Rework the Loopy grid drawing algorithm so that it doesn't assume when
[sgt/puzzles] / loopy.c
1 /*
2 * loopy.c:
3 *
4 * An implementation of the Nikoli game 'Loop the loop'.
5 * (c) Mike Pinna, 2005, 2006
6 * Substantially rewritten to allowing for more general types of grid.
7 * (c) Lambros Lambrou 2008
8 *
9 * vim: set shiftwidth=4 :set textwidth=80:
10 */
11
12 /*
13 * Possible future solver enhancements:
14 *
15 * - There's an interesting deductive technique which makes use
16 * of topology rather than just graph theory. Each _face_ in
17 * the grid is either inside or outside the loop; you can tell
18 * that two faces are on the same side of the loop if they're
19 * separated by a LINE_NO (or, more generally, by a path
20 * crossing no LINE_UNKNOWNs and an even number of LINE_YESes),
21 * and on the opposite side of the loop if they're separated by
22 * a LINE_YES (or an odd number of LINE_YESes and no
23 * LINE_UNKNOWNs). Oh, and any face separated from the outside
24 * of the grid by a LINE_YES or a LINE_NO is on the inside or
25 * outside respectively. So if you can track this for all
26 * faces, you figure out the state of the line between a pair
27 * once their relative insideness is known.
28 * + The way I envisage this working is simply to keep an edsf
29 * of all _faces_, which indicates whether they're on
30 * opposite sides of the loop from one another. We also
31 * include a special entry in the edsf for the infinite
32 * exterior "face".
33 * + So, the simple way to do this is to just go through the
34 * edges: every time we see an edge in a state other than
35 * LINE_UNKNOWN which separates two faces that aren't in the
36 * same edsf class, we can rectify that by merging the
37 * classes. Then, conversely, an edge in LINE_UNKNOWN state
38 * which separates two faces that _are_ in the same edsf
39 * class can immediately have its state determined.
40 * + But you can go one better, if you're prepared to loop
41 * over all _pairs_ of edges. Suppose we have edges A and B,
42 * which respectively separate faces A1,A2 and B1,B2.
43 * Suppose that A,B are in the same edge-edsf class and that
44 * A1,B1 (wlog) are in the same face-edsf class; then we can
45 * immediately place A2,B2 into the same face-edsf class (as
46 * each other, not as A1 and A2) one way round or the other.
47 * And conversely again, if A1,B1 are in the same face-edsf
48 * class and so are A2,B2, then we can put A,B into the same
49 * face-edsf class.
50 * * Of course, this deduction requires a quadratic-time
51 * loop over all pairs of edges in the grid, so it should
52 * be reserved until there's nothing easier left to be
53 * done.
54 *
55 * - The generalised grid support has made me (SGT) notice a
56 * possible extension to the loop-avoidance code. When you have
57 * a path of connected edges such that no other edges at all
58 * are incident on any vertex in the middle of the path - or,
59 * alternatively, such that any such edges are already known to
60 * be LINE_NO - then you know those edges are either all
61 * LINE_YES or all LINE_NO. Hence you can mentally merge the
62 * entire path into a single long curly edge for the purposes
63 * of loop avoidance, and look directly at whether or not the
64 * extreme endpoints of the path are connected by some other
65 * route. I find this coming up fairly often when I play on the
66 * octagonal grid setting, so it might be worth implementing in
67 * the solver.
68 *
69 * - (Just a speed optimisation.) Consider some todo list queue where every
70 * time we modify something we mark it for consideration by other bits of
71 * the solver, to save iteration over things that have already been done.
72 */
73
74 #include <stdio.h>
75 #include <stdlib.h>
76 #include <stddef.h>
77 #include <string.h>
78 #include <assert.h>
79 #include <ctype.h>
80 #include <math.h>
81
82 #include "puzzles.h"
83 #include "tree234.h"
84 #include "grid.h"
85
86 /* Debugging options */
87
88 /*
89 #define DEBUG_CACHES
90 #define SHOW_WORKING
91 #define DEBUG_DLINES
92 */
93
94 /* ----------------------------------------------------------------------
95 * Struct, enum and function declarations
96 */
97
98 enum {
99 COL_BACKGROUND,
100 COL_FOREGROUND,
101 COL_LINEUNKNOWN,
102 COL_HIGHLIGHT,
103 COL_MISTAKE,
104 COL_SATISFIED,
105 COL_FAINT,
106 NCOLOURS
107 };
108
109 struct game_state {
110 grid *game_grid;
111
112 /* Put -1 in a face that doesn't get a clue */
113 signed char *clues;
114
115 /* Array of line states, to store whether each line is
116 * YES, NO or UNKNOWN */
117 char *lines;
118
119 unsigned char *line_errors;
120
121 int solved;
122 int cheated;
123
124 /* Used in game_text_format(), so that it knows what type of
125 * grid it's trying to render as ASCII text. */
126 int grid_type;
127 };
128
129 enum solver_status {
130 SOLVER_SOLVED, /* This is the only solution the solver could find */
131 SOLVER_MISTAKE, /* This is definitely not a solution */
132 SOLVER_AMBIGUOUS, /* This _might_ be an ambiguous solution */
133 SOLVER_INCOMPLETE /* This may be a partial solution */
134 };
135
136 /* ------ Solver state ------ */
137 typedef struct solver_state {
138 game_state *state;
139 enum solver_status solver_status;
140 /* NB looplen is the number of dots that are joined together at a point, ie a
141 * looplen of 1 means there are no lines to a particular dot */
142 int *looplen;
143
144 /* Difficulty level of solver. Used by solver functions that want to
145 * vary their behaviour depending on the requested difficulty level. */
146 int diff;
147
148 /* caches */
149 char *dot_yes_count;
150 char *dot_no_count;
151 char *face_yes_count;
152 char *face_no_count;
153 char *dot_solved, *face_solved;
154 int *dotdsf;
155
156 /* Information for Normal level deductions:
157 * For each dline, store a bitmask for whether we know:
158 * (bit 0) at least one is YES
159 * (bit 1) at most one is YES */
160 char *dlines;
161
162 /* Hard level information */
163 int *linedsf;
164 } solver_state;
165
166 /*
167 * Difficulty levels. I do some macro ickery here to ensure that my
168 * enum and the various forms of my name list always match up.
169 */
170
171 #define DIFFLIST(A) \
172 A(EASY,Easy,e) \
173 A(NORMAL,Normal,n) \
174 A(TRICKY,Tricky,t) \
175 A(HARD,Hard,h)
176 #define ENUM(upper,title,lower) DIFF_ ## upper,
177 #define TITLE(upper,title,lower) #title,
178 #define ENCODE(upper,title,lower) #lower
179 #define CONFIG(upper,title,lower) ":" #title
180 enum { DIFFLIST(ENUM) DIFF_MAX };
181 static char const *const diffnames[] = { DIFFLIST(TITLE) };
182 static char const diffchars[] = DIFFLIST(ENCODE);
183 #define DIFFCONFIG DIFFLIST(CONFIG)
184
185 /*
186 * Solver routines, sorted roughly in order of computational cost.
187 * The solver will run the faster deductions first, and slower deductions are
188 * only invoked when the faster deductions are unable to make progress.
189 * Each function is associated with a difficulty level, so that the generated
190 * puzzles are solvable by applying only the functions with the chosen
191 * difficulty level or lower.
192 */
193 #define SOLVERLIST(A) \
194 A(trivial_deductions, DIFF_EASY) \
195 A(dline_deductions, DIFF_NORMAL) \
196 A(linedsf_deductions, DIFF_HARD) \
197 A(loop_deductions, DIFF_EASY)
198 #define SOLVER_FN_DECL(fn,diff) static int fn(solver_state *);
199 #define SOLVER_FN(fn,diff) &fn,
200 #define SOLVER_DIFF(fn,diff) diff,
201 SOLVERLIST(SOLVER_FN_DECL)
202 static int (*(solver_fns[]))(solver_state *) = { SOLVERLIST(SOLVER_FN) };
203 static int const solver_diffs[] = { SOLVERLIST(SOLVER_DIFF) };
204 const int NUM_SOLVERS = sizeof(solver_diffs)/sizeof(*solver_diffs);
205
206 struct game_params {
207 int w, h;
208 int diff;
209 int type;
210
211 /* Grid generation is expensive, so keep a (ref-counted) reference to the
212 * grid for these parameters, and only generate when required. */
213 grid *game_grid;
214 };
215
216 /* line_drawstate is the same as line_state, but with the extra ERROR
217 * possibility. The drawing code copies line_state to line_drawstate,
218 * except in the case that the line is an error. */
219 enum line_state { LINE_YES, LINE_UNKNOWN, LINE_NO };
220 enum line_drawstate { DS_LINE_YES, DS_LINE_UNKNOWN,
221 DS_LINE_NO, DS_LINE_ERROR };
222
223 #define OPP(line_state) \
224 (2 - line_state)
225
226
227 struct game_drawstate {
228 int started;
229 int tilesize;
230 int flashing;
231 int *textx, *texty;
232 char *lines;
233 char *clue_error;
234 char *clue_satisfied;
235 };
236
237 static char *validate_desc(game_params *params, char *desc);
238 static int dot_order(const game_state* state, int i, char line_type);
239 static int face_order(const game_state* state, int i, char line_type);
240 static solver_state *solve_game_rec(const solver_state *sstate);
241
242 #ifdef DEBUG_CACHES
243 static void check_caches(const solver_state* sstate);
244 #else
245 #define check_caches(s)
246 #endif
247
248 /* ------- List of grid generators ------- */
249 #define GRIDLIST(A) \
250 A(Squares,grid_new_square,3,3) \
251 A(Triangular,grid_new_triangular,3,3) \
252 A(Honeycomb,grid_new_honeycomb,3,3) \
253 A(Snub-Square,grid_new_snubsquare,3,3) \
254 A(Cairo,grid_new_cairo,3,4) \
255 A(Great-Hexagonal,grid_new_greathexagonal,3,3) \
256 A(Octagonal,grid_new_octagonal,3,3) \
257 A(Kites,grid_new_kites,3,3) \
258 A(Floret,grid_new_floret,1,2) \
259 A(Dodecagonal,grid_new_dodecagonal,2,2) \
260 A(Great-Dodecagonal,grid_new_greatdodecagonal,2,2)
261
262 #define GRID_NAME(title,fn,amin,omin) #title,
263 #define GRID_CONFIG(title,fn,amin,omin) ":" #title
264 #define GRID_FN(title,fn,amin,omin) &fn,
265 #define GRID_SIZES(title,fn,amin,omin) \
266 {amin, omin, \
267 "Width and height for this grid type must both be at least " #amin, \
268 "At least one of width and height for this grid type must be at least " #omin,},
269 static char const *const gridnames[] = { GRIDLIST(GRID_NAME) };
270 #define GRID_CONFIGS GRIDLIST(GRID_CONFIG)
271 static grid * (*(grid_fns[]))(int w, int h) = { GRIDLIST(GRID_FN) };
272 #define NUM_GRID_TYPES (sizeof(grid_fns) / sizeof(grid_fns[0]))
273 static const struct {
274 int amin, omin;
275 char *aerr, *oerr;
276 } grid_size_limits[] = { GRIDLIST(GRID_SIZES) };
277
278 /* Generates a (dynamically allocated) new grid, according to the
279 * type and size requested in params. Does nothing if the grid is already
280 * generated. The allocated grid is owned by the params object, and will be
281 * freed in free_params(). */
282 static void params_generate_grid(game_params *params)
283 {
284 if (!params->game_grid) {
285 params->game_grid = grid_fns[params->type](params->w, params->h);
286 }
287 }
288
289 /* ----------------------------------------------------------------------
290 * Preprocessor magic
291 */
292
293 /* General constants */
294 #define PREFERRED_TILE_SIZE 32
295 #define BORDER(tilesize) ((tilesize) / 2)
296 #define FLASH_TIME 0.5F
297
298 #define BIT_SET(field, bit) ((field) & (1<<(bit)))
299
300 #define SET_BIT(field, bit) (BIT_SET(field, bit) ? FALSE : \
301 ((field) |= (1<<(bit)), TRUE))
302
303 #define CLEAR_BIT(field, bit) (BIT_SET(field, bit) ? \
304 ((field) &= ~(1<<(bit)), TRUE) : FALSE)
305
306 #define CLUE2CHAR(c) \
307 ((c < 0) ? ' ' : c < 10 ? c + '0' : c - 10 + 'A')
308
309 /* ----------------------------------------------------------------------
310 * General struct manipulation and other straightforward code
311 */
312
313 static game_state *dup_game(game_state *state)
314 {
315 game_state *ret = snew(game_state);
316
317 ret->game_grid = state->game_grid;
318 ret->game_grid->refcount++;
319
320 ret->solved = state->solved;
321 ret->cheated = state->cheated;
322
323 ret->clues = snewn(state->game_grid->num_faces, signed char);
324 memcpy(ret->clues, state->clues, state->game_grid->num_faces);
325
326 ret->lines = snewn(state->game_grid->num_edges, char);
327 memcpy(ret->lines, state->lines, state->game_grid->num_edges);
328
329 ret->line_errors = snewn(state->game_grid->num_edges, unsigned char);
330 memcpy(ret->line_errors, state->line_errors, state->game_grid->num_edges);
331
332 ret->grid_type = state->grid_type;
333 return ret;
334 }
335
336 static void free_game(game_state *state)
337 {
338 if (state) {
339 grid_free(state->game_grid);
340 sfree(state->clues);
341 sfree(state->lines);
342 sfree(state->line_errors);
343 sfree(state);
344 }
345 }
346
347 static solver_state *new_solver_state(game_state *state, int diff) {
348 int i;
349 int num_dots = state->game_grid->num_dots;
350 int num_faces = state->game_grid->num_faces;
351 int num_edges = state->game_grid->num_edges;
352 solver_state *ret = snew(solver_state);
353
354 ret->state = dup_game(state);
355
356 ret->solver_status = SOLVER_INCOMPLETE;
357 ret->diff = diff;
358
359 ret->dotdsf = snew_dsf(num_dots);
360 ret->looplen = snewn(num_dots, int);
361
362 for (i = 0; i < num_dots; i++) {
363 ret->looplen[i] = 1;
364 }
365
366 ret->dot_solved = snewn(num_dots, char);
367 ret->face_solved = snewn(num_faces, char);
368 memset(ret->dot_solved, FALSE, num_dots);
369 memset(ret->face_solved, FALSE, num_faces);
370
371 ret->dot_yes_count = snewn(num_dots, char);
372 memset(ret->dot_yes_count, 0, num_dots);
373 ret->dot_no_count = snewn(num_dots, char);
374 memset(ret->dot_no_count, 0, num_dots);
375 ret->face_yes_count = snewn(num_faces, char);
376 memset(ret->face_yes_count, 0, num_faces);
377 ret->face_no_count = snewn(num_faces, char);
378 memset(ret->face_no_count, 0, num_faces);
379
380 if (diff < DIFF_NORMAL) {
381 ret->dlines = NULL;
382 } else {
383 ret->dlines = snewn(2*num_edges, char);
384 memset(ret->dlines, 0, 2*num_edges);
385 }
386
387 if (diff < DIFF_HARD) {
388 ret->linedsf = NULL;
389 } else {
390 ret->linedsf = snew_dsf(state->game_grid->num_edges);
391 }
392
393 return ret;
394 }
395
396 static void free_solver_state(solver_state *sstate) {
397 if (sstate) {
398 free_game(sstate->state);
399 sfree(sstate->dotdsf);
400 sfree(sstate->looplen);
401 sfree(sstate->dot_solved);
402 sfree(sstate->face_solved);
403 sfree(sstate->dot_yes_count);
404 sfree(sstate->dot_no_count);
405 sfree(sstate->face_yes_count);
406 sfree(sstate->face_no_count);
407
408 /* OK, because sfree(NULL) is a no-op */
409 sfree(sstate->dlines);
410 sfree(sstate->linedsf);
411
412 sfree(sstate);
413 }
414 }
415
416 static solver_state *dup_solver_state(const solver_state *sstate) {
417 game_state *state = sstate->state;
418 int num_dots = state->game_grid->num_dots;
419 int num_faces = state->game_grid->num_faces;
420 int num_edges = state->game_grid->num_edges;
421 solver_state *ret = snew(solver_state);
422
423 ret->state = state = dup_game(sstate->state);
424
425 ret->solver_status = sstate->solver_status;
426 ret->diff = sstate->diff;
427
428 ret->dotdsf = snewn(num_dots, int);
429 ret->looplen = snewn(num_dots, int);
430 memcpy(ret->dotdsf, sstate->dotdsf,
431 num_dots * sizeof(int));
432 memcpy(ret->looplen, sstate->looplen,
433 num_dots * sizeof(int));
434
435 ret->dot_solved = snewn(num_dots, char);
436 ret->face_solved = snewn(num_faces, char);
437 memcpy(ret->dot_solved, sstate->dot_solved, num_dots);
438 memcpy(ret->face_solved, sstate->face_solved, num_faces);
439
440 ret->dot_yes_count = snewn(num_dots, char);
441 memcpy(ret->dot_yes_count, sstate->dot_yes_count, num_dots);
442 ret->dot_no_count = snewn(num_dots, char);
443 memcpy(ret->dot_no_count, sstate->dot_no_count, num_dots);
444
445 ret->face_yes_count = snewn(num_faces, char);
446 memcpy(ret->face_yes_count, sstate->face_yes_count, num_faces);
447 ret->face_no_count = snewn(num_faces, char);
448 memcpy(ret->face_no_count, sstate->face_no_count, num_faces);
449
450 if (sstate->dlines) {
451 ret->dlines = snewn(2*num_edges, char);
452 memcpy(ret->dlines, sstate->dlines,
453 2*num_edges);
454 } else {
455 ret->dlines = NULL;
456 }
457
458 if (sstate->linedsf) {
459 ret->linedsf = snewn(num_edges, int);
460 memcpy(ret->linedsf, sstate->linedsf,
461 num_edges * sizeof(int));
462 } else {
463 ret->linedsf = NULL;
464 }
465
466 return ret;
467 }
468
469 static game_params *default_params(void)
470 {
471 game_params *ret = snew(game_params);
472
473 #ifdef SLOW_SYSTEM
474 ret->h = 7;
475 ret->w = 7;
476 #else
477 ret->h = 10;
478 ret->w = 10;
479 #endif
480 ret->diff = DIFF_EASY;
481 ret->type = 0;
482
483 ret->game_grid = NULL;
484
485 return ret;
486 }
487
488 static game_params *dup_params(game_params *params)
489 {
490 game_params *ret = snew(game_params);
491
492 *ret = *params; /* structure copy */
493 if (ret->game_grid) {
494 ret->game_grid->refcount++;
495 }
496 return ret;
497 }
498
499 static const game_params presets[] = {
500 #ifdef SMALL_SCREEN
501 { 7, 7, DIFF_EASY, 0, NULL },
502 { 7, 7, DIFF_NORMAL, 0, NULL },
503 { 7, 7, DIFF_HARD, 0, NULL },
504 { 7, 7, DIFF_HARD, 1, NULL },
505 { 7, 7, DIFF_HARD, 2, NULL },
506 { 5, 5, DIFF_HARD, 3, NULL },
507 { 7, 7, DIFF_HARD, 4, NULL },
508 { 5, 4, DIFF_HARD, 5, NULL },
509 { 5, 5, DIFF_HARD, 6, NULL },
510 { 5, 5, DIFF_HARD, 7, NULL },
511 { 3, 3, DIFF_HARD, 8, NULL },
512 { 3, 3, DIFF_HARD, 9, NULL },
513 { 3, 3, DIFF_HARD, 10, NULL },
514 #else
515 { 7, 7, DIFF_EASY, 0, NULL },
516 { 10, 10, DIFF_EASY, 0, NULL },
517 { 7, 7, DIFF_NORMAL, 0, NULL },
518 { 10, 10, DIFF_NORMAL, 0, NULL },
519 { 7, 7, DIFF_HARD, 0, NULL },
520 { 10, 10, DIFF_HARD, 0, NULL },
521 { 10, 10, DIFF_HARD, 1, NULL },
522 { 12, 10, DIFF_HARD, 2, NULL },
523 { 7, 7, DIFF_HARD, 3, NULL },
524 { 9, 9, DIFF_HARD, 4, NULL },
525 { 5, 4, DIFF_HARD, 5, NULL },
526 { 7, 7, DIFF_HARD, 6, NULL },
527 { 5, 5, DIFF_HARD, 7, NULL },
528 { 5, 5, DIFF_HARD, 8, NULL },
529 { 5, 4, DIFF_HARD, 9, NULL },
530 { 5, 4, DIFF_HARD, 10, NULL },
531 #endif
532 };
533
534 static int game_fetch_preset(int i, char **name, game_params **params)
535 {
536 game_params *tmppar;
537 char buf[80];
538
539 if (i < 0 || i >= lenof(presets))
540 return FALSE;
541
542 tmppar = snew(game_params);
543 *tmppar = presets[i];
544 *params = tmppar;
545 sprintf(buf, "%dx%d %s - %s", tmppar->h, tmppar->w,
546 gridnames[tmppar->type], diffnames[tmppar->diff]);
547 *name = dupstr(buf);
548
549 return TRUE;
550 }
551
552 static void free_params(game_params *params)
553 {
554 if (params->game_grid) {
555 grid_free(params->game_grid);
556 }
557 sfree(params);
558 }
559
560 static void decode_params(game_params *params, char const *string)
561 {
562 if (params->game_grid) {
563 grid_free(params->game_grid);
564 params->game_grid = NULL;
565 }
566 params->h = params->w = atoi(string);
567 params->diff = DIFF_EASY;
568 while (*string && isdigit((unsigned char)*string)) string++;
569 if (*string == 'x') {
570 string++;
571 params->h = atoi(string);
572 while (*string && isdigit((unsigned char)*string)) string++;
573 }
574 if (*string == 't') {
575 string++;
576 params->type = atoi(string);
577 while (*string && isdigit((unsigned char)*string)) string++;
578 }
579 if (*string == 'd') {
580 int i;
581 string++;
582 for (i = 0; i < DIFF_MAX; i++)
583 if (*string == diffchars[i])
584 params->diff = i;
585 if (*string) string++;
586 }
587 }
588
589 static char *encode_params(game_params *params, int full)
590 {
591 char str[80];
592 sprintf(str, "%dx%dt%d", params->w, params->h, params->type);
593 if (full)
594 sprintf(str + strlen(str), "d%c", diffchars[params->diff]);
595 return dupstr(str);
596 }
597
598 static config_item *game_configure(game_params *params)
599 {
600 config_item *ret;
601 char buf[80];
602
603 ret = snewn(5, config_item);
604
605 ret[0].name = "Width";
606 ret[0].type = C_STRING;
607 sprintf(buf, "%d", params->w);
608 ret[0].sval = dupstr(buf);
609 ret[0].ival = 0;
610
611 ret[1].name = "Height";
612 ret[1].type = C_STRING;
613 sprintf(buf, "%d", params->h);
614 ret[1].sval = dupstr(buf);
615 ret[1].ival = 0;
616
617 ret[2].name = "Grid type";
618 ret[2].type = C_CHOICES;
619 ret[2].sval = GRID_CONFIGS;
620 ret[2].ival = params->type;
621
622 ret[3].name = "Difficulty";
623 ret[3].type = C_CHOICES;
624 ret[3].sval = DIFFCONFIG;
625 ret[3].ival = params->diff;
626
627 ret[4].name = NULL;
628 ret[4].type = C_END;
629 ret[4].sval = NULL;
630 ret[4].ival = 0;
631
632 return ret;
633 }
634
635 static game_params *custom_params(config_item *cfg)
636 {
637 game_params *ret = snew(game_params);
638
639 ret->w = atoi(cfg[0].sval);
640 ret->h = atoi(cfg[1].sval);
641 ret->type = cfg[2].ival;
642 ret->diff = cfg[3].ival;
643
644 ret->game_grid = NULL;
645 return ret;
646 }
647
648 static char *validate_params(game_params *params, int full)
649 {
650 if (params->type < 0 || params->type >= NUM_GRID_TYPES)
651 return "Illegal grid type";
652 if (params->w < grid_size_limits[params->type].amin ||
653 params->h < grid_size_limits[params->type].amin)
654 return grid_size_limits[params->type].aerr;
655 if (params->w < grid_size_limits[params->type].omin &&
656 params->h < grid_size_limits[params->type].omin)
657 return grid_size_limits[params->type].oerr;
658
659 /*
660 * This shouldn't be able to happen at all, since decode_params
661 * and custom_params will never generate anything that isn't
662 * within range.
