Fix array bounds violation in the solver. Oops.
[sgt/puzzles] / inertia.c
1 /*
2 * inertia.c: Game involving navigating round a grid picking up
3 * gems.
4 *
5 * Game rules and basic generator design by Ben Olmstead.
6 * This re-implementation was written by Simon Tatham.
7 */
8
9 #include <stdio.h>
10 #include <stdlib.h>
11 #include <string.h>
12 #include <assert.h>
13 #include <ctype.h>
14 #include <math.h>
15
16 #include "puzzles.h"
17
18 /* Used in the game_state */
19 #define BLANK 'b'
20 #define GEM 'g'
21 #define MINE 'm'
22 #define STOP 's'
23 #define WALL 'w'
24
25 /* Used in the game IDs */
26 #define START 'S'
27
28 /* Used in the game generation */
29 #define POSSGEM 'G'
30
31 /* Used only in the game_drawstate*/
32 #define UNDRAWN '?'
33
34 #define DIRECTIONS 8
35 #define DX(dir) ( (dir) & 3 ? (((dir) & 7) > 4 ? -1 : +1) : 0 )
36 #define DY(dir) ( DX((dir)+6) )
37
38 /*
39 * Lvalue macro which expects x and y to be in range.
40 */
41 #define LV_AT(w, h, grid, x, y) ( (grid)[(y)*(w)+(x)] )
42
43 /*
44 * Rvalue macro which can cope with x and y being out of range.
45 */
46 #define AT(w, h, grid, x, y) ( (x)<0 || (x)>=(w) || (y)<0 || (y)>=(h) ? \
47 WALL : LV_AT(w, h, grid, x, y) )
48
49 enum {
50 COL_BACKGROUND,
51 COL_OUTLINE,
52 COL_HIGHLIGHT,
53 COL_LOWLIGHT,
54 COL_PLAYER,
55 COL_DEAD_PLAYER,
56 COL_MINE,
57 COL_GEM,
58 COL_WALL,
59 NCOLOURS
60 };
61
62 struct game_params {
63 int w, h;
64 };
65
66 struct game_state {
67 game_params p;
68 int px, py;
69 int gems;
70 char *grid;
71 int distance_moved;
72 int dead;
73 };
74
75 static game_params *default_params(void)
76 {
77 game_params *ret = snew(game_params);
78
79 ret->w = 10;
80 ret->h = 8;
81
82 return ret;
83 }
84
85 static void free_params(game_params *params)
86 {
87 sfree(params);
88 }
89
90 static game_params *dup_params(game_params *params)
91 {
92 game_params *ret = snew(game_params);
93 *ret = *params; /* structure copy */
94 return ret;
95 }
96
97 static const struct game_params inertia_presets[] = {
98 { 10, 8 },
99 { 15, 12 },
100 { 20, 16 },
101 };
102
103 static int game_fetch_preset(int i, char **name, game_params **params)
104 {
105 game_params p, *ret;
106 char *retname;
107 char namebuf[80];
108
109 if (i < 0 || i >= lenof(inertia_presets))
110 return FALSE;
111
112 p = inertia_presets[i];
113 ret = dup_params(&p);
114 sprintf(namebuf, "%dx%d", ret->w, ret->h);
115 retname = dupstr(namebuf);
116
117 *params = ret;
118 *name = retname;
119 return TRUE;
120 }
121
122 static void decode_params(game_params *params, char const *string)
123 {
124 params->w = params->h = atoi(string);
125 while (*string && isdigit((unsigned char)*string)) string++;
126 if (*string == 'x') {
127 string++;
128 params->h = atoi(string);
129 }
130 }
131
132 static char *encode_params(game_params *params, int full)
133 {
134 char data[256];
135
136 sprintf(data, "%dx%d", params->w, params->h);
137
138 return dupstr(data);
139 }
140
141 static config_item *game_configure(game_params *params)
142 {
143 config_item *ret;
144 char buf[80];
145
146 ret = snewn(3, config_item);
147
148 ret[0].name = "Width";
149 ret[0].type = C_STRING;
150 sprintf(buf, "%d", params->w);
151 ret[0].sval = dupstr(buf);
152 ret[0].ival = 0;
153
154 ret[1].name = "Height";
155 ret[1].type = C_STRING;
156 sprintf(buf, "%d", params->h);
157 ret[1].sval = dupstr(buf);
158 ret[1].ival = 0;
159
160 ret[2].name = NULL;
161 ret[2].type = C_END;
162 ret[2].sval = NULL;
163 ret[2].ival = 0;
164
165 return ret;
166 }
167
168 static game_params *custom_params(config_item *cfg)
169 {
170 game_params *ret = snew(game_params);
171
172 ret->w = atoi(cfg[0].sval);
173 ret->h = atoi(cfg[1].sval);
174
175 return ret;
176 }
177
178 static char *validate_params(game_params *params, int full)
179 {
180 /*
181 * Avoid completely degenerate cases which only have one
182 * row/column. We probably could generate completable puzzles
183 * of that shape, but they'd be forced to be extremely boring
184 * and at large sizes would take a while to happen upon at
185 * random as well.
186 */
187 if (params->w < 2 || params->h < 2)
188 return "Width and height must both be at least two";
189
190 /*
191 * The grid construction algorithm creates 1/5 as many gems as
192 * grid squares, and must create at least one gem to have an
193 * actual puzzle. However, an area-five grid is ruled out by
194 * the above constraint, so the practical minimum is six.
195 */
196 if (params->w * params->h < 6)
197 return "Grid area must be at least six squares";
198
199 return NULL;
200 }
201
202 /* ----------------------------------------------------------------------
203 * Solver used by grid generator.
