Patch from Mike: fix an array indexing error in the clue
[sgt/puzzles] / loopy.c
1 /*
2 * loopy.c: An implementation of the Nikoli game 'Loop the loop'.
3 * (c) Mike Pinna, 2005
4 *
5 * vim: set shiftwidth=4 :set textwidth=80:
6 */
7
8 /*
9 * TODO:
10 *
11 * - setting very high recursion depth seems to cause memory
12 * munching: are we recursing before checking completion, by any
13 * chance?
14 *
15 * - there's an interesting deductive technique which makes use of
16 * topology rather than just graph theory. Each _square_ in the
17 * grid is either inside or outside the loop; you can tell that
18 * two squares are on the same side of the loop if they're
19 * separated by an x (or, more generally, by a path crossing no
20 * LINE_UNKNOWNs and an even number of LINE_YESes), and on the
21 * opposite side of the loop if they're separated by a line (or
22 * an odd number of LINE_YESes and no LINE_UNKNOWNs). Oh, and
23 * any square separated from the outside of the grid by a
24 * LINE_YES or a LINE_NO is on the inside or outside
25 * respectively. So if you can track this for all squares, you
26 * can occasionally spot that two squares are separated by a
27 * LINE_UNKNOWN but their relative insideness is known, and
28 * therefore deduce the state of the edge between them.
29 * + An efficient way to track this would be by augmenting the
30 * disjoint set forest data structure. Each element, along
31 * with a pointer to a parent member of its equivalence
32 * class, would also carry a one-bit field indicating whether
33 * it was equal or opposite to its parent. Then you could
34 * keep flipping a bit as you ascended the tree during
35 * dsf_canonify(), and hence you'd be able to return the
36 * relationship of the input value to its ultimate parent
37 * (and also you could then get all those bits right when you
38 * went back up the tree rewriting). So you'd be able to
39 * query whether any two elements were known-equal,
40 * known-opposite, or not-known, and you could add new
41 * equalities or oppositenesses to increase your knowledge.
42 * (Of course the algorithm would have to fail an assertion
43 * if you tried to tell it two things it already knew to be
44 * opposite were equal, or vice versa!)
45 * This data structure would also be useful in the
46 * graph-theoretic part of the solver, where it could be used
47 * for storing information about which lines are known-identical
48 * or known-opposite. (For example if two lines bordering a 3
49 * are known-identical they must both be LINE_YES, and if they
50 * are known-opposite, the *other* two lines bordering that clue
51 * must be LINE_YES, etc). This may duplicate some
52 * functionality already present in the solver but it is more
53 * general and we could remove the old code, so that's no bad
54 * thing.
55 */
56
57 #include <stdio.h>
58 #include <stdlib.h>
59 #include <string.h>
60 #include <assert.h>
61 #include <ctype.h>
62 #include <math.h>
63
64 #include "puzzles.h"
65 #include "tree234.h"
66
67 #define PREFERRED_TILE_SIZE 32
68 #define TILE_SIZE (ds->tilesize)
69 #define LINEWIDTH TILE_SIZE / 16
70 #define BORDER (TILE_SIZE / 2)
71
72 #define FLASH_TIME 0.5F
73
74 #define HL_COUNT(state) ((state)->w * ((state)->h + 1))
75 #define VL_COUNT(state) (((state)->w + 1) * (state)->h)
76 #define DOT_COUNT(state) (((state)->w + 1) * ((state)->h + 1))
77 #define SQUARE_COUNT(state) ((state)->w * (state)->h)
78
79 #define ABOVE_SQUARE(state, i, j) ((state)->hl[(i) + (state)->w * (j)])
80 #define BELOW_SQUARE(state, i, j) ABOVE_SQUARE(state, i, (j)+1)
81
82 #define LEFTOF_SQUARE(state, i, j) ((state)->vl[(i) + ((state)->w + 1) * (j)])
83 #define RIGHTOF_SQUARE(state, i, j) LEFTOF_SQUARE(state, (i)+1, j)
84
85 #define LEGAL_DOT(state, i, j) ((i) >= 0 && (j) >= 0 && \
86 (i) <= (state)->w && (j) <= (state)->h)
87
88 /*
89 * These macros return rvalues only, but can cope with being passed
90 * out-of-range coordinates.
91 */
92 #define ABOVE_DOT(state, i, j) ((!LEGAL_DOT(state, i, j) || j <= 0) ? \
93 LINE_NO : LV_ABOVE_DOT(state, i, j))
94 #define BELOW_DOT(state, i, j) ((!LEGAL_DOT(state, i, j) || j >= (state)->h) ? \
95 LINE_NO : LV_BELOW_DOT(state, i, j))
96
97 #define LEFTOF_DOT(state, i, j) ((!LEGAL_DOT(state, i, j) || i <= 0) ? \
98 LINE_NO : LV_LEFTOF_DOT(state, i, j))
99 #define RIGHTOF_DOT(state, i, j) ((!LEGAL_DOT(state, i, j) || i >= (state)->w)?\
100 LINE_NO : LV_RIGHTOF_DOT(state, i, j))
101
102 /*
103 * These macros expect to be passed valid coordinates, and return
104 * lvalues.
105 */
106 #define LV_BELOW_DOT(state, i, j) ((state)->vl[(i) + ((state)->w + 1) * (j)])
107 #define LV_ABOVE_DOT(state, i, j) LV_BELOW_DOT(state, i, (j)-1)
108
109 #define LV_RIGHTOF_DOT(state, i, j) ((state)->hl[(i) + (state)->w * (j)])
110 #define LV_LEFTOF_DOT(state, i, j) LV_RIGHTOF_DOT(state, (i)-1, j)
111
112 #define CLUE_AT(state, i, j) ((i < 0 || i >= (state)->w || \
113 j < 0 || j >= (state)->h) ? \
114 ' ' : LV_CLUE_AT(state, i, j))
115
116 #define LV_CLUE_AT(state, i, j) ((state)->clues[(i) + (state)->w * (j)])
117
118 #define OPP(dir) (dir == LINE_UNKNOWN ? LINE_UNKNOWN : \
119 dir == LINE_YES ? LINE_NO : LINE_YES)
120
121 static char *game_text_format(game_state *state);
122
123 enum {
124 COL_BACKGROUND,
125 COL_FOREGROUND,
126 COL_HIGHLIGHT,
127 COL_MISTAKE,
128 NCOLOURS
129 };
130
131 /*
132 * Difficulty levels. I do some macro ickery here to ensure that my
133 * enum and the various forms of my name list always match up.
134 */
135 #define DIFFLIST(A) \
136 A(EASY,Easy,e) \
137 A(NORMAL,Normal,n)
138 #define ENUM(upper,title,lower) DIFF_ ## upper,
139 #define TITLE(upper,title,lower) #title,
140 #define ENCODE(upper,title,lower) #lower
141 #define CONFIG(upper,title,lower) ":" #title
142 enum { DIFFLIST(ENUM) DIFFCOUNT };
143 static char const *const loopy_diffnames[] = { DIFFLIST(TITLE) };
144 static char const loopy_diffchars[] = DIFFLIST(ENCODE);
145 #define DIFFCONFIG DIFFLIST(CONFIG)
146
147 /* LINE_YES_ERROR is only used in the drawing routine */
148 enum line_state { LINE_UNKNOWN, LINE_YES, LINE_NO /*, LINE_YES_ERROR*/ };
149
150 enum direction { UP, DOWN, LEFT, RIGHT };
151
152 struct game_params {
153 int w, h, diff, rec;
154 };
155
156 struct game_state {
157 int w, h;
158
159 /* Put ' ' in a square that doesn't get a clue */
160 char *clues;
161
162 /* Arrays of line states, stored left-to-right, top-to-bottom */
163 char *hl, *vl;
164
165 int solved;
166 int cheated;
167
168 int recursion_depth;
169 };
170
171 static game_state *dup_game(game_state *state)
172 {
173 game_state *ret = snew(game_state);
174
175 ret->h = state->h;
176 ret->w = state->w;
177 ret->solved = state->solved;
178 ret->cheated = state->cheated;
179
180 ret->clues = snewn(SQUARE_COUNT(state), char);
181 memcpy(ret->clues, state->clues, SQUARE_COUNT(state));
182
183 ret->hl = snewn(HL_COUNT(state), char);
184 memcpy(ret->hl, state->hl, HL_COUNT(state));
185
186 ret->vl = snewn(VL_COUNT(state), char);
187 memcpy(ret->vl, state->vl, VL_COUNT(state));
188
189 ret->recursion_depth = state->recursion_depth;
190
191 return ret;
192 }
193
194 static void free_game(game_state *state)
195 {
196 if (state) {
197 sfree(state->clues);
198 sfree(state->hl);
199 sfree(state->vl);
200 sfree(state);
201 }
202 }
203
204 enum solver_status {
205 SOLVER_SOLVED, /* This is the only solution the solver could find */
206 SOLVER_MISTAKE, /* This is definitely not a solution */
207 SOLVER_AMBIGUOUS, /* This _might_ be an ambiguous solution */
208 SOLVER_INCOMPLETE /* This may be a partial solution */
209 };
210
211 typedef struct solver_state {
212 game_state *state;
213 /* XXX dot_atleastone[i,j, dline] is equivalent to */
214 /* dot_atmostone[i,j,OPP_DLINE(dline)] */
215 char *dot_atleastone;
216 char *dot_atmostone;
217 /* char *dline_identical; */
218 int recursion_remaining;
219 enum solver_status solver_status;
220 int *dotdsf, *looplen;
221 } solver_state;
222
223 static solver_state *new_solver_state(game_state *state) {
224 solver_state *ret = snew(solver_state);
225 int i;
226
227 ret->state = dup_game(state);
228
229 ret->dot_atmostone = snewn(DOT_COUNT(state), char);
230 memset(ret->dot_atmostone, 0, DOT_COUNT(state));
231 ret->dot_atleastone = snewn(DOT_COUNT(state), char);
232 memset(ret->dot_atleastone, 0, DOT_COUNT(state));
233
234 #if 0
235 dline_identical = snewn(DOT_COUNT(state), char);
236 memset(dline_identical, 0, DOT_COUNT(state));
237 #endif
238
239 ret->recursion_remaining = state->recursion_depth;
240 ret->solver_status = SOLVER_INCOMPLETE; /* XXX This may be a lie */
241
242 ret->dotdsf = snewn(DOT_COUNT(state), int);
243 ret->looplen = snewn(DOT_COUNT(state), int);
244 for (i = 0; i < DOT_COUNT(state); i++) {
245 ret->dotdsf[i] = i;
246 ret->looplen[i] = 1;
247 }
248
249 return ret;
250 }
251
252 static void free_solver_state(solver_state *sstate) {
253 if (sstate) {
254 free_game(sstate->state);
255 sfree(sstate->dot_atleastone);
256 sfree(sstate->dot_atmostone);
257 /* sfree(sstate->dline_identical); */
258 sfree(sstate->dotdsf);
259 sfree(sstate->looplen);
260 sfree(sstate);
261 }
262 }
263
264 static solver_state *dup_solver_state(solver_state *sstate) {
265 game_state *state;
266
267 solver_state *ret = snew(solver_state);
268
269 ret->state = state = dup_game(sstate->state);
270
271 ret->dot_atmostone = snewn(DOT_COUNT(state), char);
272 memcpy(ret->dot_atmostone, sstate->dot_atmostone, DOT_COUNT(state));
273
274 ret->dot_atleastone = snewn(DOT_COUNT(state), char);
275 memcpy(ret->dot_atleastone, sstate->dot_atleastone, DOT_COUNT(state));
276
277 #if 0
278 ret->dline_identical = snewn((state->w + 1) * (state->h + 1), char);
279 memcpy(ret->dline_identical, state->dot_atmostone,
280 (state->w + 1) * (state->h + 1));
281 #endif
282
283 ret->recursion_remaining = sstate->recursion_remaining;
284 ret->solver_status = sstate->solver_status;
285
286 ret->dotdsf = snewn(DOT_COUNT(state), int);
287 ret->looplen = snewn(DOT_COUNT(state), int);
288 memcpy(ret->dotdsf, sstate->dotdsf, DOT_COUNT(state) * sizeof(int));
289 memcpy(ret->looplen, sstate->looplen, DOT_COUNT(state) * sizeof(int));
290
291 return ret;
292 }
293
294 /*
295 * Merge two dots due to the existence of an edge between them.
296 * Updates the dsf tracking equivalence classes, and keeps track of
297 * the length of path each dot is currently a part of.
