OS X seems particularly picky about possibly uninitialised
[sgt/puzzles] / inertia.c
1 /*
2 * inertia.c: Game involving navigating round a grid picking up
3 * gems.
4 *
5 * Game rules and basic generator design by Ben Olmstead.
6 * This re-implementation was written by Simon Tatham.
7 */
8
9 #include <stdio.h>
10 #include <stdlib.h>
11 #include <string.h>
12 #include <assert.h>
13 #include <ctype.h>
14 #include <math.h>
15
16 #include "puzzles.h"
17
18 /* Used in the game_state */
19 #define BLANK 'b'
20 #define GEM 'g'
21 #define MINE 'm'
22 #define STOP 's'
23 #define WALL 'w'
24
25 /* Used in the game IDs */
26 #define START 'S'
27
28 /* Used in the game generation */
29 #define POSSGEM 'G'
30
31 /* Used only in the game_drawstate*/
32 #define UNDRAWN '?'
33
34 #define DIRECTIONS 8
35 #define DX(dir) ( (dir) & 3 ? (((dir) & 7) > 4 ? -1 : +1) : 0 )
36 #define DY(dir) ( DX((dir)+6) )
37
38 /*
39 * Lvalue macro which expects x and y to be in range.
40 */
41 #define LV_AT(w, h, grid, x, y) ( (grid)[(y)*(w)+(x)] )
42
43 /*
44 * Rvalue macro which can cope with x and y being out of range.
45 */
46 #define AT(w, h, grid, x, y) ( (x)<0 || (x)>=(w) || (y)<0 || (y)>=(h) ? \
47 WALL : LV_AT(w, h, grid, x, y) )
48
49 enum {
50 COL_BACKGROUND,
51 COL_OUTLINE,
52 COL_HIGHLIGHT,
53 COL_LOWLIGHT,
54 COL_PLAYER,
55 COL_DEAD_PLAYER,
56 COL_MINE,
57 COL_GEM,
58 COL_WALL,
59 NCOLOURS
60 };
61
62 struct game_params {
63 int w, h;
64 };
65
66 struct game_state {
67 game_params p;
68 int px, py;
69 int gems;
70 char *grid;
71 int distance_moved;
72 int dead;
73 };
74
75 static game_params *default_params(void)
76 {
77 game_params *ret = snew(game_params);
78
79 ret->w = 10;
80 ret->h = 8;
81
82 return ret;
83 }
84
85 static void free_params(game_params *params)
86 {
87 sfree(params);
88 }
89
90 static game_params *dup_params(game_params *params)
91 {
92 game_params *ret = snew(game_params);
93 *ret = *params; /* structure copy */
94 return ret;
95 }
96
97 static const struct game_params inertia_presets[] = {
98 { 10, 8 },
99 { 15, 12 },
100 { 20, 16 },
101 };
102
103 static int game_fetch_preset(int i, char **name, game_params **params)
104 {
105 game_params p, *ret;
106 char *retname;
107 char namebuf[80];
108
109 if (i < 0 || i >= lenof(inertia_presets))
110 return FALSE;
111
112 p = inertia_presets[i];
113 ret = dup_params(&p);
114 sprintf(namebuf, "%dx%d", ret->w, ret->h);
115 retname = dupstr(namebuf);
116
117 *params = ret;
118 *name = retname;
119 return TRUE;
120 }
121
122 static void decode_params(game_params *params, char const *string)
123 {
124 params->w = params->h = atoi(string);
125 while (*string && isdigit((unsigned char)*string)) string++;
126 if (*string == 'x') {
127 string++;
128 params->h = atoi(string);
129 }
130 }
131
132 static char *encode_params(game_params *params, int full)
133 {
134 char data[256];
135
136 sprintf(data, "%dx%d", params->w, params->h);
137
138 return dupstr(data);
139 }
140
141 static config_item *game_configure(game_params *params)
142 {
143 config_item *ret;
144 char buf[80];
145
146 ret = snewn(3, config_item);
147
148 ret[0].name = "Width";
149 ret[0].type = C_STRING;
150 sprintf(buf, "%d", params->w);
151 ret[0].sval = dupstr(buf);
152 ret[0].ival = 0;
153
154 ret[1].name = "Height";
155 ret[1].type = C_STRING;
156 sprintf(buf, "%d", params->h);
157 ret[1].sval = dupstr(buf);
158 ret[1].ival = 0;
159
160 ret[2].name = NULL;
161 ret[2].type = C_END;
162 ret[2].sval = NULL;
163 ret[2].ival = 0;
164
165 return ret;
166 }
167
168 static game_params *custom_params(config_item *cfg)
169 {
170 game_params *ret = snew(game_params);
171
172 ret->w = atoi(cfg[0].sval);
173 ret->h = atoi(cfg[1].sval);
174
175 return ret;
176 }
177
178 static char *validate_params(game_params *params, int full)
179 {
180 /*
181 * Avoid completely degenerate cases which only have one
182 * row/column. We probably could generate completable puzzles
183 * of that shape, but they'd be forced to be extremely boring
184 * and at large sizes would take a while to happen upon at
185 * random as well.