204 */
205
206 struct solver_scratch {
207 unsigned char *reachable_from, *reachable_to;
208 int *positions;
209 };
210
211 static struct solver_scratch *new_scratch(int w, int h)
212 {
213 struct solver_scratch *sc = snew(struct solver_scratch);
214
215 sc->reachable_from = snewn(w * h * DIRECTIONS, unsigned char);
216 sc->reachable_to = snewn(w * h * DIRECTIONS, unsigned char);
217 sc->positions = snewn(w * h * DIRECTIONS, int);
218
219 return sc;
220 }
221
222 static void free_scratch(struct solver_scratch *sc)
223 {
224 sfree(sc);
225 }
226
227 static int can_go(int w, int h, char *grid,
228 int x1, int y1, int dir1, int x2, int y2, int dir2)
229 {
230 /*
231 * Returns TRUE if we can transition directly from (x1,y1)
232 * going in direction dir1, to (x2,y2) going in direction dir2.
233 */
234
235 /*
236 * If we're actually in the middle of an unoccupyable square,
237 * we cannot make any move.
238 */
239 if (AT(w, h, grid, x1, y1) == WALL ||
240 AT(w, h, grid, x1, y1) == MINE)
241 return FALSE;
242
243 /*
244 * If a move is capable of stopping at x1,y1,dir1, and x2,y2 is
245 * the same coordinate as x1,y1, then we can make the
246 * transition (by stopping and changing direction).
247 *
248 * For this to be the case, we have to either have a wall
249 * beyond x1,y1,dir1, or have a stop on x1,y1.
250 */
251 if (x2 == x1 && y2 == y1 &&
252 (AT(w, h, grid, x1, y1) == STOP ||
253 AT(w, h, grid, x1, y1) == START ||
254 AT(w, h, grid, x1+DX(dir1), y1+DY(dir1)) == WALL))
255 return TRUE;
256
257 /*
258 * If a move is capable of continuing here, then x1,y1,dir1 can
259 * move one space further on.
260 */
261 if (x2 == x1+DX(dir1) && y2 == y1+DY(dir1) && dir1 == dir2 &&
262 (AT(w, h, grid, x2, y2) == BLANK ||
263 AT(w, h, grid, x2, y2) == GEM ||
264 AT(w, h, grid, x2, y2) == STOP ||
265 AT(w, h, grid, x2, y2) == START))
266 return TRUE;
267
268 /*
269 * That's it.
270 */
271 return FALSE;
272 }
273
274 static int find_gem_candidates(int w, int h, char *grid,
275 struct solver_scratch *sc)
276 {
277 int wh = w*h;
278 int head, tail;
279 int sx, sy, gx, gy, gd, pass, possgems;
280
281 /*
282 * This function finds all the candidate gem squares, which are
283 * precisely those squares which can be picked up on a loop
284 * from the starting point back to the starting point. Doing
285 * this may involve passing through such a square in the middle
286 * of a move; so simple breadth-first search over the _squares_
287 * of the grid isn't quite adequate, because it might be that
288 * we can only reach a gem from the start by moving over it in
289 * one direction, but can only return to the start if we were
290 * moving over it in another direction.
291 *
292 * Instead, we BFS over a space which mentions each grid square
293 * eight times - once for each direction. We also BFS twice:
294 * once to find out what square+direction pairs we can reach
295 * _from_ the start point, and once to find out what pairs we
296 * can reach the start point from. Then a square is reachable
297 * if any of the eight directions for that square has both
298 * flags set.
299 */
300
301 memset(sc->reachable_from, 0, wh * DIRECTIONS);
302 memset(sc->reachable_to, 0, wh * DIRECTIONS);
303
304 /*
305 * Find the starting square.
306 */
307 sx = -1; /* placate optimiser */
308 for (sy = 0; sy < h; sy++) {
309 for (sx = 0; sx < w; sx++)
310 if (AT(w, h, grid, sx, sy) == START)
311 break;
312 if (sx < w)
313 break;
314 }
315 assert(sy < h);
316
317 for (pass = 0; pass < 2; pass++) {
318 unsigned char *reachable = (pass == 0 ? sc->reachable_from :
319 sc->reachable_to);
320 int sign = (pass == 0 ? +1 : -1);
321 int dir;
322
323 #ifdef SOLVER_DIAGNOSTICS
324 printf("starting pass %d\n", pass);
325 #endif
326
327 /*
328 * `head' and `tail' are indices within sc->positions which
329 * track the list of board positions left to process.
330 */
331 head = tail = 0;
332 for (dir = 0; dir < DIRECTIONS; dir++) {
333 int index = (sy*w+sx)*DIRECTIONS+dir;
334 sc->positions[tail++] = index;
335 reachable[index] = TRUE;
336 #ifdef SOLVER_DIAGNOSTICS
337 printf("starting point %d,%d,%d\n", sx, sy, dir);
338 #endif
339 }
340
341 /*
342 * Now repeatedly pick an element off the list and process
343 * it.
344 */
345 while (head < tail) {
346 int index = sc->positions[head++];
347 int dir = index % DIRECTIONS;
348 int x = (index / DIRECTIONS) % w;
349 int y = index / (w * DIRECTIONS);
350 int n, x2, y2, d2, i2;
351
352 #ifdef SOLVER_DIAGNOSTICS
353 printf("processing point %d,%d,%d\n", x, y, dir);
354 #endif
355 /*
356 * The places we attempt to switch to here are:
357 * - each possible direction change (all the other
358 * directions in this square)
359 * - one step further in the direction we're going (or
360 * one step back, if we're in the reachable_to pass).