663 */
664 assert(params->diff < DIFF_MAX);
665
666 return NULL;
667 }
668
669 /* Returns a newly allocated string describing the current puzzle */
670 static char *state_to_text(const game_state *state)
671 {
672 grid *g = state->game_grid;
673 char *retval;
674 int num_faces = g->num_faces;
675 char *description = snewn(num_faces + 1, char);
676 char *dp = description;
677 int empty_count = 0;
678 int i;
679
680 for (i = 0; i < num_faces; i++) {
681 if (state->clues[i] < 0) {
682 if (empty_count > 25) {
683 dp += sprintf(dp, "%c", (int)(empty_count + 'a' - 1));
684 empty_count = 0;
685 }
686 empty_count++;
687 } else {
688 if (empty_count) {
689 dp += sprintf(dp, "%c", (int)(empty_count + 'a' - 1));
690 empty_count = 0;
691 }
692 dp += sprintf(dp, "%c", (int)CLUE2CHAR(state->clues[i]));
693 }
694 }
695
696 if (empty_count)
697 dp += sprintf(dp, "%c", (int)(empty_count + 'a' - 1));
698
699 retval = dupstr(description);
700 sfree(description);
701
702 return retval;
703 }
704
705 /* We require that the params pass the test in validate_params and that the
706 * description fills the entire game area */
707 static char *validate_desc(game_params *params, char *desc)
708 {
709 int count = 0;
710 grid *g;
711 params_generate_grid(params);
712 g = params->game_grid;
713
714 for (; *desc; ++desc) {
715 if ((*desc >= '0' && *desc <= '9') || (*desc >= 'A' && *desc <= 'Z')) {
716 count++;
717 continue;
718 }
719 if (*desc >= 'a') {
720 count += *desc - 'a' + 1;
721 continue;
722 }
723 return "Unknown character in description";
724 }
725
726 if (count < g->num_faces)
727 return "Description too short for board size";
728 if (count > g->num_faces)
729 return "Description too long for board size";
730
731 return NULL;
732 }
733
734 /* Sums the lengths of the numbers in range [0,n) */
735 /* See equivalent function in solo.c for justification of this. */
736 static int len_0_to_n(int n)
737 {
738 int len = 1; /* Counting 0 as a bit of a special case */
739 int i;
740
741 for (i = 1; i < n; i *= 10) {
742 len += max(n - i, 0);
743 }
744
745 return len;
746 }
747
748 static char *encode_solve_move(const game_state *state)
749 {
750 int len;
751 char *ret, *p;
752 int i;
753 int num_edges = state->game_grid->num_edges;
754
755 /* This is going to return a string representing the moves needed to set
756 * every line in a grid to be the same as the ones in 'state'. The exact
757 * length of this string is predictable. */
758
759 len = 1; /* Count the 'S' prefix */
760 /* Numbers in all lines */
761 len += len_0_to_n(num_edges);
762 /* For each line we also have a letter */
763 len += num_edges;
764
765 ret = snewn(len + 1, char);
766 p = ret;
767
768 p += sprintf(p, "S");
769
770 for (i = 0; i < num_edges; i++) {
771 switch (state->lines[i]) {
772 case LINE_YES:
773 p += sprintf(p, "%dy", i);
774 break;
775 case LINE_NO:
776 p += sprintf(p, "%dn", i);
777 break;
778 }
779 }
780
781 /* No point in doing sums like that if they're going to be wrong */
782 assert(strlen(ret) <= (size_t)len);
783 return ret;
784 }
785
786 static game_ui *new_ui(game_state *state)
787 {
788 return NULL;
789 }
790
791 static void free_ui(game_ui *ui)
792 {
793 }
794
795 static char *encode_ui(game_ui *ui)
796 {
797 return NULL;
798 }
799
800 static void decode_ui(game_ui *ui, char *encoding)
801 {
802 }
803
804 static void game_changed_state(game_ui *ui, game_state *oldstate,
805 game_state *newstate)
806 {
807 }
808
809 static void game_compute_size(game_params *params, int tilesize,
810 int *x, int *y)
811 {
812 grid *g;
813 int grid_width, grid_height, rendered_width, rendered_height;
814
815 params_generate_grid(params);
816 g = params->game_grid;
817 grid_width = g->highest_x - g->lowest_x;
818 grid_height = g->highest_y - g->lowest_y;
819 /* multiply first to minimise rounding error on integer division */
820 rendered_width = grid_width * tilesize / g->tilesize;
821 rendered_height = grid_height * tilesize / g->tilesize;
822 *x = rendered_width + 2 * BORDER(tilesize) + 1;
823 *y = rendered_height + 2 * BORDER(tilesize) + 1;
824 }
825
826 static void game_set_size(drawing *dr, game_drawstate *ds,
827 game_params *params, int tilesize)
828 {
829 ds->tilesize = tilesize;
830 }
831
832 static float *game_colours(frontend *fe, int *ncolours)
833 {
834 float *ret = snewn(4 * NCOLOURS, float);
835
836 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
837
838 ret[COL_FOREGROUND * 3 + 0] = 0.0F;
839 ret[COL_FOREGROUND * 3 + 1] = 0.0F;
840 ret[COL_FOREGROUND * 3 + 2] = 0.0F;
841
842 ret[COL_LINEUNKNOWN * 3 + 0] = 0.8F;
843 ret[COL_LINEUNKNOWN * 3 + 1] = 0.8F;
844 ret[COL_LINEUNKNOWN * 3 + 2] = 0.0F;
845
846 ret[COL_HIGHLIGHT * 3 + 0] = 1.0F;
847 ret[COL_HIGHLIGHT * 3 + 1] = 1.0F;
848 ret[COL_HIGHLIGHT * 3 + 2] = 1.0F;
849
850 ret[COL_MISTAKE * 3 + 0] = 1.0F;
851 ret[COL_MISTAKE * 3 + 1] = 0.0F;
852 ret[COL_MISTAKE * 3 + 2] = 0.0F;
853
854 ret[COL_SATISFIED * 3 + 0] = 0.0F;
855 ret[COL_SATISFIED * 3 + 1] = 0.0F;
856 ret[COL_SATISFIED * 3 + 2] = 0.0F;
857
858 /* We want the faint lines to be a bit darker than the background.
859 * Except if the background is pretty dark already; then it ought to be a
860 * bit lighter. Oy vey.
861 */
862 ret[COL_FAINT * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] * 0.9F;
863 ret[COL_FAINT * 3 + 1] = ret[COL_BACKGROUND * 3 + 1] * 0.9F;
864 ret[COL_FAINT * 3 + 2] = ret[COL_BACKGROUND * 3 + 2] * 0.9F;
865
866 *ncolours = NCOLOURS;
867 return ret;
868 }
869
870 static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
871 {
872 struct game_drawstate *ds = snew(struct game_drawstate);
873 int num_faces = state->game_grid->num_faces;
874 int num_edges = state->game_grid->num_edges;
875 int i;
876
877 ds->tilesize = 0;
878 ds->started = 0;
879 ds->lines = snewn(num_edges, char);
880 ds->clue_error = snewn(num_faces, char);
881 ds->clue_satisfied = snewn(num_faces, char);
882 ds->textx = snewn(num_faces, int);
883 ds->texty = snewn(num_faces, int);
884 ds->flashing = 0;
885
886 memset(ds->lines, LINE_UNKNOWN, num_edges);
887 memset(ds->clue_error, 0, num_faces);
888 memset(ds->clue_satisfied, 0, num_faces);
889 for (i = 0; i < num_faces; i++)
890 ds->textx[i] = ds->texty[i] = -1;
891
892 return ds;
893 }
894
895 static void game_free_drawstate(drawing *dr, game_drawstate *ds)
896 {
897 sfree(ds->clue_error);
898 sfree(ds->clue_satisfied);
899 sfree(ds->lines);
900 sfree(ds);
901 }
902
903 static int game_timing_state(game_state *state, game_ui *ui)
904 {
905 return TRUE;
906 }
907
908 static float game_anim_length(game_state *oldstate, game_state *newstate,
909 int dir, game_ui *ui)
910 {
911 return 0.0F;
912 }
913
914 static int game_can_format_as_text_now(game_params *params)
915 {
916 if (params->type != 0)
917 return FALSE;
918 return TRUE;
919 }
920
921 static char *game_text_format(game_state *state)
922 {
923 int w, h, W, H;
924 int x, y, i;
925 int cell_size;
926 char *ret;
927 grid *g = state->game_grid;
928 grid_face *f;
929
930 assert(state->grid_type == 0);
931
932 /* Work out the basic size unit */
933 f = g->faces; /* first face */
934 assert(f->order == 4);
935 /* The dots are ordered clockwise, so the two opposite
936 * corners are guaranteed to span the square */
937 cell_size = abs(f->dots[0]->x - f->dots[2]->x);
938
939 w = (g->highest_x - g->lowest_x) / cell_size;
940 h = (g->highest_y - g->lowest_y) / cell_size;
941
942 /* Create a blank "canvas" to "draw" on */
943 W = 2 * w + 2;
944 H = 2 * h + 1;
945 ret = snewn(W * H + 1, char);
946 for (y = 0; y < H; y++) {
947 for (x = 0; x < W-1; x++) {
948 ret[y*W + x] = ' ';
949 }
950 ret[y*W + W-1] = '\n';
951 }
952 ret[H*W] = '\0';
953
954 /* Fill in edge info */
955 for (i = 0; i < g->num_edges; i++) {
956 grid_edge *e = g->edges + i;
957 /* Cell coordinates, from (0,0) to (w-1,h-1) */
958 int x1 = (e->dot1->x - g->lowest_x) / cell_size;
959 int x2 = (e->dot2->x - g->lowest_x) / cell_size;
960 int y1 = (e->dot1->y - g->lowest_y) / cell_size;
961 int y2 = (e->dot2->y - g->lowest_y) / cell_size;
962 /* Midpoint, in canvas coordinates (canvas coordinates are just twice
963 * cell coordinates) */
964 x = x1 + x2;
965 y = y1 + y2;
966 switch (state->lines[i]) {
967 case LINE_YES:
968 ret[y*W + x] = (y1 == y2) ? '-' : '|';
969 break;
970 case LINE_NO:
971 ret[y*W + x] = 'x';
972 break;
973 case LINE_UNKNOWN:
974 break; /* already a space */
975 default:
976 assert(!"Illegal line state");
977 }
978 }
979
980 /* Fill in clues */
981 for (i = 0; i < g->num_faces; i++) {
982 int x1, x2, y1, y2;
983
984 f = g->faces + i;
985 assert(f->order == 4);
986 /* Cell coordinates, from (0,0) to (w-1,h-1) */
987 x1 = (f->dots[0]->x - g->lowest_x) / cell_size;
988 x2 = (f->dots[2]->x - g->lowest_x) / cell_size;
989 y1 = (f->dots[0]->y - g->lowest_y) / cell_size;
990 y2 = (f->dots[2]->y - g->lowest_y) / cell_size;
991 /* Midpoint, in canvas coordinates */
992 x = x1 + x2;
993 y = y1 + y2;
994 ret[y*W + x] = CLUE2CHAR(state->clues[i]);
995 }
996 return ret;
997 }
998
999 /* ----------------------------------------------------------------------
1000 * Debug code
1001 */
1002
1003 #ifdef DEBUG_CACHES
1004 static void check_caches(const solver_state* sstate)
1005 {
1006 int i;
1007 const game_state *state = sstate->state;
1008 const grid *g = state->game_grid;
1009
1010 for (i = 0; i < g->num_dots; i++) {
1011 assert(dot_order(state, i, LINE_YES) == sstate->dot_yes_count[i]);
1012 assert(dot_order(state, i, LINE_NO) == sstate->dot_no_count[i]);
1013 }
1014
1015 for (i = 0; i < g->num_faces; i++) {
1016 assert(face_order(state, i, LINE_YES) == sstate->face_yes_count[i]);
1017 assert(face_order(state, i, LINE_NO) == sstate->face_no_count[i]);
1018 }
1019 }
1020
1021 #if 0
1022 #define check_caches(s) \
1023 do { \
1024 fprintf(stderr, "check_caches at line %d\n", __LINE__); \
1025 check_caches(s); \
1026 } while (0)
1027 #endif
1028 #endif /* DEBUG_CACHES */
1029
1030 /* ----------------------------------------------------------------------
1031 * Solver utility functions
1032 */
1033
1034 /* Sets the line (with index i) to the new state 'line_new', and updates
1035 * the cached counts of any affected faces and dots.
1036 * Returns TRUE if this actually changed the line's state. */
1037 static int solver_set_line(solver_state *sstate, int i,
1038 enum line_state line_new
1039 #ifdef SHOW_WORKING
1040 , const char *reason
1041 #endif
1042 )
1043 {
1044 game_state *state = sstate->state;
1045 grid *g;
1046 grid_edge *e;
1047
1048 assert(line_new != LINE_UNKNOWN);
1049
1050 check_caches(sstate);
1051
1052 if (state->lines[i] == line_new) {
1053 return FALSE; /* nothing changed */
1054 }
1055 state->lines[i] = line_new;
1056
1057 #ifdef SHOW_WORKING
1058 fprintf(stderr, "solver: set line [%d] to %s (%s)\n",
1059 i, line_new == LINE_YES ? "YES" : "NO",
1060 reason);
1061 #endif
1062
1063 g = state->game_grid;
1064 e = g->edges + i;
1065
1066 /* Update the cache for both dots and both faces affected by this. */
1067 if (line_new == LINE_YES) {
1068 sstate->dot_yes_count[e->dot1 - g->dots]++;
1069 sstate->dot_yes_count[e->dot2 - g->dots]++;
1070 if (e->face1) {
1071 sstate->face_yes_count[e->face1 - g->faces]++;
1072 }
1073 if (e->face2) {
1074 sstate->face_yes_count[e->face2 - g->faces]++;
1075 }
1076 } else {
1077 sstate->dot_no_count[e->dot1 - g->dots]++;
1078 sstate->dot_no_count[e->dot2 - g->dots]++;
1079 if (e->face1) {
1080 sstate->face_no_count[e->face1 - g->faces]++;
1081 }
1082 if (e->face2) {
1083 sstate->face_no_count[e->face2 - g->faces]++;
1084 }
1085 }
1086
1087 check_caches(sstate);
1088 return TRUE;
1089 }
1090
1091 #ifdef SHOW_WORKING
1092 #define solver_set_line(a, b, c) \
1093 solver_set_line(a, b, c, __FUNCTION__)
1094 #endif
1095
1096 /*
1097 * Merge two dots due to the existence of an edge between them.
