dline_index = dline_index_from_face(g, f, k);
2214 k++;
2215 if (k >= N) k = 0;
2216
2217 /* minimum YESs in the complement of this dline */
2218 if (mins[k][j] > clue - 2) {
2219 /* Adding 2 YESs would break the clue */
2220 if (set_atmostone(dlines, dline_index))
2221 diff = min(diff, DIFF_NORMAL);
2222 }
2223 /* maximum YESs in the complement of this dline */
2224 if (maxs[k][j] < clue) {
2225 /* Adding 2 NOs would mean not enough YESs */
2226 if (set_atleastone(dlines, dline_index))
2227 diff = min(diff, DIFF_NORMAL);
2228 }
2229 }
2230 }
2231
2232 if (diff < DIFF_NORMAL)
2233 return diff;
2234
2235 /* ------ Dot deductions ------ */
2236
2237 for (i = 0; i < g->num_dots; i++) {
2238 grid_dot *d = g->dots + i;
2239 int N = d->order;
2240 int yes, no, unknown;
2241 int j;
2242 if (sstate->dot_solved[i])
2243 continue;
2244 yes = sstate->dot_yes_count[i];
2245 no = sstate->dot_no_count[i];
2246 unknown = N - yes - no;
2247
2248 for (j = 0; j < N; j++) {
2249 int k;
2250 int dline_index;
2251 int line1_index, line2_index;
2252 enum line_state line1, line2;
2253 k = j + 1;
2254 if (k >= N) k = 0;
2255 dline_index = dline_index_from_dot(g, d, j);
2256 line1_index = d->edges[j] - g->edges;
2257 line2_index = d->edges[k] - g->edges;
2258 line1 = state->lines[line1_index];
2259 line2 = state->lines[line2_index];
2260
2261 /* Infer dline state from line state */
2262 if (line1 == LINE_NO || line2 == LINE_NO) {
2263 if (set_atmostone(dlines, dline_index))
2264 diff = min(diff, DIFF_NORMAL);
2265 }
2266 if (line1 == LINE_YES || line2 == LINE_YES) {
2267 if (set_atleastone(dlines, dline_index))
2268 diff = min(diff, DIFF_NORMAL);
2269 }
2270 /* Infer line state from dline state */
2271 if (is_atmostone(dlines, dline_index)) {
2272 if (line1 == LINE_YES && line2 == LINE_UNKNOWN) {
2273 solver_set_line(sstate, line2_index, LINE_NO);
2274 diff = min(diff, DIFF_EASY);
2275 }
2276 if (line2 == LINE_YES && line1 == LINE_UNKNOWN) {
2277 solver_set_line(sstate, line1_index, LINE_NO);
2278 diff = min(diff, DIFF_EASY);
2279 }
2280 }
2281 if (is_atleastone(dlines, dline_index)) {
2282 if (line1 == LINE_NO && line2 == LINE_UNKNOWN) {
2283 solver_set_line(sstate, line2_index, LINE_YES);
2284 diff = min(diff, DIFF_EASY);
2285 }
2286 if (line2 == LINE_NO && line1 == LINE_UNKNOWN) {
2287 solver_set_line(sstate, line1_index, LINE_YES);
2288 diff = min(diff, DIFF_EASY);
2289 }
2290 }
2291 /* Deductions that depend on the numbers of lines.
2292 * Only bother if both lines are UNKNOWN, otherwise the
2293 * easy-mode solver (or deductions above) would have taken
2294 * care of it. */
2295 if (line1 != LINE_UNKNOWN || line2 != LINE_UNKNOWN)
2296 continue;
2297
2298 if (yes == 0 && unknown == 2) {
2299 /* Both these unknowns must be identical. If we know
2300 * atmostone or atleastone, we can make progress. */
2301 if (is_atmostone(dlines, dline_index)) {
2302 solver_set_line(sstate, line1_index, LINE_NO);
2303 solver_set_line(sstate, line2_index, LINE_NO);
2304 diff = min(diff, DIFF_EASY);
2305 }
2306 if (is_atleastone(dlines, dline_index)) {
2307 solver_set_line(sstate, line1_index, LINE_YES);
2308 solver_set_line(sstate, line2_index, LINE_YES);
2309 diff = min(diff, DIFF_EASY);
2310 }
2311 }
2312 if (yes == 1) {
2313 if (set_atmostone(dlines, dline_index))
2314 diff = min(diff, DIFF_NORMAL);
2315 if (unknown == 2) {
2316 if (set_atleastone(dlines, dline_index))
2317 diff = min(diff, DIFF_NORMAL);
2318 }
2319 }
2320
2321 /* If we have atleastone set for this dline, infer
2322 * atmostone for each "opposite" dline (that is, each
2323 * dline without edges in common with this one).
