The game IDs for Net (and Netslide) have always been random seeds
[sgt/puzzles] / sixteen.c
1 /*
2 * sixteen.c: `16-puzzle', a sliding-tiles jigsaw which differs
3 * from the 15-puzzle in that you toroidally rotate a row or column
4 * at a time.
5 */
6
7 #include <stdio.h>
8 #include <stdlib.h>
9 #include <string.h>
10 #include <assert.h>
11 #include <ctype.h>
12 #include <math.h>
13
14 #include "puzzles.h"
15
16 #define TILE_SIZE 48
17 #define BORDER TILE_SIZE /* big border to fill with arrows */
18 #define HIGHLIGHT_WIDTH (TILE_SIZE / 20)
19 #define COORD(x) ( (x) * TILE_SIZE + BORDER )
20 #define FROMCOORD(x) ( ((x) - BORDER + 2*TILE_SIZE) / TILE_SIZE - 2 )
21
22 #define ANIM_TIME 0.13F
23 #define FLASH_FRAME 0.13F
24
25 #define X(state, i) ( (i) % (state)->w )
26 #define Y(state, i) ( (i) / (state)->w )
27 #define C(state, x, y) ( (y) * (state)->w + (x) )
28
29 enum {
30 COL_BACKGROUND,
31 COL_TEXT,
32 COL_HIGHLIGHT,
33 COL_LOWLIGHT,
34 NCOLOURS
35 };
36
37 struct game_params {
38 int w, h;
39 int movetarget;
40 };
41
42 struct game_state {
43 int w, h, n;
44 int *tiles;
45 int completed;
46 int just_used_solve; /* used to suppress undo animation */
47 int used_solve; /* used to suppress completion flash */
48 int movecount, movetarget;
49 int last_movement_sense;
50 };
51
52 static game_params *default_params(void)
53 {
54 game_params *ret = snew(game_params);
55
56 ret->w = ret->h = 4;
57 ret->movetarget = 0;
58
59 return ret;
60 }
61
62 static int game_fetch_preset(int i, char **name, game_params **params)
63 {
64 game_params *ret;
65 int w, h;
66 char buf[80];
67
68 switch (i) {
69 case 0: w = 3, h = 3; break;
70 case 1: w = 4, h = 3; break;
71 case 2: w = 4, h = 4; break;
72 case 3: w = 5, h = 4; break;
73 case 4: w = 5, h = 5; break;
74 default: return FALSE;
75 }
76
77 sprintf(buf, "%dx%d", w, h);
78 *name = dupstr(buf);
79 *params = ret = snew(game_params);
80 ret->w = w;
81 ret->h = h;
82 ret->movetarget = 0;
83 return TRUE;
84 }
85
86 static void free_params(game_params *params)
87 {
88 sfree(params);
89 }
90
91 static game_params *dup_params(game_params *params)
92 {
93 game_params *ret = snew(game_params);
94 *ret = *params; /* structure copy */
95 return ret;
96 }
97
98 static void decode_params(game_params *ret, char const *string)
99 {
100 ret->w = ret->h = atoi(string);
101 ret->movetarget = 0;
102 while (*string && isdigit(*string)) string++;
103 if (*string == 'x') {
104 string++;
105 ret->h = atoi(string);
106 while (*string && isdigit((unsigned char)*string))
107 string++;
108 }
109 if (*string == 'm') {
110 string++;
111 ret->movetarget = atoi(string);
112 while (*string && isdigit((unsigned char)*string))
113 string++;
114 }
115 }
116
117 static char *encode_params(game_params *params, int full)
118 {
119 char data[256];
120
121 sprintf(data, "%dx%d", params->w, params->h);
122 /* Shuffle limit is part of the limited parameters, because we have to
123 * supply the target move count. */
124 if (params->movetarget)
125 sprintf(data + strlen(data), "m%d", params->movetarget);
126
127 return dupstr(data);
128 }
129
130 static config_item *game_configure(game_params *params)
131 {
132 config_item *ret;