361 */
362 for (n = -1; n < DIRECTIONS; n++) {
363 if (n < 0) {
364 x2 = x + sign * DX(dir);
365 y2 = y + sign * DY(dir);
366 d2 = dir;
367 } else {
368 x2 = x;
369 y2 = y;
370 d2 = n;
371 }
372 i2 = (y2*w+x2)*DIRECTIONS+d2;
373 if (x2 >= 0 && x2 < w &&
374 y2 >= 0 && y2 < h &&
375 !reachable[i2]) {
376 int ok;
377 #ifdef SOLVER_DIAGNOSTICS
378 printf(" trying point %d,%d,%d", x2, y2, d2);
379 #endif
380 if (pass == 0)
381 ok = can_go(w, h, grid, x, y, dir, x2, y2, d2);
382 else
383 ok = can_go(w, h, grid, x2, y2, d2, x, y, dir);
384 #ifdef SOLVER_DIAGNOSTICS
385 printf(" - %sok\n", ok ? "" : "not ");
386 #endif
387 if (ok) {
388 sc->positions[tail++] = i2;
389 reachable[i2] = TRUE;
390 }
391 }
392 }
393 }
394 }
395
396 /*
397 * And that should be it. Now all we have to do is find the
398 * squares for which there exists _some_ direction such that
399 * the square plus that direction form a tuple which is both
400 * reachable from the start and reachable to the start.
401 */
402 possgems = 0;
403 for (gy = 0; gy < h; gy++)
404 for (gx = 0; gx < w; gx++)
405 if (AT(w, h, grid, gx, gy) == BLANK) {
406 for (gd = 0; gd < DIRECTIONS; gd++) {
407 int index = (gy*w+gx)*DIRECTIONS+gd;
408 if (sc->reachable_from[index] && sc->reachable_to[index]) {
409 #ifdef SOLVER_DIAGNOSTICS
410 printf("space at %d,%d is reachable via"
411 " direction %d\n", gx, gy, gd);
412 #endif
413 LV_AT(w, h, grid, gx, gy) = POSSGEM;
414 possgems++;
415 break;
416 }
417 }
418 }
419
420 return possgems;
421 }
422
423 /* ----------------------------------------------------------------------
424 * Grid generation code.
425 */
426
427 static char *gengrid(int w, int h, random_state *rs)
428 {
429 int wh = w*h;
430 char *grid = snewn(wh+1, char);
431 struct solver_scratch *sc = new_scratch(w, h);
432 int maxdist_threshold, tries;
433
434 maxdist_threshold = 2;
435 tries = 0;
436
437 while (1) {
438 int i, j;
439 int possgems;
440 int *dist, *list, head, tail, maxdist;
441
442 /*
443 * We're going to fill the grid with the five basic piece
444 * types in about 1/5 proportion. For the moment, though,
445 * we leave out the gems, because we'll put those in
446 * _after_ we run the solver to tell us where the viable
447 * locations are.
448 */
449 i = 0;
450 for (j = 0; j < wh/5; j++)
451 grid[i++] = WALL;
452 for (j = 0; j < wh/5; j++)
453 grid[i++] = STOP;
454 for (j = 0; j < wh/5; j++)
455 grid[i++] = MINE;
456 assert(i < wh);
457 grid[i++] = START;
458 while (i < wh)
459 grid[i++] = BLANK;
460 shuffle(grid, wh, sizeof(*grid), rs);
461
462 /*
463 * Find the viable gem locations, and immediately give up
464 * and try again if there aren't enough of them.
465 */
466 possgems = find_gem_candidates(w, h, grid, sc);
467 if (possgems < wh/5)
468 continue;
469
470 /*
471 * We _could_ now select wh/5 of the POSSGEMs and set them
472 * to GEM, and have a viable level. However, there's a
473 * chance that a large chunk of the level will turn out to
474 * be unreachable, so first we test for that.
475 *
476 * We do this by finding the largest distance from any
477 * square to the nearest POSSGEM, by breadth-first search.
478 * If this is above a critical threshold, we abort and try
479 * again.
480 *
481 * (This search is purely geometric, without regard to
482 * walls and long ways round.)
483 */
484 dist = sc->positions;
485 list = sc->positions + wh;
486 for (i = 0; i < wh; i++)
487 dist[i] = -1;
488 head = tail = 0;
489 for (i = 0; i < wh; i++)
490 if (grid[i] == POSSGEM) {
491 dist[i] = 0;
492 list[tail++] = i;
493 }
494 maxdist = 0;
495 while (head < tail) {
496 int pos, x, y, d;
497
498 pos = list[head++];
499 if (maxdist < dist[pos])
500 maxdist = dist[pos];
501
502 x = pos % w;
503 y = pos / w;
504
505 for (d = 0; d < DIRECTIONS; d++) {
506 int x2, y2, p2;
507
508 x2 = x + DX(d);
509 y2 = y + DY(d);
510
511 if (x2 >= 0 && x2 < w && y2 >= 0 && y2 < h) {
512 p2 = y2*w+x2;
513 if (dist[p2] < 0) {
514 dist[p2] = dist[pos] + 1;
515 list[tail++] = p2;
516 }
517 }
518 }
519 }
520 assert(head == wh && tail == wh);
521
522 /*
523 * Now abandon this grid and go round again if maxdist is
524 * above the required threshold.
525 *
526 * We can safely start the threshold as low as 2. As we
527 * accumulate failed generation attempts, we gradually
528 * raise it as we get more desperate.