1098 * Updates the dsf tracking equivalence classes, and keeps track of
1099 * the length of path each dot is currently a part of.
1100 * Returns TRUE if the dots were already linked, ie if they are part of a
1101 * closed loop, and false otherwise.
1102 */
1103 static int merge_dots(solver_state *sstate, int edge_index)
1104 {
1105 int i, j, len;
1106 grid *g = sstate->state->game_grid;
1107 grid_edge *e = g->edges + edge_index;
1108
1109 i = e->dot1 - g->dots;
1110 j = e->dot2 - g->dots;
1111
1112 i = dsf_canonify(sstate->dotdsf, i);
1113 j = dsf_canonify(sstate->dotdsf, j);
1114
1115 if (i == j) {
1116 return TRUE;
1117 } else {
1118 len = sstate->looplen[i] + sstate->looplen[j];
1119 dsf_merge(sstate->dotdsf, i, j);
1120 i = dsf_canonify(sstate->dotdsf, i);
1121 sstate->looplen[i] = len;
1122 return FALSE;
1123 }
1124 }
1125
1126 /* Merge two lines because the solver has deduced that they must be either
1127 * identical or opposite. Returns TRUE if this is new information, otherwise
1128 * FALSE. */
1129 static int merge_lines(solver_state *sstate, int i, int j, int inverse
1130 #ifdef SHOW_WORKING
1131 , const char *reason
1132 #endif
1133 )
1134 {
1135 int inv_tmp;
1136
1137 assert(i < sstate->state->game_grid->num_edges);
1138 assert(j < sstate->state->game_grid->num_edges);
1139
1140 i = edsf_canonify(sstate->linedsf, i, &inv_tmp);
1141 inverse ^= inv_tmp;
1142 j = edsf_canonify(sstate->linedsf, j, &inv_tmp);
1143 inverse ^= inv_tmp;
1144
1145 edsf_merge(sstate->linedsf, i, j, inverse);
1146
1147 #ifdef SHOW_WORKING
1148 if (i != j) {
1149 fprintf(stderr, "%s [%d] [%d] %s(%s)\n",
1150 __FUNCTION__, i, j,
1151 inverse ? "inverse " : "", reason);
1152 }
1153 #endif
1154 return (i != j);
1155 }
1156
1157 #ifdef SHOW_WORKING
1158 #define merge_lines(a, b, c, d) \
1159 merge_lines(a, b, c, d, __FUNCTION__)
1160 #endif
1161
1162 /* Count the number of lines of a particular type currently going into the
1163 * given dot. */
1164 static int dot_order(const game_state* state, int dot, char line_type)
1165 {
1166 int n = 0;
1167 grid *g = state->game_grid;
1168 grid_dot *d = g->dots + dot;
1169 int i;
1170
1171 for (i = 0; i < d->order; i++) {
1172 grid_edge *e = d->edges[i];
1173 if (state->lines[e - g->edges] == line_type)
1174 ++n;
1175 }
1176 return n;
1177 }
1178
1179 /* Count the number of lines of a particular type currently surrounding the
1180 * given face */
1181 static int face_order(const game_state* state, int face, char line_type)
1182 {
1183 int n = 0;
1184 grid *g = state->game_grid;
1185 grid_face *f = g->faces + face;
1186 int i;
1187
1188 for (i = 0; i < f->order; i++) {
1189 grid_edge *e = f->edges[i];
1190 if (state->lines[e - g->edges] == line_type)
1191 ++n;
1192 }
1193 return n;
1194 }
1195
1196 /* Set all lines bordering a dot of type old_type to type new_type
1197 * Return value tells caller whether this function actually did anything */
1198 static int dot_setall(solver_state *sstate, int dot,
1199 char old_type, char new_type)
1200 {
1201 int retval = FALSE, r;
1202 game_state *state = sstate->state;
1203 grid *g;
1204 grid_dot *d;
1205 int i;
1206
1207 if (old_type == new_type)
1208 return FALSE;
1209
1210 g = state->game_grid;
1211 d = g->dots + dot;
1212
1213 for (i = 0; i < d->order; i++) {
1214 int line_index = d->edges[i] - g->edges;
1215 if (state->lines[line_index] == old_type) {
1216 r = solver_set_line(sstate, line_index, new_type);
1217 assert(r == TRUE);
1218 retval = TRUE;
1219 }
1220 }
1221 return retval;
1222 }
1223
1224 /* Set all lines bordering a face of type old_type to type new_type */
1225 static int face_setall(solver_state *sstate, int face,
1226 char old_type, char new_type)
1227 {
1228 int retval = FALSE, r;
1229 game_state *state = sstate->state;
1230 grid *g;
1231 grid_face *f;
1232 int i;
1233
1234 if (old_type == new_type)
1235 return FALSE;
1236
1237 g = state->game_grid;
1238 f = g->faces + face;
1239
1240 for (i = 0; i < f->order; i++) {
1241 int line_index = f->edges[i] - g->edges;
1242 if (state->lines[line_index] == old_type) {
1243 r = solver_set_line(sstate, line_index, new_type);
1244 assert(r == TRUE);
1245 retval = TRUE;
1246 }
1247 }
1248 return retval;
1249 }
1250
1251 /* ----------------------------------------------------------------------
1252 * Loop generation and clue removal
1253 */
1254
1255 /* We're going to store lists of current candidate faces for colouring black
1256 * or white.
1257 * Each face gets a 'score', which tells us how adding that face right
1258 * now would affect the curliness of the solution loop. We're trying to
1259 * maximise that quantity so will bias our random selection of faces to
1260 * colour those with high scores */
1261 struct face_score {
1262 int white_score;
1263 int black_score;
1264 unsigned long random;
1265 /* No need to store a grid_face* here. The 'face_scores' array will
1266 * be a list of 'face_score' objects, one for each face of the grid, so
1267 * the position (index) within the 'face_scores' array will determine
1268 * which face corresponds to a particular face_score.
1269 * Having a single 'face_scores' array for all faces simplifies memory
1270 * management, and probably improves performance, because we don't have to
1271 * malloc/free each individual face_score, and we don't have to maintain
1272 * a mapping from grid_face* pointers to face_score* pointers.
1273 */
1274 };
1275
1276 static int generic_sort_cmpfn(void *v1, void *v2, size_t offset)
1277 {
1278 struct face_score *f1 = v1;
1279 struct face_score *f2 = v2;
1280 int r;
1281
1282 r = *(int *)((char *)f2 + offset) - *(int *)((char *)f1 + offset);
1283 if (r) {
1284 return r;
1285 }
1286
1287 if (f1->random < f2->random)
1288 return -1;
1289 else if (f1->random > f2->random)
1290 return 1;
1291
1292 /*
1293 * It's _just_ possible that two faces might have been given
1294 * the same random value. In that situation, fall back to
1295 * comparing based on the positions within the face_scores list.
1296 * This introduces a tiny directional bias, but not a significant one.
1297 */
1298 return f1 - f2;
1299 }
1300
1301 static int white_sort_cmpfn(void *v1, void *v2)
1302 {
1303 return generic_sort_cmpfn(v1, v2, offsetof(struct face_score,white_score));
1304 }
1305
1306 static int black_sort_cmpfn(void *v1, void *v2)
1307 {
1308 return generic_sort_cmpfn(v1, v2, offsetof(struct face_score,black_score));
1309 }
1310
1311 enum face_colour { FACE_WHITE, FACE_GREY, FACE_BLACK };
1312
1313 /* face should be of type grid_face* here. */
1314 #define FACE_COLOUR(face) \
1315 ( (face) == NULL ? FACE_BLACK : \
1316 board[(face) - g->faces] )
1317
1318 /* 'board' is an array of these enums, indicating which faces are
1319 * currently black/white/grey. 'colour' is FACE_WHITE or FACE_BLACK.
1320 * Returns whether it's legal to colour the given face with this colour. */
1321 static int can_colour_face(grid *g, char* board, int face_index,
1322 enum face_colour colour)
1323 {
1324 int i, j;
1325 grid_face *test_face = g->faces + face_index;
1326 grid_face *starting_face, *current_face;
1327 grid_dot *starting_dot;
1328 int transitions;
1329 int current_state, s; /* booleans: equal or not-equal to 'colour' */
1330 int found_same_coloured_neighbour = FALSE;
1331 assert(board[face_index] != colour);
1332
1333 /* Can only consider a face for colouring if it's adjacent to a face
1334 * with the same colour. */
1335 for (i = 0; i < test_face->order; i++) {
1336 grid_edge *e = test_face->edges[i];
1337 grid_face *f = (e->face1 == test_face) ? e->face2 : e->face1;
1338 if (FACE_COLOUR(f) == colour) {
1339 found_same_coloured_neighbour = TRUE;
1340 break;
1341 }
1342 }
1343 if (!found_same_coloured_neighbour)
1344 return FALSE;
1345
1346 /* Need to avoid creating a loop of faces of this colour around some
1347 * differently-coloured faces.
1348 * Also need to avoid meeting a same-coloured face at a corner, with
1349 * other-coloured faces in between. Here's a simple test that (I believe)
1350 * takes care of both these conditions:
1351 *
1352 * Take the circular path formed by this face's edges, and inflate it
1353 * slightly outwards. Imagine walking around this path and consider
1354 * the faces that you visit in sequence. This will include all faces
1355 * touching the given face, either along an edge or just at a corner.
1356 * Count the number of 'colour'/not-'colour' transitions you encounter, as
1357 * you walk along the complete loop. This will obviously turn out to be
1358 * an even number.
1359 * If 0, we're either in the middle of an "island" of this colour (should
1360 * be impossible as we're not supposed to create black or white loops),
1361 * or we're about to start a new island - also not allowed.
1362 * If 4 or greater, there are too many separate coloured regions touching
1363 * this face, and colouring it would create a loop or a corner-violation.
1364 * The only allowed case is when the count is exactly 2. */
1365
1366 /* i points to a dot around the test face.
1367 * j points to a face around the i^th dot.
1368 * The current face will always be:
1369 * test_face->dots[i]->faces[j]
1370 * We assume dots go clockwise around the test face,
1371 * and faces go clockwise around dots. */
1372
1373 /*
1374 * The end condition is slightly fiddly. In sufficiently strange
1375 * degenerate grids, our test face may be adjacent to the same
1376 * other face multiple times (typically if it's the exterior
1377 * face). Consider this, in particular:
1378 *
1379 * +--+
1380 * | |
1381 * +--+--+
1382 * | | |
1383 * +--+--+
1384 *
1385 * The bottom left face there is adjacent to the exterior face
1386 * twice, so we can't just terminate our iteration when we reach
1387 * the same _face_ we started at. Furthermore, we can't
1388 * condition on having the same (i,j) pair either, because
1389 * several (i,j) pairs identify the bottom left contiguity with
1390 * the exterior face! We canonicalise the (i,j) pair by taking
1391 * one step around before we set the termination tracking.
1392 */
1393
1394 i = j = 0;
1395 current_face = test_face->dots[0]->faces[0];
1396 if (current_face == test_face) {
1397 j = 1;
1398 current_face = test_face->dots[0]->faces[1];
1399 }
1400 transitions = 0;
1401 current_state = (FACE_COLOUR(current_face) == colour);
1402 starting_dot = NULL;
1403 starting_face = NULL;
1404 while (TRUE) {
1405 /* Advance to next face.
1406 * Need to loop here because it might take several goes to
1407 * find it. */
1408 while (TRUE) {
1409 j++;
1410 if (j == test_face->dots[i]->order)
1411 j = 0;
1412
1413 if (test_face->dots[i]->faces[j] == test_face) {
1414 /* Advance to next dot round test_face, then
1415 * find current_face around new dot
1416 * and advance to the next face clockwise */
1417 i++;
1418 if (i == test_face->order)
1419 i = 0;
1420 for (j = 0; j < test_face->dots[i]->order; j++) {
1421 if (test_face->dots[i]->faces[j] == current_face)
1422 break;
1423 }
1424 /* Must actually find current_face around new dot,
1425 * or else something's wrong with the grid. */
1426 assert(j != test_face->dots[i]->order);
1427 /* Found, so advance to next face and try again */
1428 } else {
1429 break;
1430 }
1431 }
1432 /* (i,j) are now advanced to next face */
1433 current_face = test_face->dots[i]->faces[j];
1434 s = (FACE_COLOUR(current_face) == colour);
1435 if (!starting_dot) {
1436 starting_dot = test_face->dots[i];
1437 starting_face = current_face;
1438 current_state = s;
1439 } else {
1440 if (s != current_state) {
1441 ++transitions;
1442 current_state = s;
1443 if (transitions > 2)
1444 break;
1445 }
1446 if (test_face->dots[i] == starting_dot &&
1447 current_face == starting_face)
1448 break;
1449 }
1450 }
1451
1452 return (transitions == 2) ? TRUE : FALSE;
1453 }
1454
1455 /* Count the number of neighbours of 'face', having colour 'colour' */
1456 static int face_num_neighbours(grid *g, char *board, grid_face *face,
1457 enum face_colour colour)
1458 {
1459 int colour_count = 0;
1460 int i;
1461 grid_face *f;
1462 grid_edge *e;
1463 for (i = 0; i < face->order; i++) {
1464 e = face->edges[i];
1465 f = (e->face1 == face) ? e->face2 : e->face1;
1466 if (FACE_COLOUR(f) == colour)
1467 ++colour_count;
1468 }
1469 return colour_count;
1470 }
1471
1472 /* The 'score' of a face reflects its current desirability for selection
1473 * as the next face to colour white or black. We want to encourage moving
1474 * into grey areas and increasing loopiness, so we give scores according to
1475 * how many of the face's neighbours are currently coloured the same as the
1476 * proposed colour. */
1477 static int face_score(grid *g, char *board, grid_face *face,
1478 enum face_colour colour)
1479 {
1480 /* Simple formula: score = 0 - num. same-coloured neighbours,
1481 * so a higher score means fewer same-coloured neighbours. */
1482 return -face_num_neighbours(g, board, face, colour);
1483 }
1484
1485 /* Generate a new complete set of clues for the given game_state.
1486 * The method is to generate a WHITE/BLACK colouring of all the faces,
1487 * such that the WHITE faces will define the inside of the path, and the
1488 * BLACK faces define the outside.
1489 * To do this, we initially colour all faces GREY. The infinite space outside
1490 * the grid is coloured BLACK, and we choose a random face to colour WHITE.
1491 * Then we gradually grow the BLACK and the WHITE regions, eliminating GREY
1492 * faces, until the grid is filled with BLACK/WHITE. As we grow the regions,
1493 * we avoid creating loops of a single colour, to preserve the topological
1494 * shape of the WHITE and BLACK regions.
1495 * We also try to make the boundary as loopy and twisty as possible, to avoid
1496 * generating paths that are uninteresting.
1497 * The algorithm works by choosing a BLACK/WHITE colour, then choosing a GREY
1498 * face that can be coloured with that colour (without violating the
1499 * topological shape of that region). It's not obvious, but I think this
1500 * algorithm is guaranteed to terminate without leaving any GREY faces behind.
1501 * Indeed, if there are any GREY faces at all, both the WHITE and BLACK
1502 * regions can be grown.
1503 * This is checked using assert()ions, and I haven't seen any failures yet.
1504 *
1505 * Hand-wavy proof: imagine what can go wrong...
1506 *
1507 * Could the white faces get completely cut off by the black faces, and still
1508 * leave some grey faces remaining?
1509 * No, because then the black faces would form a loop around both the white
1510 * faces and the grey faces, which is disallowed because we continually
1511 * maintain the correct topological shape of the black region.
1512 * Similarly, the black faces can never get cut off by the white faces. That
1513 * means both the WHITE and BLACK regions always have some room to grow into
1514 * the GREY regions.
1515 * Could it be that we can't colour some GREY face, because there are too many
1516 * WHITE/BLACK transitions as we walk round the face? (see the
1517 * can_colour_face() function for details)
1518 * No. Imagine otherwise, and we see WHITE/BLACK/WHITE/BLACK as we walk
1519 * around the face. The two WHITE faces would be connected by a WHITE path,
1520 * and the BLACK faces would be connected by a BLACK path. These paths would
1521 * have to cross, which is impossible.
1522 * Another thing that could go wrong: perhaps we can't find any GREY face to
1523 * colour WHITE, because it would create a loop-violation or a corner-violation
1524 * with the other WHITE faces?
1525 * This is a little bit tricky to prove impossible. Imagine you have such a
1526 * GREY face (that is, if you coloured it WHITE, you would create a WHITE loop
1527 * or corner violation).
1528 * That would cut all the non-white area into two blobs. One of those blobs
1529 * must be free of BLACK faces (because the BLACK stuff is a connected blob).
1530 * So we have a connected GREY area, completely surrounded by WHITE
1531 * (including the GREY face we've tentatively coloured WHITE).
1532 * A well-known result in graph theory says that you can always find a GREY
1533 * face whose removal leaves the remaining GREY area connected. And it says
1534 * there are at least two such faces, so we can always choose the one that
1535 * isn't the "tentative" GREY face. Colouring that face WHITE leaves
1536 * everything nice and connected, including that "tentative" GREY face which
1537 * acts as a gateway to the rest of the non-WHITE grid.
1538 */
1539 static void add_full_clues(game_state *state, random_state *rs)
1540 {
1541 signed char *clues = state->clues;
1542 char *board;
1543 grid *g = state->game_grid;
1544 int i, j;
1545 int num_faces = g->num_faces;
1546 struct face_score *face_scores; /* Array of face_score objects */
1547 struct face_score *fs; /* Points somewhere in the above list */
1548 struct grid_face *cur_face;
1549 tree234 *lightable_faces_sorted;
1550 tree234 *darkable_faces_sorted;
1551 int *face_list;
1552 int do_random_pass;
1553
1554 board = snewn(num_faces, char);
1555
1556 /* Make a board */
1557 memset(board, FACE_GREY, num_faces);
1558
1559 /* Create and initialise the list of face_scores */
1560 face_scores = snewn(num_faces, struct face_score);
1561 for (i = 0; i < num_faces; i++) {
1562 face_scores[i].random = random_bits(rs, 31);
1563 face_scores[i].black_score = face_scores[i].white_score = 0;
1564 }
1565
1566 /* Colour a random, finite face white. The infinite face is implicitly
1567 * coloured black. Together, they will seed the random growth process
1568 * for the black and white areas. */
1569 i = random_upto(rs, num_faces);
1570 board[i] = FACE_WHITE;
1571
1572 /* We need a way of favouring faces that will increase our loopiness.
1573 * We do this by maintaining a list of all candidate faces sorted by
1574 * their score and choose randomly from that with appropriate skew.
1575 * In order to avoid consistently biasing towards particular faces, we
1576 * need the sort order _within_ each group of scores to be completely
1577 * random. But it would be abusing the hospitality of the tree234 data
1578 * structure if our comparison function were nondeterministic :-). So with
1579 * each face we associate a random number that does not change during a
1580 * particular run of the generator, and use that as a secondary sort key.