133 char buf[80];
134
135 ret = snewn(4, config_item);
136
137 ret[0].name = "Width";
138 ret[0].type = C_STRING;
139 sprintf(buf, "%d", params->w);
140 ret[0].sval = dupstr(buf);
141 ret[0].ival = 0;
142
143 ret[1].name = "Height";
144 ret[1].type = C_STRING;
145 sprintf(buf, "%d", params->h);
146 ret[1].sval = dupstr(buf);
147 ret[1].ival = 0;
148
149 ret[2].name = "Number of shuffling moves";
150 ret[2].type = C_STRING;
151 sprintf(buf, "%d", params->movetarget);
152 ret[2].sval = dupstr(buf);
153 ret[2].ival = 0;
154
155 ret[3].name = NULL;
156 ret[3].type = C_END;
157 ret[3].sval = NULL;
158 ret[3].ival = 0;
159
160 return ret;
161 }
162
163 static game_params *custom_params(config_item *cfg)
164 {
165 game_params *ret = snew(game_params);
166
167 ret->w = atoi(cfg[0].sval);
168 ret->h = atoi(cfg[1].sval);
169 ret->movetarget = atoi(cfg[2].sval);
170
171 return ret;
172 }
173
174 static char *validate_params(game_params *params)
175 {
176 if (params->w < 2 && params->h < 2)
177 return "Width and height must both be at least two";
178
179 return NULL;
180 }
181
182 static int perm_parity(int *perm, int n)
183 {
184 int i, j, ret;
185
186 ret = 0;
187
188 for (i = 0; i < n-1; i++)
189 for (j = i+1; j < n; j++)
190 if (perm[i] > perm[j])
191 ret = !ret;
192
193 return ret;
194 }
195
196 static char *new_game_desc(game_params *params, random_state *rs,
197 game_aux_info **aux)
198 {
199 int stop, n, i, x;
200 int x1, x2, p1, p2;
201 int *tiles, *used;
202 char *ret;
203 int retlen;
204
205 n = params->w * params->h;
206
207 tiles = snewn(n, int);
208
209 if (params->movetarget) {
210 int prevstart = -1, prevoffset = -1, prevdirection = 0, nrepeats = 0;
211
212 /*
213 * Shuffle the old-fashioned way, by making a series of
214 * single moves on the grid.
215 */
216
217 for (i = 0; i < n; i++)
218 tiles[i] = i;
219
220 for (i = 0; i < params->movetarget; i++) {
221 int start, offset, len, direction;
222 int j, tmp;
223
224 /*
225 * Choose a move to make. We can choose from any row
226 * or any column.
227 */
228 while (1) {
229 j = random_upto(rs, params->w + params->h);
230
231 if (j < params->w) {
232 /* Column. */
233 start = j;
234 offset = params->w;
235 len = params->h;
236 } else {
237 /* Row. */
238 start = (j - params->w) * params->w;
239 offset = 1;
240 len = params->w;
241 }
242
243 direction = -1 + 2 * random_upto(rs, 2);
244
245 /*
246 * To at least _try_ to avoid boring cases, check that
247 * this move doesn't directly undo the previous one, or
248 * repeat it so many times as to turn it into fewer
249 * moves.
250 */
251 if (start == prevstart && offset == prevoffset) {
252 if (direction == -prevdirection)
253 continue; /* inverse of previous move */
254 else if (2 * (nrepeats+1) > len)
255 continue; /* previous move repeated too often */
256 }
257
258 /* If we didn't `continue', we've found an OK move to make. */
259 break;
260 }
261
262 /*
263 * Now save the move into the `prev' variables.
264 */
265 if (start == prevstart && offset == prevoffset) {
266 nrepeats++;
267 } else {
268 prevstart = start;
269 prevoffset = offset;
270 prevdirection = direction;
271 nrepeats = 1;
272 }
273
274 /*
275 * And make it.