186 */
187 if (params->w < 2 || params->h < 2)
188 return "Width and height must both be at least two";
189
190 /*
191 * The grid construction algorithm creates 1/5 as many gems as
192 * grid squares, and must create at least one gem to have an
193 * actual puzzle. However, an area-five grid is ruled out by
194 * the above constraint, so the practical minimum is six.
195 */
196 if (params->w * params->h < 6)
197 return "Grid area must be at least six squares";
198
199 return NULL;
200 }
201
202 /* ----------------------------------------------------------------------
203 * Solver used by grid generator.
204 */
205
206 struct solver_scratch {
207 unsigned char *reachable_from, *reachable_to;
208 int *positions;
209 };
210
211 static struct solver_scratch *new_scratch(int w, int h)
212 {
213 struct solver_scratch *sc = snew(struct solver_scratch);
214
215 sc->reachable_from = snewn(w * h * DIRECTIONS, unsigned char);
216 sc->reachable_to = snewn(w * h * DIRECTIONS, unsigned char);
217 sc->positions = snewn(w * h * DIRECTIONS, int);
218
219 return sc;
220 }
221
222 static void free_scratch(struct solver_scratch *sc)
223 {
224 sfree(sc);
225 }
226
227 static int can_go(int w, int h, char *grid,
228 int x1, int y1, int dir1, int x2, int y2, int dir2)
229 {
230 /*
231 * Returns TRUE if we can transition directly from (x1,y1)
232 * going in direction dir1, to (x2,y2) going in direction dir2.
233 */
234
235 /*
236 * If we're actually in the middle of an unoccupyable square,
237 * we cannot make any move.
238 */
239 if (AT(w, h, grid, x1, y1) == WALL ||
240 AT(w, h, grid, x1, y1) == MINE)
241 return FALSE;
242
243 /*
244 * If a move is capable of stopping at x1,y1,dir1, and x2,y2 is
245 * the same coordinate as x1,y1, then we can make the
246 * transition (by stopping and changing direction).
247 *
248 * For this to be the case, we have to either have a wall
249 * beyond x1,y1,dir1, or have a stop on x1,y1.
250 */
251 if (x2 == x1 && y2 == y1 &&
252 (AT(w, h, grid, x1, y1) == STOP ||
253 AT(w, h, grid, x1, y1) == START ||
254 AT(w, h, grid, x1+DX(dir1), y1+DY(dir1)) == WALL))
255 return TRUE;
256
257 /*
258 * If a move is capable of continuing here, then x1,y1,dir1 can
259 * move one space further on.
260 */
261 if (x2 == x1+DX(dir1) && y2 == y1+DY(dir1) && dir1 == dir2 &&
262 (AT(w, h, grid, x2, y2) == BLANK ||
263 AT(w, h, grid, x2, y2) == GEM ||
264 AT(w, h, grid, x2, y2) == STOP ||
265 AT(w, h, grid, x2, y2) == START))
266 return TRUE;
267
268 /*
269 * That's it.
270 */
271 return FALSE;
272 }
273
274 static int find_gem_candidates(int w, int h, char *grid,
275 struct solver_scratch *sc)
276 {
277 int wh = w*h;
278 int head, tail;
279 int sx, sy, gx, gy, gd, pass, possgems;
280
281 /*
282 * This function finds all the candidate gem squares, which are
283 * precisely those squares which can be picked up on a loop
284 * from the starting point back to the starting point. Doing
285 * this may involve passing through such a square in the middle
286 * of a move; so simple breadth-first search over the _squares_
287 * of the grid isn't quite adequate, because it might be that
288 * we can only reach a gem from the start by moving over it in
289 * one direction, but can only return to the start if we were
290 * moving over it in another direction.