1581 * Yes, this means we will be biased towards particular random faces in
1582 * any one run but that doesn't actually matter. */
1583
1584 lightable_faces_sorted = newtree234(white_sort_cmpfn);
1585 darkable_faces_sorted = newtree234(black_sort_cmpfn);
1586
1587 /* Initialise the lists of lightable and darkable faces. This is
1588 * slightly different from the code inside the while-loop, because we need
1589 * to check every face of the board (the grid structure does not keep a
1590 * list of the infinite face's neighbours). */
1591 for (i = 0; i < num_faces; i++) {
1592 grid_face *f = g->faces + i;
1593 struct face_score *fs = face_scores + i;
1594 if (board[i] != FACE_GREY) continue;
1595 /* We need the full colourability check here, it's not enough simply
1596 * to check neighbourhood. On some grids, a neighbour of the infinite
1597 * face is not necessarily darkable. */
1598 if (can_colour_face(g, board, i, FACE_BLACK)) {
1599 fs->black_score = face_score(g, board, f, FACE_BLACK);
1600 add234(darkable_faces_sorted, fs);
1601 }
1602 if (can_colour_face(g, board, i, FACE_WHITE)) {
1603 fs->white_score = face_score(g, board, f, FACE_WHITE);
1604 add234(lightable_faces_sorted, fs);
1605 }
1606 }
1607
1608 /* Colour faces one at a time until no more faces are colourable. */
1609 while (TRUE)
1610 {
1611 enum face_colour colour;
1612 struct face_score *fs_white, *fs_black;
1613 int c_lightable = count234(lightable_faces_sorted);
1614 int c_darkable = count234(darkable_faces_sorted);
1615 if (c_lightable == 0 && c_darkable == 0) {
1616 /* No more faces we can use at all. */
1617 break;
1618 }
1619 assert(c_lightable != 0 && c_darkable != 0);
1620
1621 fs_white = (struct face_score *)index234(lightable_faces_sorted, 0);
1622 fs_black = (struct face_score *)index234(darkable_faces_sorted, 0);
1623
1624 /* Choose a colour, and colour the best available face
1625 * with that colour. */
1626 colour = random_upto(rs, 2) ? FACE_WHITE : FACE_BLACK;
1627
1628 if (colour == FACE_WHITE)
1629 fs = fs_white;
1630 else
1631 fs = fs_black;
1632 assert(fs);
1633 i = fs - face_scores;
1634 assert(board[i] == FACE_GREY);
1635 board[i] = colour;
1636
1637 /* Remove this newly-coloured face from the lists. These lists should
1638 * only contain grey faces. */
1639 del234(lightable_faces_sorted, fs);
1640 del234(darkable_faces_sorted, fs);
1641
1642 /* Remember which face we've just coloured */
1643 cur_face = g->faces + i;
1644
1645 /* The face we've just coloured potentially affects the colourability
1646 * and the scores of any neighbouring faces (touching at a corner or
1647 * edge). So the search needs to be conducted around all faces
1648 * touching the one we've just lit. Iterate over its corners, then
1649 * over each corner's faces. For each such face, we remove it from
1650 * the lists, recalculate any scores, then add it back to the lists
1651 * (depending on whether it is lightable, darkable or both). */
1652 for (i = 0; i < cur_face->order; i++) {
1653 grid_dot *d = cur_face->dots[i];
1654 for (j = 0; j < d->order; j++) {
1655 grid_face *f = d->faces[j];
1656 int fi; /* face index of f */
1657
1658 if (f == NULL)
1659 continue;
1660 if (f == cur_face)
1661 continue;
1662
1663 /* If the face is already coloured, it won't be on our
1664 * lightable/darkable lists anyway, so we can skip it without
1665 * bothering with the removal step. */
1666 if (FACE_COLOUR(f) != FACE_GREY) continue;
1667
1668 /* Find the face index and face_score* corresponding to f */
1669 fi = f - g->faces;
1670 fs = face_scores + fi;
1671
1672 /* Remove from lightable list if it's in there. We do this,
1673 * even if it is still lightable, because the score might
1674 * be different, and we need to remove-then-add to maintain
1675 * correct sort order. */
1676 del234(lightable_faces_sorted, fs);
1677 if (can_colour_face(g, board, fi, FACE_WHITE)) {
1678 fs->white_score = face_score(g, board, f, FACE_WHITE);
1679 add234(lightable_faces_sorted, fs);
1680 }
1681 /* Do the same for darkable list. */
1682 del234(darkable_faces_sorted, fs);
1683 if (can_colour_face(g, board, fi, FACE_BLACK)) {
1684 fs->black_score = face_score(g, board, f, FACE_BLACK);
1685 add234(darkable_faces_sorted, fs);
1686 }
1687 }
1688 }
1689 }
1690
1691 /* Clean up */
1692 freetree234(lightable_faces_sorted);
1693 freetree234(darkable_faces_sorted);
1694 sfree(face_scores);
1695
1696 /* The next step requires a shuffled list of all faces */
1697 face_list = snewn(num_faces, int);
1698 for (i = 0; i < num_faces; ++i) {
1699 face_list[i] = i;
1700 }
1701 shuffle(face_list, num_faces, sizeof(int), rs);
1702
1703 /* The above loop-generation algorithm can often leave large clumps
1704 * of faces of one colour. In extreme cases, the resulting path can be
1705 * degenerate and not very satisfying to solve.
1706 * This next step alleviates this problem:
1707 * Go through the shuffled list, and flip the colour of any face we can
1708 * legally flip, and which is adjacent to only one face of the opposite
1709 * colour - this tends to grow 'tendrils' into any clumps.
1710 * Repeat until we can find no more faces to flip. This will
1711 * eventually terminate, because each flip increases the loop's
1712 * perimeter, which cannot increase for ever.
1713 * The resulting path will have maximal loopiness (in the sense that it
1714 * cannot be improved "locally". Unfortunately, this allows a player to
1715 * make some illicit deductions. To combat this (and make the path more
1716 * interesting), we do one final pass making random flips. */
1717
1718 /* Set to TRUE for final pass */
1719 do_random_pass = FALSE;
1720
1721 while (TRUE) {
1722 /* Remember whether a flip occurred during this pass */
1723 int flipped = FALSE;
1724
1725 for (i = 0; i < num_faces; ++i) {
1726 int j = face_list[i];
1727 enum face_colour opp =
1728 (board[j] == FACE_WHITE) ? FACE_BLACK : FACE_WHITE;
1729 if (can_colour_face(g, board, j, opp)) {
1730 grid_face *face = g->faces +j;
1731 if (do_random_pass) {
1732 /* final random pass */
1733 if (!random_upto(rs, 10))
1734 board[j] = opp;
1735 } else {
1736 /* normal pass - flip when neighbour count is 1 */
1737 if (face_num_neighbours(g, board, face, opp) == 1) {
1738 board[j] = opp;
1739 flipped = TRUE;
1740 }
1741 }
1742 }
1743 }
1744
1745 if (do_random_pass) break;
1746 if (!flipped) do_random_pass = TRUE;
1747 }
1748
1749 sfree(face_list);
1750
1751 /* Fill out all the clues by initialising to 0, then iterating over
1752 * all edges and incrementing each clue as we find edges that border
1753 * between BLACK/WHITE faces. While we're at it, we verify that the
1754 * algorithm does work, and there aren't any GREY faces still there. */
1755 memset(clues, 0, num_faces);
1756 for (i = 0; i < g->num_edges; i++) {
1757 grid_edge *e = g->edges + i;
1758 grid_face *f1 = e->face1;
1759 grid_face *f2 = e->face2;
1760 enum face_colour c1 = FACE_COLOUR(f1);
1761 enum face_colour c2 = FACE_COLOUR(f2);
1762 assert(c1 != FACE_GREY);
1763 assert(c2 != FACE_GREY);
1764 if (c1 != c2) {
1765 if (f1) clues[f1 - g->faces]++;
1766 if (f2) clues[f2 - g->faces]++;
1767 }
1768 }
1769
1770 sfree(board);
1771 }
1772
1773
1774 static int game_has_unique_soln(const game_state *state, int diff)
1775 {
1776 int ret;
1777 solver_state *sstate_new;
1778 solver_state *sstate = new_solver_state((game_state *)state, diff);
1779
1780 sstate_new = solve_game_rec(sstate);
1781
1782 assert(sstate_new->solver_status != SOLVER_MISTAKE);
1783 ret = (sstate_new->solver_status == SOLVER_SOLVED);
1784
1785 free_solver_state(sstate_new);
1786 free_solver_state(sstate);
1787
1788 return ret;
1789 }
1790
1791
1792 /* Remove clues one at a time at random. */
1793 static game_state *remove_clues(game_state *state, random_state *rs,
1794 int diff)
1795 {
1796 int *face_list;
1797 int num_faces = state->game_grid->num_faces;
1798 game_state *ret = dup_game(state), *saved_ret;
1799 int n;
1800
1801 /* We need to remove some clues. We'll do this by forming a list of all
1802 * available clues, shuffling it, then going along one at a
1803 * time clearing each clue in turn for which doing so doesn't render the
1804 * board unsolvable. */
1805 face_list = snewn(num_faces, int);
1806 for (n = 0; n < num_faces; ++n) {
1807 face_list[n] = n;
1808 }
1809
1810 shuffle(face_list, num_faces, sizeof(int), rs);
1811
1812 for (n = 0; n < num_faces; ++n) {
1813 saved_ret = dup_game(ret);
1814 ret->clues[face_list[n]] = -1;
1815
1816 if (game_has_unique_soln(ret, diff)) {
1817 free_game(saved_ret);
1818 } else {
1819 free_game(ret);
1820 ret = saved_ret;
1821 }
1822 }
1823 sfree(face_list);
1824
1825 return ret;
1826 }
1827
1828
1829 static char *new_game_desc(game_params *params, random_state *rs,
1830 char **aux, int interactive)
1831 {
1832 /* solution and description both use run-length encoding in obvious ways */
1833 char *retval;
1834 grid *g;
1835 game_state *state = snew(game_state);
1836 game_state *state_new;
1837 int count = 0;
1838 params_generate_grid(params);
1839 state->game_grid = g = params->game_grid;
1840 g->refcount++;
1841 state->clues = snewn(g->num_faces, signed char);
1842 state->lines = snewn(g->num_edges, char);
1843 state->line_errors = snewn(g->num_edges, unsigned char);
1844
1845 state->grid_type = params->type;
1846
1847 newboard_please:
1848
1849 memset(state->lines, LINE_UNKNOWN, g->num_edges);
1850 memset(state->line_errors, 0, g->num_edges);
1851
1852 state->solved = state->cheated = FALSE;
1853
1854 /* Get a new random solvable board with all its clues filled in. Yes, this
1855 * can loop for ever if the params are suitably unfavourable, but
1856 * preventing games smaller than 4x4 seems to stop this happening */
1857 do {
1858 add_full_clues(state, rs);
1859 if (++count%100 == 0) printf("tried %d times to make a unique board\n", count);
1860 } while (!game_has_unique_soln(state, params->diff));
1861
1862 state_new = remove_clues(state, rs, params->diff);
1863 free_game(state);
1864 state = state_new;
1865
1866
1867 if (params->diff > 0 && game_has_unique_soln(state, params->diff-1)) {
1868 #ifdef SHOW_WORKING
1869 fprintf(stderr, "Rejecting board, it is too easy\n");
1870 #endif
1871 goto newboard_please;
1872 }
1873
1874 retval = state_to_text(state);
1875
1876 free_game(state);
1877
1878 assert(!validate_desc(params, retval));
1879
1880 return retval;
1881 }
1882
1883 static game_state *new_game(midend *me, game_params *params, char *desc)
1884 {
1885 int i;
1886 game_state *state = snew(game_state);
1887 int empties_to_make = 0;
1888 int n,n2;
1889 const char *dp = desc;
1890 grid *g;
1891 int num_faces, num_edges;
1892
1893 params_generate_grid(params);
1894 state->game_grid = g = params->game_grid;
1895 g->refcount++;
1896 num_faces = g->num_faces;
1897 num_edges = g->num_edges;
1898
1899 state->clues = snewn(num_faces, signed char);
1900 state->lines = snewn(num_edges, char);
1901 state->line_errors = snewn(num_edges, unsigned char);
1902
1903 state->solved = state->cheated = FALSE;
1904
1905 state->grid_type = params->type;
1906
1907 for (i = 0; i < num_faces; i++) {
1908 if (empties_to_make) {
1909 empties_to_make--;
1910 state->clues[i] = -1;
1911 continue;
1912 }
1913
1914 assert(*dp);
1915 n = *dp - '0';
1916 n2 = *dp - 'A' + 10;
1917 if (n >= 0 && n < 10) {
1918 state->clues[i] = n;
1919 } else if (n2 >= 10 && n2 < 36) {
1920 state->clues[i] = n2;
1921 } else {
1922 n = *dp - 'a' + 1;
1923 assert(n > 0);
1924 state->clues[i] = -1;
1925 empties_to_make = n - 1;
1926 }
1927 ++dp;
1928 }
1929
1930 memset(state->lines, LINE_UNKNOWN, num_edges);
1931 memset(state->line_errors, 0, num_edges);
1932 return state;
1933 }
1934
1935 /* Calculates the line_errors data, and checks if the current state is a
1936 * solution */
1937 static int check_completion(game_state *state)
1938 {
1939 grid *g = state->game_grid;
1940 int *dsf;
1941 int num_faces = g->num_faces;
1942 int i;
1943 int infinite_area, finite_area;
1944 int loops_found = 0;
1945 int found_edge_not_in_loop = FALSE;
1946
1947 memset(state->line_errors, 0, g->num_edges);
1948
1949 /* LL implementation of SGT's idea:
1950 * A loop will partition the grid into an inside and an outside.
1951 * If there is more than one loop, the grid will be partitioned into
1952 * even more distinct regions. We can therefore track equivalence of
1953 * faces, by saying that two faces are equivalent when there is a non-YES
1954 * edge between them.
1955 * We could keep track of the number of connected components, by counting
1956 * the number of dsf-merges that aren't no-ops.
1957 * But we're only interested in 3 separate cases:
1958 * no loops, one loop, more than one loop.
1959 *
1960 * No loops: all faces are equivalent to the infinite face.
1961 * One loop: only two equivalence classes - finite and infinite.
1962 * >= 2 loops: there are 2 distinct finite regions.
1963 *
1964 * So we simply make two passes through all the edges.
1965 * In the first pass, we dsf-merge the two faces bordering each non-YES
1966 * edge.
1967 * In the second pass, we look for YES-edges bordering:
1968 * a) two non-equivalent faces.
1969 * b) two non-equivalent faces, and one of them is part of a different
1970 * finite area from the first finite area we've seen.
1971 *
1972 * An occurrence of a) means there is at least one loop.
1973 * An occurrence of b) means there is more than one loop.
1974 * Edges satisfying a) are marked as errors.
1975 *
1976 * While we're at it, we set a flag if we find a YES edge that is not
1977 * part of a loop.
1978 * This information will help decide, if there's a single loop, whether it
1979 * is a candidate for being a solution (that is, all YES edges are part of
1980 * this loop).
1981 *
1982 * If there is a candidate loop, we then go through all clues and check
1983 * they are all satisfied. If so, we have found a solution and we can
1984 * unmark all line_errors.
1985 */
1986
1987 /* Infinite face is at the end - its index is num_faces.
1988 * This macro is just to make this obvious! */
1989 #define INF_FACE num_faces
1990 dsf = snewn(num_faces + 1, int);
1991 dsf_init(dsf, num_faces + 1);
1992
1993 /* First pass */
1994 for (i = 0; i < g->num_edges; i++) {
1995 grid_edge *e = g->edges + i;
1996 int f1 = e->face1 ? e->face1 - g->faces : INF_FACE;
1997 int f2 = e->face2 ? e->face2 - g->faces : INF_FACE;
1998 if (state->lines[i] != LINE_YES)
1999 dsf_merge(dsf, f1, f2);
2000 }
2001
2002 /* Second pass */
2003 infinite_area = dsf_canonify(dsf, INF_FACE);
2004 finite_area = -1;
2005 for (i = 0; i < g->num_edges; i++) {
2006 grid_edge *e = g->edges + i;
2007 int f1 = e->face1 ? e->face1 - g->faces : INF_FACE;
2008 int can1 = dsf_canonify(dsf, f1);
2009 int f2 = e->face2 ? e->face2 - g->faces : INF_FACE;
2010 int can2 = dsf_canonify(dsf, f2);
2011 if (state->lines[i] != LINE_YES) continue;
2012
2013 if (can1 == can2) {
2014 /* Faces are equivalent, so this edge not part of a loop */
2015 found_edge_not_in_loop = TRUE;
2016 continue;
2017 }
2018 state->line_errors[i] = TRUE;
2019 if (loops_found == 0) loops_found = 1;
2020
2021 /* Don't bother with further checks if we've already found 2 loops */
2022 if (loops_found == 2) continue;
2023
2024 if (finite_area == -1) {
2025 /* Found our first finite area */
2026 if (can1 != infinite_area)
2027 finite_area = can1;
2028 else
2029 finite_area = can2;
2030 }
2031
2032 /* Have we found a second area? */
2033 if (finite_area != -1) {
2034 if (can1 != infinite_area && can1 != finite_area) {
2035 loops_found = 2;
2036 continue;
2037 }
2038 if (can2 != infinite_area && can2 != finite_area) {
2039 loops_found = 2;
2040 }
2041 }
2042 }
2043
2044 /*
2045 printf("loops_found = %d\n", loops_found);
2046 printf("found_edge_not_in_loop = %s\n",
2047 found_edge_not_in_loop ? "TRUE" : "FALSE");
2048 */
2049
2050 sfree(dsf); /* No longer need the dsf */
2051
2052 /* Have we found a candidate loop? */
2053 if (loops_found == 1 && !found_edge_not_in_loop) {
2054 /* Yes, so check all clues are satisfied */
2055 int found_clue_violation = FALSE;
2056 for (i = 0; i < num_faces; i++) {
2057 int c = state->clues[i];
2058 if (c >= 0) {
2059 if (face_order(state, i, LINE_YES) != c) {
2060 found_clue_violation = TRUE;
2061 break;
2062 }
2063 }
2064 }
2065
2066 if (!found_clue_violation) {
2067 /* The loop is good */
2068 memset(state->line_errors, 0, g->num_edges);
2069 return TRUE; /* No need to bother checking for dot violations */
2070 }
2071 }
2072
2073 /* Check for dot violations */
2074 for (i = 0; i < g->num_dots; i++) {
2075 int yes = dot_order(state, i, LINE_YES);
2076 int unknown = dot_order(state, i, LINE_UNKNOWN);
2077 if ((yes == 1 && unknown == 0) || (yes >= 3)) {
2078 /* violation, so mark all YES edges as errors */
2079 grid_dot *d = g->dots + i;
2080 int j;
2081 for (j = 0; j < d->order; j++) {
2082 int e = d->edges[j] - g->edges;
2083 if (state->lines[e] == LINE_YES)
2084 state->line_errors[e] = TRUE;
2085 }
2086 }
2087 }
2088 return FALSE;
2089 }
2090
2091 /* ----------------------------------------------------------------------
2092 * Solver logic
2093 *
2094 * Our solver modes operate as follows. Each mode also uses the modes above it.