276 */
277 if (direction < 0) {
278 start += (len-1) * offset;
279 offset = -offset;
280 }
281 tmp = tiles[start];
282 for (j = 0; j+1 < len; j++)
283 tiles[start + j*offset] = tiles[start + (j+1)*offset];
284 tiles[start + (len-1) * offset] = tmp;
285 }
286
287 } else {
288
289 used = snewn(n, int);
290
291 for (i = 0; i < n; i++) {
292 tiles[i] = -1;
293 used[i] = FALSE;
294 }
295
296 /*
297 * If both dimensions are odd, there is a parity
298 * constraint.
299 */
300 if (params->w & params->h & 1)
301 stop = 2;
302 else
303 stop = 0;
304
305 /*
306 * Place everything except (possibly) the last two tiles.
307 */
308 for (x = 0, i = n; i > stop; i--) {
309 int k = i > 1 ? random_upto(rs, i) : 0;
310 int j;
311
312 for (j = 0; j < n; j++)
313 if (!used[j] && (k-- == 0))
314 break;
315
316 assert(j < n && !used[j]);
317 used[j] = TRUE;
318
319 while (tiles[x] >= 0)
320 x++;
321 assert(x < n);
322 tiles[x] = j;
323 }
324
325 if (stop) {
326 /*
327 * Find the last two locations, and the last two
328 * pieces.
329 */
330 while (tiles[x] >= 0)
331 x++;
332 assert(x < n);
333 x1 = x;
334 x++;
335 while (tiles[x] >= 0)
336 x++;
337 assert(x < n);
338 x2 = x;
339
340 for (i = 0; i < n; i++)
341 if (!used[i])
342 break;
343 p1 = i;
344 for (i = p1+1; i < n; i++)
345 if (!used[i])
346 break;
347 p2 = i;
348
349 /*
350 * Try the last two tiles one way round. If that fails,
351 * swap them.
352 */
353 tiles[x1] = p1;
354 tiles[x2] = p2;
355 if (perm_parity(tiles, n) != 0) {
356 tiles[x1] = p2;
357 tiles[x2] = p1;
358 assert(perm_parity(tiles, n) == 0);
359 }
360 }
361
362 sfree(used);
363 }
364
365 /*
366 * Now construct the game description, by describing the tile
367 * array as a simple sequence of comma-separated integers.
368 */
369 ret = NULL;
370 retlen = 0;
371 for (i = 0; i < n; i++) {
372 char buf[80];
373 int k;
374
375 k = sprintf(buf, "%d,", tiles[i]+1);
376
377 ret = sresize(ret, retlen + k + 1, char);
378 strcpy(ret + retlen, buf);
379 retlen += k;
380 }
381 ret[retlen-1] = '\0'; /* delete last comma */
382
383 sfree(tiles);
384
385 return ret;
386 }
387
388 static void game_free_aux_info(game_aux_info *aux)
389 {
390 assert(!"Shouldn't happen");
391 }
392
393
394 static char *validate_desc(game_params *params, char *desc)
395 {
396 char *p, *err;
397 int i, area;
398 int *used;
399
400 area = params->w * params->h;
401 p = desc;
402 err = NULL;
403
404 used = snewn(area, int);
405 for (i = 0; i < area; i++)
406 used[i] = FALSE;
407
408 for (i = 0; i < area; i++) {
409 char *q = p;
410 int n;
411
412 if (*p < '0' || *p > '9') {
413 err = "Not enough numbers in string";
414 goto leave;
415 }
416 while (*p >= '0' && *p <= '9')
417 p++;
418 if (i < area-1 && *p != ',') {
419 err = "Expected comma after number";
420 goto leave;
421 }
422 else if (i == area-1 && *p) {