2324 * Again, this test is only worth doing if both these
2325 * lines are UNKNOWN. For if one of these lines were YES,
2326 * the (yes == 1) test above would kick in instead. */
2327 if (is_atleastone(dlines, dline_index)) {
2328 int opp;
2329 for (opp = 0; opp < N; opp++) {
2330 int opp_dline_index;
2331 if (opp == j || opp == j+1 || opp == j-1)
2332 continue;
2333 if (j == 0 && opp == N-1)
2334 continue;
2335 if (j == N-1 && opp == 0)
2336 continue;
2337 opp_dline_index = dline_index_from_dot(g, d, opp);
2338 if (set_atmostone(dlines, opp_dline_index))
2339 diff = min(diff, DIFF_NORMAL);
2340 }
2341
2342 if (yes == 0 && is_atmostone(dlines, dline_index)) {
2343 /* This dline has *exactly* one YES and there are no
2344 * other YESs. This allows more deductions. */
2345 if (unknown == 3) {
2346 /* Third unknown must be YES */
2347 for (opp = 0; opp < N; opp++) {
2348 int opp_index;
2349 if (opp == j || opp == k)
2350 continue;
2351 opp_index = d->edges[opp] - g->edges;
2352 if (state->lines[opp_index] == LINE_UNKNOWN) {
2353 solver_set_line(sstate, opp_index, LINE_YES);
2354 diff = min(diff, DIFF_EASY);
2355 }
2356 }
2357 } else if (unknown == 4) {
2358 /* Exactly one of opposite UNKNOWNS is YES. We've
2359 * already set atmostone, so set atleastone as well.
2360 */
2361 if (dline_set_opp_atleastone(sstate, d, j))
2362 diff = min(diff, DIFF_NORMAL);
2363 }
2364 }
2365 }
2366 }
2367 }
2368 return diff;
2369 }
2370
2371 static int hard_mode_deductions(solver_state *sstate)
2372 {
2373 game_state *state = sstate->state;
2374 grid *g = state->game_grid;
2375 char *dlines = sstate->normal->dlines;
2376 int i;
2377 int diff = DIFF_MAX;
2378 int diff_tmp;
2379
2380 /* ------ Face deductions ------ */
2381
2382 /* A fully-general linedsf deduction seems overly complicated
2383 * (I suspect the problem is NP-complete, though in practice it might just
2384 * be doable because faces are limited in size).
2385 * For simplicity, we only consider *pairs* of LINE_UNKNOWNS that are
2386 * known to be identical. If setting them both to YES (or NO) would break
2387 * the clue, set them to NO (or YES). */
2388
2389 for (i = 0; i < g->num_faces; i++) {
2390 int N, yes, no, unknown;
2391 int clue;
2392
2393 if (sstate->face_solved[i])
2394 continue;
2395 clue = state->clues[i];
2396 if (clue < 0)
2397 continue;
2398
2399 N = g->faces[i].order;
2400 yes = sstate->face_yes_count[i];
2401 if (yes + 1 == clue) {
2402 if (face_setall_identical(sstate, i, LINE_NO))
2403 diff = min(diff, DIFF_EASY);
2404 }
2405 no = sstate->face_no_count[i];
2406 if (no + 1 == N - clue) {
2407 if (face_setall_identical(sstate, i, LINE_YES))
2408 diff = min(diff, DIFF_EASY);
2409 }
2410
2411 /* Reload YES count, it might have changed */
2412 yes = sstate->face_yes_count[i];
2413 unknown = N - no - yes;
2414
2415 /* Deductions with small number of LINE_UNKNOWNs, based on overall
2416 * parity of lines. */
2417 diff_tmp = parity_deductions(sstate, g->faces[i].edges,
2418 (clue - yes) % 2, unknown);
2419 diff = min(diff, diff_tmp);
2420 }
2421
2422 /* ------ Dot deductions ------ */
2423 for (i = 0; i < g->num_dots; i++) {
2424 grid_dot *d = g->dots + i;
2425 int N = d->order;
2426 int j;
2427 int yes, no, unknown;
2428 /* Go through dlines, and do any dline<->linedsf deductions wherever
2429 * we find two UNKNOWNS. */
2430 for (j = 0; j < N; j++) {
2431 int dline_index = dline_index_from_dot(g, d, j);
2432 int line1_index;
2433 int line2_index;
2434 int can1, can2, inv1, inv2;
2435 int j2;
2436 line1_index = d->edges[j] - g->edges;
2437 if (state->lines[line1_index] != LINE_UNKNOWN)
2438 continue;
2439 j2 = j + 1;
2440 if (j2 == N) j2 = 0;
2441 line2_index = d->edges[j2] - g->edges;
2442 if (state->lines[line2_index] != LINE_UNKNOWN)
2443 continue;
2444 /* Infer dline flags from linedsf */
2445 can1 = edsf_canonify(sstate->hard->linedsf, line1_index, &inv1);
2446 can2 = edsf_canonify(sstate->hard->linedsf, line2_index, &inv2);
2447 if (can1 == can2 && inv1 != inv2) {
2448 /* These are opposites, so set dline atmostone/atleastone */
2449 if (set_atmostone(dlines, dline_index))
2450 diff = min(diff, DIFF_NORMAL);
2451 if (set_atleastone(dlines, dline_index))
2452 diff = min(diff, DIFF_NORMAL);
2453 continue;
2454 }
2455 /* Infer linedsf from dline flags */
2456 if (is_atmostone(dlines, dline_index)