529 */
530 if (maxdist > maxdist_threshold) {
531 tries++;
532 if (tries == 50) {
533 maxdist_threshold++;
534 tries = 0;
535 }
536 continue;
537 }
538
539 /*
540 * Now our reachable squares are plausibly evenly
541 * distributed over the grid. I'm not actually going to
542 * _enforce_ that I place the gems in such a way as not to
543 * increase that maxdist value; I'm now just going to trust
544 * to the RNG to pick a sensible subset of the POSSGEMs.
545 */
546 j = 0;
547 for (i = 0; i < wh; i++)
548 if (grid[i] == POSSGEM)
549 list[j++] = i;
550 shuffle(list, j, sizeof(*list), rs);
551 for (i = 0; i < j; i++)
552 grid[list[i]] = (i < wh/5 ? GEM : BLANK);
553 break;
554 }
555
556 free_scratch(sc);
557
558 grid[wh] = '\0';
559
560 return grid;
561 }
562
563 static char *new_game_desc(game_params *params, random_state *rs,
564 char **aux, int interactive)
565 {
566 return gengrid(params->w, params->h, rs);
567 }
568
569 static char *validate_desc(game_params *params, char *desc)
570 {
571 int w = params->w, h = params->h, wh = w*h;
572 int starts = 0, gems = 0, i;
573
574 for (i = 0; i < wh; i++) {
575 if (!desc[i])
576 return "Not enough data to fill grid";
577 if (desc[i] != WALL && desc[i] != START && desc[i] != STOP &&
578 desc[i] != GEM && desc[i] != MINE && desc[i] != BLANK)
579 return "Unrecognised character in game description";
580 if (desc[i] == START)
581 starts++;
582 if (desc[i] == GEM)
583 gems++;
584 }
585 if (desc[i])
586 return "Too much data to fill grid";
587 if (starts < 1)
588 return "No starting square specified";
589 if (starts > 1)
590 return "More than one starting square specified";
591 if (gems < 1)
592 return "No gems specified";
593
594 return NULL;
595 }
596
597 static game_state *new_game(midend *me, game_params *params, char *desc)
598 {
599 int w = params->w, h = params->h, wh = w*h;
600 int i;
601 game_state *state = snew(game_state);
602
603 state->p = *params; /* structure copy */
604
605 state->grid = snewn(wh, char);
606 assert(strlen(desc) == wh);
607 memcpy(state->grid, desc, wh);
608
609 state->px = state->py = -1;
610 state->gems = 0;
611 for (i = 0; i < wh; i++) {
612 if (state->grid[i] == START) {
613 state->grid[i] = STOP;
614 state->px = i % w;
615 state->py = i / w;
616 } else if (state->grid[i] == GEM) {
617 state->gems++;
618 }
619 }
620
621 assert(state->gems > 0);
622 assert(state->px >= 0 && state->py >= 0);
623
624 state->distance_moved = 0;
625 state->dead = FALSE;
626
627 return state;
628 }
629
630 static game_state *dup_game(game_state *state)
631 {
632 int w = state->p.w, h = state->p.h, wh = w*h;
633 game_state *ret = snew(game_state);
634
635 ret->p = state->p;
636 ret->px = state->px;
637 ret->py = state->py;
638 ret->gems = state->gems;
639 ret->grid = snewn(wh, char);
640 ret->distance_moved = state->distance_moved;
641 ret->dead = FALSE;
642 memcpy(ret->grid, state->grid, wh);
643
644 return ret;
645 }
646
647 static void free_game(game_state *state)
648 {
649 sfree(state->grid);
650 sfree(state);
651 }
652
653 static char *solve_game(game_state *state, game_state *currstate,
654 char *aux, char **error)
655 {
656 return NULL;
657 }
658
659 static char *game_text_format(game_state *state)
660 {
661 return NULL;
662 }
663
664 struct game_ui {
665 float anim_length;
666 int flashtype;
667 int deaths;
668 int just_made_move;
669 int just_died;
670 };
671
672 static game_ui *new_ui(game_state *state)
673 {
674 game_ui *ui = snew(game_ui);
675 ui->anim_length = 0.0F;
676 ui->flashtype = 0;
677 ui->deaths = 0;
678 ui->just_made_move = FALSE;
679 ui->just_died = FALSE;
680 return ui;
681 }
682
683 static void free_ui(game_ui *ui)
684 {
685 sfree(ui);
686 }
687
688 static char *encode_ui(game_ui *ui)
689 {
690 char buf[80];
691 /*
692 * The deaths counter needs preserving across a serialisation.
693 */
694 sprintf(buf, "D%d", ui->deaths);
695 return dupstr(buf);
696 }
697
698 static void decode_ui(game_ui *ui, char *encoding)
699 {
700 int p = 0;
701 sscanf(encoding, "D%d%n", &ui->deaths, &p);
702 }
703
704 static void game_changed_state(game_ui *ui, game_state *oldstate,
705 game_state *newstate)
706 {
707 /*
708 * Increment the deaths counter. We only do this if
709 * ui->just_made_move is set (redoing a suicide move doesn't
710 * kill you _again_), and also we only do it if the game isn't
711 * completed (once you're finished, you can play).
712 */
713 if (!oldstate->dead && newstate->dead && ui->just_made_move &&
714 newstate->gems) {
715 ui->deaths++;
716 ui->just_died = TRUE;
717 } else {
718 ui->just_died = FALSE;
719 }
720 ui->just_made_move = FALSE;
721 }
722
723 struct game_drawstate {
724 game_params p;
725 int tilesize;
726 int started;
727 unsigned short *grid;
728 blitter *player_background;
729 int player_bg_saved, pbgx, pbgy;
730 };
731
732 #define PREFERRED_TILESIZE 32
733 #define TILESIZE (ds->tilesize)
734 #define BORDER (TILESIZE)
735 #define HIGHLIGHT_WIDTH (TILESIZE / 10)
736 #define COORD(x) ( (x) * TILESIZE + BORDER )
737 #define FROMCOORD(x) ( ((x) - BORDER + TILESIZE) / TILESIZE - 1 )
738
739 static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
740 int x, int y, int button)
741 {
742 int w = state->p.w, h = state->p.h /*, wh = w*h */;
743 int dir;
744 char buf[80];
745
746 dir = -1;
747
748 if (button == LEFT_BUTTON) {
749 /*
750 * Mouse-clicking near the target point (or, more
751 * accurately, in the appropriate octant) is an alternative
752 * way to input moves.