291 *
292 * Instead, we BFS over a space which mentions each grid square
293 * eight times - once for each direction. We also BFS twice:
294 * once to find out what square+direction pairs we can reach
295 * _from_ the start point, and once to find out what pairs we
296 * can reach the start point from. Then a square is reachable
297 * if any of the eight directions for that square has both
298 * flags set.
299 */
300
301 memset(sc->reachable_from, 0, wh * DIRECTIONS);
302 memset(sc->reachable_to, 0, wh * DIRECTIONS);
303
304 /*
305 * Find the starting square.
306 */
307 sx = -1; /* placate optimiser */
308 for (sy = 0; sy < h; sy++) {
309 for (sx = 0; sx < w; sx++)
310 if (AT(w, h, grid, sx, sy) == START)
311 break;
312 if (sx < w)
313 break;
314 }
315 assert(sy < h);
316
317 for (pass = 0; pass < 2; pass++) {
318 unsigned char *reachable = (pass == 0 ? sc->reachable_from :
319 sc->reachable_to);
320 int sign = (pass == 0 ? +1 : -1);
321 int dir;
322
323 #ifdef SOLVER_DIAGNOSTICS
324 printf("starting pass %d\n", pass);
325 #endif
326
327 /*
328 * `head' and `tail' are indices within sc->positions which
329 * track the list of board positions left to process.
330 */
331 head = tail = 0;
332 for (dir = 0; dir < DIRECTIONS; dir++) {
333 int index = (sy*w+sx)*DIRECTIONS+dir;
334 sc->positions[tail++] = index;
335 reachable[index] = TRUE;
336 #ifdef SOLVER_DIAGNOSTICS
337 printf("starting point %d,%d,%d\n", sx, sy, dir);
338 #endif
339 }
340
341 /*
342 * Now repeatedly pick an element off the list and process
343 * it.
344 */
345 while (head < tail) {
346 int index = sc->positions[head++];
347 int dir = index % DIRECTIONS;
348 int x = (index / DIRECTIONS) % w;
349 int y = index / (w * DIRECTIONS);
350 int n, x2, y2, d2, i2;
351
352 #ifdef SOLVER_DIAGNOSTICS
353 printf("processing point %d,%d,%d\n", x, y, dir);
354 #endif
355 /*
356 * The places we attempt to switch to here are:
357 * - each possible direction change (all the other
358 * directions in this square)
359 * - one step further in the direction we're going (or
360 * one step back, if we're in the reachable_to pass).
361 */
362 for (n = -1; n < DIRECTIONS; n++) {
363 if (n < 0) {
364 x2 = x + sign * DX(dir);
365 y2 = y + sign * DY(dir);
366 d2 = dir;
367 } else {
368 x2 = x;
369 y2 = y;
370 d2 = n;
371 }
372 i2 = (y2*w+x2)*DIRECTIONS+d2;
373 if (!reachable[i2]) {
374 int ok;
375 #ifdef SOLVER_DIAGNOSTICS
376 printf(" trying point %d,%d,%d", x2, y2, d2);
377 #endif
378 if (pass == 0)
379 ok = can_go(w, h, grid, x, y, dir, x2, y2, d2);
380 else
381 ok = can_go(w, h, grid, x2, y2, d2, x, y, dir);
382 #ifdef SOLVER_DIAGNOSTICS
383 printf(" - %sok\n", ok ? "" : "not ");
384 #endif
385 if (ok) {
386 sc->positions[tail++] = i2;
387 reachable[i2] = TRUE;
388 }
389 }
390 }
391 }
392 }
393
394 /*
395 * And that should be it. Now all we have to do is find the
396 * squares for which there exists _some_ direction such that
397 * the square plus that direction form a tuple which is both
398 * reachable from the start and reachable to the start.