2457 && is_atleastone(dlines, dline_index)) {
2458 if (merge_lines(sstate, line1_index, line2_index, 1))
2459 diff = min(diff, DIFF_HARD);
2460 }
2461 }
2462
2463 /* Deductions with small number of LINE_UNKNOWNs, based on overall
2464 * parity of lines. */
2465 yes = sstate->dot_yes_count[i];
2466 no = sstate->dot_no_count[i];
2467 unknown = N - yes - no;
2468 diff_tmp = parity_deductions(sstate, d->edges,
2469 yes % 2, unknown);
2470 diff = min(diff, diff_tmp);
2471 }
2472
2473 /* ------ Edge dsf deductions ------ */
2474
2475 /* If the state of a line is known, deduce the state of its canonical line
2476 * too, and vice versa. */
2477 for (i = 0; i < g->num_edges; i++) {
2478 int can, inv;
2479 enum line_state s;
2480 can = edsf_canonify(sstate->hard->linedsf, i, &inv);
2481 if (can == i)
2482 continue;
2483 s = sstate->state->lines[can];
2484 if (s != LINE_UNKNOWN) {
2485 if (solver_set_line(sstate, i, inv ? OPP(s) : s))
2486 diff = min(diff, DIFF_EASY);
2487 } else {
2488 s = sstate->state->lines[i];
2489 if (s != LINE_UNKNOWN) {
2490 if (solver_set_line(sstate, can, inv ? OPP(s) : s))
2491 diff = min(diff, DIFF_EASY);
2492 }
2493 }
2494 }
2495
2496 return diff;
2497 }
2498
2499 static int loop_deductions(solver_state *sstate)
2500 {
2501 int edgecount = 0, clues = 0, satclues = 0, sm1clues = 0;
2502 game_state *state = sstate->state;
2503 grid *g = state->game_grid;
2504 int shortest_chainlen = g->num_dots;
2505 int loop_found = FALSE;
2506 int dots_connected;
2507 int progress = FALSE;
2508 int i;
2509
2510 /*
2511 * Go through the grid and update for all the new edges.
2512 * Since merge_dots() is idempotent, the simplest way to
2513 * do this is just to update for _all_ the edges.
2514 * Also, while we're here, we count the edges.
2515 */
2516 for (i = 0; i < g->num_edges; i++) {
2517 if (state->lines[i] == LINE_YES) {
2518 loop_found |= merge_dots(sstate, i);
2519 edgecount++;
2520 }
2521 }
2522
2523 /*
2524 * Count the clues, count the satisfied clues, and count the
2525 * satisfied-minus-one clues.
2526 */
2527 for (i = 0; i < g->num_faces; i++) {
2528 int c = state->clues[i];
2529 if (c >= 0) {
2530 int o = sstate->face_yes_count[i];
2531 if (o == c)
2532 satclues++;
2533 else if (o == c-1)
2534 sm1clues++;
2535 clues++;
2536 }
2537 }
2538
2539 for (i = 0; i < g->num_dots; ++i) {
2540 dots_connected =
2541 sstate->looplen[dsf_canonify(sstate->dotdsf, i)];
2542 if (dots_connected > 1)
2543 shortest_chainlen = min(shortest_chainlen, dots_connected);
2544 }
2545
2546 assert(sstate->solver_status == SOLVER_INCOMPLETE);
2547
2548 if (satclues == clues && shortest_chainlen == edgecount) {
2549 sstate->solver_status = SOLVER_SOLVED;
2550 /* This discovery clearly counts as progress, even if we haven't
2551 * just added any lines or anything */
2552 progress = TRUE;
2553 goto finished_loop_deductionsing;
2554 }
2555
2556 /*
2557 * Now go through looking for LINE_UNKNOWN edges which
2558 * connect two dots that are already in the same
2559 * equivalence class. If we find one, test to see if the
2560 * loop it would create is a solution.
2561 */
2562 for (i = 0; i < g->num_edges; i++) {
2563 grid_edge *e = g->edges + i;
2564 int d1 = e->dot1 - g->dots;
2565 int d2 = e->dot2 - g->dots;
2566 int eqclass, val;
2567 if (state->lines[i] != LINE_UNKNOWN)
2568 continue;
2569
2570 eqclass = dsf_canonify(sstate->dotdsf, d1);
2571 if (eqclass != dsf_canonify(sstate->dotdsf, d2))
2572 continue;
2573
2574 val = LINE_NO; /* loop is bad until proven otherwise */
2575
2576 /*
2577 * This edge would form a loop. Next
2578 * question: how long would the loop be?
2579 * Would it equal the total number of edges
2580 * (plus the one we'd be adding if we added
2581 * it)?
2582 */
2583 if (sstate->looplen[eqclass] == edgecount + 1) {
2584 int sm1_nearby;
2585
2586 /*
2587 * This edge would form a loop which
2588 * took in all the edges in the entire
2589 * grid. So now we need to work out
2590 * whether it would be a valid solution
2591 * to the puzzle, which means we have to
2592 * check if it satisfies all the clues.
2593 * This means that every clue must be
2594 * either satisfied or satisfied-minus-
2595 * 1, and also that the number of
2596 * satisfied-minus-1 clues must be at
2597 * most two and they must lie on either
2598 * side of this edge.