2095 *
2096 * Easy Mode
2097 * Just implement the rules of the game.
2098 *
2099 * Normal and Tricky Modes
2100 * For each (adjacent) pair of lines through each dot we store a bit for
2101 * whether at least one of them is on and whether at most one is on. (If we
2102 * know both or neither is on that's already stored more directly.)
2103 *
2104 * Advanced Mode
2105 * Use edsf data structure to make equivalence classes of lines that are
2106 * known identical to or opposite to one another.
2107 */
2108
2109
2110 /* DLines:
2111 * For general grids, we consider "dlines" to be pairs of lines joined
2112 * at a dot. The lines must be adjacent around the dot, so we can think of
2113 * a dline as being a dot+face combination. Or, a dot+edge combination where
2114 * the second edge is taken to be the next clockwise edge from the dot.
2115 * Original loopy code didn't have this extra restriction of the lines being
2116 * adjacent. From my tests with square grids, this extra restriction seems to
2117 * take little, if anything, away from the quality of the puzzles.
2118 * A dline can be uniquely identified by an edge/dot combination, given that
2119 * a dline-pair always goes clockwise around its common dot. The edge/dot
2120 * combination can be represented by an edge/bool combination - if bool is
2121 * TRUE, use edge->dot1 else use edge->dot2. So the total number of dlines is
2122 * exactly twice the number of edges in the grid - although the dlines
2123 * spanning the infinite face are not all that useful to the solver.
2124 * Note that, by convention, a dline goes clockwise around its common dot,
2125 * which means the dline goes anti-clockwise around its common face.
2126 */
2127
2128 /* Helper functions for obtaining an index into an array of dlines, given
2129 * various information. We assume the grid layout conventions about how
2130 * the various lists are interleaved - see grid_make_consistent() for
2131 * details. */
2132
2133 /* i points to the first edge of the dline pair, reading clockwise around
2134 * the dot. */
2135 static int dline_index_from_dot(grid *g, grid_dot *d, int i)
2136 {
2137 grid_edge *e = d->edges[i];
2138 int ret;
2139 #ifdef DEBUG_DLINES
2140 grid_edge *e2;
2141 int i2 = i+1;
2142 if (i2 == d->order) i2 = 0;
2143 e2 = d->edges[i2];
2144 #endif
2145 ret = 2 * (e - g->edges) + ((e->dot1 == d) ? 1 : 0);
2146 #ifdef DEBUG_DLINES
2147 printf("dline_index_from_dot: d=%d,i=%d, edges [%d,%d] - %d\n",
2148 (int)(d - g->dots), i, (int)(e - g->edges),
2149 (int)(e2 - g->edges), ret);
2150 #endif
2151 return ret;
2152 }
2153 /* i points to the second edge of the dline pair, reading clockwise around
2154 * the face. That is, the edges of the dline, starting at edge{i}, read
2155 * anti-clockwise around the face. By layout conventions, the common dot
2156 * of the dline will be f->dots[i] */
2157 static int dline_index_from_face(grid *g, grid_face *f, int i)
2158 {
2159 grid_edge *e = f->edges[i];
2160 grid_dot *d = f->dots[i];
2161 int ret;
2162 #ifdef DEBUG_DLINES
2163 grid_edge *e2;
2164 int i2 = i - 1;
2165 if (i2 < 0) i2 += f->order;
2166 e2 = f->edges[i2];
2167 #endif
2168 ret = 2 * (e - g->edges) + ((e->dot1 == d) ? 1 : 0);
2169 #ifdef DEBUG_DLINES
2170 printf("dline_index_from_face: f=%d,i=%d, edges [%d,%d] - %d\n",
2171 (int)(f - g->faces), i, (int)(e - g->edges),
2172 (int)(e2 - g->edges), ret);
2173 #endif
2174 return ret;
2175 }
2176 static int is_atleastone(const char *dline_array, int index)
2177 {
2178 return BIT_SET(dline_array[index], 0);
2179 }
2180 static int set_atleastone(char *dline_array, int index)
2181 {
2182 return SET_BIT(dline_array[index], 0);
2183 }
2184 static int is_atmostone(const char *dline_array, int index)
2185 {
2186 return BIT_SET(dline_array[index], 1);
2187 }
2188 static int set_atmostone(char *dline_array, int index)
2189 {
2190 return SET_BIT(dline_array[index], 1);
2191 }
2192
2193 static void array_setall(char *array, char from, char to, int len)
2194 {
2195 char *p = array, *p_old = p;
2196 int len_remaining = len;
2197
2198 while ((p = memchr(p, from, len_remaining))) {
2199 *p = to;
2200 len_remaining -= p - p_old;
2201 p_old = p;
2202 }
2203 }
2204
2205 /* Helper, called when doing dline dot deductions, in the case where we
2206 * have 4 UNKNOWNs, and two of them (adjacent) have *exactly* one YES between
2207 * them (because of dline atmostone/atleastone).
2208 * On entry, edge points to the first of these two UNKNOWNs. This function
2209 * will find the opposite UNKNOWNS (if they are adjacent to one another)
2210 * and set their corresponding dline to atleastone. (Setting atmostone
2211 * already happens in earlier dline deductions) */
2212 static int dline_set_opp_atleastone(solver_state *sstate,
2213 grid_dot *d, int edge)
2214 {
2215 game_state *state = sstate->state;
2216 grid *g = state->game_grid;
2217 int N = d->order;
2218 int opp, opp2;
2219 for (opp = 0; opp < N; opp++) {
2220 int opp_dline_index;
2221 if (opp == edge || opp == edge+1 || opp == edge-1)
2222 continue;
2223 if (opp == 0 && edge == N-1)
2224 continue;
2225 if (opp == N-1 && edge == 0)
2226 continue;
2227 opp2 = opp + 1;
2228 if (opp2 == N) opp2 = 0;
2229 /* Check if opp, opp2 point to LINE_UNKNOWNs */
2230 if (state->lines[d->edges[opp] - g->edges] != LINE_UNKNOWN)
2231 continue;
2232 if (state->lines[d->edges[opp2] - g->edges] != LINE_UNKNOWN)
2233 continue;
2234 /* Found opposite UNKNOWNS and they're next to each other */
2235 opp_dline_index = dline_index_from_dot(g, d, opp);
2236 return set_atleastone(sstate->dlines, opp_dline_index);
2237 }
2238 return FALSE;
2239 }
2240
2241
2242 /* Set pairs of lines around this face which are known to be identical, to
2243 * the given line_state */
2244 static int face_setall_identical(solver_state *sstate, int face_index,
2245 enum line_state line_new)
2246 {
2247 /* can[dir] contains the canonical line associated with the line in
2248 * direction dir from the square in question. Similarly inv[dir] is
2249 * whether or not the line in question is inverse to its canonical
2250 * element. */
2251 int retval = FALSE;
2252 game_state *state = sstate->state;
2253 grid *g = state->game_grid;
2254 grid_face *f = g->faces + face_index;
2255 int N = f->order;
2256 int i, j;
2257 int can1, can2, inv1, inv2;
2258
2259 for (i = 0; i < N; i++) {
2260 int line1_index = f->edges[i] - g->edges;
2261 if (state->lines[line1_index] != LINE_UNKNOWN)
2262 continue;
2263 for (j = i + 1; j < N; j++) {
2264 int line2_index = f->edges[j] - g->edges;
2265 if (state->lines[line2_index] != LINE_UNKNOWN)
2266 continue;
2267
2268 /* Found two UNKNOWNS */
2269 can1 = edsf_canonify(sstate->linedsf, line1_index, &inv1);
2270 can2 = edsf_canonify(sstate->linedsf, line2_index, &inv2);
2271 if (can1 == can2 && inv1 == inv2) {
2272 solver_set_line(sstate, line1_index, line_new);
2273 solver_set_line(sstate, line2_index, line_new);
2274 }
2275 }
2276 }
2277 return retval;
2278 }
2279
2280 /* Given a dot or face, and a count of LINE_UNKNOWNs, find them and
2281 * return the edge indices into e. */
2282 static void find_unknowns(game_state *state,
2283 grid_edge **edge_list, /* Edge list to search (from a face or a dot) */
2284 int expected_count, /* Number of UNKNOWNs (comes from solver's cache) */
2285 int *e /* Returned edge indices */)
2286 {
2287 int c = 0;
2288 grid *g = state->game_grid;
2289 while (c < expected_count) {
2290 int line_index = *edge_list - g->edges;
2291 if (state->lines[line_index] == LINE_UNKNOWN) {
2292 e[c] = line_index;
2293 c++;
2294 }
2295 ++edge_list;
2296 }
2297 }
2298
2299 /* If we have a list of edges, and we know whether the number of YESs should
2300 * be odd or even, and there are only a few UNKNOWNs, we can do some simple
2301 * linedsf deductions. This can be used for both face and dot deductions.
2302 * Returns the difficulty level of the next solver that should be used,
2303 * or DIFF_MAX if no progress was made. */
2304 static int parity_deductions(solver_state *sstate,
2305 grid_edge **edge_list, /* Edge list (from a face or a dot) */
2306 int total_parity, /* Expected number of YESs modulo 2 (either 0 or 1) */
2307 int unknown_count)
2308 {
2309 game_state *state = sstate->state;
2310 int diff = DIFF_MAX;
2311 int *linedsf = sstate->linedsf;
2312
2313 if (unknown_count == 2) {
2314 /* Lines are known alike/opposite, depending on inv. */
2315 int e[2];
2316 find_unknowns(state, edge_list, 2, e);
2317 if (merge_lines(sstate, e[0], e[1], total_parity))
2318 diff = min(diff, DIFF_HARD);
2319 } else if (unknown_count == 3) {
2320 int e[3];
2321 int can[3]; /* canonical edges */
2322 int inv[3]; /* whether can[x] is inverse to e[x] */
2323 find_unknowns(state, edge_list, 3, e);
2324 can[0] = edsf_canonify(linedsf, e[0], inv);
2325 can[1] = edsf_canonify(linedsf, e[1], inv+1);
2326 can[2] = edsf_canonify(linedsf, e[2], inv+2);
2327 if (can[0] == can[1]) {
2328 if (solver_set_line(sstate, e[2], (total_parity^inv[0]^inv[1]) ?
2329 LINE_YES : LINE_NO))
2330 diff = min(diff, DIFF_EASY);
2331 }
2332 if (can[0] == can[2]) {
2333 if (solver_set_line(sstate, e[1], (total_parity^inv[0]^inv[2]) ?
2334 LINE_YES : LINE_NO))
2335 diff = min(diff, DIFF_EASY);
2336 }
2337 if (can[1] == can[2]) {
2338 if (solver_set_line(sstate, e[0], (total_parity^inv[1]^inv[2]) ?
2339 LINE_YES : LINE_NO))
2340 diff = min(diff, DIFF_EASY);
2341 }
2342 } else if (unknown_count == 4) {
2343 int e[4];
2344 int can[4]; /* canonical edges */
2345 int inv[4]; /* whether can[x] is inverse to e[x] */
2346 find_unknowns(state, edge_list, 4, e);
2347 can[0] = edsf_canonify(linedsf, e[0], inv);
2348 can[1] = edsf_canonify(linedsf, e[1], inv+1);
2349 can[2] = edsf_canonify(linedsf, e[2], inv+2);
2350 can[3] = edsf_canonify(linedsf, e[3], inv+3);
2351 if (can[0] == can[1]) {
2352 if (merge_lines(sstate, e[2], e[3], total_parity^inv[0]^inv[1]))
2353 diff = min(diff, DIFF_HARD);
2354 } else if (can[0] == can[2]) {
2355 if (merge_lines(sstate, e[1], e[3], total_parity^inv[0]^inv[2]))
2356 diff = min(diff, DIFF_HARD);
2357 } else if (can[0] == can[3]) {
2358 if (merge_lines(sstate, e[1], e[2], total_parity^inv[0]^inv[3]))
2359 diff = min(diff, DIFF_HARD);
2360 } else if (can[1] == can[2]) {
2361 if (merge_lines(sstate, e[0], e[3], total_parity^inv[1]^inv[2]))
2362 diff = min(diff, DIFF_HARD);
2363 } else if (can[1] == can[3]) {
2364 if (merge_lines(sstate, e[0], e[2], total_parity^inv[1]^inv[3]))
2365 diff = min(diff, DIFF_HARD);
2366 } else if (can[2] == can[3]) {
2367 if (merge_lines(sstate, e[0], e[1], total_parity^inv[2]^inv[3]))
2368 diff = min(diff, DIFF_HARD);
2369 }
2370 }
2371 return diff;
2372 }
2373
2374
2375 /*
2376 * These are the main solver functions.
2377 *
2378 * Their return values are diff values corresponding to the lowest mode solver
2379 * that would notice the work that they have done. For example if the normal
2380 * mode solver adds actual lines or crosses, it will return DIFF_EASY as the
2381 * easy mode solver might be able to make progress using that. It doesn't make
2382 * sense for one of them to return a diff value higher than that of the
2383 * function itself.
2384 *
2385 * Each function returns the lowest value it can, as early as possible, in
2386 * order to try and pass as much work as possible back to the lower level
2387 * solvers which progress more quickly.
2388 */
2389
2390 /* PROPOSED NEW DESIGN:
2391 * We have a work queue consisting of 'events' notifying us that something has
2392 * happened that a particular solver mode might be interested in. For example
2393 * the hard mode solver might do something that helps the normal mode solver at
2394 * dot [x,y] in which case it will enqueue an event recording this fact. Then
2395 * we pull events off the work queue, and hand each in turn to the solver that
2396 * is interested in them. If a solver reports that it failed we pass the same
2397 * event on to progressively more advanced solvers and the loop detector. Once
2398 * we've exhausted an event, or it has helped us progress, we drop it and
2399 * continue to the next one. The events are sorted first in order of solver
2400 * complexity (easy first) then order of insertion (oldest first).
2401 * Once we run out of events we loop over each permitted solver in turn
2402 * (easiest first) until either a deduction is made (and an event therefore
2403 * emerges) or no further deductions can be made (in which case we've failed).
2404 *
2405 * QUESTIONS:
2406 * * How do we 'loop over' a solver when both dots and squares are concerned.
2407 * Answer: first all squares then all dots.
2408 */
2409
2410 static int trivial_deductions(solver_state *sstate)
2411 {
2412 int i, current_yes, current_no;
2413 game_state *state = sstate->state;
2414 grid *g = state->game_grid;
2415 int diff = DIFF_MAX;
2416
2417 /* Per-face deductions */
2418 for (i = 0; i < g->num_faces; i++) {
2419 grid_face *f = g->faces + i;
2420
2421 if (sstate->face_solved[i])
2422 continue;
2423
2424 current_yes = sstate->face_yes_count[i];
2425 current_no = sstate->face_no_count[i];
2426
2427 if (current_yes + current_no == f->order) {
2428 sstate->face_solved[i] = TRUE;
2429 continue;
2430 }
2431
2432 if (state->clues[i] < 0)
2433 continue;
2434
2435 if (state->clues[i] < current_yes) {
2436 sstate->solver_status = SOLVER_MISTAKE;
2437 return DIFF_EASY;
2438 }
2439 if (state->clues[i] == current_yes) {
2440 if (face_setall(sstate, i, LINE_UNKNOWN, LINE_NO))
2441 diff = min(diff, DIFF_EASY);
2442 sstate->face_solved[i] = TRUE;
2443 continue;
2444 }
2445
2446 if (f->order - state->clues[i] < current_no) {
2447 sstate->solver_status = SOLVER_MISTAKE;
2448 return DIFF_EASY;
2449 }
2450 if (f->order - state->clues[i] == current_no) {
2451 if (face_setall(sstate, i, LINE_UNKNOWN, LINE_YES))
2452 diff = min(diff, DIFF_EASY);
2453 sstate->face_solved[i] = TRUE;
2454 continue;
2455 }
2456 }
2457
2458 check_caches(sstate);
2459
2460 /* Per-dot deductions */
2461 for (i = 0; i < g->num_dots; i++) {
2462 grid_dot *d = g->dots + i;
2463 int yes, no, unknown;
2464
2465 if (sstate->dot_solved[i])
2466 continue;
2467
2468 yes = sstate->dot_yes_count[i];
2469 no = sstate->dot_no_count[i];
2470 unknown = d->order - yes - no;
2471
2472 if (yes == 0) {
2473 if (unknown == 0) {
2474 sstate->dot_solved[i] = TRUE;
2475 } else if (unknown == 1) {
2476 dot_setall(sstate, i, LINE_UNKNOWN, LINE_NO);
2477 diff = min(diff, DIFF_EASY);
2478 sstate->dot_solved[i] = TRUE;
2479 }
2480 } else if (yes == 1) {
2481 if (unknown == 0) {
2482 sstate->solver_status = SOLVER_MISTAKE;
2483 return DIFF_EASY;
2484 } else if (unknown == 1) {
2485 dot_setall(sstate, i, LINE_UNKNOWN, LINE_YES);
2486 diff = min(diff, DIFF_EASY);
2487 }
2488 } else if (yes == 2) {
2489 if (unknown > 0) {
2490 dot_setall(sstate, i, LINE_UNKNOWN, LINE_NO);
2491 diff = min(diff, DIFF_EASY);
2492 }
2493 sstate->dot_solved[i] = TRUE;
2494 } else {
2495 sstate->solver_status = SOLVER_MISTAKE;
2496 return DIFF_EASY;
2497 }
2498 }
2499
2500 check_caches(sstate);
2501
2502 return diff;
2503 }
2504
2505 static int dline_deductions(solver_state *sstate)
2506 {
2507 game_state *state = sstate->state;
2508 grid *g = state->game_grid;
2509 char *dlines = sstate->dlines;
2510 int i;
2511 int diff = DIFF_MAX;
2512
2513 /* ------ Face deductions ------ */
2514
2515 /* Given a set of dline atmostone/atleastone constraints, need to figure
2516 * out if we can deduce any further info. For more general faces than
2517 * squares, this turns out to be a tricky problem.
2518 * The approach taken here is to define (per face) NxN matrices:
2519 * "maxs" and "mins".
2520 * The entries maxs(j,k) and mins(j,k) define the upper and lower limits
2521 * for the possible number of edges that are YES between positions j and k
2522 * going clockwise around the face. Can think of j and k as marking dots
2523 * around the face (recall the labelling scheme: edge0 joins dot0 to dot1,
2524 * edge1 joins dot1 to dot2 etc).
2525 * Trivially, mins(j,j) = maxs(j,j) = 0, and we don't even bother storing
2526 * these. mins(j,j+1) and maxs(j,j+1) are determined by whether edge{j}
2527 * is YES, NO or UNKNOWN. mins(j,j+2) and maxs(j,j+2) are related to
2528 * the dline atmostone/atleastone status for edges j and j+1.
2529 *
2530 * Then we calculate the remaining entries recursively. We definitely
2531 * know that
2532 * mins(j,k) >= { mins(j,u) + mins(u,k) } for any u between j and k.
2533 * This is because any valid placement of YESs between j and k must give
2534 * a valid placement between j and u, and also between u and k.
2535 * I believe it's sufficient to use just the two values of u:
2536 * j+1 and j+2. Seems to work well in practice - the bounds we compute
2537 * are rigorous, even if they might not be best-possible.