298 */
299 static void merge_dots(solver_state *sstate, int x1, int y1, int x2, int y2)
300 {
301 int i, j, len;
302
303 i = y1 * (sstate->state->w + 1) + x1;
304 j = y2 * (sstate->state->w + 1) + x2;
305
306 i = dsf_canonify(sstate->dotdsf, i);
307 j = dsf_canonify(sstate->dotdsf, j);
308
309 if (i != j) {
310 len = sstate->looplen[i] + sstate->looplen[j];
311 dsf_merge(sstate->dotdsf, i, j);
312 i = dsf_canonify(sstate->dotdsf, i);
313 sstate->looplen[i] = len;
314 }
315 }
316
317 /* Count the number of lines of a particular type currently going into the
318 * given dot. Lines going off the edge of the board are assumed fixed no. */
319 static int dot_order(const game_state* state, int i, int j, char line_type)
320 {
321 int n = 0;
322
323 if (i > 0) {
324 if (LEFTOF_DOT(state, i, j) == line_type)
325 ++n;
326 } else {
327 if (line_type == LINE_NO)
328 ++n;
329 }
330 if (i < state->w) {
331 if (RIGHTOF_DOT(state, i, j) == line_type)
332 ++n;
333 } else {
334 if (line_type == LINE_NO)
335 ++n;
336 }
337 if (j > 0) {
338 if (ABOVE_DOT(state, i, j) == line_type)
339 ++n;
340 } else {
341 if (line_type == LINE_NO)
342 ++n;
343 }
344 if (j < state->h) {
345 if (BELOW_DOT(state, i, j) == line_type)
346 ++n;
347 } else {
348 if (line_type == LINE_NO)
349 ++n;
350 }
351
352 return n;
353 }
354 /* Count the number of lines of a particular type currently surrounding the
355 * given square */
356 static int square_order(const game_state* state, int i, int j, char line_type)
357 {
358 int n = 0;
359
360 if (ABOVE_SQUARE(state, i, j) == line_type)
361 ++n;
362 if (BELOW_SQUARE(state, i, j) == line_type)
363 ++n;
364 if (LEFTOF_SQUARE(state, i, j) == line_type)
365 ++n;
366 if (RIGHTOF_SQUARE(state, i, j) == line_type)
367 ++n;
368
369 return n;
370 }
371
372 /* Set all lines bordering a dot of type old_type to type new_type */
373 static void dot_setall(game_state *state, int i, int j,
374 char old_type, char new_type)
375 {
376 /* printf("dot_setall([%d,%d], %d, %d)\n", i, j, old_type, new_type); */
377 if (i > 0 && LEFTOF_DOT(state, i, j) == old_type)
378 LV_LEFTOF_DOT(state, i, j) = new_type;
379 if (i < state->w && RIGHTOF_DOT(state, i, j) == old_type)
380 LV_RIGHTOF_DOT(state, i, j) = new_type;
381 if (j > 0 && ABOVE_DOT(state, i, j) == old_type)
382 LV_ABOVE_DOT(state, i, j) = new_type;
383 if (j < state->h && BELOW_DOT(state, i, j) == old_type)
384 LV_BELOW_DOT(state, i, j) = new_type;
385 }
386 /* Set all lines bordering a square of type old_type to type new_type */
387 static void square_setall(game_state *state, int i, int j,
388 char old_type, char new_type)
389 {
390 if (ABOVE_SQUARE(state, i, j) == old_type)
391 ABOVE_SQUARE(state, i, j) = new_type;
392 if (BELOW_SQUARE(state, i, j) == old_type)
393 BELOW_SQUARE(state, i, j) = new_type;
394 if (LEFTOF_SQUARE(state, i, j) == old_type)
395 LEFTOF_SQUARE(state, i, j) = new_type;
396 if (RIGHTOF_SQUARE(state, i, j) == old_type)
397 RIGHTOF_SQUARE(state, i, j) = new_type;
398 }
399
400 static game_params *default_params(void)
401 {
402 game_params *ret = snew(game_params);
403
404 #ifdef SLOW_SYSTEM
405 ret->h = 4;
406 ret->w = 4;
407 #else
408 ret->h = 10;
409 ret->w = 10;
410 #endif
411 ret->diff = DIFF_EASY;
412 ret->rec = 0;
413
414 return ret;
415 }
416
417 static game_params *dup_params(game_params *params)
418 {
419 game_params *ret = snew(game_params);
420 *ret = *params; /* structure copy */
421 return ret;
422 }
423
424 static const struct {
425 char *desc;
426 game_params params;
427 } loopy_presets[] = {
428 { "4x4 Easy", { 4, 4, DIFF_EASY, 0 } },
429 { "4x4 Normal", { 4, 4, DIFF_NORMAL, 0 } },
430 { "7x7 Easy", { 7, 7, DIFF_EASY, 0 } },
431 { "7x7 Normal", { 7, 7, DIFF_NORMAL, 0 } },
432 { "10x10 Easy", { 10, 10, DIFF_EASY, 0 } },
433 { "10x10 Normal", { 10, 10, DIFF_NORMAL, 0 } },
434 #ifndef SLOW_SYSTEM
435 { "15x15 Easy", { 15, 15, DIFF_EASY, 0 } },
436 { "15x15 Normal", { 15, 15, DIFF_NORMAL, 0 } },
437 { "30x20 Easy", { 30, 20, DIFF_EASY, 0 } },
438 { "30x20 Normal", { 30, 20, DIFF_NORMAL, 0 } }
439 #endif
440 };
441
442 static int game_fetch_preset(int i, char **name, game_params **params)
443 {
444 game_params tmppar;
445
446 if (i < 0 || i >= lenof(loopy_presets))
447 return FALSE;
448
449 tmppar = loopy_presets[i].params;
450 *params = dup_params(&tmppar);
451 *name = dupstr(loopy_presets[i].desc);
452
453 return TRUE;
454 }
455
456 static void free_params(game_params *params)
457 {
458 sfree(params);
459 }
460
461 static void decode_params(game_params *params, char const *string)
462 {
463 params->h = params->w = atoi(string);
464 params->rec = 0;
465 params->diff = DIFF_EASY;
466 while (*string && isdigit((unsigned char)*string)) string++;
467 if (*string == 'x') {
468 string++;
469 params->h = atoi(string);
470 while (*string && isdigit((unsigned char)*string)) string++;
471 }
472 if (*string == 'r') {
473 string++;
474 params->rec = atoi(string);
475 while (*string && isdigit((unsigned char)*string)) string++;
476 }
477 if (*string == 'd') {
478 int i;
479
480 string++;
481 for (i = 0; i < DIFFCOUNT; i++)
482 if (*string == loopy_diffchars[i])
483 params->diff = i;
484 if (*string) string++;
485 }
486 }
487
488 static char *encode_params(game_params *params, int full)
489 {
490 char str[80];
491 sprintf(str, "%dx%d", params->w, params->h);
492 if (full)
493 sprintf(str + strlen(str), "r%dd%c", params->rec,
494 loopy_diffchars[params->diff]);
495 return dupstr(str);
496 }
497
498 static config_item *game_configure(game_params *params)
499 {
500 config_item *ret;
501 char buf[80];
502
503 ret = snewn(4, config_item);
504
505 ret[0].name = "Width";
506 ret[0].type = C_STRING;
507 sprintf(buf, "%d", params->w);
508 ret[0].sval = dupstr(buf);
509 ret[0].ival = 0;
510
511 ret[1].name = "Height";
512 ret[1].type = C_STRING;
513 sprintf(buf, "%d", params->h);
514 ret[1].sval = dupstr(buf);
515 ret[1].ival = 0;
516
517 ret[2].name = "Difficulty";
518 ret[2].type = C_CHOICES;
519 ret[2].sval = DIFFCONFIG;
520 ret[2].ival = params->diff;
521
522 ret[3].name = NULL;
523 ret[3].type = C_END;
524 ret[3].sval = NULL;
525 ret[3].ival = 0;
526
527 return ret;
528 }
529
530 static game_params *custom_params(config_item *cfg)
531 {
532 game_params *ret = snew(game_params);
533
534 ret->w = atoi(cfg[0].sval);
535 ret->h = atoi(cfg[1].sval);
536 ret->rec = 0;
537 ret->diff = cfg[2].ival;
538
539 return ret;
540 }
541
542 static char *validate_params(game_params *params, int full)
543 {
544 if (params->w < 4 || params->h < 4)
545 return "Width and height must both be at least 4";
546 if (params->rec < 0)
547 return "Recursion depth can't be negative";
548
549 /*
550 * This shouldn't be able to happen at all, since decode_params
551 * and custom_params will never generate anything that isn't
552 * within range.
553 */
554 assert(params->diff >= 0 && params->diff < DIFFCOUNT);
555
556 return NULL;
557 }
558
559 /* We're going to store a list of current candidate squares for lighting.
560 * Each square gets a 'score', which tells us how adding that square right
561 * now would affect the length of the solution loop. We're trying to
562 * maximise that quantity so will bias our random selection of squares to
563 * light towards those with high scores */
564 struct square {
565 int score;
566 unsigned long random;
567 int x, y;
568 };
569
570 static int get_square_cmpfn(void *v1, void *v2)
571 {
572 struct square *s1 = (struct square *)v1;
573 struct square *s2 = (struct square *)v2;
574 int r;
575
576 r = s1->x - s2->x;
577 if (r)
578 return r;
579
580 r = s1->y - s2->y;
581 if (r)
582 return r;
583
584 return 0;
585 }
586
587 static int square_sort_cmpfn(void *v1, void *v2)
588 {
589 struct square *s1 = (struct square *)v1;
590 struct square *s2 = (struct square *)v2;
591 int r;
592
593 r = s2->score - s1->score;
594 if (r) {
595 return r;
596 }
597
598 if (s1->random < s2->random)
599 return -1;
600 else if (s1->random > s2->random)
601 return 1;
602
603 /*
604 * It's _just_ possible that two squares might have been given
605 * the same random value. In that situation, fall back to
606 * comparing based on the coordinates. This introduces a tiny
607 * directional bias, but not a significant one.
608 */
609 return get_square_cmpfn(v1, v2);
610 }
611
612 static void print_tree(tree234 *tree)
613 {
614 #if 0
615 int i = 0;
616 struct square *s;
617 printf("Print tree:\n");
618 while (i < count234(tree)) {
619 s = (struct square *)index234(tree, i);
620 assert(s);
621 printf(" [%d,%d], %d, %d\n", s->x, s->y, s->score, s->random);
622 ++i;
623 }
624 #endif
625 }
626
627 enum { SQUARE_LIT, SQUARE_UNLIT };
628
629 #define SQUARE_STATE(i, j) \
630 (((i) < 0 || (i) >= params->w || \
631 (j) < 0 || (j) >= params->h) ? \
632 SQUARE_UNLIT : LV_SQUARE_STATE(i,j))
633
634 #define LV_SQUARE_STATE(i, j) board[(i) + params->w * (j)]
635
636 static void print_board(const game_params *params, const char *board)
637 {
638 #if 0
639 int i,j;
640
641 printf(" ");
642 for (i = 0; i < params->w; i++) {
643 printf("%d", i%10);
644 }
645 printf("\n");
646 for (j = 0; j < params->h; j++) {
647 printf("%d", j%10);
648 for (i = 0; i < params->w; i++) {
649 printf("%c", SQUARE_STATE(i, j) ? ' ' : 'O');
650 }
651 printf("\n");
652 }
653 #endif
654 }
655
656 static char *new_fullyclued_board(game_params *params, random_state *rs)
657 {
658 char *clues;
659 char *board;
660 int i, j, a, b, c;
661 game_state s;
662 game_state *state = &s;
663 int board_area = SQUARE_COUNT(params);
664 int t;
665
666 struct square *square, *tmpsquare, *sq;
667 struct square square_pos;
668
669 /* These will contain exactly the same information, sorted into different
670 * orders */
671 tree234 *lightable_squares_sorted, *lightable_squares_gettable;
672
673 #define SQUARE_REACHABLE(i,j) \
674 (t = (SQUARE_STATE(i-1, j) == SQUARE_LIT || \
675 SQUARE_STATE(i+1, j) == SQUARE_LIT || \
676 SQUARE_STATE(i, j-1) == SQUARE_LIT || \
677 SQUARE_STATE(i, j+1) == SQUARE_LIT), \
678 /* printf("SQUARE_REACHABLE(%d,%d) = %d\n", i, j, t), */ \
679 t)
680
681
682 /* One situation in which we may not light a square is if that'll leave one
683 * square above/below and one left/right of us unlit, separated by a lit
684 * square diagnonal from us */
685 #define SQUARE_DIAGONAL_VIOLATION(i, j, h, v) \
686 (t = (SQUARE_STATE((i)+(h), (j)) == SQUARE_UNLIT && \
687 SQUARE_STATE((i), (j)+(v)) == SQUARE_UNLIT && \
688 SQUARE_STATE((i)+(h), (j)+(v)) == SQUARE_LIT), \
689 /* t ? printf("SQUARE_DIAGONAL_VIOLATION(%d, %d, %d, %d)\n",
690 i, j, h, v) : 0,*/ \
691 t)
692
693 /* We also may not light a square if it will form a loop of lit squares
694 * around some unlit squares, as then the game soln won't have a single
695 * loop */
696 #define SQUARE_LOOP_VIOLATION(i, j, lit1, lit2) \
697 (SQUARE_STATE((i)+1, (j)) == lit1 && \
698 SQUARE_STATE((i)-1, (j)) == lit1 && \
699 SQUARE_STATE((i), (j)+1) == lit2 && \
700 SQUARE_STATE((i), (j)-1) == lit2)
701
702 #define CAN_LIGHT_SQUARE(i, j) \
703 (SQUARE_REACHABLE(i, j) && \
704 !SQUARE_DIAGONAL_VIOLATION(i, j, -1, -1) && \
705 !SQUARE_DIAGONAL_VIOLATION(i, j, +1, -1) && \
706 !SQUARE_DIAGONAL_VIOLATION(i, j, -1, +1) && \
707 !SQUARE_DIAGONAL_VIOLATION(i, j, +1, +1) && \
708 !SQUARE_LOOP_VIOLATION(i, j, SQUARE_LIT, SQUARE_UNLIT) && \
709 !SQUARE_LOOP_VIOLATION(i, j, SQUARE_UNLIT, SQUARE_LIT))
710
711 #define IS_LIGHTING_CANDIDATE(i, j) \
712 (SQUARE_STATE(i, j) == SQUARE_UNLIT && \
713 CAN_LIGHT_SQUARE(i,j))
714
715 /* The 'score' of a square reflects its current desirability for selection
716 * as the next square to light. We want to encourage moving into uncharted
717 * areas so we give scores according to how many of the square's neighbours
718 * are currently unlit. */
719
720 /* UNLIT SCORE
721 * 3 2
722 * 2 0
723 * 1 -2
724 */
725 #define SQUARE_SCORE(i,j) \
726 (2*((SQUARE_STATE(i-1, j) == SQUARE_UNLIT) + \
727 (SQUARE_STATE(i+1, j) == SQUARE_UNLIT) + \
728 (SQUARE_STATE(i, j-1) == SQUARE_UNLIT) + \
729 (SQUARE_STATE(i, j+1) == SQUARE_UNLIT)) - 4)
730
731 /* When a square gets lit, this defines how far away from that square we
732 * need to go recomputing scores */
733 #define SCORE_DISTANCE 1
734
735 board = snewn(board_area, char);
736 clues = snewn(board_area, char);
737
738 state->h = params->h;
739 state->w = params->w;
740 state->clues = clues;
741
742 /* Make a board */
743 memset(board, SQUARE_UNLIT, board_area);
744
745 /* Seed the board with a single lit square near the middle */
746 i = params->w / 2;
747 j = params->h / 2;
748 if (params->w & 1 && random_bits(rs, 1))
749 ++i;
750 if (params->h & 1 && random_bits(rs, 1))
751 ++j;
752
753 LV_SQUARE_STATE(i, j) = SQUARE_LIT;
754
755 /* We need a way of favouring squares that will increase our loopiness.