2599 */
2600 sm1_nearby = 0;
2601 if (e->face1) {
2602 int f = e->face1 - g->faces;
2603 int c = state->clues[f];
2604 if (c >= 0 && sstate->face_yes_count[f] == c - 1)
2605 sm1_nearby++;
2606 }
2607 if (e->face2) {
2608 int f = e->face2 - g->faces;
2609 int c = state->clues[f];
2610 if (c >= 0 && sstate->face_yes_count[f] == c - 1)
2611 sm1_nearby++;
2612 }
2613 if (sm1clues == sm1_nearby &&
2614 sm1clues + satclues == clues) {
2615 val = LINE_YES; /* loop is good! */
2616 }
2617 }
2618
2619 /*
2620 * Right. Now we know that adding this edge
2621 * would form a loop, and we know whether
2622 * that loop would be a viable solution or
2623 * not.
2624 *
2625 * If adding this edge produces a solution,
2626 * then we know we've found _a_ solution but
2627 * we don't know that it's _the_ solution -
2628 * if it were provably the solution then
2629 * we'd have deduced this edge some time ago
2630 * without the need to do loop detection. So
2631 * in this state we return SOLVER_AMBIGUOUS,
2632 * which has the effect that hitting Solve
2633 * on a user-provided puzzle will fill in a
2634 * solution but using the solver to
2635 * construct new puzzles won't consider this
2636 * a reasonable deduction for the user to
2637 * make.
2638 */
2639 progress = solver_set_line(sstate, i, val);
2640 assert(progress == TRUE);
2641 if (val == LINE_YES) {
2642 sstate->solver_status = SOLVER_AMBIGUOUS;
2643 goto finished_loop_deductionsing;
2644 }
2645 }
2646
2647 finished_loop_deductionsing:
2648 return progress ? DIFF_EASY : DIFF_MAX;
2649 }
2650
2651 /* This will return a dynamically allocated solver_state containing the (more)
2652 * solved grid */
2653 static solver_state *solve_game_rec(const solver_state *sstate_start,
2654 int diff)
2655 {
2656 solver_state *sstate, *sstate_saved;
2657 int solver_progress;
2658 game_state *state;
2659
2660 /* Indicates which solver we should call next. This is a sensible starting
2661 * point */
2662 int current_solver = DIFF_EASY, next_solver;
2663 sstate = dup_solver_state(sstate_start);
2664
2665 /* Cache the values of some variables for readability */
2666 state = sstate->state;
2667
2668 sstate_saved = NULL;
2669
2670 solver_progress = FALSE;
2671
2672 check_caches(sstate);
2673
2674 do {
2675 if (sstate->solver_status == SOLVER_MISTAKE)
2676 return sstate;
2677
2678 next_solver = solver_fns[current_solver](sstate);
2679
2680 if (next_solver == DIFF_MAX) {
2681 if (current_solver < diff && current_solver + 1 < DIFF_MAX) {
2682 /* Try next beefier solver */
2683 next_solver = current_solver + 1;
2684 } else {
2685 next_solver = loop_deductions(sstate);
2686 }
2687 }
2688
2689 if (sstate->solver_status == SOLVER_SOLVED ||
2690 sstate->solver_status == SOLVER_AMBIGUOUS) {
2691 /* fprintf(stderr, "Solver completed\n"); */
2692 break;
2693 }
2694
2695 /* Once we've looped over all permitted solvers then the loop
2696 * deductions without making any progress, we'll exit this while loop */
2697 current_solver = next_solver;
2698 } while (current_solver < DIFF_MAX);
2699
2700 if (sstate->solver_status == SOLVER_SOLVED ||
2701 sstate->solver_status == SOLVER_AMBIGUOUS) {
2702 /* s/LINE_UNKNOWN/LINE_NO/g */
2703 array_setall(sstate->state->lines, LINE_UNKNOWN, LINE_NO,
2704 sstate->state->game_grid->num_edges);
2705 return sstate;
2706 }
2707
2708 return sstate;
2709 }
2710
2711 static char *solve_game(game_state *state, game_state *currstate,
2712 char *aux, char **error)
2713 {
2714 char *soln = NULL;
2715 solver_state *sstate, *new_sstate;
2716
2717 sstate = new_solver_state(state, DIFF_MAX);
2718 new_sstate = solve_game_rec(sstate, DIFF_MAX);
2719
2720 if (new_sstate->solver_status == SOLVER_SOLVED) {
2721 soln = encode_solve_move(new_sstate->state);
2722 } else if (new_sstate->solver_status == SOLVER_AMBIGUOUS) {
2723 soln = encode_solve_move(new_sstate->state);
2724 /**error = "Solver found ambiguous solutions"; */
2725 } else {
2726 soln = encode_solve_move(new_sstate->state);
2727 /**error = "Solver failed"; */
2728 }
2729
2730 free_solver_state(new_sstate);
2731 free_solver_state(sstate);
2732
2733 return soln;
2734 }
2735
2736 /* ----------------------------------------------------------------------
2737 * Drawing and mouse-handling
2738 */
2739
2740 static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
2741 int x, int y, int button)
2742 {
2743 grid *g = state->game_grid;
2744 grid_edge *e;
2745 int i;
2746 char *ret, buf[80];