2538 *
2539 * Once we have maxs and mins calculated, we can make inferences about
2540 * each dline{j,j+1} by looking at the possible complementary edge-counts
2541 * mins(j+2,j) and maxs(j+2,j) and comparing these with the face clue.
2542 * As well as dlines, we can make similar inferences about single edges.
2543 * For example, consider a pentagon with clue 3, and we know at most one
2544 * of (edge0, edge1) is YES, and at most one of (edge2, edge3) is YES.
2545 * We could then deduce edge4 is YES, because maxs(0,4) would be 2, so
2546 * that final edge would have to be YES to make the count up to 3.
2547 */
2548
2549 /* Much quicker to allocate arrays on the stack than the heap, so
2550 * define the largest possible face size, and base our array allocations
2551 * on that. We check this with an assertion, in case someone decides to
2552 * make a grid which has larger faces than this. Note, this algorithm
2553 * could get quite expensive if there are many large faces. */
2554 #define MAX_FACE_SIZE 12
2555
2556 for (i = 0; i < g->num_faces; i++) {
2557 int maxs[MAX_FACE_SIZE][MAX_FACE_SIZE];
2558 int mins[MAX_FACE_SIZE][MAX_FACE_SIZE];
2559 grid_face *f = g->faces + i;
2560 int N = f->order;
2561 int j,m;
2562 int clue = state->clues[i];
2563 assert(N <= MAX_FACE_SIZE);
2564 if (sstate->face_solved[i])
2565 continue;
2566 if (clue < 0) continue;
2567
2568 /* Calculate the (j,j+1) entries */
2569 for (j = 0; j < N; j++) {
2570 int edge_index = f->edges[j] - g->edges;
2571 int dline_index;
2572 enum line_state line1 = state->lines[edge_index];
2573 enum line_state line2;
2574 int tmp;
2575 int k = j + 1;
2576 if (k >= N) k = 0;
2577 maxs[j][k] = (line1 == LINE_NO) ? 0 : 1;
2578 mins[j][k] = (line1 == LINE_YES) ? 1 : 0;
2579 /* Calculate the (j,j+2) entries */
2580 dline_index = dline_index_from_face(g, f, k);
2581 edge_index = f->edges[k] - g->edges;
2582 line2 = state->lines[edge_index];
2583 k++;
2584 if (k >= N) k = 0;
2585
2586 /* max */
2587 tmp = 2;
2588 if (line1 == LINE_NO) tmp--;
2589 if (line2 == LINE_NO) tmp--;
2590 if (tmp == 2 && is_atmostone(dlines, dline_index))
2591 tmp = 1;
2592 maxs[j][k] = tmp;
2593
2594 /* min */
2595 tmp = 0;
2596 if (line1 == LINE_YES) tmp++;
2597 if (line2 == LINE_YES) tmp++;
2598 if (tmp == 0 && is_atleastone(dlines, dline_index))
2599 tmp = 1;
2600 mins[j][k] = tmp;
2601 }
2602
2603 /* Calculate the (j,j+m) entries for m between 3 and N-1 */
2604 for (m = 3; m < N; m++) {
2605 for (j = 0; j < N; j++) {
2606 int k = j + m;
2607 int u = j + 1;
2608 int v = j + 2;
2609 int tmp;
2610 if (k >= N) k -= N;
2611 if (u >= N) u -= N;
2612 if (v >= N) v -= N;
2613 maxs[j][k] = maxs[j][u] + maxs[u][k];
2614 mins[j][k] = mins[j][u] + mins[u][k];
2615 tmp = maxs[j][v] + maxs[v][k];
2616 maxs[j][k] = min(maxs[j][k], tmp);
2617 tmp = mins[j][v] + mins[v][k];
2618 mins[j][k] = max(mins[j][k], tmp);
2619 }
2620 }
2621
2622 /* See if we can make any deductions */
2623 for (j = 0; j < N; j++) {
2624 int k;
2625 grid_edge *e = f->edges[j];
2626 int line_index = e - g->edges;
2627 int dline_index;
2628
2629 if (state->lines[line_index] != LINE_UNKNOWN)
2630 continue;
2631 k = j + 1;
2632 if (k >= N) k = 0;
2633
2634 /* minimum YESs in the complement of this edge */
2635 if (mins[k][j] > clue) {
2636 sstate->solver_status = SOLVER_MISTAKE;
2637 return DIFF_EASY;
2638 }
2639 if (mins[k][j] == clue) {
2640 /* setting this edge to YES would make at least
2641 * (clue+1) edges - contradiction */
2642 solver_set_line(sstate, line_index, LINE_NO);
2643 diff = min(diff, DIFF_EASY);
2644 }
2645 if (maxs[k][j] < clue - 1) {
2646 sstate->solver_status = SOLVER_MISTAKE;
2647 return DIFF_EASY;
2648 }
2649 if (maxs[k][j] == clue - 1) {
2650 /* Only way to satisfy the clue is to set edge{j} as YES */
2651 solver_set_line(sstate, line_index, LINE_YES);
2652 diff = min(diff, DIFF_EASY);
2653 }
2654
2655 /* More advanced deduction that allows propagation along diagonal
2656 * chains of faces connected by dots, for example, 3-2-...-2-3
2657 * in square grids. */
2658 if (sstate->diff >= DIFF_TRICKY) {
2659 /* Now see if we can make dline deduction for edges{j,j+1} */
2660 e = f->edges[k];
2661 if (state->lines[e - g->edges] != LINE_UNKNOWN)
2662 /* Only worth doing this for an UNKNOWN,UNKNOWN pair.
2663 * Dlines where one of the edges is known, are handled in the
2664 * dot-deductions */
2665 continue;
2666
2667 dline_index = dline_index_from_face(g, f, k);
2668 k++;
2669 if (k >= N) k = 0;
2670
2671 /* minimum YESs in the complement of this dline */
2672 if (mins[k][j] > clue - 2) {
2673 /* Adding 2 YESs would break the clue */
2674 if (set_atmostone(dlines, dline_index))
2675 diff = min(diff, DIFF_NORMAL);
2676 }
2677 /* maximum YESs in the complement of this dline */
2678 if (maxs[k][j] < clue) {
2679 /* Adding 2 NOs would mean not enough YESs */
2680 if (set_atleastone(dlines, dline_index))
2681 diff = min(diff, DIFF_NORMAL);
2682 }
2683 }
2684 }
2685 }
2686
2687 if (diff < DIFF_NORMAL)
2688 return diff;
2689
2690 /* ------ Dot deductions ------ */
2691
2692 for (i = 0; i < g->num_dots; i++) {
2693 grid_dot *d = g->dots + i;
2694 int N = d->order;
2695 int yes, no, unknown;
2696 int j;
2697 if (sstate->dot_solved[i])
2698 continue;
2699 yes = sstate->dot_yes_count[i];
2700 no = sstate->dot_no_count[i];
2701 unknown = N - yes - no;
2702
2703 for (j = 0; j < N; j++) {
2704 int k;
2705 int dline_index;
2706 int line1_index, line2_index;
2707 enum line_state line1, line2;
2708 k = j + 1;
2709 if (k >= N) k = 0;
2710 dline_index = dline_index_from_dot(g, d, j);
2711 line1_index = d->edges[j] - g->edges;
2712 line2_index = d->edges[k] - g->edges;
2713 line1 = state->lines[line1_index];
2714 line2 = state->lines[line2_index];
2715
2716 /* Infer dline state from line state */
2717 if (line1 == LINE_NO || line2 == LINE_NO) {
2718 if (set_atmostone(dlines, dline_index))
2719 diff = min(diff, DIFF_NORMAL);
2720 }
2721 if (line1 == LINE_YES || line2 == LINE_YES) {
2722 if (set_atleastone(dlines, dline_index))
2723 diff = min(diff, DIFF_NORMAL);
2724 }
2725 /* Infer line state from dline state */
2726 if (is_atmostone(dlines, dline_index)) {
2727 if (line1 == LINE_YES && line2 == LINE_UNKNOWN) {
2728 solver_set_line(sstate, line2_index, LINE_NO);
2729 diff = min(diff, DIFF_EASY);
2730 }
2731 if (line2 == LINE_YES && line1 == LINE_UNKNOWN) {
2732 solver_set_line(sstate, line1_index, LINE_NO);
2733 diff = min(diff, DIFF_EASY);
2734 }
2735 }
2736 if (is_atleastone(dlines, dline_index)) {
2737 if (line1 == LINE_NO && line2 == LINE_UNKNOWN) {
2738 solver_set_line(sstate, line2_index, LINE_YES);
2739 diff = min(diff, DIFF_EASY);
2740 }
2741 if (line2 == LINE_NO && line1 == LINE_UNKNOWN) {
2742 solver_set_line(sstate, line1_index, LINE_YES);
2743 diff = min(diff, DIFF_EASY);
2744 }
2745 }
2746 /* Deductions that depend on the numbers of lines.
2747 * Only bother if both lines are UNKNOWN, otherwise the
2748 * easy-mode solver (or deductions above) would have taken
2749 * care of it. */
2750 if (line1 != LINE_UNKNOWN || line2 != LINE_UNKNOWN)
2751 continue;
2752
2753 if (yes == 0 && unknown == 2) {
2754 /* Both these unknowns must be identical. If we know
2755 * atmostone or atleastone, we can make progress. */
2756 if (is_atmostone(dlines, dline_index)) {
2757 solver_set_line(sstate, line1_index, LINE_NO);
2758 solver_set_line(sstate, line2_index, LINE_NO);
2759 diff = min(diff, DIFF_EASY);
2760 }
2761 if (is_atleastone(dlines, dline_index)) {
2762 solver_set_line(sstate, line1_index, LINE_YES);
2763 solver_set_line(sstate, line2_index, LINE_YES);
2764 diff = min(diff, DIFF_EASY);
2765 }
2766 }
2767 if (yes == 1) {
2768 if (set_atmostone(dlines, dline_index))
2769 diff = min(diff, DIFF_NORMAL);
2770 if (unknown == 2) {
2771 if (set_atleastone(dlines, dline_index))
2772 diff = min(diff, DIFF_NORMAL);
2773 }
2774 }
2775
2776 /* More advanced deduction that allows propagation along diagonal
2777 * chains of faces connected by dots, for example: 3-2-...-2-3
2778 * in square grids. */
2779 if (sstate->diff >= DIFF_TRICKY) {
2780 /* If we have atleastone set for this dline, infer
2781 * atmostone for each "opposite" dline (that is, each
2782 * dline without edges in common with this one).
2783 * Again, this test is only worth doing if both these
2784 * lines are UNKNOWN. For if one of these lines were YES,
2785 * the (yes == 1) test above would kick in instead. */
2786 if (is_atleastone(dlines, dline_index)) {
2787 int opp;
2788 for (opp = 0; opp < N; opp++) {
2789 int opp_dline_index;
2790 if (opp == j || opp == j+1 || opp == j-1)
2791 continue;
2792 if (j == 0 && opp == N-1)
2793 continue;
2794 if (j == N-1 && opp == 0)
2795 continue;
2796 opp_dline_index = dline_index_from_dot(g, d, opp);
2797 if (set_atmostone(dlines, opp_dline_index))
2798 diff = min(diff, DIFF_NORMAL);
2799 }
2800 if (yes == 0 && is_atmostone(dlines, dline_index)) {
2801 /* This dline has *exactly* one YES and there are no
2802 * other YESs. This allows more deductions. */
2803 if (unknown == 3) {
2804 /* Third unknown must be YES */
2805 for (opp = 0; opp < N; opp++) {
2806 int opp_index;
2807 if (opp == j || opp == k)
2808 continue;
2809 opp_index = d->edges[opp] - g->edges;
2810 if (state->lines[opp_index] == LINE_UNKNOWN) {
2811 solver_set_line(sstate, opp_index,
2812 LINE_YES);
2813 diff = min(diff, DIFF_EASY);
2814 }
2815 }
2816 } else if (unknown == 4) {
2817 /* Exactly one of opposite UNKNOWNS is YES. We've
2818 * already set atmostone, so set atleastone as
2819 * well.
2820 */
2821 if (dline_set_opp_atleastone(sstate, d, j))
2822 diff = min(diff, DIFF_NORMAL);
2823 }
2824 }
2825 }
2826 }
2827 }
2828 }
2829 return diff;
2830 }
2831
2832 static int linedsf_deductions(solver_state *sstate)
2833 {
2834 game_state *state = sstate->state;
2835 grid *g = state->game_grid;
2836 char *dlines = sstate->dlines;
2837 int i;
2838 int diff = DIFF_MAX;
2839 int diff_tmp;
2840
2841 /* ------ Face deductions ------ */
2842
2843 /* A fully-general linedsf deduction seems overly complicated
2844 * (I suspect the problem is NP-complete, though in practice it might just
2845 * be doable because faces are limited in size).
2846 * For simplicity, we only consider *pairs* of LINE_UNKNOWNS that are
2847 * known to be identical. If setting them both to YES (or NO) would break
2848 * the clue, set them to NO (or YES). */
2849
2850 for (i = 0; i < g->num_faces; i++) {
2851 int N, yes, no, unknown;
2852 int clue;
2853
2854 if (sstate->face_solved[i])
2855 continue;
2856 clue = state->clues[i];
2857 if (clue < 0)
2858 continue;
2859
2860 N = g->faces[i].order;
2861 yes = sstate->face_yes_count[i];
2862 if (yes + 1 == clue) {
2863 if (face_setall_identical(sstate, i, LINE_NO))
2864 diff = min(diff, DIFF_EASY);
2865 }
2866 no = sstate->face_no_count[i];
2867 if (no + 1 == N - clue) {
2868 if (face_setall_identical(sstate, i, LINE_YES))
2869 diff = min(diff, DIFF_EASY);
2870 }
2871
2872 /* Reload YES count, it might have changed */
2873 yes = sstate->face_yes_count[i];
2874 unknown = N - no - yes;
2875
2876 /* Deductions with small number of LINE_UNKNOWNs, based on overall
2877 * parity of lines. */
2878 diff_tmp = parity_deductions(sstate, g->faces[i].edges,
2879 (clue - yes) % 2, unknown);
2880 diff = min(diff, diff_tmp);
2881 }
2882
2883 /* ------ Dot deductions ------ */
2884 for (i = 0; i < g->num_dots; i++) {
2885 grid_dot *d = g->dots + i;
2886 int N = d->order;
2887 int j;
2888 int yes, no, unknown;
2889 /* Go through dlines, and do any dline<->linedsf deductions wherever
2890 * we find two UNKNOWNS. */
2891 for (j = 0; j < N; j++) {
2892 int dline_index = dline_index_from_dot(g, d, j);
2893 int line1_index;
2894 int line2_index;
2895 int can1, can2, inv1, inv2;
2896 int j2;
2897 line1_index = d->edges[j] - g->edges;
2898 if (state->lines[line1_index] != LINE_UNKNOWN)
2899 continue;
2900 j2 = j + 1;
2901 if (j2 == N) j2 = 0;
2902 line2_index = d->edges[j2] - g->edges;
2903 if (state->lines[line2_index] != LINE_UNKNOWN)
2904 continue;
2905 /* Infer dline flags from linedsf */
2906 can1 = edsf_canonify(sstate->linedsf, line1_index, &inv1);
2907 can2 = edsf_canonify(sstate->linedsf, line2_index, &inv2);
2908 if (can1 == can2 && inv1 != inv2) {
2909 /* These are opposites, so set dline atmostone/atleastone */
2910 if (set_atmostone(dlines, dline_index))
2911 diff = min(diff, DIFF_NORMAL);
2912 if (set_atleastone(dlines, dline_index))
2913 diff = min(diff, DIFF_NORMAL);
2914 continue;
2915 }
2916 /* Infer linedsf from dline flags */
2917 if (is_atmostone(dlines, dline_index)
2918 && is_atleastone(dlines, dline_index)) {
2919 if (merge_lines(sstate, line1_index, line2_index, 1))
2920 diff = min(diff, DIFF_HARD);
2921 }
2922 }
2923
2924 /* Deductions with small number of LINE_UNKNOWNs, based on overall
2925 * parity of lines. */
2926 yes = sstate->dot_yes_count[i];
2927 no = sstate->dot_no_count[i];
2928 unknown = N - yes - no;
2929 diff_tmp = parity_deductions(sstate, d->edges,
2930 yes % 2, unknown);
2931 diff = min(diff, diff_tmp);
2932 }
2933
2934 /* ------ Edge dsf deductions ------ */
2935
2936 /* If the state of a line is known, deduce the state of its canonical line
2937 * too, and vice versa. */
2938 for (i = 0; i < g->num_edges; i++) {
2939 int can, inv;
2940 enum line_state s;
2941 can = edsf_canonify(sstate->linedsf, i, &inv);
2942 if (can == i)
2943 continue;
2944 s = sstate->state->lines[can];
2945 if (s != LINE_UNKNOWN) {
2946 if (solver_set_line(sstate, i, inv ? OPP(s) : s))
2947 diff = min(diff, DIFF_EASY);
2948 } else {
2949 s = sstate->state->lines[i];
2950 if (s != LINE_UNKNOWN) {
2951 if (solver_set_line(sstate, can, inv ? OPP(s) : s))
2952 diff = min(diff, DIFF_EASY);
2953 }
2954 }
2955 }
2956
2957 return diff;
2958 }
2959
2960 static int loop_deductions(solver_state *sstate)
2961 {
2962 int edgecount = 0, clues = 0, satclues = 0, sm1clues = 0;
2963 game_state *state = sstate->state;
2964 grid *g = state->game_grid;
2965 int shortest_chainlen = g->num_dots;
2966 int loop_found = FALSE;
2967 int dots_connected;
2968 int progress = FALSE;
2969 int i;
2970
2971 /*
2972 * Go through the grid and update for all the new edges.
2973 * Since merge_dots() is idempotent, the simplest way to
2974 * do this is just to update for _all_ the edges.
2975 * Also, while we're here, we count the edges.
2976 */
2977 for (i = 0; i < g->num_edges; i++) {
2978 if (state->lines[i] == LINE_YES) {
2979 loop_found |= merge_dots(sstate, i);
2980 edgecount++;
2981 }
2982 }
2983
2984 /*
2985 * Count the clues, count the satisfied clues, and count the
2986 * satisfied-minus-one clues.
2987 */
2988 for (i = 0; i < g->num_faces; i++) {
2989 int c = state->clues[i];
2990 if (c >= 0) {
2991 int o = sstate->face_yes_count[i];
2992 if (o == c)
2993 satclues++;
2994 else if (o == c-1)
2995 sm1clues++;
2996 clues++;
2997 }
2998 }
2999
3000 for (i = 0; i < g->num_dots; ++i) {
3001 dots_connected =
3002 sstate->looplen[dsf_canonify(sstate->dotdsf, i)];
3003 if (dots_connected > 1)
3004 shortest_chainlen = min(shortest_chainlen, dots_connected);
3005 }
3006
3007 assert(sstate->solver_status == SOLVER_INCOMPLETE);
3008
3009 if (satclues == clues && shortest_chainlen == edgecount) {
3010 sstate->solver_status = SOLVER_SOLVED;
3011 /* This discovery clearly counts as progress, even if we haven't
3012 * just added any lines or anything */
3013 progress = TRUE;
3014 goto finished_loop_deductionsing;
3015 }
3016
3017 /*
3018 * Now go through looking for LINE_UNKNOWN edges which
3019 * connect two dots that are already in the same
3020 * equivalence class. If we find one, test to see if the
3021 * loop it would create is a solution.