756 * We do this by maintaining a list of all candidate squares sorted by
757 * their score and choose randomly from that with appropriate skew.
758 * In order to avoid consistently biasing towards particular squares, we
759 * need the sort order _within_ each group of scores to be completely
760 * random. But it would be abusing the hospitality of the tree234 data
761 * structure if our comparison function were nondeterministic :-). So with
762 * each square we associate a random number that does not change during a
763 * particular run of the generator, and use that as a secondary sort key.
764 * Yes, this means we will be biased towards particular random squares in
765 * any one run but that doesn't actually matter. */
766
767 lightable_squares_sorted = newtree234(square_sort_cmpfn);
768 lightable_squares_gettable = newtree234(get_square_cmpfn);
769 #define ADD_SQUARE(s) \
770 do { \
771 /* printf("ADD SQUARE: [%d,%d], %d, %d\n",
772 s->x, s->y, s->score, s->random);*/ \
773 sq = add234(lightable_squares_sorted, s); \
774 assert(sq == s); \
775 sq = add234(lightable_squares_gettable, s); \
776 assert(sq == s); \
777 } while (0)
778
779 #define REMOVE_SQUARE(s) \
780 do { \
781 /* printf("DELETE SQUARE: [%d,%d], %d, %d\n",
782 s->x, s->y, s->score, s->random);*/ \
783 sq = del234(lightable_squares_sorted, s); \
784 assert(sq); \
785 sq = del234(lightable_squares_gettable, s); \
786 assert(sq); \
787 } while (0)
788
789 #define HANDLE_DIR(a, b) \
790 square = snew(struct square); \
791 square->x = (i)+(a); \
792 square->y = (j)+(b); \
793 square->score = 2; \
794 square->random = random_bits(rs, 31); \
795 ADD_SQUARE(square);
796 HANDLE_DIR(-1, 0);
797 HANDLE_DIR( 1, 0);
798 HANDLE_DIR( 0,-1);
799 HANDLE_DIR( 0, 1);
800 #undef HANDLE_DIR
801
802 /* Light squares one at a time until the board is interesting enough */
803 while (TRUE)
804 {
805 /* We have count234(lightable_squares) possibilities, and in
806 * lightable_squares_sorted they are sorted with the most desirable
807 * first. */
808 c = count234(lightable_squares_sorted);
809 if (c == 0)
810 break;
811 assert(c == count234(lightable_squares_gettable));
812
813 /* Check that the best square available is any good */
814 square = (struct square *)index234(lightable_squares_sorted, 0);
815 assert(square);
816
817 /*
818 * We never want to _decrease_ the loop's perimeter. Making
819 * moves that leave the perimeter the same is occasionally
820 * useful: if it were _never_ done then the user would be
821 * able to deduce illicitly that any degree-zero vertex was
822 * on the outside of the loop. So we do it sometimes but
823 * not always.
824 */
825 if (square->score < 0 || (square->score == 0 &&
826 random_upto(rs, 2) == 0))
827 break;
828
829 print_tree(lightable_squares_sorted);
830 assert(square->score == SQUARE_SCORE(square->x, square->y));
831 assert(SQUARE_STATE(square->x, square->y) == SQUARE_UNLIT);
832 assert(square->x >= 0 && square->x < params->w);
833 assert(square->y >= 0 && square->y < params->h);
834 /* printf("LIGHT SQUARE: [%d,%d], score = %d\n", square->x, square->y, square->score); */
835
836 /* Update data structures */
837 LV_SQUARE_STATE(square->x, square->y) = SQUARE_LIT;
838 REMOVE_SQUARE(square);
839
840 print_board(params, board);
841
842 /* We might have changed the score of any squares up to 2 units away in
843 * any direction */
844 for (b = -SCORE_DISTANCE; b <= SCORE_DISTANCE; b++) {
845 for (a = -SCORE_DISTANCE; a <= SCORE_DISTANCE; a++) {
846 if (!a && !b)
847 continue;
848 square_pos.x = square->x + a;
849 square_pos.y = square->y + b;
850 /* printf("Refreshing score for [%d,%d]:\n", square_pos.x, square_pos.y); */
851 if (square_pos.x < 0 || square_pos.x >= params->w ||
852 square_pos.y < 0 || square_pos.y >= params->h) {
853 /* printf(" Out of bounds\n"); */
854 continue;
855 }
856 tmpsquare = find234(lightable_squares_gettable, &square_pos,
857 NULL);
858 if (tmpsquare) {
859 /* printf(" Removing\n"); */
860 assert(tmpsquare->x == square_pos.x);
861 assert(tmpsquare->y == square_pos.y);
862 assert(SQUARE_STATE(tmpsquare->x, tmpsquare->y) ==
863 SQUARE_UNLIT);
864 REMOVE_SQUARE(tmpsquare);
865 } else {
866 /* printf(" Creating\n"); */
867 tmpsquare = snew(struct square);
868 tmpsquare->x = square_pos.x;
869 tmpsquare->y = square_pos.y;
870 tmpsquare->random = random_bits(rs, 31);
871 }
872 tmpsquare->score = SQUARE_SCORE(tmpsquare->x, tmpsquare->y);
873
874 if (IS_LIGHTING_CANDIDATE(tmpsquare->x, tmpsquare->y)) {
875 /* printf(" Adding\n"); */
876 ADD_SQUARE(tmpsquare);
877 } else {
878 /* printf(" Destroying\n"); */
879 sfree(tmpsquare);
880 }
881 }
882 }
883 sfree(square);
884 /* printf("\n\n"); */
885 }
886
887 while ((square = delpos234(lightable_squares_gettable, 0)) != NULL)
888 sfree(square);
889 freetree234(lightable_squares_gettable);
890 freetree234(lightable_squares_sorted);
891
892 /* Copy out all the clues */
893 for (j = 0; j < params->h; ++j) {
894 for (i = 0; i < params->w; ++i) {
895 c = SQUARE_STATE(i, j);
896 LV_CLUE_AT(state, i, j) = '0';
897 if (SQUARE_STATE(i-1, j) != c) ++LV_CLUE_AT(state, i, j);
898 if (SQUARE_STATE(i+1, j) != c) ++LV_CLUE_AT(state, i, j);
899 if (SQUARE_STATE(i, j-1) != c) ++LV_CLUE_AT(state, i, j);
900 if (SQUARE_STATE(i, j+1) != c) ++LV_CLUE_AT(state, i, j);
901 }
902 }
903
904 sfree(board);
905 return clues;
906 }
907
908 static solver_state *solve_game_rec(const solver_state *sstate, int diff);
909
910 static int game_has_unique_soln(const game_state *state, int diff)
911 {
912 int ret;
913 solver_state *sstate_new;
914 solver_state *sstate = new_solver_state((game_state *)state);
915
916 sstate_new = solve_game_rec(sstate, diff);
917
918 ret = (sstate_new->solver_status == SOLVER_SOLVED);
919
920 free_solver_state(sstate_new);
921 free_solver_state(sstate);
922
923 return ret;
924 }
925
926 /* Remove clues one at a time at random. */
927 static game_state *remove_clues(game_state *state, random_state *rs, int diff)
928 {
929 int *square_list, squares;
930 game_state *ret = dup_game(state), *saved_ret;
931 int n;
932
933 /* We need to remove some clues. We'll do this by forming a list of all
934 * available equivalence classes, shuffling it, then going along one at a
935 * time clearing every member of each equivalence class, where removing a
936 * class doesn't render the board unsolvable. */
937 squares = state->w * state->h;
938 square_list = snewn(squares, int);
939 for (n = 0; n < squares; ++n) {
940 square_list[n] = n;
941 }
942
943 shuffle(square_list, squares, sizeof(int), rs);
944
945 for (n = 0; n < squares; ++n) {
946 saved_ret = dup_game(ret);
947 LV_CLUE_AT(ret, square_list[n] % state->w,
948 square_list[n] / state->w) = ' ';
949 if (game_has_unique_soln(ret, diff)) {
950 free_game(saved_ret);
951 } else {
952 free_game(ret);
953 ret = saved_ret;
954 }
955 }
956 sfree(square_list);
957
958 return ret;
959 }
960
961 static char *validate_desc(game_params *params, char *desc);
962
963 static char *new_game_desc(game_params *params, random_state *rs,
964 char **aux, int interactive)
965 {
966 /* solution and description both use run-length encoding in obvious ways */
967 char *retval;
968 char *description = snewn(SQUARE_COUNT(params) + 1, char);
969 char *dp = description;
970 int i, j;
971 int empty_count;
972 game_state *state = snew(game_state), *state_new;
973
974 state->h = params->h;
975 state->w = params->w;
976
977 state->hl = snewn(HL_COUNT(params), char);
978 state->vl = snewn(VL_COUNT(params), char);
979
980 newboard_please:
981 memset(state->hl, LINE_UNKNOWN, HL_COUNT(params));
982 memset(state->vl, LINE_UNKNOWN, VL_COUNT(params));
983
984 state->solved = state->cheated = FALSE;
985 state->recursion_depth = params->rec;
986
987 /* Get a new random solvable board with all its clues filled in. Yes, this
988 * can loop for ever if the params are suitably unfavourable, but
989 * preventing games smaller than 4x4 seems to stop this happening */
990
991 do {
992 state->clues = new_fullyclued_board(params, rs);
993 } while (!game_has_unique_soln(state, params->diff));
994
995 state_new = remove_clues(state, rs, params->diff);
996 free_game(state);
997 state = state_new;
998
999 if (params->diff > 0 && game_has_unique_soln(state, params->diff-1)) {
1000 /* Board is too easy */
1001 goto newboard_please;
1002 }
1003
1004 empty_count = 0;
1005 for (j = 0; j < params->h; ++j) {
1006 for (i = 0; i < params->w; ++i) {
1007 if (CLUE_AT(state, i, j) == ' ') {
1008 if (empty_count > 25) {
1009 dp += sprintf(dp, "%c", (int)(empty_count + 'a' - 1));
1010 empty_count = 0;
1011 }
1012 empty_count++;
1013 } else {
1014 if (empty_count) {
1015 dp += sprintf(dp, "%c", (int)(empty_count + 'a' - 1));
1016 empty_count = 0;
1017 }
1018 dp += sprintf(dp, "%c", (int)(CLUE_AT(state, i, j)));
1019 }
1020 }
1021 }
1022 if (empty_count)
1023 dp += sprintf(dp, "%c", (int)(empty_count + 'a' - 1));
1024
1025 free_game(state);
1026 retval = dupstr(description);
1027 sfree(description);
1028
1029 assert(!validate_desc(params, retval));
1030
1031 return retval;
1032 }
1033
1034 /* We require that the params pass the test in validate_params and that the
1035 * description fills the entire game area */
1036 static char *validate_desc(game_params *params, char *desc)
1037 {
1038 int count = 0;
1039
1040 for (; *desc; ++desc) {
1041 if (*desc >= '0' && *desc <= '9') {
1042 count++;
1043 continue;
1044 }
1045 if (*desc >= 'a') {
1046 count += *desc - 'a' + 1;
1047 continue;
1048 }
1049 return "Unknown character in description";
1050 }
1051
1052 if (count < SQUARE_COUNT(params))
1053 return "Description too short for board size";
1054 if (count > SQUARE_COUNT(params))
1055 return "Description too long for board size";
1056
1057 return NULL;
1058 }
1059
1060 static game_state *new_game(midend *me, game_params *params, char *desc)
1061 {
1062 int i,j;
1063 game_state *state = snew(game_state);
1064 int empties_to_make = 0;
1065 int n;
1066 const char *dp = desc;
1067
1068 state->recursion_depth = 0; /* XXX pending removal, probably */
1069
1070 state->h = params->h;
1071 state->w = params->w;
1072
1073 state->clues = snewn(SQUARE_COUNT(params), char);
1074 state->hl = snewn(HL_COUNT(params), char);
1075 state->vl = snewn(VL_COUNT(params), char);
1076
1077 state->solved = state->cheated = FALSE;
1078