2747 char button_char = ' ';
2748 enum line_state old_state;
2749
2750 button &= ~MOD_MASK;
2751
2752 /* Convert mouse-click (x,y) to grid coordinates */
2753 x -= BORDER(ds->tilesize);
2754 y -= BORDER(ds->tilesize);
2755 x = x * g->tilesize / ds->tilesize;
2756 y = y * g->tilesize / ds->tilesize;
2757 x += g->lowest_x;
2758 y += g->lowest_y;
2759
2760 e = grid_nearest_edge(g, x, y);
2761 if (e == NULL)
2762 return NULL;
2763
2764 i = e - g->edges;
2765
2766 /* I think it's only possible to play this game with mouse clicks, sorry */
2767 /* Maybe will add mouse drag support some time */
2768 old_state = state->lines[i];
2769
2770 switch (button) {
2771 case LEFT_BUTTON:
2772 switch (old_state) {
2773 case LINE_UNKNOWN:
2774 button_char = 'y';
2775 break;
2776 case LINE_YES:
2777 case LINE_NO:
2778 button_char = 'u';
2779 break;
2780 }
2781 break;
2782 case MIDDLE_BUTTON:
2783 button_char = 'u';
2784 break;
2785 case RIGHT_BUTTON:
2786 switch (old_state) {
2787 case LINE_UNKNOWN:
2788 button_char = 'n';
2789 break;
2790 case LINE_NO:
2791 case LINE_YES:
2792 button_char = 'u';
2793 break;
2794 }
2795 break;
2796 default:
2797 return NULL;
2798 }
2799
2800
2801 sprintf(buf, "%d%c", i, (int)button_char);
2802 ret = dupstr(buf);
2803
2804 return ret;
2805 }
2806
2807 static game_state *execute_move(game_state *state, char *move)
2808 {
2809 int i;
2810 game_state *newstate = dup_game(state);
2811 grid *g = state->game_grid;
2812
2813 if (move[0] == 'S') {
2814 move++;
2815 newstate->cheated = TRUE;
2816 }
2817
2818 while (*move) {
2819 i = atoi(move);
2820 move += strspn(move, "1234567890");
2821 switch (*(move++)) {
2822 case 'y':
2823 newstate->lines[i] = LINE_YES;
2824 break;
2825 case 'n':
2826 newstate->lines[i] = LINE_NO;
2827 break;
2828 case 'u':
2829 newstate->lines[i] = LINE_UNKNOWN;
2830 break;
2831 default:
2832 goto fail;
2833 }
2834 }
2835
2836 /*
2837 * Check for completion.
2838 */
2839 for (i = 0; i < g->num_edges; i++) {
2840 if (newstate->lines[i] == LINE_YES)
2841 break;
2842 }
2843 if (i < g->num_edges) {
2844 int looplen, count;
2845 grid_edge *start_edge = g->edges + i;
2846 grid_edge *e = start_edge;
2847 grid_dot *d = e->dot1;
2848 /*
2849 * We've found an edge i. Follow it round
2850 * to see if it's part of a loop.
2851 */
2852 looplen = 0;
2853 while (1) {
2854 int j;
2855 int order = dot_order(newstate, d - g->dots, LINE_YES);
2856 if (order != 2)
2857 goto completion_check_done;
2858
2859 /* Find other edge around this dot */
2860 for (j = 0; j < d->order; j++) {
2861 grid_edge *e2 = d->edges[j];
2862 if (e2 != e && newstate->lines[e2 - g->edges] == LINE_YES)
2863 break;
2864 }
2865 assert(j != d->order); /* dot_order guarantees success */
2866
2867 e = d->edges[j];
2868 d = (e->dot1 == d) ? e->dot2 : e->dot1;
2869 looplen++;
2870
2871 if (e == start_edge)
2872 break;
2873 }
2874
2875 /*
2876 * We've traced our way round a loop, and we know how many
2877 * line segments were involved. Count _all_ the line
2878 * segments in the grid, to see if the loop includes them
2879 * all.
2880 */
2881 count = 0;
2882 for (i = 0; i < g->num_edges; i++) {
2883 if (newstate->lines[i] == LINE_YES)
2884 count++;
2885 }
2886 assert(count >= looplen);
2887 if (count != looplen)
2888 goto completion_check_done;
2889
2890 /*
2891 * The grid contains one closed loop and nothing else.
2892 * Check that all the clues are satisfied.
2893 */
2894 for (i = 0; i < g->num_faces; i++) {
2895 int c = newstate->clues[i];
2896 if (c >= 0) {
2897 if (face_order(newstate, i, LINE_YES) != c) {
2898 goto completion_check_done;
2899 }
2900 }
2901 }
2902
2903 /*
2904 * Completed!
2905 */
2906 newstate->solved = TRUE;
2907 }
2908
2909 completion_check_done:
2910 return newstate;
2911
2912 fail:
2913 free_game(newstate);
2914 return NULL;
2915 }
2916
2917 /* ----------------------------------------------------------------------
2918 * Drawing routines.
2919 */
2920
2921 /* Convert from grid coordinates to screen coordinates */
2922 static void grid_to_screen(const game_drawstate *ds, const grid *g,
2923 int grid_x, int grid_y, int *x, int *y)
2924 {
2925 *x = grid_x - g->lowest_x;
2926 *y = grid_y - g->lowest_y;
2927 *x = *x * ds->tilesize / g->tilesize;
2928 *y = *y * ds->tilesize / g->tilesize;
2929 *x += BORDER(ds->tilesize);
2930 *y += BORDER(ds->tilesize);
2931 }
2932
2933 /* Returns (into x,y) position of centre of face for rendering the text clue.