753 */
754
755 if (FROMCOORD(x) != state->px || FROMCOORD(y) != state->py) {
756 int dx, dy;
757 float angle;
758
759 dx = FROMCOORD(x) - state->px;
760 dy = FROMCOORD(y) - state->py;
761 /* I pass dx,dy rather than dy,dx so that the octants
762 * end up the right way round. */
763 angle = atan2(dx, -dy);
764
765 angle = (angle + (PI/8)) / (PI/4);
766 assert(angle > -16.0F);
767 dir = (int)(angle + 16.0F) & 7;
768 }
769 } else if (button == CURSOR_UP || button == (MOD_NUM_KEYPAD | '8'))
770 dir = 0;
771 else if (button == CURSOR_DOWN || button == (MOD_NUM_KEYPAD | '2'))
772 dir = 4;
773 else if (button == CURSOR_LEFT || button == (MOD_NUM_KEYPAD | '4'))
774 dir = 6;
775 else if (button == CURSOR_RIGHT || button == (MOD_NUM_KEYPAD | '6'))
776 dir = 2;
777 else if (button == (MOD_NUM_KEYPAD | '7'))
778 dir = 7;
779 else if (button == (MOD_NUM_KEYPAD | '1'))
780 dir = 5;
781 else if (button == (MOD_NUM_KEYPAD | '9'))
782 dir = 1;
783 else if (button == (MOD_NUM_KEYPAD | '3'))
784 dir = 3;
785
786 if (dir < 0)
787 return NULL;
788
789 /*
790 * Reject the move if we can't make it at all due to a wall
791 * being in the way.
792 */
793 if (AT(w, h, state->grid, state->px+DX(dir), state->py+DY(dir)) == WALL)
794 return NULL;
795
796 /*
797 * Reject the move if we're dead!
798 */
799 if (state->dead)
800 return NULL;
801
802 /*
803 * Otherwise, we can make the move. All we need to specify is
804 * the direction.
805 */
806 ui->just_made_move = TRUE;
807 sprintf(buf, "%d", dir);
808 return dupstr(buf);
809 }
810
811 static game_state *execute_move(game_state *state, char *move)
812 {
813 int w = state->p.w, h = state->p.h /*, wh = w*h */;
814 int dir = atoi(move);
815 game_state *ret;
816
817 if (dir < 0 || dir >= DIRECTIONS)
818 return NULL; /* huh? */
819
820 if (state->dead)
821 return NULL;
822
823 if (AT(w, h, state->grid, state->px+DX(dir), state->py+DY(dir)) == WALL)
824 return NULL; /* wall in the way! */
825
826 /*
827 * Now make the move.
828 */
829 ret = dup_game(state);
830 ret->distance_moved = 0;
831 while (1) {
832 ret->px += DX(dir);
833 ret->py += DY(dir);
834 ret->distance_moved++;
835
836 if (AT(w, h, ret->grid, ret->px, ret->py) == GEM) {
837 LV_AT(w, h, ret->grid, ret->px, ret->py) = BLANK;
838 ret->gems--;
839 }
840
841 if (AT(w, h, ret->grid, ret->px, ret->py) == MINE) {
842 ret->dead = TRUE;
843 break;
844 }
845
846 if (AT(w, h, ret->grid, ret->px, ret->py) == STOP ||
847 AT(w, h, ret->grid, ret->px+DX(dir),
848 ret->py+DY(dir)) == WALL)
849 break;
850 }
851
852 return ret;
853 }
854
855 /* ----------------------------------------------------------------------
856 * Drawing routines.