3022 */
3023 for (i = 0; i < g->num_edges; i++) {
3024 grid_edge *e = g->edges + i;
3025 int d1 = e->dot1 - g->dots;
3026 int d2 = e->dot2 - g->dots;
3027 int eqclass, val;
3028 if (state->lines[i] != LINE_UNKNOWN)
3029 continue;
3030
3031 eqclass = dsf_canonify(sstate->dotdsf, d1);
3032 if (eqclass != dsf_canonify(sstate->dotdsf, d2))
3033 continue;
3034
3035 val = LINE_NO; /* loop is bad until proven otherwise */
3036
3037 /*
3038 * This edge would form a loop. Next
3039 * question: how long would the loop be?
3040 * Would it equal the total number of edges
3041 * (plus the one we'd be adding if we added
3042 * it)?
3043 */
3044 if (sstate->looplen[eqclass] == edgecount + 1) {
3045 int sm1_nearby;
3046
3047 /*
3048 * This edge would form a loop which
3049 * took in all the edges in the entire
3050 * grid. So now we need to work out
3051 * whether it would be a valid solution
3052 * to the puzzle, which means we have to
3053 * check if it satisfies all the clues.
3054 * This means that every clue must be
3055 * either satisfied or satisfied-minus-
3056 * 1, and also that the number of
3057 * satisfied-minus-1 clues must be at
3058 * most two and they must lie on either
3059 * side of this edge.
3060 */
3061 sm1_nearby = 0;
3062 if (e->face1) {
3063 int f = e->face1 - g->faces;
3064 int c = state->clues[f];
3065 if (c >= 0 && sstate->face_yes_count[f] == c - 1)
3066 sm1_nearby++;
3067 }
3068 if (e->face2) {
3069 int f = e->face2 - g->faces;
3070 int c = state->clues[f];
3071 if (c >= 0 && sstate->face_yes_count[f] == c - 1)
3072 sm1_nearby++;
3073 }
3074 if (sm1clues == sm1_nearby &&
3075 sm1clues + satclues == clues) {
3076 val = LINE_YES; /* loop is good! */
3077 }
3078 }
3079
3080 /*
3081 * Right. Now we know that adding this edge
3082 * would form a loop, and we know whether
3083 * that loop would be a viable solution or
3084 * not.
3085 *
3086 * If adding this edge produces a solution,
3087 * then we know we've found _a_ solution but
3088 * we don't know that it's _the_ solution -
3089 * if it were provably the solution then
3090 * we'd have deduced this edge some time ago
3091 * without the need to do loop detection. So
3092 * in this state we return SOLVER_AMBIGUOUS,
3093 * which has the effect that hitting Solve
3094 * on a user-provided puzzle will fill in a
3095 * solution but using the solver to
3096 * construct new puzzles won't consider this
3097 * a reasonable deduction for the user to
3098 * make.
3099 */
3100 progress = solver_set_line(sstate, i, val);
3101 assert(progress == TRUE);
3102 if (val == LINE_YES) {
3103 sstate->solver_status = SOLVER_AMBIGUOUS;
3104 goto finished_loop_deductionsing;
3105 }
3106 }
3107
3108 finished_loop_deductionsing:
3109 return progress ? DIFF_EASY : DIFF_MAX;
3110 }
3111
3112 /* This will return a dynamically allocated solver_state containing the (more)
3113 * solved grid */
3114 static solver_state *solve_game_rec(const solver_state *sstate_start)
3115 {
3116 solver_state *sstate;
3117
3118 /* Index of the solver we should call next. */
3119 int i = 0;
3120
3121 /* As a speed-optimisation, we avoid re-running solvers that we know
3122 * won't make any progress. This happens when a high-difficulty
3123 * solver makes a deduction that can only help other high-difficulty
3124 * solvers.
3125 * For example: if a new 'dline' flag is set by dline_deductions, the
3126 * trivial_deductions solver cannot do anything with this information.
3127 * If we've already run the trivial_deductions solver (because it's
3128 * earlier in the list), there's no point running it again.
3129 *
3130 * Therefore: if a solver is earlier in the list than "threshold_index",
3131 * we don't bother running it if it's difficulty level is less than
3132 * "threshold_diff".
3133 */
3134 int threshold_diff = 0;
3135 int threshold_index = 0;
3136
3137 sstate = dup_solver_state(sstate_start);
3138
3139 check_caches(sstate);
3140
3141 while (i < NUM_SOLVERS) {
3142 if (sstate->solver_status == SOLVER_MISTAKE)
3143 return sstate;
3144 if (sstate->solver_status == SOLVER_SOLVED ||
3145 sstate->solver_status == SOLVER_AMBIGUOUS) {
3146 /* solver finished */
3147 break;
3148 }
3149
3150 if ((solver_diffs[i] >= threshold_diff || i >= threshold_index)
3151 && solver_diffs[i] <= sstate->diff) {
3152 /* current_solver is eligible, so use it */
3153 int next_diff = solver_fns[i](sstate);
3154 if (next_diff != DIFF_MAX) {
3155 /* solver made progress, so use new thresholds and
3156 * start again at top of list. */
3157 threshold_diff = next_diff;
3158 threshold_index = i;
3159 i = 0;
3160 continue;
3161 }
3162 }
3163 /* current_solver is ineligible, or failed to make progress, so
3164 * go to the next solver in the list */
3165 i++;
3166 }
3167
3168 if (sstate->solver_status == SOLVER_SOLVED ||
3169 sstate->solver_status == SOLVER_AMBIGUOUS) {
3170 /* s/LINE_UNKNOWN/LINE_NO/g */
3171 array_setall(sstate->state->lines, LINE_UNKNOWN, LINE_NO,
3172 sstate->state->game_grid->num_edges);
3173 return sstate;
3174 }
3175
3176 return sstate;
3177 }
3178
3179 static char *solve_game(game_state *state, game_state *currstate,
3180 char *aux, char **error)
3181 {
3182 char *soln = NULL;
3183 solver_state *sstate, *new_sstate;
3184
3185 sstate = new_solver_state(state, DIFF_MAX);
3186 new_sstate = solve_game_rec(sstate);
3187
3188 if (new_sstate->solver_status == SOLVER_SOLVED) {
3189 soln = encode_solve_move(new_sstate->state);
3190 } else if (new_sstate->solver_status == SOLVER_AMBIGUOUS) {
3191 soln = encode_solve_move(new_sstate->state);
3192 /**error = "Solver found ambiguous solutions"; */
3193 } else {
3194 soln = encode_solve_move(new_sstate->state);
3195 /**error = "Solver failed"; */
3196 }
3197
3198 free_solver_state(new_sstate);
3199 free_solver_state(sstate);
3200
3201 return soln;
3202 }
3203
3204 /* ----------------------------------------------------------------------
3205 * Drawing and mouse-handling
3206 */
3207
3208 static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
3209 int x, int y, int button)
3210 {
3211 grid *g = state->game_grid;
3212 grid_edge *e;
3213 int i;
3214 char *ret, buf[80];
3215 char button_char = ' ';
3216 enum line_state old_state;
3217
3218 button &= ~MOD_MASK;
3219
3220 /* Convert mouse-click (x,y) to grid coordinates */
3221 x -= BORDER(ds->tilesize);
3222 y -= BORDER(ds->tilesize);
3223 x = x * g->tilesize / ds->tilesize;
3224 y = y * g->tilesize / ds->tilesize;
3225 x += g->lowest_x;
3226 y += g->lowest_y;
3227
3228 e = grid_nearest_edge(g, x, y);
3229 if (e == NULL)
3230 return NULL;
3231
3232 i = e - g->edges;
3233
3234 /* I think it's only possible to play this game with mouse clicks, sorry */
3235 /* Maybe will add mouse drag support some time */
3236 old_state = state->lines[i];
3237
3238 switch (button) {
3239 case LEFT_BUTTON:
3240 switch (old_state) {
3241 case LINE_UNKNOWN:
3242 button_char = 'y';
3243 break;
3244 case LINE_YES:
3245 #ifdef STYLUS_BASED
3246 button_char = 'n';
3247 break;
3248 #endif
3249 case LINE_NO:
3250 button_char = 'u';
3251 break;
3252 }
3253 break;
3254 case MIDDLE_BUTTON:
3255 button_char = 'u';
3256 break;
3257 case RIGHT_BUTTON:
3258 switch (old_state) {
3259 case LINE_UNKNOWN:
3260 button_char = 'n';
3261 break;
3262 case LINE_NO:
3263 #ifdef STYLUS_BASED
3264 button_char = 'y';
3265 break;
3266 #endif
3267 case LINE_YES:
3268 button_char = 'u';
3269 break;
3270 }
3271 break;
3272 default:
3273 return NULL;
3274 }
3275
3276
3277 sprintf(buf, "%d%c", i, (int)button_char);
3278 ret = dupstr(buf);
3279
3280 return ret;
3281 }
3282
3283 static game_state *execute_move(game_state *state, char *move)
3284 {
3285 int i;
3286 game_state *newstate = dup_game(state);
3287
3288 if (move[0] == 'S') {
3289 move++;
3290 newstate->cheated = TRUE;
3291 }
3292
3293 while (*move) {
3294 i = atoi(move);
3295 if (i < 0 || i >= newstate->game_grid->num_edges)
3296 goto fail;
3297 move += strspn(move, "1234567890");
3298 switch (*(move++)) {
3299 case 'y':
3300 newstate->lines[i] = LINE_YES;
3301 break;
3302 case 'n':
3303 newstate->lines[i] = LINE_NO;
3304 break;
3305 case 'u':
3306 newstate->lines[i] = LINE_UNKNOWN;
3307 break;
3308 default:
3309 goto fail;
3310 }
3311 }
3312
3313 /*
3314 * Check for completion.
3315 */
3316 if (check_completion(newstate))
3317 newstate->solved = TRUE;
3318
3319 return newstate;
3320
3321 fail:
3322 free_game(newstate);
3323 return NULL;
3324 }
3325
3326 /* ----------------------------------------------------------------------
3327 * Drawing routines.
3328 */
3329
3330 /* Convert from grid coordinates to screen coordinates */
3331 static void grid_to_screen(const game_drawstate *ds, const grid *g,
3332 int grid_x, int grid_y, int *x, int *y)
3333 {
3334 *x = grid_x - g->lowest_x;
3335 *y = grid_y - g->lowest_y;
3336 *x = *x * ds->tilesize / g->tilesize;
3337 *y = *y * ds->tilesize / g->tilesize;
3338 *x += BORDER(ds->tilesize);
3339 *y += BORDER(ds->tilesize);
3340 }
3341
3342 /* Returns (into x,y) position of centre of face for rendering the text clue.
3343 */
3344 static void face_text_pos(const game_drawstate *ds, const grid *g,
3345 const grid_face *f, int *xret, int *yret)
3346 {
3347 int x, y, x0, y0, x1, y1, xbest, ybest, i, shift;
3348 long bestdist;
3349 int faceindex = f - g->faces;
3350
3351 /*
3352 * Return the cached position for this face, if we've already
3353 * worked it out.
3354 */
3355 if (ds->textx[faceindex] >= 0) {
3356 *xret = ds->textx[faceindex];
3357 *yret = ds->texty[faceindex];
3358 return;
3359 }
3360
3361 /*
3362 * Otherwise, try to find the point in the polygon with the
3363 * maximum distance to any edge or corner.
3364 *
3365 * Start by working out the face's bounding box, in grid
3366 * coordinates.
3367 */
3368 x0 = x1 = f->dots[0]->x;
3369 y0 = y1 = f->dots[0]->y;
3370 for (i = 1; i < f->order; i++) {
3371 if (x0 > f->dots[i]->x) x0 = f->dots[i]->x;
3372 if (x1 < f->dots[i]->x) x1 = f->dots[i]->x;
3373 if (y0 > f->dots[i]->y) y0 = f->dots[i]->y;
3374 if (y1 < f->dots[i]->y) y1 = f->dots[i]->y;
3375 }
3376
3377 /*
3378 * If the grid is at excessive resolution, decide on a scaling
3379 * factor to bring it within reasonable bounds so we don't have to
3380 * think too hard or suffer integer overflow.
3381 */
3382 shift = 0;
3383 while (x1 - x0 > 128 || y1 - y0 > 128) {
3384 shift++;
3385 x0 >>= 1;
3386 x1 >>= 1;
3387 y0 >>= 1;
3388 y1 >>= 1;
3389 }
3390
3391 /*
3392 * Now iterate over every point in that bounding box.
3393 */
3394 xbest = ybest = -1;
3395 bestdist = -1;
3396 for (y = y0; y <= y1; y++) {
3397 for (x = x0; x <= x1; x++) {
3398 /*
3399 * First, disqualify the point if it's not inside the
3400 * polygon, which we work out by counting the edges to the
3401 * right of the point. (For tiebreaking purposes when
3402 * edges start or end on our y-coordinate or go right
3403 * through it, we consider our point to be offset by a
3404 * small _positive_ epsilon in both the x- and
3405 * y-direction.)
3406 */
3407 int in = 0;
3408 for (i = 0; i < f->order; i++) {
3409 int xs = f->edges[i]->dot1->x >> shift;
3410 int xe = f->edges[i]->dot2->x >> shift;
3411 int ys = f->edges[i]->dot1->y >> shift;
3412 int ye = f->edges[i]->dot2->y >> shift;
3413 if ((y >= ys && y < ye) || (y >= ye && y < ys)) {
3414 /*
3415 * The line goes past our y-position. Now we need
3416 * to know if its x-coordinate when it does so is
3417 * to our right.
3418 *
3419 * The x-coordinate in question is mathematically
3420 * (y - ys) * (xe - xs) / (ye - ys), and we want
3421 * to know whether (x - xs) >= that. Of course we
3422 * avoid the division, so we can work in integers;
3423 * to do this we must multiply both sides of the
3424 * inequality by ye - ys, which means we must
3425 * first check that's not negative.
3426 */
3427 int num = xe - xs, denom = ye - ys;
3428 if (denom < 0) {
3429 num = -num;
3430 denom = -denom;
3431 }
3432 if ((x - xs) * denom >= (y - ys) * num)
3433 in ^= 1;
3434 }
3435 }
3436
3437 if (in) {
3438 long mindist = LONG_MAX;
3439
3440 /*
3441 * This point is inside the polygon, so now we check
3442 * its minimum distance to every edge and corner.
3443 * First the corners ...
3444 */
3445 for (i = 0; i < f->order; i++) {
3446 int xp = f->dots[i]->x >> shift;
3447 int yp = f->dots[i]->y >> shift;
3448 int dx = x - xp, dy = y - yp;
3449 long dist = (long)dx*dx + (long)dy*dy;
3450 if (mindist > dist)
3451 mindist = dist;
3452 }
3453
3454 /*
3455 * ... and now also check the perpendicular distance
3456 * to every edge, if the perpendicular lies between
3457 * the edge's endpoints.
3458 */
3459 for (i = 0; i < f->order; i++) {
3460 int xs = f->edges[i]->dot1->x >> shift;
3461 int xe = f->edges[i]->dot2->x >> shift;
3462 int ys = f->edges[i]->dot1->y >> shift;
3463 int ye = f->edges[i]->dot2->y >> shift;
3464
3465 /*
3466 * If s and e are our endpoints, and p our
3467 * candidate circle centre, the foot of a
3468 * perpendicular from p to the line se lies
3469 * between s and e if and only if (p-s).(e-s) lies
3470 * strictly between 0 and (e-s).(e-s).
3471 */
3472 int edx = xe - xs, edy = ye - ys;
3473 int pdx = x - xs, pdy = y - ys;
3474 long pde = (long)pdx * edx + (long)pdy * edy;
3475 long ede = (long)edx * edx + (long)edy * edy;
3476 if (0 < pde && pde < ede) {
3477 /*
3478 * Yes, the nearest point on this edge is
3479 * closer than either endpoint, so we must
3480 * take it into account by measuring the
3481 * perpendicular distance to the edge and
3482 * checking its square against mindist.
3483 */
3484
3485 long pdre = (long)pdx * edy - (long)pdy * edx;
3486 long sqlen = pdre * pdre / ede;
3487
3488 if (mindist > sqlen)
3489 mindist = sqlen;
3490 }
3491 }
3492
3493 /*
3494 * Right. Now we know the biggest circle around this
3495 * point, so we can check it against bestdist.