2934 */
2935 static void face_text_pos(const game_drawstate *ds, const grid *g,
2936 const grid_face *f, int *x, int *y)
2937 {
2938 int i;
2939
2940 /* Simplest solution is the centroid. Might not work in some cases. */
2941
2942 /* Another algorithm to look into:
2943 * Find the midpoints of the sides, find the bounding-box,
2944 * then take the centre of that. */
2945
2946 /* Best solution probably involves incentres (inscribed circles) */
2947
2948 int sx = 0, sy = 0; /* sums */
2949 for (i = 0; i < f->order; i++) {
2950 grid_dot *d = f->dots[i];
2951 sx += d->x;
2952 sy += d->y;
2953 }
2954 sx /= f->order;
2955 sy /= f->order;
2956
2957 /* convert to screen coordinates */
2958 grid_to_screen(ds, g, sx, sy, x, y);
2959 }
2960
2961 static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
2962 game_state *state, int dir, game_ui *ui,
2963 float animtime, float flashtime)
2964 {
2965 grid *g = state->game_grid;
2966 int border = BORDER(ds->tilesize);
2967 int i, n;
2968 char c[2];
2969 int line_colour, flash_changed;
2970 int clue_mistake;
2971 int clue_satisfied;
2972
2973 if (!ds->started) {
2974 /*
2975 * The initial contents of the window are not guaranteed and
2976 * can vary with front ends. To be on the safe side, all games
2977 * should start by drawing a big background-colour rectangle
2978 * covering the whole window.
2979 */
2980 int grid_width = g->highest_x - g->lowest_x;
2981 int grid_height = g->highest_y - g->lowest_y;
2982 int w = grid_width * ds->tilesize / g->tilesize;
2983 int h = grid_height * ds->tilesize / g->tilesize;
2984 draw_rect(dr, 0, 0, w + 2 * border, h + 2 * border, COL_BACKGROUND);
2985
2986 /* Draw clues */
2987 for (i = 0; i < g->num_faces; i++) {
2988 grid_face *f;
2989 int x, y;
2990
2991 c[0] = CLUE2CHAR(state->clues[i]);
2992 c[1] = '\0';
2993 f = g->faces + i;
2994 face_text_pos(ds, g, f, &x, &y);
2995 draw_text(dr, x, y, FONT_VARIABLE, ds->tilesize/2,
2996 ALIGN_VCENTRE | ALIGN_HCENTRE, COL_FOREGROUND, c);
2997 }
2998 draw_update(dr, 0, 0, w + 2 * border, h + 2 * border);
2999 }
3000
3001 if (flashtime > 0 &&
3002 (flashtime <= FLASH_TIME/3 ||
3003 flashtime >= FLASH_TIME*2/3)) {
3004 flash_changed = !ds->flashing;
3005 ds->flashing = TRUE;
3006 } else {
3007 flash_changed = ds->flashing;
3008 ds->flashing = FALSE;
3009 }
3010
3011 /* Some platforms may perform anti-aliasing, which may prevent clean
3012 * repainting of lines when the colour is changed.
3013 * If a line needs to be over-drawn in a different colour, erase a
3014 * bounding-box around the line, then flag all nearby objects for redraw.
3015 */
3016 if (ds->started) {
3017 const char redraw_flag = 1<<7;
3018 for (i = 0; i < g->num_edges; i++) {
3019 /* If we're changing state, AND
3020 * the previous state was a coloured line */
3021 if ((state->lines[i] != (ds->lines[i] & ~redraw_flag)) &&
3022 ((ds->lines[i] & ~redraw_flag) != LINE_NO)) {
3023 grid_edge *e = g->edges + i;
3024 int x1 = e->dot1->x;
3025 int y1 = e->dot1->y;
3026 int x2 = e->dot2->x;
3027 int y2 = e->dot2->y;
3028 int xmin, xmax, ymin, ymax;
3029 int j;
3030 grid_to_screen(ds, g, x1, y1, &x1, &y1);
3031 grid_to_screen(ds, g, x2, y2, &x2, &y2);
3032 /* Allow extra margin for dots, and thickness of lines */
3033 xmin = min(x1, x2) - 2;
3034 xmax = max(x1, x2) + 2;
3035 ymin = min(y1, y2) - 2;
3036 ymax = max(y1, y2) + 2;
3037 /* For testing, I find it helpful to change COL_BACKGROUND
3038 * to COL_SATISFIED here. */
3039 draw_rect(dr, xmin, ymin, xmax - xmin + 1, ymax - ymin + 1,
3040 COL_BACKGROUND);
3041 draw_update(dr, xmin, ymin, xmax - xmin + 1, ymax - ymin + 1);
3042
3043 /* Mark nearby lines for redraw */
3044 for (j = 0; j < e->dot1->order; j++)
3045 ds->lines[e->dot1->edges[j] - g->edges] |= redraw_flag;
3046 for (j = 0; j < e->dot2->order; j++)
3047 ds->lines[e->dot2->edges[j] - g->edges] |= redraw_flag;
3048 /* Mark nearby clues for redraw. Use a value that is
3049 * neither TRUE nor FALSE for this. */
3050 if (e->face1)
3051 ds->clue_error[e->face1 - g->faces] = 2;
3052 if (e->face2)
3053 ds->clue_error[e->face2 - g->faces] = 2;
3054 }
3055 }
3056 }
3057
3058 /* Redraw clue colours if necessary */
3059 for (i = 0; i < g->num_faces; i++) {