857 */
858
859 static void game_compute_size(game_params *params, int tilesize,
860 int *x, int *y)
861 {
862 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
863 struct { int tilesize; } ads, *ds = &ads;
864 ads.tilesize = tilesize;
865
866 *x = 2 * BORDER + 1 + params->w * TILESIZE;
867 *y = 2 * BORDER + 1 + params->h * TILESIZE;
868 }
869
870 static void game_set_size(drawing *dr, game_drawstate *ds,
871 game_params *params, int tilesize)
872 {
873 ds->tilesize = tilesize;
874
875 assert(!ds->player_bg_saved);
876
877 if (ds->player_background)
878 blitter_free(dr, ds->player_background);
879 ds->player_background = blitter_new(dr, TILESIZE, TILESIZE);
880 }
881
882 static float *game_colours(frontend *fe, game_state *state, int *ncolours)
883 {
884 float *ret = snewn(3 * NCOLOURS, float);
885 int i;
886
887 game_mkhighlight(fe, ret, COL_BACKGROUND, COL_HIGHLIGHT, COL_LOWLIGHT);
888
889 ret[COL_OUTLINE * 3 + 0] = 0.0F;
890 ret[COL_OUTLINE * 3 + 1] = 0.0F;
891 ret[COL_OUTLINE * 3 + 2] = 0.0F;
892
893 ret[COL_PLAYER * 3 + 0] = 0.0F;
894 ret[COL_PLAYER * 3 + 1] = 1.0F;
895 ret[COL_PLAYER * 3 + 2] = 0.0F;
896
897 ret[COL_DEAD_PLAYER * 3 + 0] = 1.0F;
898 ret[COL_DEAD_PLAYER * 3 + 1] = 0.0F;
899 ret[COL_DEAD_PLAYER * 3 + 2] = 0.0F;
900
901 ret[COL_MINE * 3 + 0] = 0.0F;
902 ret[COL_MINE * 3 + 1] = 0.0F;
903 ret[COL_MINE * 3 + 2] = 0.0F;
904
905 ret[COL_GEM * 3 + 0] = 0.6F;
906 ret[COL_GEM * 3 + 1] = 1.0F;
907 ret[COL_GEM * 3 + 2] = 1.0F;
908
909 for (i = 0; i < 3; i++) {
910 ret[COL_WALL * 3 + i] = (3 * ret[COL_BACKGROUND * 3 + i] +
911 1 * ret[COL_HIGHLIGHT * 3 + i]) / 4;
912 }
913
914 *ncolours = NCOLOURS;
915 return ret;
916 }
917
918 static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
919 {
920 int w = state->p.w, h = state->p.h, wh = w*h;
921 struct game_drawstate *ds = snew(struct game_drawstate);
922 int i;
923
924 ds->tilesize = 0;
925
926 /* We can't allocate the blitter rectangle for the player background
927 * until we know what size to make it. */
928 ds->player_background = NULL;
929 ds->player_bg_saved = FALSE;
930 ds->pbgx = ds->pbgy = -1;
931
932 ds->p = state->p; /* structure copy */
933 ds->started = FALSE;
934 ds->grid = snewn(wh, unsigned short);
935 for (i = 0; i < wh; i++)
936 ds->grid[i] = UNDRAWN;
937
938 return ds;
939 }
940
941 static void game_free_drawstate(drawing *dr, game_drawstate *ds)
942 {
943 sfree(ds->grid);
944 sfree(ds);
945 }
946
947 static void draw_player(drawing *dr, game_drawstate *ds, int x, int y,
948 int dead)
949 {
950 if (dead) {
951 int coords[DIRECTIONS*4];
952 int d;
953
954 for (d = 0; d < DIRECTIONS; d++) {
955 float x1, y1, x2, y2, x3, y3, len;
956
957 x1 = DX(d);
958 y1 = DY(d);
959 len = sqrt(x1*x1+y1*y1); x1 /= len; y1 /= len;
960
961 x3 = DX(d+1);
962 y3 = DY(d+1);
963 len = sqrt(x3*x3+y3*y3); x3 /= len; y3 /= len;
964
965 x2 = (x1+x3) / 4;
966 y2 = (y1+y3) / 4;
967
968 coords[d*4+0] = x + TILESIZE/2 + (int)((TILESIZE*3/7) * x1);
969 coords[d*4+1] = y + TILESIZE/2 + (int)((TILESIZE*3/7) * y1);
970 coords[d*4+2] = x + TILESIZE/2 + (int)((TILESIZE*3/7) * x2);
971 coords[d*4+3] = y + TILESIZE/2 + (int)((TILESIZE*3/7) * y2);
972 }
973 draw_polygon(dr, coords, DIRECTIONS*2, COL_DEAD_PLAYER, COL_OUTLINE);
974 } else {
975 draw_circle(dr, x + TILESIZE/2, y + TILESIZE/2,
976 TILESIZE/3, COL_PLAYER, COL_OUTLINE);
977 }
978 draw_update(dr, x, y, TILESIZE, TILESIZE);
979 }
980
981 #define FLASH_DEAD 0x100
982 #define FLASH_WIN 0x200
983 #define FLASH_MASK 0x300
984
985 static void draw_tile(drawing *dr, game_drawstate *ds, int x, int y, int v)
986 {
987 int tx = COORD(x), ty = COORD(y);
988 int bg = (v & FLASH_DEAD ? COL_DEAD_PLAYER :
989 v & FLASH_WIN ? COL_HIGHLIGHT : COL_BACKGROUND);
990
991 v &= ~FLASH_MASK;
992
993 clip(dr, tx+1, ty+1, TILESIZE-1, TILESIZE-1);
994 draw_rect(dr, tx+1, ty+1, TILESIZE-1, TILESIZE-1, bg);
995
996 if (v == WALL) {
997 int coords[6];
998
999 coords[0] = tx + TILESIZE;
1000 coords[1] = ty + TILESIZE;
1001 coords[2] = tx + TILESIZE;
1002 coords[3] = ty + 1;
1003 coords[4] = tx + 1;
1004 coords[5] = ty + TILESIZE;
1005 draw_polygon(dr, coords, 3, COL_LOWLIGHT, COL_LOWLIGHT);
1006
1007 coords[0] = tx + 1;
1008 coords[1] = ty + 1;
1009 draw_polygon(dr, coords, 3, COL_HIGHLIGHT, COL_HIGHLIGHT);
1010
1011 draw_rect(dr, tx + 1 + HIGHLIGHT_WIDTH, ty + 1 + HIGHLIGHT_WIDTH,