423 err = "Excess junk at end of string";
424 goto leave;
425 }
426 n = atoi(q);
427 if (n < 1 || n > area) {
428 err = "Number out of range";
429 goto leave;
430 }
431 if (used[n-1]) {
432 err = "Number used twice";
433 goto leave;
434 }
435 used[n-1] = TRUE;
436
437 if (*p) p++; /* eat comma */
438 }
439
440 leave:
441 sfree(used);
442 return err;
443 }
444
445 static game_state *new_game(game_params *params, char *desc)
446 {
447 game_state *state = snew(game_state);
448 int i;
449 char *p;
450
451 state->w = params->w;
452 state->h = params->h;
453 state->n = params->w * params->h;
454 state->tiles = snewn(state->n, int);
455
456 p = desc;
457 i = 0;
458 for (i = 0; i < state->n; i++) {
459 assert(*p);
460 state->tiles[i] = atoi(p);
461 while (*p && *p != ',')
462 p++;
463 if (*p) p++; /* eat comma */
464 }
465 assert(!*p);
466
467 state->completed = state->movecount = 0;
468 state->movetarget = params->movetarget;
469 state->used_solve = state->just_used_solve = FALSE;
470 state->last_movement_sense = 0;
471
472 return state;
473 }
474
475 static game_state *dup_game(game_state *state)
476 {
477 game_state *ret = snew(game_state);
478
479 ret->w = state->w;
480 ret->h = state->h;
481 ret->n = state->n;
482 ret->tiles = snewn(state->w * state->h, int);
483 memcpy(ret->tiles, state->tiles, state->w * state->h * sizeof(int));
484 ret->completed = state->completed;
485 ret->movecount = state->movecount;
486 ret->movetarget = state->movetarget;
487 ret->used_solve = state->used_solve;
488 ret->just_used_solve = state->just_used_solve;
489 ret->last_movement_sense = state->last_movement_sense;
490
491 return ret;
492 }
493
494 static void free_game(game_state *state)
495 {
496 sfree(state);
497 }
498
499 static game_state *solve_game(game_state *state, game_aux_info *aux,
500 char **error)
501 {
502 game_state *ret = dup_game(state);
503 int i;
504
505 /*
506 * Simply replace the grid with a solved one. For this game,
507 * this isn't a useful operation for actually telling the user
508 * what they should have done, but it is useful for
509 * conveniently being able to get hold of a clean state from
510 * which to practise manoeuvres.
511 */
512 for (i = 0; i < ret->n; i++)
513 ret->tiles[i] = i+1;
514 ret->used_solve = ret->just_used_solve = TRUE;
515 ret->completed = ret->movecount = 1;
516
517 return ret;
518 }
519
520 static char *game_text_format(game_state *state)
521 {
522 char *ret, *p, buf[80];
523 int x, y, col, maxlen;
524
525 /*
526 * First work out how many characters we need to display each
527 * number.
528 */
529 col = sprintf(buf, "%d", state->n);
530
531 /*
532 * Now we know the exact total size of the grid we're going to
533 * produce: it's got h rows, each containing w lots of col, w-1
534 * spaces and a trailing newline.