3060 grid_face *f = g->faces + i;
3061 int sides = f->order;
3062 int j;
3063 n = state->clues[i];
3064 if (n < 0)
3065 continue;
3066
3067 c[0] = CLUE2CHAR(n);
3068 c[1] = '\0';
3069
3070 clue_mistake = (face_order(state, i, LINE_YES) > n ||
3071 face_order(state, i, LINE_NO ) > (sides-n));
3072
3073 clue_satisfied = (face_order(state, i, LINE_YES) == n &&
3074 face_order(state, i, LINE_NO ) == (sides-n));
3075
3076 if (clue_mistake != ds->clue_error[i]
3077 || clue_satisfied != ds->clue_satisfied[i]) {
3078 int x, y;
3079 face_text_pos(ds, g, f, &x, &y);
3080 /* There seems to be a certain amount of trial-and-error
3081 * involved in working out the correct bounding-box for
3082 * the text. */
3083 draw_rect(dr, x - ds->tilesize/4 - 1, y - ds->tilesize/4 - 3,
3084 ds->tilesize/2 + 2, ds->tilesize/2 + 5,
3085 COL_BACKGROUND);
3086 draw_text(dr, x, y,
3087 FONT_VARIABLE, ds->tilesize/2,
3088 ALIGN_VCENTRE | ALIGN_HCENTRE,
3089 clue_mistake ? COL_MISTAKE :
3090 clue_satisfied ? COL_SATISFIED : COL_FOREGROUND, c);
3091 draw_update(dr, x - ds->tilesize/4 - 1, y - ds->tilesize/4 - 3,
3092 ds->tilesize/2 + 2, ds->tilesize/2 + 5);
3093
3094 ds->clue_error[i] = clue_mistake;
3095 ds->clue_satisfied[i] = clue_satisfied;
3096
3097 /* Sometimes, the bounding-box encroaches into the surrounding
3098 * lines (particularly if the window is resized fairly small).
3099 * So redraw them. */
3100 for (j = 0; j < f->order; j++)
3101 ds->lines[f->edges[j] - g->edges] = -1;
3102 }
3103 }
3104
3105 /* I've also had a request to colour lines red if they make a non-solution
3106 * loop, or if more than two lines go into any point. I think that would
3107 * be good some time. */
3108
3109 /* Lines */
3110 for (i = 0; i < g->num_edges; i++) {
3111 grid_edge *e = g->edges + i;
3112 int x1, x2, y1, y2;
3113 int xmin, ymin, xmax, ymax;
3114 int need_draw = (state->lines[i] != ds->lines[i]) ? TRUE : FALSE;
3115 if (flash_changed && (state->lines[i] == LINE_YES))
3116 need_draw = TRUE;
3117 if (!ds->started)
3118 need_draw = TRUE; /* draw everything at the start */
3119 ds->lines[i] = state->lines[i];
3120 if (!need_draw)
3121 continue;
3122 if (state->lines[i] == LINE_UNKNOWN)
3123 line_colour = COL_LINEUNKNOWN;
3124 else if (state->lines[i] == LINE_NO)
3125 line_colour = COL_BACKGROUND;
3126 else if (ds->flashing)
3127 line_colour = COL_HIGHLIGHT;
3128 else
3129 line_colour = COL_FOREGROUND;
3130
3131 /* Convert from grid to screen coordinates */
3132 grid_to_screen(ds, g, e->dot1->x, e->dot1->y, &x1, &y1);
3133 grid_to_screen(ds, g, e->dot2->x, e->dot2->y, &x2, &y2);
3134
3135 xmin = min(x1, x2);
3136 xmax = max(x1, x2);
3137 ymin = min(y1, y2);
3138 ymax = max(y1, y2);
3139
3140 if (line_colour != COL_BACKGROUND) {
3141 /* (dx, dy) points roughly from (x1, y1) to (x2, y2).
3142 * The line is then "fattened" in a (roughly) perpendicular
3143 * direction to create a thin rectangle. */
3144 int dx = (x1 > x2) ? -1 : ((x1 < x2) ? 1 : 0);
3145 int dy = (y1 > y2) ? -1 : ((y1 < y2) ? 1 : 0);
3146 int points[] = {
3147 x1 + dy, y1 - dx,
3148 x1 - dy, y1 + dx,
3149 x2 - dy, y2 + dx,
3150 x2 + dy, y2 - dx
3151 };
3152 draw_polygon(dr, points, 4, line_colour, line_colour);
3153 }
3154 if (ds->started) {
3155 /* Draw dots at ends of the line */
3156 draw_circle(dr, x1, y1, 2, COL_FOREGROUND, COL_FOREGROUND);
3157 draw_circle(dr, x2, y2, 2, COL_FOREGROUND, COL_FOREGROUND);
3158 }
3159 draw_update(dr, xmin-2, ymin-2, xmax - xmin + 4, ymax - ymin + 4);
3160 }
3161
3162 /* Draw dots */
3163 if (!ds->started) {
3164 for (i = 0; i < g->num_dots; i++) {
3165 grid_dot *d = g->dots + i;
3166 int x, y;
3167 grid_to_screen(ds, g, d->x, d->y, &x, &y);
3168 draw_circle(dr, x, y, 2, COL_FOREGROUND, COL_FOREGROUND);
3169 }
3170 }
3171 ds->started = TRUE;
3172 }
3173
3174 static float game_flash_length(game_state *oldstate, game_state *newstate,
3175 int dir, game_ui *ui)
3176 {
3177 if (!oldstate->solved && newstate->solved &&
3178 !oldstate->cheated && !newstate->cheated) {
3179 return FLASH_TIME;
3180 }
3181
3182 return 0.0F;
3183 }
3184
3185 static void game_print_size(game_params *params, float *x, float *y)
3186 {
3187 int pw, ph;
3188
3189 /*
3190 * I'll use 7mm "squares" by default.