3496 */
3497 if (bestdist < mindist) {
3498 bestdist = mindist;
3499 xbest = x;
3500 ybest = y;
3501 }
3502 }
3503 }
3504 }
3505
3506 assert(bestdist >= 0);
3507
3508 /* convert to screen coordinates */
3509 grid_to_screen(ds, g, xbest << shift, ybest << shift,
3510 &ds->textx[faceindex], &ds->texty[faceindex]);
3511
3512 *xret = ds->textx[faceindex];
3513 *yret = ds->texty[faceindex];
3514 }
3515
3516 static void face_text_bbox(game_drawstate *ds, grid *g, grid_face *f,
3517 int *x, int *y, int *w, int *h)
3518 {
3519 int xx, yy;
3520 face_text_pos(ds, g, f, &xx, &yy);
3521
3522 /* There seems to be a certain amount of trial-and-error involved
3523 * in working out the correct bounding-box for the text. */
3524
3525 *x = xx - ds->tilesize/4 - 1;
3526 *y = yy - ds->tilesize/4 - 3;
3527 *w = ds->tilesize/2 + 2;
3528 *h = ds->tilesize/2 + 5;
3529 }
3530
3531 static void game_redraw_clue(drawing *dr, game_drawstate *ds,
3532 game_state *state, int i)
3533 {
3534 grid *g = state->game_grid;
3535 grid_face *f = g->faces + i;
3536 int x, y;
3537 char c[3];
3538
3539 if (state->clues[i] < 10) {
3540 c[0] = CLUE2CHAR(state->clues[i]);
3541 c[1] = '\0';
3542 } else {
3543 sprintf(c, "%d", state->clues[i]);
3544 }
3545
3546 face_text_pos(ds, g, f, &x, &y);
3547 draw_text(dr, x, y,
3548 FONT_VARIABLE, ds->tilesize/2,
3549 ALIGN_VCENTRE | ALIGN_HCENTRE,
3550 ds->clue_error[i] ? COL_MISTAKE :
3551 ds->clue_satisfied[i] ? COL_SATISFIED : COL_FOREGROUND, c);
3552 }
3553
3554 static void edge_bbox(game_drawstate *ds, grid *g, grid_edge *e,
3555 int *x, int *y, int *w, int *h)
3556 {
3557 int x1 = e->dot1->x;
3558 int y1 = e->dot1->y;
3559 int x2 = e->dot2->x;
3560 int y2 = e->dot2->y;
3561 int xmin, xmax, ymin, ymax;
3562
3563 grid_to_screen(ds, g, x1, y1, &x1, &y1);
3564 grid_to_screen(ds, g, x2, y2, &x2, &y2);
3565 /* Allow extra margin for dots, and thickness of lines */
3566 xmin = min(x1, x2) - 2;
3567 xmax = max(x1, x2) + 2;
3568 ymin = min(y1, y2) - 2;
3569 ymax = max(y1, y2) + 2;
3570
3571 *x = xmin;
3572 *y = ymin;
3573 *w = xmax - xmin + 1;
3574 *h = ymax - ymin + 1;
3575 }
3576
3577 static void dot_bbox(game_drawstate *ds, grid *g, grid_dot *d,
3578 int *x, int *y, int *w, int *h)
3579 {
3580 int x1, y1;
3581
3582 grid_to_screen(ds, g, d->x, d->y, &x1, &y1);
3583
3584 *x = x1 - 2;
3585 *y = y1 - 2;
3586 *w = 5;
3587 *h = 5;
3588 }
3589
3590 static const int loopy_line_redraw_phases[] = {
3591 COL_FAINT, COL_LINEUNKNOWN, COL_FOREGROUND, COL_HIGHLIGHT, COL_MISTAKE
3592 };
3593 #define NPHASES lenof(loopy_line_redraw_phases)
3594
3595 static void game_redraw_line(drawing *dr, game_drawstate *ds,
3596 game_state *state, int i, int phase)
3597 {
3598 grid *g = state->game_grid;
3599 grid_edge *e = g->edges + i;
3600 int x1, x2, y1, y2;
3601 int xmin, ymin, xmax, ymax;
3602 int line_colour;
3603
3604 if (state->line_errors[i])
3605 line_colour = COL_MISTAKE;
3606 else if (state->lines[i] == LINE_UNKNOWN)
3607 line_colour = COL_LINEUNKNOWN;
3608 else if (state->lines[i] == LINE_NO)
3609 line_colour = COL_FAINT;
3610 else if (ds->flashing)
3611 line_colour = COL_HIGHLIGHT;
3612 else
3613 line_colour = COL_FOREGROUND;
3614 if (line_colour != loopy_line_redraw_phases[phase])
3615 return;
3616
3617 /* Convert from grid to screen coordinates */
3618 grid_to_screen(ds, g, e->dot1->x, e->dot1->y, &x1, &y1);
3619 grid_to_screen(ds, g, e->dot2->x, e->dot2->y, &x2, &y2);
3620
3621 xmin = min(x1, x2);
3622 xmax = max(x1, x2);
3623 ymin = min(y1, y2);
3624 ymax = max(y1, y2);
3625
3626 if (line_colour == COL_FAINT) {
3627 static int draw_faint_lines = -1;
3628 if (draw_faint_lines < 0) {
3629 char *env = getenv("LOOPY_FAINT_LINES");
3630 draw_faint_lines = (!env || (env[0] == 'y' ||
3631 env[0] == 'Y'));
3632 }
3633 if (draw_faint_lines)
3634 draw_line(dr, x1, y1, x2, y2, line_colour);
3635 } else {
3636 draw_thick_line(dr, 3.0,
3637 x1 + 0.5, y1 + 0.5,
3638 x2 + 0.5, y2 + 0.5,
3639 line_colour);
3640 }
3641 }
3642
3643 static void game_redraw_dot(drawing *dr, game_drawstate *ds,
3644 game_state *state, int i)
3645 {
3646 grid *g = state->game_grid;
3647 grid_dot *d = g->dots + i;
3648 int x, y;
3649
3650 grid_to_screen(ds, g, d->x, d->y, &x, &y);
3651 draw_circle(dr, x, y, 2, COL_FOREGROUND, COL_FOREGROUND);
3652 }
3653
3654 static int boxes_intersect(int x0, int y0, int w0, int h0,
3655 int x1, int y1, int w1, int h1)
3656 {
3657 /*
3658 * Two intervals intersect iff neither is wholly on one side of
3659 * the other. Two boxes intersect iff their horizontal and
3660 * vertical intervals both intersect.
3661 */
3662 return (x0 < x1+w1 && x1 < x0+w0 && y0 < y1+h1 && y1 < y0+h0);
3663 }
3664
3665 static void game_redraw_in_rect(drawing *dr, game_drawstate *ds,
3666 game_state *state, int x, int y, int w, int h)
3667 {
3668 grid *g = state->game_grid;
3669 int i, phase;
3670 int bx, by, bw, bh;
3671
3672 clip(dr, x, y, w, h);
3673 draw_rect(dr, x, y, w, h, COL_BACKGROUND);
3674
3675 for (i = 0; i < g->num_faces; i++) {
3676 face_text_bbox(ds, g, &g->faces[i], &bx, &by, &bw, &bh);
3677 if (boxes_intersect(x, y, w, h, bx, by, bw, bh))
3678 game_redraw_clue(dr, ds, state, i);
3679 }
3680 for (phase = 0; phase < NPHASES; phase++) {
3681 for (i = 0; i < g->num_edges; i++) {
3682 edge_bbox(ds, g, &g->edges[i], &bx, &by, &bw, &bh);
3683 if (boxes_intersect(x, y, w, h, bx, by, bw, bh))
3684 game_redraw_line(dr, ds, state, i, phase);
3685 }
3686 }
3687 for (i = 0; i < g->num_dots; i++) {
3688 dot_bbox(ds, g, &g->dots[i], &bx, &by, &bw, &bh);
3689 if (boxes_intersect(x, y, w, h, bx, by, bw, bh))
3690 game_redraw_dot(dr, ds, state, i);
3691 }
3692
3693 unclip(dr);
3694 draw_update(dr, x, y, w, h);
3695 }
3696
3697 static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
3698 game_state *state, int dir, game_ui *ui,
3699 float animtime, float flashtime)
3700 {
3701 #define REDRAW_OBJECTS_LIMIT 16 /* Somewhat arbitrary tradeoff */
3702
3703 grid *g = state->game_grid;
3704 int border = BORDER(ds->tilesize);
3705 int i;
3706 int flash_changed;
3707 int redraw_everything = FALSE;
3708
3709 int edges[REDRAW_OBJECTS_LIMIT], nedges = 0;
3710 int faces[REDRAW_OBJECTS_LIMIT], nfaces = 0;
3711
3712 /* Redrawing is somewhat involved.
3713 *
3714 * An update can theoretically affect an arbitrary number of edges
3715 * (consider, for example, completing or breaking a cycle which doesn't
3716 * satisfy all the clues -- we'll switch many edges between error and
3717 * normal states). On the other hand, redrawing the whole grid takes a
3718 * while, making the game feel sluggish, and many updates are actually
3719 * quite well localized.
3720 *
3721 * This redraw algorithm attempts to cope with both situations gracefully
3722 * and correctly. For localized changes, we set a clip rectangle, fill
3723 * it with background, and then redraw (a plausible but conservative
3724 * guess at) the objects which intersect the rectangle; if several
3725 * objects need redrawing, we'll do them individually. However, if lots
3726 * of objects are affected, we'll just redraw everything.
3727 *
3728 * The reason for all of this is that it's just not safe to do the redraw
3729 * piecemeal. If you try to draw an antialiased diagonal line over
3730 * itself, you get a slightly thicker antialiased diagonal line, which
3731 * looks rather ugly after a while.
3732 *
3733 * So, we take two passes over the grid. The first attempts to work out
3734 * what needs doing, and the second actually does it.
3735 */
3736
3737 if (!ds->started)
3738 redraw_everything = TRUE;
3739 else {
3740
3741 /* First, trundle through the faces. */
3742 for (i = 0; i < g->num_faces; i++) {
3743 grid_face *f = g->faces + i;
3744 int sides = f->order;
3745 int clue_mistake;
3746 int clue_satisfied;
3747 int n = state->clues[i];
3748 if (n < 0)
3749 continue;
3750
3751 clue_mistake = (face_order(state, i, LINE_YES) > n ||
3752 face_order(state, i, LINE_NO ) > (sides-n));
3753 clue_satisfied = (face_order(state, i, LINE_YES) == n &&
3754 face_order(state, i, LINE_NO ) == (sides-n));
3755
3756 if (clue_mistake != ds->clue_error[i] ||
3757 clue_satisfied != ds->clue_satisfied[i]) {
3758 ds->clue_error[i] = clue_mistake;
3759 ds->clue_satisfied[i] = clue_satisfied;
3760 if (nfaces == REDRAW_OBJECTS_LIMIT)
3761 redraw_everything = TRUE;
3762 else
3763 faces[nfaces++] = i;
3764 }
3765 }
3766
3767 /* Work out what the flash state needs to be. */
3768 if (flashtime > 0 &&
3769 (flashtime <= FLASH_TIME/3 ||
3770 flashtime >= FLASH_TIME*2/3)) {
3771 flash_changed = !ds->flashing;
3772 ds->flashing = TRUE;
3773 } else {
3774 flash_changed = ds->flashing;
3775 ds->flashing = FALSE;
3776 }
3777
3778 /* Now, trundle through the edges. */
3779 for (i = 0; i < g->num_edges; i++) {
3780 char new_ds =
3781 state->line_errors[i] ? DS_LINE_ERROR : state->lines[i];
3782 if (new_ds != ds->lines[i] ||
3783 (flash_changed && state->lines[i] == LINE_YES)) {
3784 ds->lines[i] = new_ds;
3785 if (nedges == REDRAW_OBJECTS_LIMIT)
3786 redraw_everything = TRUE;
3787 else
3788 edges[nedges++] = i;
3789 }
3790 }
3791 }
3792
3793 /* Pass one is now done. Now we do the actual drawing. */
3794 if (redraw_everything) {
3795 int grid_width = g->highest_x - g->lowest_x;
3796 int grid_height = g->highest_y - g->lowest_y;
3797 int w = grid_width * ds->tilesize / g->tilesize;
3798 int h = grid_height * ds->tilesize / g->tilesize;
3799
3800 game_redraw_in_rect(dr, ds, state,
3801 0, 0, w + 2*border + 1, h + 2*border + 1);
3802 } else {
3803
3804 /* Right. Now we roll up our sleeves. */
3805
3806 for (i = 0; i < nfaces; i++) {
3807 grid_face *f = g->faces + faces[i];
3808 int x, y, w, h;
3809
3810 face_text_bbox(ds, g, f, &x, &y, &w, &h);
3811 game_redraw_in_rect(dr, ds, state, x, y, w, h);
3812 }
3813
3814 for (i = 0; i < nedges; i++) {
3815 grid_edge *e = g->edges + edges[i];
3816 int x, y, w, h;
3817
3818 edge_bbox(ds, g, e, &x, &y, &w, &h);
3819 game_redraw_in_rect(dr, ds, state, x, y, w, h);
3820 }
3821 }
3822
3823 ds->started = TRUE;
3824 }
3825
3826 static float game_flash_length(game_state *oldstate, game_state *newstate,
3827 int dir, game_ui *ui)
3828 {
3829 if (!oldstate->solved && newstate->solved &&
3830 !oldstate->cheated && !newstate->cheated) {
3831 return FLASH_TIME;
3832 }
3833
3834 return 0.0F;
3835 }
3836
3837 static void game_print_size(game_params *params, float *x, float *y)
3838 {
3839 int pw, ph;
3840
3841 /*
3842 * I'll use 7mm "squares" by default.
3843 */
3844 game_compute_size(params, 700, &pw, &ph);
3845 *x = pw / 100.0F;
3846 *y = ph / 100.0F;
3847 }
3848
3849 static void game_print(drawing *dr, game_state *state, int tilesize)
3850 {
3851 int ink = print_mono_colour(dr, 0);
3852 int i;
3853 game_drawstate ads, *ds = &ads;
3854 grid *g = state->game_grid;
3855
3856 ds->tilesize = tilesize;
3857
3858 for (i = 0; i < g->num_dots; i++) {
3859 int x, y;
3860 grid_to_screen(ds, g, g->dots[i].x, g->dots[i].y, &x, &y);
3861 draw_circle(dr, x, y, ds->tilesize / 15, ink, ink);
3862 }
3863
3864 /*
3865 * Clues.
3866 */
3867 for (i = 0; i < g->num_faces; i++) {
3868 grid_face *f = g->faces + i;
3869 int clue = state->clues[i];
3870 if (clue >= 0) {
3871 char c[2];
3872 int x, y;
3873 c[0] = CLUE2CHAR(clue);
3874 c[1] = '\0';
3875 face_text_pos(ds, g, f, &x, &y);
3876 draw_text(dr, x, y,
3877 FONT_VARIABLE, ds->tilesize / 2,
3878 ALIGN_VCENTRE | ALIGN_HCENTRE, ink, c);
3879 }
3880 }
3881
3882 /*
3883 * Lines.
3884 */
3885 for (i = 0; i < g->num_edges; i++) {
3886 int thickness = (state->lines[i] == LINE_YES) ? 30 : 150;
3887 grid_edge *e = g->edges + i;
3888 int x1, y1, x2, y2;
3889 grid_to_screen(ds, g, e->dot1->x, e->dot1->y, &x1, &y1);
3890 grid_to_screen(ds, g, e->dot2->x, e->dot2->y, &x2, &y2);
3891 if (state->lines[i] == LINE_YES)
3892 {
3893 /* (dx, dy) points from (x1, y1) to (x2, y2).
3894 * The line is then "fattened" in a perpendicular
3895 * direction to create a thin rectangle. */
3896 double d = sqrt(SQ((double)x1 - x2) + SQ((double)y1 - y2));
3897 double dx = (x2 - x1) / d;
3898 double dy = (y2 - y1) / d;
3899 int points[8];
3900
3901 dx = (dx * ds->tilesize) / thickness;
3902 dy = (dy * ds->tilesize) / thickness;
3903 points[0] = x1 + (int)dy;
3904 points[1] = y1 - (int)dx;
3905 points[2] = x1 - (int)dy;
3906 points[3] = y1 + (int)dx;
3907 points[4] = x2 - (int)dy;
3908 points[5] = y2 + (int)dx;
3909 points[6] = x2 + (int)dy;
3910 points[7] = y2 - (int)dx;
3911 draw_polygon(dr, points, 4, ink, ink);
3912 }
3913 else
3914 {
3915 /* Draw a dotted line */
3916 int divisions = 6;
3917 int j;
3918 for (j = 1; j < divisions; j++) {
3919 /* Weighted average */
3920 int x = (x1 * (divisions -j) + x2 * j) / divisions;
3921 int y = (y1 * (divisions -j) + y2 * j) / divisions;
3922 draw_circle(dr, x, y, ds->tilesize / thickness, ink, ink);
3923 }
3924 }
3925 }
3926 }
3927
3928 #ifdef COMBINED
3929 #define thegame loopy
3930 #endif
3931
3932 const struct game thegame = {
3933 "Loopy", "games.loopy", "loopy",
3934 default_params,
3935 game_fetch_preset,
3936 decode_params,
3937 encode_params,
3938 free_params,
3939 dup_params,
3940 TRUE, game_configure, custom_params,
3941 validate_params,
3942 new_game_desc,
3943 validate_desc,
3944 new_game,
3945 dup_game,
3946 free_game,
3947 1, solve_game,
3948 TRUE, game_can_format_as_text_now, game_text_format,
3949 new_ui,
3950 free_ui,
3951 encode_ui,
3952 decode_ui,
3953 game_changed_state,
3954 interpret_move,
3955 execute_move,
3956 PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
3957 game_colours,
3958 game_new_drawstate,
3959 game_free_drawstate,
3960 game_redraw,
3961 game_anim_length,
3962 game_flash_length,
3963 TRUE, FALSE, game_print_size, game_print,
3964 FALSE /* wants_statusbar */,
3965 FALSE, game_timing_state,
3966 0, /* mouse_priorities */
3967 };
3968
3969 #ifdef STANDALONE_SOLVER
3970
3971 /*
3972 * Half-hearted standalone solver. It can't output the solution to
3973 * anything but a square puzzle, and it can't log the deductions
3974 * it makes either. But it can solve square puzzles, and more
3975 * importantly it can use its solver to grade the difficulty of
3976 * any puzzle you give it.
3977 */
3978
3979 #include <stdarg.h>
3980
3981 int main(int argc, char **argv)
3982 {
3983 game_params *p;
3984 game_state *s;
3985 char *id = NULL, *desc, *err;
3986 int grade = FALSE;
3987 int ret, diff;
3988 #if 0 /* verbose solver not supported here (yet) */
3989 int really_verbose = FALSE;
3990 #endif
3991
3992 while (--argc > 0) {
3993 char *p = *++argv;
3994 #if 0 /* verbose solver not supported here (yet) */
3995 if (!strcmp(p, "-v")) {
3996 really_verbose = TRUE;
3997 } else
3998 #endif
3999 if (!strcmp(p, "-g")) {
4000 grade = TRUE;
4001 } else if (*p == '-') {
4002 fprintf(stderr, "%s: unrecognised option `%s'\n", argv[0], p);
4003 return 1;
4004 } else {
4005 id = p;
4006 }
4007 }
4008
4009 if (!id) {
4010 fprintf(stderr, "usage: %s [-g | -v] <game_id>\n", argv[0]);
4011 return 1;
4012 }
4013
4014 desc = strchr(id, ':');
4015 if (!desc) {
4016 fprintf(stderr, "%s: game id expects a colon in it\n", argv[0]);
4017 return 1;
4018 }
4019 *desc++ = '\0';
4020
4021 p = default_params();
4022 decode_params(p, id);
4023 err = validate_desc(p, desc);
4024 if (err) {
4025 fprintf(stderr, "%s: %s\n", argv[0], err);
4026 return 1;
4027 }
4028 s = new_game(NULL, p, desc);
4029
4030 /*
4031 * When solving an Easy puzzle, we don't want to bother the
4032 * user with Hard-level deductions. For this reason, we grade
4033 * the puzzle internally before doing anything else.
4034 */
4035 ret = -1; /* placate optimiser */
4036 for (diff = 0; diff < DIFF_MAX; diff++) {
4037 solver_state *sstate_new;
4038 solver_state *sstate = new_solver_state((game_state *)s, diff);
4039
4040 sstate_new = solve_game_rec(sstate);
4041
4042 if (sstate_new->solver_status == SOLVER_MISTAKE)
4043 ret = 0;
4044 else if (sstate_new->solver_status == SOLVER_SOLVED)
4045 ret = 1;
4046 else
4047 ret = 2;
4048
4049 free_solver_state(sstate_new);
4050 free_solver_state(sstate);
4051
4052 if (ret < 2)
4053 break;
4054 }
4055
4056 if (diff == DIFF_MAX) {
4057 if (grade)
4058 printf("Difficulty rating: harder than Hard, or ambiguous\n");
4059 else
4060 printf("Unable to find a unique solution\n");
4061 } else {
4062 if (grade) {
4063 if (ret == 0)
4064 printf("Difficulty rating: impossible (no solution exists)\n");
4065 else if (ret == 1)
4066 printf("Difficulty rating: %s\n", diffnames[diff]);
4067 } else {
4068 solver_state *sstate_new;
4069 solver_state *sstate = new_solver_state((game_state *)s, diff);
4070
4071 /* If we supported a verbose solver, we'd set verbosity here */
4072
4073 sstate_new = solve_game_rec(sstate);
4074
4075 if (sstate_new->solver_status == SOLVER_MISTAKE)
4076 printf("Puzzle is inconsistent\n");
4077 else {
4078 assert(sstate_new->solver_status == SOLVER_SOLVED);
4079 if (s->grid_type == 0) {
4080 fputs(game_text_format(sstate_new->state), stdout);
4081 } else {
4082 printf("Unable to output non-square grids\n");
4083 }
4084 }
4085
4086 free_solver_state(sstate_new);
4087 free_solver_state(sstate);
4088 }
4089 }
4090
4091 return 0;
4092 }
4093
4094 #endif