535 */
536 maxlen = state->h * state->w * (col+1);
537
538 ret = snewn(maxlen+1, char);
539 p = ret;
540
541 for (y = 0; y < state->h; y++) {
542 for (x = 0; x < state->w; x++) {
543 int v = state->tiles[state->w*y+x];
544 sprintf(buf, "%*d", col, v);
545 memcpy(p, buf, col);
546 p += col;
547 if (x+1 == state->w)
548 *p++ = '\n';
549 else
550 *p++ = ' ';
551 }
552 }
553
554 assert(p - ret == maxlen);
555 *p = '\0';
556 return ret;
557 }
558
559 static game_ui *new_ui(game_state *state)
560 {
561 return NULL;
562 }
563
564 static void free_ui(game_ui *ui)
565 {
566 }
567
568 static game_state *make_move(game_state *from, game_ui *ui,
569 int x, int y, int button)
570 {
571 int cx, cy;
572 int dx, dy, tx, ty, n;
573 game_state *ret;
574
575 if (button != LEFT_BUTTON && button != RIGHT_BUTTON)
576 return NULL;
577
578 cx = FROMCOORD(x);
579 cy = FROMCOORD(y);
580 if (cx == -1 && cy >= 0 && cy < from->h)
581 n = from->w, dx = +1, dy = 0;
582 else if (cx == from->w && cy >= 0 && cy < from->h)
583 n = from->w, dx = -1, dy = 0;
584 else if (cy == -1 && cx >= 0 && cx < from->w)
585 n = from->h, dy = +1, dx = 0;
586 else if (cy == from->h && cx >= 0 && cx < from->w)
587 n = from->h, dy = -1, dx = 0;
588 else
589 return NULL; /* invalid click location */
590
591 /* reverse direction if right hand button is pressed */
592 if (button == RIGHT_BUTTON)
593 {
594 dx = -dx; if (dx) cx = from->w - 1 - cx;
595 dy = -dy; if (dy) cy = from->h - 1 - cy;
596 }
597
598 ret = dup_game(from);
599 ret->just_used_solve = FALSE; /* zero this in a hurry */
600
601 do {
602 cx += dx;
603 cy += dy;
604 tx = (cx + dx + from->w) % from->w;
605 ty = (cy + dy + from->h) % from->h;
606 ret->tiles[C(ret, cx, cy)] = from->tiles[C(from, tx, ty)];
607 } while (--n > 0);
608
609 ret->movecount++;
610
611 ret->last_movement_sense = -(dx+dy);
612
613 /*
614 * See if the game has been completed.
615 */
616 if (!ret->completed) {
617 ret->completed = ret->movecount;
618 for (n = 0; n < ret->n; n++)
619 if (ret->tiles[n] != n+1)
620 ret->completed = FALSE;
621 }
622
623 return ret;
624 }
625
626 /* ----------------------------------------------------------------------
627 * Drawing routines.
628 */
629
630 struct game_drawstate {
631 int started;
632 int w, h, bgcolour;
633 int *tiles;
634 };
635
636 static void game_size(game_params *params, int *x, int *y)
637 {
638 *x = TILE_SIZE * params->w + 2 * BORDER;
639 *y = TILE_SIZE * params->h + 2 * BORDER;
640 }
641
642 static float *game_colours(frontend *fe, game_state *state, int *ncolours)
643 {
644 float *ret = snewn(3 * NCOLOURS, float);
645 int i;
646 float max;
647
648 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
649
650 /*
651 * Drop the background colour so that the highlight is
652 * noticeably brighter than it while still being under 1.
653 */
654 max = ret[COL_BACKGROUND*3];
655 for (i = 1; i < 3; i++)
656 if (ret[COL_BACKGROUND*3+i] > max)
657 max = ret[COL_BACKGROUND*3+i];
658 if (max * 1.2F > 1.0F) {
659 for (i = 0; i < 3; i++)
660 ret[COL_BACKGROUND*3+i] /= (max * 1.2F);
661 }
662
663 for (i = 0; i < 3; i++) {
664 ret[COL_HIGHLIGHT * 3 + i] = ret[COL_BACKGROUND * 3 + i] * 1.2F;
665 ret[COL_LOWLIGHT * 3 + i] = ret[COL_BACKGROUND * 3 + i] * 0.8F;