3191 */
3192 game_compute_size(params, 700, &pw, &ph);
3193 *x = pw / 100.0F;
3194 *y = ph / 100.0F;
3195 }
3196
3197 static void game_print(drawing *dr, game_state *state, int tilesize)
3198 {
3199 int ink = print_mono_colour(dr, 0);
3200 int i;
3201 game_drawstate ads, *ds = &ads;
3202 grid *g = state->game_grid;
3203
3204 game_set_size(dr, ds, NULL, tilesize);
3205
3206 for (i = 0; i < g->num_dots; i++) {
3207 int x, y;
3208 grid_to_screen(ds, g, g->dots[i].x, g->dots[i].y, &x, &y);
3209 draw_circle(dr, x, y, ds->tilesize / 15, ink, ink);
3210 }
3211
3212 /*
3213 * Clues.
3214 */
3215 for (i = 0; i < g->num_faces; i++) {
3216 grid_face *f = g->faces + i;
3217 int clue = state->clues[i];
3218 if (clue >= 0) {
3219 char c[2];
3220 int x, y;
3221 c[0] = CLUE2CHAR(clue);
3222 c[1] = '\0';
3223 face_text_pos(ds, g, f, &x, &y);
3224 draw_text(dr, x, y,
3225 FONT_VARIABLE, ds->tilesize / 2,
3226 ALIGN_VCENTRE | ALIGN_HCENTRE, ink, c);
3227 }
3228 }
3229
3230 /*
3231 * Lines.
3232 */
3233 for (i = 0; i < g->num_edges; i++) {
3234 int thickness = (state->lines[i] == LINE_YES) ? 30 : 150;
3235 grid_edge *e = g->edges + i;
3236 int x1, y1, x2, y2;
3237 grid_to_screen(ds, g, e->dot1->x, e->dot1->y, &x1, &y1);
3238 grid_to_screen(ds, g, e->dot2->x, e->dot2->y, &x2, &y2);
3239 if (state->lines[i] == LINE_YES)
3240 {
3241 /* (dx, dy) points from (x1, y1) to (x2, y2).
3242 * The line is then "fattened" in a perpendicular
3243 * direction to create a thin rectangle. */
3244 double d = sqrt(SQ((double)x1 - x2) + SQ((double)y1 - y2));
3245 double dx = (x2 - x1) / d;
3246 double dy = (y2 - y1) / d;
3247 int points[8];
3248
3249 dx = (dx * ds->tilesize) / thickness;
3250 dy = (dy * ds->tilesize) / thickness;
3251 points[0] = x1 + dy;
3252 points[1] = y1 - dx;
3253 points[2] = x1 - dy;
3254 points[3] = y1 + dx;
3255 points[4] = x2 - dy;
3256 points[5] = y2 + dx;
3257 points[6] = x2 + dy;
3258 points[7] = y2 - dx;
3259 draw_polygon(dr, points, 4, ink, ink);
3260 }
3261 else
3262 {
3263 /* Draw a dotted line */
3264 int divisions = 6;
3265 int j;
3266 for (j = 1; j < divisions; j++) {
3267 /* Weighted average */
3268 int x = (x1 * (divisions -j) + x2 * j) / divisions;
3269 int y = (y1 * (divisions -j) + y2 * j) / divisions;
3270 draw_circle(dr, x, y, ds->tilesize / thickness, ink, ink);
3271 }
3272 }
3273 }
3274 }
3275
3276 #ifdef COMBINED
3277 #define thegame loopy
3278 #endif
3279
3280 const struct game thegame = {
3281 "Loopy", "games.loopy", "loopy",
3282 default_params,
3283 game_fetch_preset,
3284 decode_params,
3285 encode_params,
3286 free_params,
3287 dup_params,
3288 TRUE, game_configure, custom_params,
3289 validate_params,
3290 new_game_desc,
3291 validate_desc,
3292 new_game,
3293 dup_game,
3294 free_game,
3295 1, solve_game,
3296 TRUE, game_can_format_as_text_now, game_text_format,
3297 new_ui,
3298 free_ui,
3299 encode_ui,
3300 decode_ui,
3301 game_changed_state,
3302 interpret_move,
3303 execute_move,
3304 PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
3305 game_colours,
3306 game_new_drawstate,
3307 game_free_drawstate,
3308 game_redraw,
3309 game_anim_length,
3310 game_flash_length,
3311 TRUE, FALSE, game_print_size, game_print,
3312 FALSE /* wants_statusbar */,
3313 FALSE, game_timing_state,
3314 0, /* mouse_priorities */
3315 };