1079 for (j = 0 ; j < params->h; ++j) {
1080 for (i = 0 ; i < params->w; ++i) {
1081 if (empties_to_make) {
1082 empties_to_make--;
1083 LV_CLUE_AT(state, i, j) = ' ';
1084 continue;
1085 }
1086
1087 assert(*dp);
1088 n = *dp - '0';
1089 if (n >=0 && n < 10) {
1090 LV_CLUE_AT(state, i, j) = *dp;
1091 } else {
1092 n = *dp - 'a' + 1;
1093 assert(n > 0);
1094 LV_CLUE_AT(state, i, j) = ' ';
1095 empties_to_make = n - 1;
1096 }
1097 ++dp;
1098 }
1099 }
1100
1101 memset(state->hl, LINE_UNKNOWN, HL_COUNT(params));
1102 memset(state->vl, LINE_UNKNOWN, VL_COUNT(params));
1103
1104 return state;
1105 }
1106
1107 enum { LOOP_NONE=0, LOOP_SOLN, LOOP_NOT_SOLN };
1108
1109 /* Starting at dot [i,j] moves around 'state' removing lines until it's clear
1110 * whether or not the starting dot was on a loop. Returns boolean specifying
1111 * whether a loop was found. loop_status calls this and assumes that if state
1112 * has any lines set, this function will always remove at least one. */
1113 static int destructively_find_loop(game_state *state)
1114 {
1115 int a, b, i, j, new_i, new_j, n;
1116 char *lp;
1117
1118 lp = (char *)memchr(state->hl, LINE_YES, HL_COUNT(state));
1119 if (!lp) {
1120 /* We know we're going to return false but we have to fulfil our
1121 * contract */
1122 lp = (char *)memchr(state->vl, LINE_YES, VL_COUNT(state));
1123 if (lp)
1124 *lp = LINE_NO;
1125
1126 return FALSE;
1127 }
1128
1129 n = lp - state->hl;
1130
1131 i = n % state->w;
1132 j = n / state->w;
1133
1134 assert(i + j * state->w == n); /* because I'm feeling stupid */
1135 /* Save start position */
1136 a = i;
1137 b = j;
1138
1139 /* Delete one line from the potential loop */
1140 if (LEFTOF_DOT(state, i, j) == LINE_YES) {
1141 LV_LEFTOF_DOT(state, i, j) = LINE_NO;
1142 i--;
1143 } else if (ABOVE_DOT(state, i, j) == LINE_YES) {
1144 LV_ABOVE_DOT(state, i, j) = LINE_NO;
1145 j--;
1146 } else if (RIGHTOF_DOT(state, i, j) == LINE_YES) {
1147 LV_RIGHTOF_DOT(state, i, j) = LINE_NO;
1148 i++;
1149 } else if (BELOW_DOT(state, i, j) == LINE_YES) {
1150 LV_BELOW_DOT(state, i, j) = LINE_NO;
1151 j++;
1152 } else {
1153 return FALSE;
1154 }
1155
1156 do {
1157 /* From the current position of [i,j] there needs to be exactly one
1158 * line */
1159 new_i = new_j = -1;
1160
1161 #define HANDLE_DIR(dir_dot, x, y) \
1162 if (dir_dot(state, i, j) == LINE_YES) { \
1163 if (new_i != -1 || new_j != -1) \
1164 return FALSE; \
1165 new_i = (i)+(x); \
1166 new_j = (j)+(y); \
1167 LV_##dir_dot(state, i, j) = LINE_NO; \
1168 }
1169 HANDLE_DIR(ABOVE_DOT, 0, -1);
1170 HANDLE_DIR(BELOW_DOT, 0, +1);
1171 HANDLE_DIR(LEFTOF_DOT, -1, 0);
1172 HANDLE_DIR(RIGHTOF_DOT, +1, 0);
1173 #undef HANDLE_DIR
1174 if (new_i == -1 || new_j == -1) {
1175 return FALSE;
1176 }
1177
1178 i = new_i;
1179 j = new_j;
1180 } while (i != a || j != b);
1181
1182 return TRUE;
1183 }
1184
1185 static int loop_status(game_state *state)
1186 {
1187 int i, j, n;
1188 game_state *tmpstate;
1189 int loop_found = FALSE, non_loop_found = FALSE, any_lines_found = FALSE;
1190
1191 #define BAD_LOOP_FOUND \
1192 do { free_game(tmpstate); return LOOP_NOT_SOLN; } while(0)
1193
1194 /* Repeatedly look for loops until we either run out of lines to consider
1195 * or discover for sure that the board fails on the grounds of having no
1196 * loop */
1197 tmpstate = dup_game(state);
1198
1199 while (TRUE) {
1200 if (!memchr(tmpstate->hl, LINE_YES, HL_COUNT(tmpstate)) &&
1201 !memchr(tmpstate->vl, LINE_YES, VL_COUNT(tmpstate))) {
1202 break;
1203 }
1204 any_lines_found = TRUE;
1205
1206 if (loop_found)
1207 BAD_LOOP_FOUND;
1208 if (destructively_find_loop(tmpstate)) {
1209 loop_found = TRUE;
1210 if (non_loop_found)
1211 BAD_LOOP_FOUND;
1212 } else {
1213 non_loop_found = TRUE;
1214 }
1215 }
1216
1217 free_game(tmpstate);
1218
1219 if (!any_lines_found)
1220 return LOOP_NONE;
1221
1222 if (non_loop_found) {
1223 assert(!loop_found); /* should have dealt with this already */
1224 return LOOP_NONE;
1225 }
1226
1227 /* Check that every clue is satisfied */
1228 for (j = 0; j < state->h; ++j) {
1229 for (i = 0; i < state->w; ++i) {
1230 n = CLUE_AT(state, i, j);
1231 if (n != ' ') {
1232 if (square_order(state, i, j, LINE_YES) != n - '0') {
1233 return LOOP_NOT_SOLN;
1234 }
1235 }
1236 }
1237 }
1238
1239 return LOOP_SOLN;
1240 }
1241
1242 /* Sums the lengths of the numbers in range [0,n) */
1243 /* See equivalent function in solo.c for justification of this. */
1244 static int len_0_to_n(int n)
1245 {
1246 int len = 1; /* Counting 0 as a bit of a special case */
1247 int i;
1248
1249 for (i = 1; i < n; i *= 10) {
1250 len += max(n - i, 0);
1251 }
1252
1253 return len;
1254 }
1255
1256 static char *encode_solve_move(const game_state *state)
1257 {
1258 int len, i, j;
1259 char *ret, *p;
1260 /* This is going to return a string representing the moves needed to set
1261 * every line in a grid to be the same as the ones in 'state'. The exact
1262 * length of this string is predictable. */
1263
1264 len = 1; /* Count the 'S' prefix */
1265 /* Numbers in horizontal lines */
1266 /* Horizontal lines, x position */
1267 len += len_0_to_n(state->w) * (state->h + 1);
1268 /* Horizontal lines, y position */
1269 len += len_0_to_n(state->h + 1) * (state->w);
1270 /* Vertical lines, y position */
1271 len += len_0_to_n(state->h) * (state->w + 1);
1272 /* Vertical lines, x position */
1273 len += len_0_to_n(state->w + 1) * (state->h);
1274 /* For each line we also have two letters and a comma */
1275 len += 3 * (HL_COUNT(state) + VL_COUNT(state));
1276
1277 ret = snewn(len + 1, char);
1278 p = ret;
1279
1280 p += sprintf(p, "S");
1281
1282 for (j = 0; j < state->h + 1; ++j) {
1283 for (i = 0; i < state->w; ++i) {
1284 switch (RIGHTOF_DOT(state, i, j)) {
1285 case LINE_YES:
1286 p += sprintf(p, "%d,%dhy", i, j);
1287 break;
1288 case LINE_NO:
1289 p += sprintf(p, "%d,%dhn", i, j);
1290 break;
1291 /* default: */
1292 /* I'm going to forgive this because I think the results
1293 * are cute. */
1294 /* assert(!"Solver produced incomplete solution!"); */
1295 }
1296 }
1297 }
1298
1299 for (j = 0; j < state->h; ++j) {
1300 for (i = 0; i < state->w + 1; ++i) {
1301 switch (BELOW_DOT(state, i, j)) {
1302 case LINE_YES:
1303 p += sprintf(p, "%d,%dvy", i, j);
1304 break;
1305 case LINE_NO:
1306 p += sprintf(p, "%d,%dvn", i, j);
1307 break;
1308 /* default: */
1309 /* I'm going to forgive this because I think the results
1310 * are cute. */
1311 /* assert(!"Solver produced incomplete solution!"); */
1312 }
1313 }
1314 }
1315
1316 /* No point in doing sums like that if they're going to be wrong */
1317 assert(strlen(ret) == (size_t)len);
1318 return ret;
1319 }
1320
1321 /* BEGIN SOLVER IMPLEMENTATION */
1322
1323 /* For each pair of lines through each dot we store a bit for whether
1324 * exactly one of those lines is ON, and in separate arrays we store whether
1325 * at least one is on and whether at most 1 is on. (If we know both or
1326 * neither is on that's already stored more directly.) That's six bits per
1327 * dot. Bit number n represents the lines shown in dot_type_dirs[n]. */
1328
1329 enum dline {
1330 DLINE_VERT = 0,
1331 DLINE_HORIZ = 1,
1332 DLINE_UL = 2,
1333 DLINE_DR = 3,
1334 DLINE_UR = 4,
1335 DLINE_DL = 5
1336 };
1337
1338 #define OPP_DLINE(dline) (dline ^ 1)
1339
1340
1341 #define SQUARE_DLINES \
1342 HANDLE_DLINE(DLINE_UL, RIGHTOF_SQUARE, BELOW_SQUARE, 1, 1); \
1343 HANDLE_DLINE(DLINE_UR, LEFTOF_SQUARE, BELOW_SQUARE, 0, 1); \
1344 HANDLE_DLINE(DLINE_DL, RIGHTOF_SQUARE, ABOVE_SQUARE, 1, 0); \
1345 HANDLE_DLINE(DLINE_DR, LEFTOF_SQUARE, ABOVE_SQUARE, 0, 0);
1346
1347 #define DOT_DLINES \
1348 HANDLE_DLINE(DLINE_VERT, ABOVE_DOT, BELOW_DOT); \
1349 HANDLE_DLINE(DLINE_HORIZ, LEFTOF_DOT, RIGHTOF_DOT); \
1350 HANDLE_DLINE(DLINE_UL, ABOVE_DOT, LEFTOF_DOT); \
1351 HANDLE_DLINE(DLINE_UR, ABOVE_DOT, RIGHTOF_DOT); \
1352 HANDLE_DLINE(DLINE_DL, BELOW_DOT, LEFTOF_DOT); \
1353 HANDLE_DLINE(DLINE_DR, BELOW_DOT, RIGHTOF_DOT);
1354
1355 static void array_setall(char *array, char from, char to, int len)
1356 {
1357 char *p = array, *p_old = p;
1358 int len_remaining = len;
1359
1360 while ((p = memchr(p, from, len_remaining))) {
1361 *p = to;
1362 len_remaining -= p - p_old;
1363 p_old = p;
1364 }
1365 }
1366
1367
1368 static int game_states_equal(const game_state *state1,
1369 const game_state *state2)
1370 {
1371 /* This deliberately doesn't check _all_ fields, just the ones that make a
1372 * game state 'interesting' from the POV of the solver */
1373 /* XXX review this */
1374 if (state1 == state2)
1375 return 1;
1376
1377 if (!state1 || !state2)
1378 return 0;
1379
1380 if (state1->w != state2->w || state1->h != state2->h)
1381 return 0;
1382
1383 if (memcmp(state1->hl, state2->hl, HL_COUNT(state1)))
1384 return 0;
1385
1386 if (memcmp(state1->vl, state2->vl, VL_COUNT(state1)))
1387 return 0;
1388
1389 return 1;
1390 }
1391
1392 static int solver_states_equal(const solver_state *sstate1,
1393 const solver_state *sstate2)
1394 {
1395 if (!sstate1) {
1396 if (!sstate2)
1397 return TRUE;
1398 else
1399 return FALSE;
1400 }
1401
1402 if (!game_states_equal(sstate1->state, sstate2->state)) {
1403 return 0;
1404 }
1405
1406 /* XXX fields missing, needs review */
1407 /* XXX we're deliberately not looking at solver_state as it's only a cache */
1408
1409 if (memcmp(sstate1->dot_atleastone, sstate2->dot_atleastone,
1410 DOT_COUNT(sstate1->state))) {
1411 return 0;
1412 }
1413
1414 if (memcmp(sstate1->dot_atmostone, sstate2->dot_atmostone,
1415 DOT_COUNT(sstate1->state))) {
1416 return 0;
1417 }
1418
1419 /* handle dline_identical here */
1420
1421 return 1;
1422 }
1423
1424 static void dot_setall_dlines(solver_state *sstate, enum dline dl, int i, int j,
1425 enum line_state line_old, enum line_state line_new)
1426 {
1427 game_state *state = sstate->state;
1428
1429 /* First line in dline */
1430 switch (dl) {
1431 case DLINE_UL:
1432 case DLINE_UR:
1433 case DLINE_VERT:
1434 if (j > 0 && ABOVE_DOT(state, i, j) == line_old)
1435 LV_ABOVE_DOT(state, i, j) = line_new;
1436 break;
1437 case DLINE_DL:
1438 case DLINE_DR:
1439 if (j <= (state)->h && BELOW_DOT(state, i, j) == line_old)
1440 LV_BELOW_DOT(state, i, j) = line_new;
1441 break;
1442 case DLINE_HORIZ:
1443 if (i > 0 && LEFTOF_DOT(state, i, j) == line_old)
1444 LV_LEFTOF_DOT(state, i, j) = line_new;
1445 break;
1446 }
1447