1012 TILESIZE - 2*HIGHLIGHT_WIDTH,
1013 TILESIZE - 2*HIGHLIGHT_WIDTH, COL_WALL);
1014 } else if (v == MINE) {
1015 int cx = tx + TILESIZE / 2;
1016 int cy = ty + TILESIZE / 2;
1017 int r = TILESIZE / 2 - 3;
1018 int coords[4*5*2];
1019 int xdx = 1, xdy = 0, ydx = 0, ydy = 1;
1020 int tdx, tdy, i;
1021
1022 for (i = 0; i < 4*5*2; i += 5*2) {
1023 coords[i+2*0+0] = cx - r/6*xdx + r*4/5*ydx;
1024 coords[i+2*0+1] = cy - r/6*xdy + r*4/5*ydy;
1025 coords[i+2*1+0] = cx - r/6*xdx + r*ydx;
1026 coords[i+2*1+1] = cy - r/6*xdy + r*ydy;
1027 coords[i+2*2+0] = cx + r/6*xdx + r*ydx;
1028 coords[i+2*2+1] = cy + r/6*xdy + r*ydy;
1029 coords[i+2*3+0] = cx + r/6*xdx + r*4/5*ydx;
1030 coords[i+2*3+1] = cy + r/6*xdy + r*4/5*ydy;
1031 coords[i+2*4+0] = cx + r*3/5*xdx + r*3/5*ydx;
1032 coords[i+2*4+1] = cy + r*3/5*xdy + r*3/5*ydy;
1033
1034 tdx = ydx;
1035 tdy = ydy;
1036 ydx = xdx;
1037 ydy = xdy;
1038 xdx = -tdx;
1039 xdy = -tdy;
1040 }
1041
1042 draw_polygon(dr, coords, 5*4, COL_MINE, COL_MINE);
1043
1044 draw_rect(dr, cx-r/3, cy-r/3, r/3, r/4, COL_HIGHLIGHT);
1045 } else if (v == STOP) {
1046 draw_circle(dr, tx + TILESIZE/2, ty + TILESIZE/2,
1047 TILESIZE*3/7, -1, COL_OUTLINE);
1048 draw_rect(dr, tx + TILESIZE*3/7, ty+1,
1049 TILESIZE - 2*(TILESIZE*3/7) + 1, TILESIZE-1, bg);
1050 draw_rect(dr, tx+1, ty + TILESIZE*3/7,
1051 TILESIZE-1, TILESIZE - 2*(TILESIZE*3/7) + 1, bg);
1052 } else if (v == GEM) {
1053 int coords[8];
1054
1055 coords[0] = tx+TILESIZE/2;
1056 coords[1] = ty+TILESIZE*1/7;
1057 coords[2] = tx+TILESIZE*1/7;
1058 coords[3] = ty+TILESIZE/2;
1059 coords[4] = tx+TILESIZE/2;
1060 coords[5] = ty+TILESIZE-TILESIZE*1/7;
1061 coords[6] = tx+TILESIZE-TILESIZE*1/7;
1062 coords[7] = ty+TILESIZE/2;
1063
1064 draw_polygon(dr, coords, 4, COL_GEM, COL_OUTLINE);
1065 }
1066
1067 unclip(dr);
1068 draw_update(dr, tx, ty, TILESIZE, TILESIZE);
1069 }
1070
1071 #define BASE_ANIM_LENGTH 0.1F
1072 #define FLASH_LENGTH 0.3F
1073
1074 static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
1075 game_state *state, int dir, game_ui *ui,
1076 float animtime, float flashtime)
1077 {
1078 int w = state->p.w, h = state->p.h /*, wh = w*h */;
1079 int x, y;
1080 float ap;
1081 int player_dist;
1082 int flashtype;
1083 int gems, deaths;
1084 char status[256];
1085
1086 if (flashtime &&
1087 !((int)(flashtime * 3 / FLASH_LENGTH) % 2))
1088 flashtype = ui->flashtype;
1089 else
1090 flashtype = 0;
1091
1092 /*
1093 * Erase the player sprite.
1094 */
1095 if (ds->player_bg_saved) {
1096 assert(ds->player_background);
1097 blitter_load(dr, ds->player_background, ds->pbgx, ds->pbgy);
1098 draw_update(dr, ds->pbgx, ds->pbgy, TILESIZE, TILESIZE);
1099 ds->player_bg_saved = FALSE;
1100 }
1101
1102 /*
1103 * Initialise a fresh drawstate.
1104 */
1105 if (!ds->started) {
1106 int wid, ht;
1107
1108 /*
1109 * Blank out the window initially.
1110 */
1111 game_compute_size(&ds->p, TILESIZE, &wid, &ht);
1112 draw_rect(dr, 0, 0, wid, ht, COL_BACKGROUND);
1113 draw_update(dr, 0, 0, wid, ht);
1114
1115 /*
1116 * Draw the grid lines.
1117 */
1118 for (y = 0; y <= h; y++)
1119 draw_line(dr, COORD(0), COORD(y), COORD(w), COORD(y),
1120 COL_LOWLIGHT);
1121 for (x = 0; x <= w; x++)
1122 draw_line(dr, COORD(x), COORD(0), COORD(x), COORD(h),
1123 COL_LOWLIGHT);
1124
1125 ds->started = TRUE;
1126 }
1127
1128 /*
1129 * If we're in the process of animating a move, let's start by
1130 * working out how far the player has moved from their _older_
1131 * state.
1132 */
1133 if (oldstate) {
1134 ap = animtime / ui->anim_length;
1135 player_dist = ap * (dir > 0 ? state : oldstate)->distance_moved;
1136 } else {
1137 player_dist = 0;
1138 ap = 0.0F;
1139 }
1140
1141 /*
1142 * Draw the grid contents.
1143 *
1144 * We count the gems as we go round this loop, for the purposes
1145 * of the status bar. Of course we have a gems counter in the
1146 * game_state already, but if we do the counting in this loop
1147 * then it tracks gems being picked up in a sliding move, and
1148 * updates one by one.
1149 */
1150 gems = 0;
1151 for (y = 0; y < h; y++)
1152 for (x = 0; x < w; x++) {
1153 unsigned short v = (unsigned char)state->grid[y*w+x];
1154
1155 /*
1156 * Special case: if the player is in the process of
1157 * moving over a gem, we draw the gem iff they haven't
1158 * gone past it yet.