666 ret[COL_TEXT * 3 + i] = 0.0;
667 }
668
669 *ncolours = NCOLOURS;
670 return ret;
671 }
672
673 static game_drawstate *game_new_drawstate(game_state *state)
674 {
675 struct game_drawstate *ds = snew(struct game_drawstate);
676 int i;
677
678 ds->started = FALSE;
679 ds->w = state->w;
680 ds->h = state->h;
681 ds->bgcolour = COL_BACKGROUND;
682 ds->tiles = snewn(ds->w*ds->h, int);
683 for (i = 0; i < ds->w*ds->h; i++)
684 ds->tiles[i] = -1;
685
686 return ds;
687 }
688
689 static void game_free_drawstate(game_drawstate *ds)
690 {
691 sfree(ds->tiles);
692 sfree(ds);
693 }
694
695 static void draw_tile(frontend *fe, game_state *state, int x, int y,
696 int tile, int flash_colour)
697 {
698 if (tile == 0) {
699 draw_rect(fe, x, y, TILE_SIZE, TILE_SIZE,
700 flash_colour);
701 } else {
702 int coords[6];
703 char str[40];
704
705 coords[0] = x + TILE_SIZE - 1;
706 coords[1] = y + TILE_SIZE - 1;
707 coords[2] = x + TILE_SIZE - 1;
708 coords[3] = y;
709 coords[4] = x;
710 coords[5] = y + TILE_SIZE - 1;
711 draw_polygon(fe, coords, 3, TRUE, COL_LOWLIGHT);
712 draw_polygon(fe, coords, 3, FALSE, COL_LOWLIGHT);
713
714 coords[0] = x;
715 coords[1] = y;
716 draw_polygon(fe, coords, 3, TRUE, COL_HIGHLIGHT);
717 draw_polygon(fe, coords, 3, FALSE, COL_HIGHLIGHT);
718
719 draw_rect(fe, x + HIGHLIGHT_WIDTH, y + HIGHLIGHT_WIDTH,
720 TILE_SIZE - 2*HIGHLIGHT_WIDTH, TILE_SIZE - 2*HIGHLIGHT_WIDTH,
721 flash_colour);
722
723 sprintf(str, "%d", tile);
724 draw_text(fe, x + TILE_SIZE/2, y + TILE_SIZE/2,
725 FONT_VARIABLE, TILE_SIZE/3, ALIGN_VCENTRE | ALIGN_HCENTRE,
726 COL_TEXT, str);
727 }
728 draw_update(fe, x, y, TILE_SIZE, TILE_SIZE);
729 }
730
731 static void draw_arrow(frontend *fe, int x, int y, int xdx, int xdy)
732 {
733 int coords[14];
734 int ydy = -xdx, ydx = xdy;
735
736 #define POINT(n, xx, yy) ( \
737 coords[2*(n)+0] = x + (xx)*xdx + (yy)*ydx, \
738 coords[2*(n)+1] = y + (xx)*xdy + (yy)*ydy)
739
740 POINT(0, TILE_SIZE / 2, 3 * TILE_SIZE / 4); /* top of arrow */
741 POINT(1, 3 * TILE_SIZE / 4, TILE_SIZE / 2); /* right corner */
742 POINT(2, 5 * TILE_SIZE / 8, TILE_SIZE / 2); /* right concave */
743 POINT(3, 5 * TILE_SIZE / 8, TILE_SIZE / 4); /* bottom right */
744 POINT(4, 3 * TILE_SIZE / 8, TILE_SIZE / 4); /* bottom left */
745 POINT(5, 3 * TILE_SIZE / 8, TILE_SIZE / 2); /* left concave */
746 POINT(6, TILE_SIZE / 4, TILE_SIZE / 2); /* left corner */
747
748 draw_polygon(fe, coords, 7, TRUE, COL_LOWLIGHT);
749 draw_polygon(fe, coords, 7, FALSE, COL_TEXT);
750 }
751
752 static void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate,
753 game_state *state, int dir, game_ui *ui,
754 float animtime, float flashtime)
755 {
756 int i, bgcolour;
757
758 if (flashtime > 0) {
759 int frame = (int)(flashtime / FLASH_FRAME);
760 bgcolour = (frame % 2 ? COL_LOWLIGHT : COL_HIGHLIGHT);
761 } else
762 bgcolour = COL_BACKGROUND;
763
764 if (!ds->started) {
765 int coords[6];
766
767 draw_rect(fe, 0, 0,
768 TILE_SIZE * state->w + 2 * BORDER,
769 TILE_SIZE * state->h + 2 * BORDER, COL_BACKGROUND);
770 draw_update(fe, 0, 0,
771 TILE_SIZE * state->w + 2 * BORDER,
772 TILE_SIZE * state->h + 2 * BORDER);
773
774 /*
775 * Recessed area containing the whole puzzle.