1448 /* Second line in dline */
1449 switch (dl) {
1450 case DLINE_UL:
1451 case DLINE_DL:
1452 if (i > 0 && LEFTOF_DOT(state, i, j) == line_old)
1453 LV_LEFTOF_DOT(state, i, j) = line_new;
1454 break;
1455 case DLINE_UR:
1456 case DLINE_DR:
1457 case DLINE_HORIZ:
1458 if (i <= (state)->w && RIGHTOF_DOT(state, i, j) == line_old)
1459 LV_RIGHTOF_DOT(state, i, j) = line_new;
1460 break;
1461 case DLINE_VERT:
1462 if (j <= (state)->h && BELOW_DOT(state, i, j) == line_old)
1463 LV_BELOW_DOT(state, i, j) = line_new;
1464 break;
1465 }
1466 }
1467
1468 static void update_solver_status(solver_state *sstate)
1469 {
1470 if (sstate->solver_status == SOLVER_INCOMPLETE) {
1471 switch (loop_status(sstate->state)) {
1472 case LOOP_NONE:
1473 sstate->solver_status = SOLVER_INCOMPLETE;
1474 break;
1475 case LOOP_SOLN:
1476 if (sstate->solver_status != SOLVER_AMBIGUOUS)
1477 sstate->solver_status = SOLVER_SOLVED;
1478 break;
1479 case LOOP_NOT_SOLN:
1480 sstate->solver_status = SOLVER_MISTAKE;
1481 break;
1482 }
1483 }
1484 }
1485
1486 #if 0
1487 /* This will fail an assertion if {dx,dy} are anything other than {-1,0}, {1,0}
1488 * {0,-1} or {0,1} */
1489 static int line_status_from_point(const game_state *state,
1490 int x, int y, int dx, int dy)
1491 {
1492 if (dx == -1 && dy == 0)
1493 return LEFTOF_DOT(state, x, y);
1494 if (dx == 1 && dy == 0)
1495 return RIGHTOF_DOT(state, x, y);
1496 if (dx == 0 && dy == -1)
1497 return ABOVE_DOT(state, x, y);
1498 if (dx == 0 && dy == 1)
1499 return BELOW_DOT(state, x, y);
1500
1501 assert(!"Illegal dx or dy in line_status_from_point");
1502 return 0;
1503 }
1504 #endif
1505
1506 /* This will return a dynamically allocated solver_state containing the (more)
1507 * solved grid */
1508 static solver_state *solve_game_rec(const solver_state *sstate_start, int diff)
1509 {
1510 int i, j;
1511 int current_yes, current_no, desired;
1512 solver_state *sstate, *sstate_saved, *sstate_tmp;
1513 int t;
1514 /* char *text; */
1515 solver_state *sstate_rec_solved;
1516 int recursive_soln_count;
1517
1518 #if 0
1519 printf("solve_game_rec: recursion_remaining = %d\n",
1520 sstate_start->recursion_remaining);
1521 #endif
1522
1523 sstate = dup_solver_state((solver_state *)sstate_start);
1524
1525 #if 0
1526 text = game_text_format(sstate->state);
1527 printf("%s\n", text);
1528 sfree(text);
1529 #endif
1530
1531 #define RETURN_IF_SOLVED \
1532 do { \
1533 update_solver_status(sstate); \
1534 if (sstate->solver_status != SOLVER_INCOMPLETE) { \
1535 free_solver_state(sstate_saved); \
1536 return sstate; \
1537 } \
1538 } while (0)
1539
1540 #define FOUND_MISTAKE \
1541 do { \
1542 sstate->solver_status = SOLVER_MISTAKE; \
1543 free_solver_state(sstate_saved); \
1544 return sstate; \
1545 } while (0)
1546
1547
1548 sstate_saved = NULL;
1549 RETURN_IF_SOLVED;
1550
1551 nonrecursive_solver:
1552
1553 while (1) {
1554 sstate_saved = dup_solver_state(sstate);
1555
1556 /* First we do the 'easy' work, that might cause concrete results */
1557
1558 /* Per-square deductions */
1559 for (j = 0; j < sstate->state->h; ++j) {
1560 for (i = 0; i < sstate->state->w; ++i) {
1561 /* Begin rules that look at the clue (if there is one) */
1562 desired = CLUE_AT(sstate->state, i, j);
1563 if (desired == ' ')
1564 continue;
1565 desired = desired - '0';
1566 current_yes = square_order(sstate->state, i, j, LINE_YES);
1567 current_no = square_order(sstate->state, i, j, LINE_NO);
1568
1569 if (desired < current_yes)
1570 FOUND_MISTAKE;
1571 if (desired == current_yes) {
1572 square_setall(sstate->state, i, j, LINE_UNKNOWN, LINE_NO);
1573 continue;
1574 }
1575
1576 if (4 - desired < current_no)
1577 FOUND_MISTAKE;
1578 if (4 - desired == current_no) {
1579 square_setall(sstate->state, i, j, LINE_UNKNOWN, LINE_YES);
1580 }
1581 }
1582 }
1583
1584 RETURN_IF_SOLVED;
1585
1586 /* Per-dot deductions */
1587 for (j = 0; j < sstate->state->h + 1; ++j) {
1588 for (i = 0; i < sstate->state->w + 1; ++i) {
1589 switch (dot_order(sstate->state, i, j, LINE_YES)) {
1590 case 0:
1591 if (dot_order(sstate->state, i, j, LINE_NO) == 3) {
1592 dot_setall(sstate->state, i, j, LINE_UNKNOWN, LINE_NO);
1593 }
1594 break;
1595 case 1:
1596 switch (dot_order(sstate->state, i, j, LINE_NO)) {
1597 #define H1(dline, dir1_dot, dir2_dot, dot_howmany) \
1598 if (dir1_dot(sstate->state, i, j) == LINE_UNKNOWN) { \
1599 if (dir2_dot(sstate->state, i, j) == LINE_UNKNOWN){ \
1600 sstate->dot_howmany \
1601 [i + (sstate->state->w + 1) * j] |= 1<<dline; \
1602 } \
1603 }
1604 case 1:
1605 if (diff > DIFF_EASY) {
1606 #define HANDLE_DLINE(dline, dir1_dot, dir2_dot) \
1607 H1(dline, dir1_dot, dir2_dot, dot_atleastone)
1608 /* 1 yes, 1 no, so exactly one of unknowns is
1609 * yes */
1610 DOT_DLINES;
1611 #undef HANDLE_DLINE
1612 }
1613 /* fall through */
1614 case 0:
1615 if (diff > DIFF_EASY) {
1616 #define HANDLE_DLINE(dline, dir1_dot, dir2_dot) \
1617 H1(dline, dir1_dot, dir2_dot, dot_atmostone)
1618 /* 1 yes, fewer than 2 no, so at most one of
1619 * unknowns is yes */
1620 DOT_DLINES;
1621 #undef HANDLE_DLINE
1622 }
1623 #undef H1
1624 break;
1625 case 2: /* 1 yes, 2 no */
1626 dot_setall(sstate->state, i, j,
1627 LINE_UNKNOWN, LINE_YES);
1628 break;
1629 }
1630 break;
1631 case 2:
1632 dot_setall(sstate->state, i, j, LINE_UNKNOWN, LINE_NO);
1633 break;
1634 case 3:
1635 FOUND_MISTAKE;
1636 break;
1637 }
1638 if (diff > DIFF_EASY) {
1639 #define HANDLE_DLINE(dline, dir1_dot, dir2_dot) \
1640 if (sstate->dot_atleastone \
1641 [i + (sstate->state->w + 1) * j] & 1<<dline) { \
1642 sstate->dot_atmostone \
1643 [i + (sstate->state->w + 1) * j] |= 1<<OPP_DLINE(dline); \
1644 }
1645 /* If at least one of a dline in a dot is YES, at most one
1646 * of the opposite dline to that dot must be YES. */
1647 DOT_DLINES;
1648 }
1649 #undef HANDLE_DLINE
1650 }
1651 }
1652
1653 /* More obscure per-square operations */
1654 for (j = 0; j < sstate->state->h; ++j) {
1655 for (i = 0; i < sstate->state->w; ++i) {
1656 #define H1(dline, dir1_sq, dir2_sq, a, b, dot_howmany, line_query, line_set) \
1657 if (sstate->dot_howmany[i+a + (sstate->state->w + 1) * (j+b)] &\
1658 1<<dline) { \
1659 t = dir1_sq(sstate->state, i, j); \
1660 if (t == line_query) \
1661 dir2_sq(sstate->state, i, j) = line_set; \
1662 else { \
1663 t = dir2_sq(sstate->state, i, j); \
1664 if (t == line_query) \
1665 dir1_sq(sstate->state, i, j) = line_set; \
1666 } \
1667 }
1668 if (diff > DIFF_EASY) {
1669 #define HANDLE_DLINE(dline, dir1_sq, dir2_sq, a, b) \
1670 H1(dline, dir1_sq, dir2_sq, a, b, dot_atmostone, \
1671 LINE_YES, LINE_NO)
1672 /* If at most one of the DLINE is on, and one is definitely
1673 * on, set the other to definitely off */
1674 SQUARE_DLINES;
1675 #undef HANDLE_DLINE
1676 }
1677
1678 if (diff > DIFF_EASY) {
1679 #define HANDLE_DLINE(dline, dir1_sq, dir2_sq, a, b) \
1680 H1(dline, dir1_sq, dir2_sq, a, b, dot_atleastone, \
1681 LINE_NO, LINE_YES)
1682 /* If at least one of the DLINE is on, and one is definitely
1683 * off, set the other to definitely on */
1684 SQUARE_DLINES;
1685 #undef HANDLE_DLINE
1686 }
1687 #undef H1
1688
1689 switch (CLUE_AT(sstate->state, i, j)) {
1690 case '0':
1691 case '1':
1692 if (diff > DIFF_EASY) {
1693 #define HANDLE_DLINE(dline, dir1_sq, dir2_sq, a, b) \
1694 /* At most one of any DLINE can be set */ \
1695 sstate->dot_atmostone \
1696 [i+a + (sstate->state->w + 1) * (j+b)] |= 1<<dline; \
1697 /* This DLINE provides enough YESes to solve the clue */\
1698 if (sstate->dot_atleastone \
1699 [i+a + (sstate->state->w + 1) * (j+b)] & \
1700 1<<dline) { \
1701 dot_setall_dlines(sstate, OPP_DLINE(dline), \
1702 i+(1-a), j+(1-b), \
1703 LINE_UNKNOWN, LINE_NO); \
1704 }
1705 SQUARE_DLINES;
1706 #undef HANDLE_DLINE
1707 }
1708 break;
1709 case '2':
1710 if (diff > DIFF_EASY) {
1711 #define H1(dline, dot_at1one, dot_at2one, a, b) \
1712 if (sstate->dot_at1one \
1713 [i+a + (sstate->state->w + 1) * (j+b)] & \
1714 1<<dline) { \
1715 sstate->dot_at2one \
1716 [i+(1-a) + (sstate->state->w + 1) * (j+(1-b))] |= \
1717 1<<OPP_DLINE(dline); \
1718 }
1719 #define HANDLE_DLINE(dline, dir1_sq, dir2_sq, a, b) \
1720 H1(dline, dot_atleastone, dot_atmostone, a, b); \
1721 H1(dline, dot_atmostone, dot_atleastone, a, b);
1722 /* If at least one of one DLINE is set, at most one
1723 * of the opposing one is and vice versa */
1724 SQUARE_DLINES;
1725 }
1726 #undef HANDLE_DLINE
1727 #undef H1
1728 break;
1729 case '3':
1730 case '4':
1731 if (diff > DIFF_EASY) {
1732 #define HANDLE_DLINE(dline, dir1_sq, dir2_sq, a, b) \
1733 /* At least one of any DLINE can be set */ \
1734 sstate->dot_atleastone \
1735 [i+a + (sstate->state->w + 1) * (j+b)] |= 1<<dline; \
1736 /* This DLINE provides enough NOs to solve the clue */ \
1737 if (sstate->dot_atmostone \
1738 [i+a + (sstate->state->w + 1) * (j+b)] & \
1739 1<<dline) { \
1740 dot_setall_dlines(sstate, OPP_DLINE(dline), \
1741 i+(1-a), j+(1-b), \
1742 LINE_UNKNOWN, LINE_YES); \
1743 }
1744 SQUARE_DLINES;
1745 #undef HANDLE_DLINE
1746 }
1747 break;
1748 }
1749 }
1750 }
1751
1752 if (solver_states_equal(sstate, sstate_saved)) {
1753 int edgecount = 0, clues = 0, satclues = 0, sm1clues = 0;
1754 int d;
1755
1756 /*
1757 * Go through the grid and update for all the new edges.
1758 * Since merge_dots() is idempotent, the simplest way to
1759 * do this is just to update for _all_ the edges.
1760 *
1761 * Also, while we're here, we count the edges, count the
1762 * clues, count the satisfied clues, and count the
1763 * satisfied-minus-one clues.
1764 */
1765 for (j = 0; j <= sstate->state->h; ++j) {
1766 for (i = 0; i <= sstate->state->w; ++i) {
1767 if (RIGHTOF_DOT(sstate->state, i, j) == LINE_YES) {
1768 merge_dots(sstate, i, j, i+1, j);
1769 edgecount++;
1770 }
1771 if (BELOW_DOT(sstate->state, i, j) == LINE_YES) {
1772 merge_dots(sstate, i, j, i, j+1);
1773 edgecount++;
1774 }
1775
1776 if (CLUE_AT(sstate->state, i, j) != ' ') {
1777 int c = CLUE_AT(sstate->state, i, j) - '0';
1778 int o = square_order(sstate->state, i, j, LINE_YES);
1779 if (o == c)
1780 satclues++;
1781 else if (o == c-1)
1782 sm1clues++;
1783 clues++;
1784 }
1785 }
1786 }
1787
1788 /*
1789 * Now go through looking for LINE_UNKNOWN edges which
1790 * connect two dots that are already in the same
1791 * equivalence class. If we find one, test to see if the
1792 * loop it would create is a solution.