1159 */
1160 if (oldstate && oldstate->grid[y*w+x] != state->grid[y*w+x]) {
1161 /*
1162 * Compute the distance from this square to the
1163 * original player position.
1164 */
1165 int dist = max(abs(x - oldstate->px), abs(y - oldstate->py));
1166
1167 /*
1168 * If the player has reached here, use the new grid
1169 * element. Otherwise use the old one.
1170 */
1171 if (player_dist < dist)
1172 v = oldstate->grid[y*w+x];
1173 else
1174 v = state->grid[y*w+x];
1175 }
1176
1177 /*
1178 * Special case: erase the mine the dead player is
1179 * sitting on. Only at the end of the move.
1180 */
1181 if (v == MINE && !oldstate && state->dead &&
1182 x == state->px && y == state->py)
1183 v = BLANK;
1184
1185 if (v == GEM)
1186 gems++;
1187
1188 v |= flashtype;
1189
1190 if (ds->grid[y*w+x] != v) {
1191 draw_tile(dr, ds, x, y, v);
1192 ds->grid[y*w+x] = v;
1193 }
1194 }
1195
1196 /*
1197 * Gem counter in the status bar. We replace it with
1198 * `COMPLETED!' when it reaches zero ... or rather, when the
1199 * _current state_'s gem counter is zero. (Thus, `Gems: 0' is
1200 * shown between the collection of the last gem and the
1201 * completion of the move animation that did it.)
1202 */
1203 if (state->dead && (!oldstate || oldstate->dead))
1204 sprintf(status, "DEAD!");
1205 else if (state->gems || (oldstate && oldstate->gems))
1206 sprintf(status, "Gems: %d", gems);
1207 else
1208 sprintf(status, "COMPLETED!");
1209 /* We subtract one from the visible death counter if we're still
1210 * animating the move at the end of which the death took place. */
1211 deaths = ui->deaths;
1212 if (oldstate && ui->just_died) {
1213 assert(deaths > 0);
1214 deaths--;
1215 }
1216 if (deaths)
1217 sprintf(status + strlen(status), " Deaths: %d", deaths);
1218 status_bar(dr, status);
1219
1220 /*
1221 * Draw the player sprite.
1222 */
1223 assert(!ds->player_bg_saved);
1224 assert(ds->player_background);
1225 {
1226 int ox, oy, nx, ny;
1227 nx = COORD(state->px);
1228 ny = COORD(state->py);
1229 if (oldstate) {
1230 ox = COORD(oldstate->px);
1231 oy = COORD(oldstate->py);
1232 } else {
1233 ox = nx;
1234 oy = ny;
1235 }
1236 ds->pbgx = ox + ap * (nx - ox);
1237 ds->pbgy = oy + ap * (ny - oy);
1238 }
1239 blitter_save(dr, ds->player_background, ds->pbgx, ds->pbgy);
1240 draw_player(dr, ds, ds->pbgx, ds->pbgy, (state->dead && !oldstate));
1241 ds->player_bg_saved = TRUE;
1242 }
1243
1244 static float game_anim_length(game_state *oldstate, game_state *newstate,
1245 int dir, game_ui *ui)
1246 {
1247 int dist;
1248 if (dir > 0)
1249 dist = newstate->distance_moved;
1250 else
1251 dist = oldstate->distance_moved;
1252 ui->anim_length = sqrt(dist) * BASE_ANIM_LENGTH;
1253 return ui->anim_length;
1254 }
1255
1256 static float game_flash_length(game_state *oldstate, game_state *newstate,
1257 int dir, game_ui *ui)
1258 {
1259 if (!oldstate->dead && newstate->dead) {
1260 ui->flashtype = FLASH_DEAD;
1261 return FLASH_LENGTH;
1262 } else if (oldstate->gems && !newstate->gems) {
1263 ui->flashtype = FLASH_WIN;
1264 return FLASH_LENGTH;
1265 }
1266 return 0.0F;
1267 }
1268
1269 static int game_wants_statusbar(void)
1270 {
1271 return TRUE;
1272 }
1273
1274 static int game_timing_state(game_state *state, game_ui *ui)
1275 {
1276 return TRUE;
1277 }
1278
1279 static void game_print_size(game_params *params, float *x, float *y)
1280 {
1281 }
1282
1283 static void game_print(drawing *dr, game_state *state, int tilesize)
1284 {
1285 }
1286
1287 #ifdef COMBINED
1288 #define thegame inertia
1289 #endif
1290
1291 const struct game thegame = {
1292 "Inertia", "games.inertia",
1293 default_params,
1294 game_fetch_preset,
1295 decode_params,
1296 encode_params,
1297 free_params,
1298 dup_params,
1299 TRUE, game_configure, custom_params,
1300 validate_params,
1301 new_game_desc,
1302 validate_desc,
1303 new_game,
1304 dup_game,
1305 free_game,
1306 FALSE, solve_game,
1307 FALSE, game_text_format,
1308 new_ui,
1309 free_ui,
1310 encode_ui,
1311 decode_ui,
1312 game_changed_state,
1313 interpret_move,
1314 execute_move,
1315 PREFERRED_TILESIZE, game_compute_size, game_set_size,
1316 game_colours,
1317 game_new_drawstate,
1318 game_free_drawstate,
1319 game_redraw,
1320 game_anim_length,
1321 game_flash_length,
1322 FALSE, FALSE, game_print_size, game_print,
1323 game_wants_statusbar,
1324 FALSE, game_timing_state,
1325 0, /* mouse_priorities */
1326 };