776 */
777 coords[0] = COORD(state->w) + HIGHLIGHT_WIDTH - 1;
778 coords[1] = COORD(state->h) + HIGHLIGHT_WIDTH - 1;
779 coords[2] = COORD(state->w) + HIGHLIGHT_WIDTH - 1;
780 coords[3] = COORD(0) - HIGHLIGHT_WIDTH;
781 coords[4] = COORD(0) - HIGHLIGHT_WIDTH;
782 coords[5] = COORD(state->h) + HIGHLIGHT_WIDTH - 1;
783 draw_polygon(fe, coords, 3, TRUE, COL_HIGHLIGHT);
784 draw_polygon(fe, coords, 3, FALSE, COL_HIGHLIGHT);
785
786 coords[1] = COORD(0) - HIGHLIGHT_WIDTH;
787 coords[0] = COORD(0) - HIGHLIGHT_WIDTH;
788 draw_polygon(fe, coords, 3, TRUE, COL_LOWLIGHT);
789 draw_polygon(fe, coords, 3, FALSE, COL_LOWLIGHT);
790
791 /*
792 * Arrows for making moves.
793 */
794 for (i = 0; i < state->w; i++) {
795 draw_arrow(fe, COORD(i), COORD(0), +1, 0);
796 draw_arrow(fe, COORD(i+1), COORD(state->h), -1, 0);
797 }
798 for (i = 0; i < state->h; i++) {
799 draw_arrow(fe, COORD(state->w), COORD(i), 0, +1);
800 draw_arrow(fe, COORD(0), COORD(i+1), 0, -1);
801 }
802
803 ds->started = TRUE;
804 }
805
806 /*
807 * Now draw each tile.
808 */
809
810 clip(fe, COORD(0), COORD(0), TILE_SIZE*state->w, TILE_SIZE*state->h);
811
812 for (i = 0; i < state->n; i++) {
813 int t, t0;
814 /*
815 * Figure out what should be displayed at this
816 * location. It's either a simple tile, or it's a
817 * transition between two tiles (in which case we say
818 * -1 because it must always be drawn).
819 */
820
821 if (oldstate && oldstate->tiles[i] != state->tiles[i])
822 t = -1;
823 else
824 t = state->tiles[i];
825
826 t0 = t;
827
828 if (ds->bgcolour != bgcolour || /* always redraw when flashing */
829 ds->tiles[i] != t || ds->tiles[i] == -1 || t == -1) {
830 int x, y, x2, y2;
831
832 /*
833 * Figure out what to _actually_ draw, and where to
834 * draw it.
835 */
836 if (t == -1) {
837 int x0, y0, x1, y1, dx, dy;
838 int j;
839 float c;
840 int sense;
841
842 if (dir < 0) {
843 assert(oldstate);
844 sense = -oldstate->last_movement_sense;
845 } else {
846 sense = state->last_movement_sense;
847 }
848
849 t = state->tiles[i];
850
851 /*
852 * FIXME: must be prepared to draw a double
853 * tile in some situations.
854 */
855
856 /*
857 * Find the coordinates of this tile in the old and
858 * new states.