1793 */
1794 for (j = 0; j <= sstate->state->h; ++j) {
1795 for (i = 0; i <= sstate->state->w; ++i) {
1796 for (d = 0; d < 2; d++) {
1797 int i2, j2, eqclass, val;
1798
1799 if (d == 0) {
1800 if (RIGHTOF_DOT(sstate->state, i, j) !=
1801 LINE_UNKNOWN)
1802 continue;
1803 i2 = i+1;
1804 j2 = j;
1805 } else {
1806 if (BELOW_DOT(sstate->state, i, j) !=
1807 LINE_UNKNOWN)
1808 continue;
1809 i2 = i;
1810 j2 = j+1;
1811 }
1812
1813 eqclass = dsf_canonify(sstate->dotdsf,
1814 j * (sstate->state->w+1) + i);
1815 if (eqclass != dsf_canonify(sstate->dotdsf,
1816 j2 * (sstate->state->w+1) +
1817 i2))
1818 continue;
1819
1820 val = LINE_NO; /* loop is bad until proven otherwise */
1821
1822 /*
1823 * This edge would form a loop. Next
1824 * question: how long would the loop be?
1825 * Would it equal the total number of edges
1826 * (plus the one we'd be adding if we added
1827 * it)?
1828 */
1829 if (sstate->looplen[eqclass] == edgecount + 1) {
1830 int sm1_nearby;
1831 int cx, cy;
1832
1833 /*
1834 * This edge would form a loop which
1835 * took in all the edges in the entire
1836 * grid. So now we need to work out
1837 * whether it would be a valid solution
1838 * to the puzzle, which means we have to
1839 * check if it satisfies all the clues.
1840 * This means that every clue must be
1841 * either satisfied or satisfied-minus-
1842 * 1, and also that the number of
1843 * satisfied-minus-1 clues must be at
1844 * most two and they must lie on either
1845 * side of this edge.
1846 */
1847 sm1_nearby = 0;
1848 cx = i - (j2-j);
1849 cy = j - (i2-i);
1850 if (CLUE_AT(sstate->state, cx,cy) != ' ' &&
1851 square_order(sstate->state, cx,cy, LINE_YES) ==
1852 CLUE_AT(sstate->state, cx,cy) - '0' - 1)
1853 sm1_nearby++;
1854 if (CLUE_AT(sstate->state, i, j) != ' ' &&
1855 square_order(sstate->state, i, j, LINE_YES) ==
1856 CLUE_AT(sstate->state, i, j) - '0' - 1)
1857 sm1_nearby++;
1858 if (sm1clues == sm1_nearby &&
1859 sm1clues + satclues == clues)
1860 val = LINE_YES; /* loop is good! */
1861 }
1862
1863 /*
1864 * Right. Now we know that adding this edge
1865 * would form a loop, and we know whether
1866 * that loop would be a viable solution or
1867 * not.
1868 *
1869 * If adding this edge produces a solution,
1870 * then we know we've found _a_ solution but
1871 * we don't know that it's _the_ solution -
1872 * if it were provably the solution then
1873 * we'd have deduced this edge some time ago
1874 * without the need to do loop detection. So
1875 * in this state we return SOLVER_AMBIGUOUS,
1876 * which has the effect that hitting Solve
1877 * on a user-provided puzzle will fill in a
1878 * solution but using the solver to
1879 * construct new puzzles won't consider this
1880 * a reasonable deduction for the user to
1881 * make.
1882 */
1883 if (d == 0)
1884 LV_RIGHTOF_DOT(sstate->state, i, j) = val;
1885 else
1886 LV_BELOW_DOT(sstate->state, i, j) = val;
1887 if (val == LINE_YES) {
1888 sstate->solver_status = SOLVER_AMBIGUOUS;
1889 goto finished_loop_checking;
1890 }
1891 }
1892 }
1893 }
1894
1895 finished_loop_checking:
1896
1897 RETURN_IF_SOLVED;
1898 }
1899
1900 if (solver_states_equal(sstate, sstate_saved)) {
1901 /* Solver has stopped making progress so we terminate */
1902 free_solver_state(sstate_saved);
1903 break;
1904 }
1905
1906 free_solver_state(sstate_saved);
1907 }
1908
1909 if (sstate->solver_status == SOLVER_SOLVED ||
1910 sstate->solver_status == SOLVER_AMBIGUOUS) {
1911 /* s/LINE_UNKNOWN/LINE_NO/g */
1912 array_setall(sstate->state->hl, LINE_UNKNOWN, LINE_NO,
1913 HL_COUNT(sstate->state));
1914 array_setall(sstate->state->vl, LINE_UNKNOWN, LINE_NO,
1915 VL_COUNT(sstate->state));
1916 return sstate;
1917 }
1918
1919 /* Perform recursive calls */
1920 if (sstate->recursion_remaining) {
1921 sstate_saved = dup_solver_state(sstate);
1922
1923 sstate->recursion_remaining--;
1924
1925 recursive_soln_count = 0;
1926 sstate_rec_solved = NULL;
1927
1928 /* Memory management:
1929 * sstate_saved won't be modified but needs to be freed when we have
1930 * finished with it.
1931 * sstate is expected to contain our 'best' solution by the time we
1932 * finish this section of code. It's the thing we'll try adding lines
1933 * to, seeing if they make it more solvable.
1934 * If sstate_rec_solved is non-NULL, it will supersede sstate
1935 * eventually. sstate_tmp should not hold a value persistently.
1936 */
1937
1938 /* NB SOLVER_AMBIGUOUS is like SOLVER_SOLVED except the solver is aware
1939 * of the possibility of additional solutions. So as soon as we have a
1940 * SOLVER_AMBIGUOUS we can safely propagate it back to our caller, but
1941 * if we get a SOLVER_SOLVED we want to keep trying in case we find
1942 * further solutions and have to mark it ambiguous.
1943 */
1944
1945 #define DO_RECURSIVE_CALL(dir_dot) \
1946 if (dir_dot(sstate->state, i, j) == LINE_UNKNOWN) { \
1947 debug(("Trying " #dir_dot " at [%d,%d]\n", i, j)); \
1948 LV_##dir_dot(sstate->state, i, j) = LINE_YES; \
1949 sstate_tmp = solve_game_rec(sstate, diff); \
1950 switch (sstate_tmp->solver_status) { \
1951 case SOLVER_AMBIGUOUS: \
1952 debug(("Solver ambiguous, returning\n")); \
1953 sstate_rec_solved = sstate_tmp; \
1954 goto finished_recursion; \
1955 case SOLVER_SOLVED: \
1956 switch (++recursive_soln_count) { \
1957 case 1: \
1958 debug(("One solution found\n")); \
1959 sstate_rec_solved = sstate_tmp; \
1960 break; \
1961 case 2: \
1962 debug(("Ambiguous solutions found\n")); \
1963 free_solver_state(sstate_tmp); \
1964 sstate_rec_solved->solver_status = SOLVER_AMBIGUOUS;\
1965 goto finished_recursion; \
1966 default: \
1967 assert(!"recursive_soln_count out of range"); \
1968 break; \
1969 } \
1970 break; \
1971 case SOLVER_MISTAKE: \
1972 debug(("Non-solution found\n")); \
1973 free_solver_state(sstate_tmp); \
1974 free_solver_state(sstate_saved); \
1975 LV_##dir_dot(sstate->state, i, j) = LINE_NO; \
1976 goto nonrecursive_solver; \
1977 case SOLVER_INCOMPLETE: \
1978 debug(("Recursive step inconclusive\n")); \
1979 free_solver_state(sstate_tmp); \
1980 break; \
1981 } \
1982 free_solver_state(sstate); \
1983 sstate = dup_solver_state(sstate_saved); \
1984 }
1985
1986 for (j = 0; j < sstate->state->h + 1; ++j) {
1987 for (i = 0; i < sstate->state->w + 1; ++i) {
1988 /* Only perform recursive calls on 'loose ends' */
1989 if (dot_order(sstate->state, i, j, LINE_YES) == 1) {
1990 DO_RECURSIVE_CALL(LEFTOF_DOT);
1991 DO_RECURSIVE_CALL(RIGHTOF_DOT);
1992 DO_RECURSIVE_CALL(ABOVE_DOT);
1993 DO_RECURSIVE_CALL(BELOW_DOT);
1994 }
1995 }
1996 }
1997
1998 finished_recursion:
1999
2000 if (sstate_rec_solved) {
2001 free_solver_state(sstate);
2002 sstate = sstate_rec_solved;
2003 }
2004 }
2005
2006 return sstate;
2007 }
2008
2009 /* XXX bits of solver that may come in handy one day */
2010 #if 0
2011 #define HANDLE_DLINE(dline, dir1_dot, dir2_dot) \
2012 /* dline from this dot that's entirely unknown must have
2013 * both lines identical */ \
2014 if (dir1_dot(sstate->state, i, j) == LINE_UNKNOWN && \
2015 dir2_dot(sstate->state, i, j) == LINE_UNKNOWN) { \
2016 sstate->dline_identical[i + (sstate->state->w + 1) * j] |= \
2017 1<<dline; \
2018 } else if (sstate->dline_identical[i +
2019 (sstate->state->w + 1) * j] &\
2020 1<<dline) { \
2021 /* If they're identical and one is known do the obvious
2022 * thing */ \
2023 t = dir1_dot(sstate->state, i, j); \
2024 if (t != LINE_UNKNOWN) \
2025 dir2_dot(sstate->state, i, j) = t; \
2026 else { \
2027 t = dir2_dot(sstate->state, i, j); \
2028 if (t != LINE_UNKNOWN) \
2029 dir1_dot(sstate->state, i, j) = t; \
2030 } \
2031 } \
2032 DOT_DLINES;
2033 #undef HANDLE_DLINE
2034 #endif
2035
2036 #if 0
2037 #define HANDLE_DLINE(dline, dir1_sq, dir2_sq, a, b) \
2038 if (sstate->dline_identical[i+a + \
2039 (sstate->state->w + 1) * (j+b)] &\
2040 1<<dline) { \
2041 dir1_sq(sstate->state, i, j) = LINE_YES; \
2042 dir2_sq(sstate->state, i, j) = LINE_YES; \
2043 }
2044 /* If two lines are the same they must be on */
2045 SQUARE_DLINES;
2046 #undef HANDLE_DLINE
2047 #endif
2048
2049
2050 #if 0
2051 #define HANDLE_DLINE(dline, dir1_sq, dir2_sq, a, b) \
2052 if (sstate->dot_atmostone[i+a + (sstate->state->w + 1) * (j+b)] & \
2053 1<<dline) { \
2054 if (square_order(sstate->state, i, j, LINE_UNKNOWN) - 1 == \
2055 CLUE_AT(sstate->state, i, j) - '0') { \
2056 square_setall(sstate->state, i, j, LINE_UNKNOWN, LINE_YES); \
2057 /* XXX the following may overwrite known data! */ \
2058 dir1_sq(sstate->state, i, j) = LINE_UNKNOWN; \
2059 dir2_sq(sstate->state, i, j) = LINE_UNKNOWN; \
2060 } \
2061 }
2062 SQUARE_DLINES;
2063 #undef HANDLE_DLINE
2064 #endif
2065
2066 #if 0
2067 #define HANDLE_DLINE(dline, dir1_sq, dir2_sq, a, b) \
2068 if (sstate->dline_identical[i+a +
2069 (sstate->state->w + 1) * (j+b)] &\
2070 1<<dline) { \
2071 dir1_sq(sstate->state, i, j) = LINE_NO; \
2072 dir2_sq(sstate->state, i, j) = LINE_NO; \
2073 }
2074 /* If two lines are the same they must be off */
2075 SQUARE_DLINES;
2076 #undef HANDLE_DLINE
2077 #endif
2078
2079 static char *solve_game(game_state *state, game_state *currstate,
2080 char *aux, char **error)
2081 {
2082 char *soln = NULL;
2083 solver_state *sstate, *new_sstate;
2084
2085 sstate = new_solver_state(state);
2086 new_sstate = solve_game_rec(sstate, DIFFCOUNT);
2087
2088 if (new_sstate->solver_status == SOLVER_SOLVED) {
2089 soln = encode_solve_move(new_sstate->state);
2090 } else if (new_sstate->solver_status == SOLVER_AMBIGUOUS) {
2091 soln = encode_solve_move(new_sstate->state);
2092 /**error = "Solver found ambiguous solutions"; */
2093 } else {
2094 soln = encode_solve_move(new_sstate->state);
2095 /**error = "Solver failed"; */
2096 }
2097
2098 free_solver_state(new_sstate);
2099 free_solver_state(sstate);
2100
2101 return soln;
2102 }
2103
2104 static char *game_text_format(game_state *state)
2105 {
2106 int i, j;
2107 int len;
2108 char *ret, *rp;
2109
2110 len = (2 * state->w + 2) * (2 * state->h + 1);
2111 rp = ret = snewn(len + 1, char);
2112
2113 #define DRAW_HL \
2114 switch (ABOVE_SQUARE(state, i, j)) { \
2115 case LINE_YES: \
2116 rp += sprintf(rp, " -"); \
2117 break; \
2118 case LINE_NO: \
2119 rp += sprintf(rp, " x"); \