859 */
860 x1 = COORD(X(state, i));
861 y1 = COORD(Y(state, i));
862 for (j = 0; j < oldstate->n; j++)
863 if (oldstate->tiles[j] == state->tiles[i])
864 break;
865 assert(j < oldstate->n);
866 x0 = COORD(X(state, j));
867 y0 = COORD(Y(state, j));
868
869 dx = (x1 - x0);
870 if (dx != 0 &&
871 dx != TILE_SIZE * sense) {
872 dx = (dx < 0 ? dx + TILE_SIZE * state->w :
873 dx - TILE_SIZE * state->w);
874 assert(abs(dx) == TILE_SIZE);
875 }
876 dy = (y1 - y0);
877 if (dy != 0 &&
878 dy != TILE_SIZE * sense) {
879 dy = (dy < 0 ? dy + TILE_SIZE * state->h :
880 dy - TILE_SIZE * state->h);
881 assert(abs(dy) == TILE_SIZE);
882 }
883
884 c = (animtime / ANIM_TIME);
885 if (c < 0.0F) c = 0.0F;
886 if (c > 1.0F) c = 1.0F;
887
888 x = x0 + (int)(c * dx);
889 y = y0 + (int)(c * dy);
890 x2 = x1 - dx + (int)(c * dx);
891 y2 = y1 - dy + (int)(c * dy);
892 } else {
893 x = COORD(X(state, i));
894 y = COORD(Y(state, i));
895 x2 = y2 = -1;
896 }
897
898 draw_tile(fe, state, x, y, t, bgcolour);
899 if (x2 != -1 || y2 != -1)
900 draw_tile(fe, state, x2, y2, t, bgcolour);
901 }
902 ds->tiles[i] = t0;
903 }
904
905 unclip(fe);
906
907 ds->bgcolour = bgcolour;
908
909 /*
910 * Update the status bar.
911 */
912 {
913 char statusbuf[256];
914
915 /*
916 * Don't show the new status until we're also showing the
917 * new _state_ - after the game animation is complete.
918 */
919 if (oldstate)
920 state = oldstate;
921
922 if (state->used_solve)
923 sprintf(statusbuf, "Moves since auto-solve: %d",
924 state->movecount - state->completed);
925 else {
926 sprintf(statusbuf, "%sMoves: %d",
927 (state->completed ? "COMPLETED! " : ""),
928 (state->completed ? state->completed : state->movecount));
929 if (state->movetarget)
930 sprintf(statusbuf+strlen(statusbuf), " (target %d)",
931 state->movetarget);
932 }
933
934 status_bar(fe, statusbuf);
935 }
936 }
937
938 static float game_anim_length(game_state *oldstate,
939 game_state *newstate, int dir)
940 {
941 if ((dir > 0 && newstate->just_used_solve) ||
942 (dir < 0 && oldstate->just_used_solve))
943 return 0.0F;
944 else
945 return ANIM_TIME;
946 }
947
948 static float game_flash_length(game_state *oldstate,
949 game_state *newstate, int dir)
950 {
951 if (!oldstate->completed && newstate->completed &&
952 !oldstate->used_solve && !newstate->used_solve)
953 return 2 * FLASH_FRAME;
954 else
955 return 0.0F;
956 }
957
958 static int game_wants_statusbar(void)
959 {
960 return TRUE;
961 }
962
963 #ifdef COMBINED
964 #define thegame sixteen
965 #endif
966
967 const struct game thegame = {
968 "Sixteen", "games.sixteen",
969 default_params,
970 game_fetch_preset,
971 decode_params,
972 encode_params,
973 free_params,
974 dup_params,
975 TRUE, game_configure, custom_params,
976 validate_params,
977 new_game_desc,
978 game_free_aux_info,
979 validate_desc,
980 new_game,
981 dup_game,
982 free_game,
983 TRUE, solve_game,
984 TRUE, game_text_format,
985 new_ui,
986 free_ui,
987 make_move,
988 game_size,
989 game_colours,
990 game_new_drawstate,
991 game_free_drawstate,
992 game_redraw,
993 game_anim_length,
994 game_flash_length,
995 game_wants_statusbar,
996 };