2120 break; \
2121 case LINE_UNKNOWN: \
2122 rp += sprintf(rp, " "); \
2123 break; \
2124 default: \
2125 assert(!"Illegal line state for HL");\
2126 }
2127
2128 #define DRAW_VL \
2129 switch (LEFTOF_SQUARE(state, i, j)) {\
2130 case LINE_YES: \
2131 rp += sprintf(rp, "|"); \
2132 break; \
2133 case LINE_NO: \
2134 rp += sprintf(rp, "x"); \
2135 break; \
2136 case LINE_UNKNOWN: \
2137 rp += sprintf(rp, " "); \
2138 break; \
2139 default: \
2140 assert(!"Illegal line state for VL");\
2141 }
2142
2143 for (j = 0; j < state->h; ++j) {
2144 for (i = 0; i < state->w; ++i) {
2145 DRAW_HL;
2146 }
2147 rp += sprintf(rp, " \n");
2148 for (i = 0; i < state->w; ++i) {
2149 DRAW_VL;
2150 rp += sprintf(rp, "%c", (int)(CLUE_AT(state, i, j)));
2151 }
2152 DRAW_VL;
2153 rp += sprintf(rp, "\n");
2154 }
2155 for (i = 0; i < state->w; ++i) {
2156 DRAW_HL;
2157 }
2158 rp += sprintf(rp, " \n");
2159
2160 assert(strlen(ret) == len);
2161 return ret;
2162 }
2163
2164 static game_ui *new_ui(game_state *state)
2165 {
2166 return NULL;
2167 }
2168
2169 static void free_ui(game_ui *ui)
2170 {
2171 }
2172
2173 static char *encode_ui(game_ui *ui)
2174 {
2175 return NULL;
2176 }
2177
2178 static void decode_ui(game_ui *ui, char *encoding)
2179 {
2180 }
2181
2182 static void game_changed_state(game_ui *ui, game_state *oldstate,
2183 game_state *newstate)
2184 {
2185 }
2186
2187 struct game_drawstate {
2188 int started;
2189 int tilesize;
2190 int flashing;
2191 char *hl, *vl;
2192 char *clue_error;
2193 };
2194
2195 static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
2196 int x, int y, int button)
2197 {
2198 int hl_selected;
2199 int i, j, p, q;
2200 char *ret, buf[80];
2201 char button_char = ' ';
2202 enum line_state old_state;
2203
2204 button &= ~MOD_MASK;
2205
2206 /* Around each line is a diamond-shaped region where points within that
2207 * region are closer to this line than any other. We assume any click
2208 * within a line's diamond was meant for that line. It would all be a lot
2209 * simpler if the / and % operators respected modulo arithmetic properly
2210 * for negative numbers. */
2211
2212 x -= BORDER;
2213 y -= BORDER;
2214
2215 /* Get the coordinates of the square the click was in */
2216 i = (x + TILE_SIZE) / TILE_SIZE - 1;
2217 j = (y + TILE_SIZE) / TILE_SIZE - 1;
2218
2219 /* Get the precise position inside square [i,j] */
2220 p = (x + TILE_SIZE) % TILE_SIZE;
2221 q = (y + TILE_SIZE) % TILE_SIZE;
2222
2223 /* After this bit of magic [i,j] will correspond to the point either above
2224 * or to the left of the line selected */
2225 if (p > q) {
2226 if (TILE_SIZE - p > q) {
2227 hl_selected = TRUE;
2228 } else {
2229 hl_selected = FALSE;
2230 ++i;
2231 }
2232 } else {
2233 if (TILE_SIZE - q > p) {
2234 hl_selected = FALSE;
2235 } else {
2236 hl_selected = TRUE;
2237 ++j;
2238 }
2239 }
2240
2241 if (i < 0 || j < 0)
2242 return NULL;
2243
2244 if (hl_selected) {
2245 if (i >= state->w || j >= state->h + 1)
2246 return NULL;
2247 } else {
2248 if (i >= state->w + 1 || j >= state->h)
2249 return NULL;
2250 }
2251
2252 /* I think it's only possible to play this game with mouse clicks, sorry */
2253 /* Maybe will add mouse drag support some time */
2254 if (hl_selected)
2255 old_state = RIGHTOF_DOT(state, i, j);
2256 else
2257 old_state = BELOW_DOT(state, i, j);
2258
2259 switch (button) {
2260 case LEFT_BUTTON:
2261 switch (old_state) {
2262 case LINE_UNKNOWN:
2263 button_char = 'y';
2264 break;
2265 case LINE_YES:
2266 case LINE_NO:
2267 button_char = 'u';
2268 break;
2269 }
2270 break;
2271 case MIDDLE_BUTTON:
2272 button_char = 'u';
2273 break;
2274 case RIGHT_BUTTON:
2275 switch (old_state) {
2276 case LINE_UNKNOWN:
2277 button_char = 'n';
2278 break;
2279 case LINE_NO:
2280 case LINE_YES:
2281 button_char = 'u';
2282 break;
2283 }
2284 break;
2285 default:
2286 return NULL;
2287 }
2288
2289
2290 sprintf(buf, "%d,%d%c%c", i, j, (int)(hl_selected ? 'h' : 'v'), (int)button_char);
2291 ret = dupstr(buf);
2292
2293 return ret;
2294 }
2295
2296 static game_state *execute_move(game_state *state, char *move)
2297 {
2298 int i, j;
2299 game_state *newstate = dup_game(state);
2300
2301 if (move[0] == 'S') {
2302 move++;
2303 newstate->cheated = TRUE;
2304 }
2305
2306 while (*move) {
2307 i = atoi(move);
2308 move = strchr(move, ',');
2309 if (!move)
2310 goto fail;
2311 j = atoi(++move);
2312 move += strspn(move, "1234567890");
2313 switch (*(move++)) {
2314 case 'h':
2315 if (i >= newstate->w || j > newstate->h)
2316 goto fail;
2317 switch (*(move++)) {
2318 case 'y':
2319 LV_RIGHTOF_DOT(newstate, i, j) = LINE_YES;
2320 break;
2321 case 'n':
2322 LV_RIGHTOF_DOT(newstate, i, j) = LINE_NO;
2323 break;
2324 case 'u':
2325 LV_RIGHTOF_DOT(newstate, i, j) = LINE_UNKNOWN;
2326 break;
2327 default:
2328 goto fail;
2329 }
2330 break;
2331 case 'v':
2332 if (i > newstate->w || j >= newstate->h)
2333 goto fail;
2334 switch (*(move++)) {
2335 case 'y':
2336 LV_BELOW_DOT(newstate, i, j) = LINE_YES;
2337 break;
2338 case 'n':
2339 LV_BELOW_DOT(newstate, i, j) = LINE_NO;
2340 break;
2341 case 'u':
2342 LV_BELOW_DOT(newstate, i, j) = LINE_UNKNOWN;
2343 break;
2344 default:
2345 goto fail;
2346 }
2347 break;
2348 default:
2349 goto fail;
2350 }
2351 }
2352
2353 /*
2354 * Check for completion.
2355 */
2356 i = 0; /* placate optimiser */
2357 for (j = 0; j <= newstate->h; j++) {
2358 for (i = 0; i < newstate->w; i++)
2359 if (LV_RIGHTOF_DOT(newstate, i, j) == LINE_YES)
2360 break;
2361 if (i < newstate->w)
2362 break;
2363 }
2364 if (j <= newstate->h) {
2365 int prevdir = 'R';
2366 int x = i, y = j;
2367 int looplen, count;
2368
2369 /*
2370 * We've found a horizontal edge at (i,j). Follow it round
2371 * to see if it's part of a loop.
2372 */
2373 looplen = 0;
2374 while (1) {
2375 int order = dot_order(newstate, x, y, LINE_YES);
2376 if (order != 2)
2377 goto completion_check_done;
2378
2379 if (LEFTOF_DOT(newstate, x, y) == LINE_YES && prevdir != 'L') {
2380 x--;
2381 prevdir = 'R';
2382 } else if (RIGHTOF_DOT(newstate, x, y) == LINE_YES &&
2383 prevdir != 'R') {
2384 x++;
2385 prevdir = 'L';
2386 } else if (ABOVE_DOT(newstate, x, y) == LINE_YES &&
2387 prevdir != 'U') {
2388 y--;
2389 prevdir = 'D';
2390 } else if (BELOW_DOT(newstate, x, y) == LINE_YES &&
2391 prevdir != 'D') {
2392 y++;
2393 prevdir = 'U';
2394 } else {
2395 assert(!"Can't happen"); /* dot_order guarantees success */
2396 }
2397
2398 looplen++;
2399
2400 if (x == i && y == j)
2401 break;
2402 }
2403
2404 if (x != i || y != j || looplen == 0)
2405 goto completion_check_done;
2406
2407 /*
2408 * We've traced our way round a loop, and we know how many
2409 * line segments were involved. Count _all_ the line
2410 * segments in the grid, to see if the loop includes them
2411 * all.
2412 */
2413 count = 0;
2414 for (j = 0; j <= newstate->h; j++)
2415 for (i = 0; i <= newstate->w; i++)
2416 count += ((RIGHTOF_DOT(newstate, i, j) == LINE_YES) +
2417 (BELOW_DOT(newstate, i, j) == LINE_YES));
2418 assert(count >= looplen);
2419 if (count != looplen)
2420 goto completion_check_done;
2421
2422 /*
2423 * The grid contains one closed loop and nothing else.
2424 * Check that all the clues are satisfied.
2425 */
2426 for (j = 0; j < newstate->h; ++j) {
2427 for (i = 0; i < newstate->w; ++i) {
2428 int n = CLUE_AT(newstate, i, j);
2429 if (n != ' ') {
2430 if (square_order(newstate, i, j, LINE_YES) != n - '0') {
2431 goto completion_check_done;
2432 }
2433 }
2434 }
2435 }
2436
2437 /*
2438 * Completed!
2439 */
2440 newstate->solved = TRUE;
2441 }
2442
2443 completion_check_done:
2444 return newstate;
2445
2446 fail:
2447 free_game(newstate);
2448 return NULL;
2449 }
2450
2451 /* ----------------------------------------------------------------------
2452 * Drawing routines.
2453 */
2454
2455 #define SIZE(d) ((d) * TILE_SIZE + 2 * BORDER + 1)
2456
2457 static void game_compute_size(game_params *params, int tilesize,
2458 int *x, int *y)
2459 {
2460 struct { int tilesize; } ads, *ds = &ads;
2461 ads.tilesize = tilesize;
2462
2463 *x = SIZE(params->w);
2464 *y = SIZE(params->h);
2465 }
2466
2467 static void game_set_size(drawing *dr, game_drawstate *ds,
2468 game_params *params, int tilesize)
2469 {
2470 ds->tilesize = tilesize;
2471 }
2472
2473 static float *game_colours(frontend *fe, game_state *state, int *ncolours)
2474 {
2475 float *ret = snewn(4 * NCOLOURS, float);
2476
2477 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
2478
2479 ret[COL_FOREGROUND * 3 + 0] = 0.0F;
2480 ret[COL_FOREGROUND * 3 + 1] = 0.0F;
2481 ret[COL_FOREGROUND * 3 + 2] = 0.0F;
2482
2483 ret[COL_HIGHLIGHT * 3 + 0] = 1.0F;
2484 ret[COL_HIGHLIGHT * 3 + 1] = 1.0F;
2485 ret[COL_HIGHLIGHT * 3 + 2] = 1.0F;
2486
2487 ret[COL_MISTAKE * 3 + 0] = 1.0F;
2488 ret[COL_MISTAKE * 3 + 1] = 0.0F;
2489 ret[COL_MISTAKE * 3 + 2] = 0.0F;
2490
2491 *ncolours = NCOLOURS;
2492 return ret;
2493 }
2494
2495 static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
2496 {
2497 struct game_drawstate *ds = snew(struct game_drawstate);
2498
2499 ds->tilesize = 0;
2500 ds->started = 0;
2501 ds->hl = snewn(HL_COUNT(state), char);
2502 ds->vl = snewn(VL_COUNT(state), char);
2503 ds->clue_error = snewn(SQUARE_COUNT(state), char);
2504 ds->flashing = 0;
2505
2506 memset(ds->hl, LINE_UNKNOWN, HL_COUNT(state));
2507 memset(ds->vl, LINE_UNKNOWN, VL_COUNT(state));
2508 memset(ds->clue_error, 0, SQUARE_COUNT(state));
2509
2510 return ds;
2511 }
2512
2513 static void game_free_drawstate(drawing *dr, game_drawstate *ds)
2514 {
2515 sfree(ds->clue_error);
2516 sfree(ds->hl);
2517 sfree(ds->vl);
2518 sfree(ds);
2519 }
2520
2521 static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
2522 game_state *state, int dir, game_ui *ui,
2523 float animtime, float flashtime)
2524 {
2525 int i, j, n;
2526 int w = state->w, h = state->h;
2527 char c[2];
2528 int line_colour, flash_changed;
2529 int clue_mistake;
2530
2531 if (!ds->started) {
2532 /*
2533 * The initial contents of the window are not guaranteed and
2534 * can vary with front ends. To be on the safe side, all games
2535 * should start by drawing a big background-colour rectangle
2536 * covering the whole window.
2537 */
2538 draw_rect(dr, 0, 0, SIZE(state->w), SIZE(state->h), COL_BACKGROUND);
2539
2540 /* Draw dots */
2541 for (j = 0; j < h + 1; ++j) {
2542 for (i = 0; i < w + 1; ++i) {
2543 draw_rect(dr,
2544 BORDER + i * TILE_SIZE - LINEWIDTH/2,
2545 BORDER + j * TILE_SIZE - LINEWIDTH/2,
2546 LINEWIDTH, LINEWIDTH, COL_FOREGROUND);
2547 }
2548 }
2549
2550 /* Draw clues */
2551 for (j = 0; j < h; ++j) {
2552 for (i = 0; i < w; ++i) {
2553 c[0] = CLUE_AT(state, i, j);
2554 c[1] = '\0';
2555 draw_text(dr,
2556 BORDER + i * TILE_SIZE + TILE_SIZE/2,
2557 BORDER + j * TILE_SIZE + TILE_SIZE/2,
2558 FONT_VARIABLE, TILE_SIZE/2,
2559 ALIGN_VCENTRE | ALIGN_HCENTRE, COL_FOREGROUND, c);
2560 }
2561 }
2562 draw_update(dr, 0, 0,
2563 state->w * TILE_SIZE + 2*BORDER + 1,
2564 state->h * TILE_SIZE + 2*BORDER + 1);
2565 ds->started = TRUE;
2566 }
2567
2568 if (flashtime > 0 &&
2569 (flashtime <= FLASH_TIME/3 ||
2570 flashtime >= FLASH_TIME*2/3)) {
2571 flash_changed = !ds->flashing;
2572 ds->flashing = TRUE;
2573 line_colour = COL_HIGHLIGHT;
2574 } else {
2575 flash_changed = ds->flashing;
2576 ds->flashing = FALSE;
2577 line_colour = COL_FOREGROUND;
2578 }
2579
2580 #define CROSS_SIZE (3 * LINEWIDTH / 2)
2581
2582 /* Redraw clue colours if necessary */
2583 for (j = 0; j < h; ++j) {
2584 for (i = 0; i < w; ++i) {
2585 c[0] = CLUE_AT(state, i, j);
2586 c[1] = '\0';
2587 if (c[0] == ' ')
2588 continue;
2589
2590 n = c[0] - '0';
2591 assert(n >= 0 && n <= 4);
2592
2593 clue_mistake = (square_order(state, i, j, LINE_YES) > n ||
2594 square_order(state, i, j, LINE_NO ) > (4-n));
2595
2596 if (clue_mistake != ds->clue_error[j * w + i]) {
2597 draw_rect(dr,
2598 BORDER + i * TILE_SIZE + CROSS_SIZE,
2599 BORDER + j * TILE_SIZE + CROSS_SIZE,
2600 TILE_SIZE - CROSS_SIZE * 2, TILE_SIZE - CROSS_SIZE * 2,
2601 COL_BACKGROUND);
2602 draw_text(dr,
2603 BORDER + i * TILE_SIZE + TILE_SIZE/2,
2604 BORDER + j * TILE_SIZE + TILE_SIZE/2,
2605 FONT_VARIABLE, TILE_SIZE/2,
2606 ALIGN_VCENTRE | ALIGN_HCENTRE,
2607 clue_mistake ? COL_MISTAKE : COL_FOREGROUND, c);
2608 draw_update(dr, i * TILE_SIZE + BORDER, j * TILE_SIZE + BORDER,
2609 TILE_SIZE, TILE_SIZE);
2610
2611 ds->clue_error[j * w + i] = clue_mistake;
2612 }
2613 }
2614 }
2615
2616 /* I've also had a request to colour lines red if they make a non-solution
2617 * loop, or if more than two lines go into any point. I think that would
2618 * be good some time. */
2619
2620 #define CLEAR_VL(i, j) do { \
2621 draw_rect(dr, \
2622 BORDER + i * TILE_SIZE - CROSS_SIZE, \
2623 BORDER + j * TILE_SIZE + LINEWIDTH - LINEWIDTH/2, \
2624 CROSS_SIZE * 2, \
2625 TILE_SIZE - LINEWIDTH, \
2626 COL_BACKGROUND); \
2627 draw_update(dr, \
2628 BORDER + i * TILE_SIZE - CROSS_SIZE, \
2629 BORDER + j * TILE_SIZE - CROSS_SIZE, \
2630 CROSS_SIZE*2, \
2631 TILE_SIZE + CROSS_SIZE*2); \
2632 } while (0)
2633
2634 #define CLEAR_HL(i, j) do { \
2635 draw_rect(dr, \
2636 BORDER + i * TILE_SIZE + LINEWIDTH - LINEWIDTH/2, \
2637 BORDER + j * TILE_SIZE - CROSS_SIZE, \
2638 TILE_SIZE - LINEWIDTH, \
2639 CROSS_SIZE * 2, \
2640 COL_BACKGROUND); \
2641 draw_update(dr, \
2642 BORDER + i * TILE_SIZE - CROSS_SIZE, \
2643 BORDER + j * TILE_SIZE - CROSS_SIZE, \
2644 TILE_SIZE + CROSS_SIZE*2, \
2645 CROSS_SIZE*2); \
2646 } while (0)
2647
2648 /* Vertical lines */
2649 for (j = 0; j < h; ++j) {
2650 for (i = 0; i < w + 1; ++i) {
2651 switch (BELOW_DOT(state, i, j)) {
2652 case LINE_UNKNOWN:
2653 if (ds->vl[i + (w + 1) * j] != BELOW_DOT(state, i, j)) {
2654 CLEAR_VL(i, j);
2655 }
2656 break;
2657 case LINE_YES:
2658 if (ds->vl[i + (w + 1) * j] != BELOW_DOT(state, i, j) ||
2659 flash_changed) {
2660 CLEAR_VL(i, j);
2661 draw_rect(dr,
2662 BORDER + i * TILE_SIZE - LINEWIDTH/2,
2663 BORDER + j * TILE_SIZE + LINEWIDTH - LINEWIDTH/2,
2664 LINEWIDTH, TILE_SIZE - LINEWIDTH,
2665 line_colour);
2666 }
2667 break;
2668 case LINE_NO:
2669 if (ds->vl[i + (w + 1) * j] != BELOW_DOT(state, i, j)) {
2670 CLEAR_VL(i, j);
2671 draw_line(dr,
2672 BORDER + i * TILE_SIZE - CROSS_SIZE,
2673 BORDER + j * TILE_SIZE + TILE_SIZE/2 - CROSS_SIZE,
2674 BORDER + i * TILE_SIZE + CROSS_SIZE - 1,
2675 BORDER + j * TILE_SIZE + TILE_SIZE/2 + CROSS_SIZE - 1,
2676 COL_FOREGROUND);
2677 draw_line(dr,
2678 BORDER + i * TILE_SIZE + CROSS_SIZE - 1,
2679 BORDER + j * TILE_SIZE + TILE_SIZE/2 - CROSS_SIZE,
2680 BORDER + i * TILE_SIZE - CROSS_SIZE,
2681 BORDER + j * TILE_SIZE + TILE_SIZE/2 + CROSS_SIZE - 1,
2682 COL_FOREGROUND);
2683 }
2684 break;
2685 }
2686 ds->vl[i + (w + 1) * j] = BELOW_DOT(state, i, j);
2687 }
2688 }
2689
2690 /* Horizontal lines */
2691 for (j = 0; j < h + 1; ++j) {
2692 for (i = 0; i < w; ++i) {
2693 switch (RIGHTOF_DOT(state, i, j)) {
2694 case LINE_UNKNOWN:
2695 if (ds->hl[i + w * j] != RIGHTOF_DOT(state, i, j)) {
2696 CLEAR_HL(i, j);
2697 }
2698 break;
2699 case LINE_YES:
2700 if (ds->hl[i + w * j] != RIGHTOF_DOT(state, i, j) ||
2701 flash_changed) {
2702 CLEAR_HL(i, j);
2703 draw_rect(dr,
2704 BORDER + i * TILE_SIZE + LINEWIDTH - LINEWIDTH/2,
2705 BORDER + j * TILE_SIZE - LINEWIDTH/2,
2706 TILE_SIZE - LINEWIDTH, LINEWIDTH,
2707 line_colour);
2708 break;
2709 }
2710 case LINE_NO:
2711 if (ds->hl[i + w * j] != RIGHTOF_DOT(state, i, j)) {
2712 CLEAR_HL(i, j);
2713 draw_line(dr,
2714 BORDER + i * TILE_SIZE + TILE_SIZE/2 - CROSS_SIZE,
2715 BORDER + j * TILE_SIZE + CROSS_SIZE - 1,
2716 BORDER + i * TILE_SIZE + TILE_SIZE/2 + CROSS_SIZE - 1,
2717 BORDER + j * TILE_SIZE - CROSS_SIZE,
2718 COL_FOREGROUND);
2719 draw_line(dr,
2720 BORDER + i * TILE_SIZE + TILE_SIZE/2 - CROSS_SIZE,
2721 BORDER + j * TILE_SIZE - CROSS_SIZE,
2722 BORDER + i * TILE_SIZE + TILE_SIZE/2 + CROSS_SIZE - 1,
2723 BORDER + j * TILE_SIZE + CROSS_SIZE - 1,
2724 COL_FOREGROUND);
2725 break;
2726 }
2727 }
2728 ds->hl[i + w * j] = RIGHTOF_DOT(state, i, j);
2729 }
2730 }
2731 }
2732
2733 static float game_anim_length(game_state *oldstate, game_state *newstate,
2734 int dir, game_ui *ui)
2735 {
2736 return 0.0F;
2737 }
2738
2739 static float game_flash_length(game_state *oldstate, game_state *newstate,
2740 int dir, game_ui *ui)
2741 {
2742 if (!oldstate->solved && newstate->solved &&
2743 !oldstate->cheated && !newstate->cheated) {
2744 return FLASH_TIME;
2745 }
2746
2747 return 0.0F;
2748 }
2749
2750 static int game_wants_statusbar(void)
2751 {
2752 return FALSE;
2753 }
2754
2755 static int game_timing_state(game_state *state, game_ui *ui)
2756 {
2757 return TRUE;
2758 }
2759
2760 static void game_print_size(game_params *params, float *x, float *y)
2761 {
2762 int pw, ph;
2763
2764 /*
2765 * I'll use 7mm squares by default.
2766 */
2767 game_compute_size(params, 700, &pw, &ph);
2768 *x = pw / 100.0F;
2769 *y = ph / 100.0F;
2770 }
2771
2772 static void game_print(drawing *dr, game_state *state, int tilesize)
2773 {
2774 int w = state->w, h = state->h;
2775 int ink = print_mono_colour(dr, 0);
2776 int x, y;
2777 game_drawstate ads, *ds = &ads;
2778 ds->tilesize = tilesize;
2779
2780 /*
2781 * Dots. I'll deliberately make the dots a bit wider than the
2782 * lines, so you can still see them. (And also because it's
2783 * annoyingly tricky to make them _exactly_ the same size...)
2784 */
2785 for (y = 0; y <= h; y++)
2786 for (x = 0; x <= w; x++)
2787 draw_circle(dr, BORDER + x * TILE_SIZE, BORDER + y * TILE_SIZE,
2788 LINEWIDTH, ink, ink);
2789
2790 /*
2791 * Clues.
2792 */
2793 for (y = 0; y < h; y++)
2794 for (x = 0; x < w; x++)
2795 if (CLUE_AT(state, x, y) != ' ') {
2796 char c[2];
2797
2798 c[0] = CLUE_AT(state, x, y);
2799 c[1] = '\0';
2800 draw_text(dr,
2801 BORDER + x * TILE_SIZE + TILE_SIZE/2,
2802 BORDER + y * TILE_SIZE + TILE_SIZE/2,
2803 FONT_VARIABLE, TILE_SIZE/2,
2804 ALIGN_VCENTRE | ALIGN_HCENTRE, ink, c);
2805 }
2806
2807 /*
2808 * Lines. (At the moment, I'm not bothering with crosses.)
2809 */
2810 for (y = 0; y <= h; y++)
2811 for (x = 0; x < w; x++)
2812 if (RIGHTOF_DOT(state, x, y) == LINE_YES)
2813 draw_rect(dr, BORDER + x * TILE_SIZE,
2814 BORDER + y * TILE_SIZE - LINEWIDTH/2,
2815 TILE_SIZE, (LINEWIDTH/2) * 2 + 1, ink);
2816 for (y = 0; y < h; y++)
2817 for (x = 0; x <= w; x++)
2818 if (BELOW_DOT(state, x, y) == LINE_YES)
2819 draw_rect(dr, BORDER + x * TILE_SIZE - LINEWIDTH/2,
2820 BORDER + y * TILE_SIZE,
2821 (LINEWIDTH/2) * 2 + 1, TILE_SIZE, ink);
2822 }
2823
2824 #ifdef COMBINED
2825 #define thegame loopy
2826 #endif
2827
2828 const struct game thegame = {
2829 "Loopy", "games.loopy",
2830 default_params,
2831 game_fetch_preset,
2832 decode_params,
2833 encode_params,
2834 free_params,
2835 dup_params,
2836 TRUE, game_configure, custom_params,
2837 validate_params,
2838 new_game_desc,
2839 validate_desc,
2840 new_game,
2841 dup_game,
2842 free_game,
2843 1, solve_game,
2844 TRUE, game_text_format,
2845 new_ui,
2846 free_ui,
2847 encode_ui,
2848 decode_ui,
2849 game_changed_state,
2850 interpret_move,
2851 execute_move,
2852 PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
2853 game_colours,
2854 game_new_drawstate,
2855 game_free_drawstate,
2856 game_redraw,
2857 game_anim_length,
2858 game_flash_length,
2859 TRUE, FALSE, game_print_size, game_print,
2860 game_wants_statusbar,
2861 FALSE, game_timing_state,
2862 0, /* mouse_priorities */
2863 };