399 */
400 possgems = 0;
401 for (gy = 0; gy < h; gy++)
402 for (gx = 0; gx < w; gx++)
403 if (AT(w, h, grid, gx, gy) == BLANK) {
404 for (gd = 0; gd < DIRECTIONS; gd++) {
405 int index = (gy*w+gx)*DIRECTIONS+gd;
406 if (sc->reachable_from[index] && sc->reachable_to[index]) {
407 #ifdef SOLVER_DIAGNOSTICS
408 printf("space at %d,%d is reachable via"
409 " direction %d\n", gx, gy, gd);
410 #endif
411 LV_AT(w, h, grid, gx, gy) = POSSGEM;
412 possgems++;
413 break;
414 }
415 }
416 }
417
418 return possgems;
419 }
420
421 /* ----------------------------------------------------------------------
422 * Grid generation code.
423 */
424
425 static char *gengrid(int w, int h, random_state *rs)
426 {
427 int wh = w*h;
428 char *grid = snewn(wh+1, char);
429 struct solver_scratch *sc = new_scratch(w, h);
430 int maxdist_threshold, tries;
431
432 maxdist_threshold = 2;
433 tries = 0;
434
435 while (1) {
436 int i, j;
437 int possgems;
438 int *dist, *list, head, tail, maxdist;
439
440 /*
441 * We're going to fill the grid with the five basic piece
442 * types in about 1/5 proportion. For the moment, though,
443 * we leave out the gems, because we'll put those in
444 * _after_ we run the solver to tell us where the viable
445 * locations are.
446 */
447 i = 0;
448 for (j = 0; j < wh/5; j++)
449 grid[i++] = WALL;
450 for (j = 0; j < wh/5; j++)
451 grid[i++] = STOP;
452 for (j = 0; j < wh/5; j++)
453 grid[i++] = MINE;
454 assert(i < wh);
455 grid[i++] = START;
456 while (i < wh)
457 grid[i++] = BLANK;
458 shuffle(grid, wh, sizeof(*grid), rs);
459
460 /*
461 * Find the viable gem locations, and immediately give up
462 * and try again if there aren't enough of them.
463 */
464 possgems = find_gem_candidates(w, h, grid, sc);
465 if (possgems < wh/5)
466 continue;
467
468 /*
469 * We _could_ now select wh/5 of the POSSGEMs and set them
470 * to GEM, and have a viable level. However, there's a
471 * chance that a large chunk of the level will turn out to
472 * be unreachable, so first we test for that.
473 *
474 * We do this by finding the largest distance from any
475 * square to the nearest POSSGEM, by breadth-first search.
476 * If this is above a critical threshold, we abort and try
477 * again.
478 *
479 * (This search is purely geometric, without regard to
480 * walls and long ways round.)
481 */
482 dist = sc->positions;
483 list = sc->positions + wh;
484 for (i = 0; i < wh; i++)
485 dist[i] = -1;
486 head = tail = 0;
487 for (i = 0; i < wh; i++)
488 if (grid[i] == POSSGEM) {
489 dist[i] = 0;
490 list[tail++] = i;
491 }
492 maxdist = 0;
493 while (head < tail) {
494 int pos, x, y, d;
495
496 pos = list[head++];
497 if (maxdist < dist[pos])
498 maxdist = dist[pos];
499
500 x = pos % w;
501 y = pos / w;
502
503 for (d = 0; d < DIRECTIONS; d++) {
504 int x2, y2, p2;
505
506 x2 = x + DX(d);
507 y2 = y + DY(d);
508
509 if (x2 >= 0 && x2 < w && y2 >= 0 && y2 < h) {
510 p2 = y2*w+x2;
511 if (dist[p2] < 0) {
512 dist[p2] = dist[pos] + 1;
513 list[tail++] = p2;
514 }
515 }
516 }
517 }
518 assert(head == wh && tail == wh);
519
520 /*
521 * Now abandon this grid and go round again if maxdist is
522 * above the required threshold.
523 *
524 * We can safely start the threshold as low as 2. As we
525 * accumulate failed generation attempts, we gradually
526 * raise it as we get more desperate.
527 */
528 if (maxdist > maxdist_threshold) {
529 tries++;
530 if (tries == 50) {
531 maxdist_threshold++;
532 tries = 0;
533 }
534 continue;
535 }
536
537 /*
538 * Now our reachable squares are plausibly evenly
539 * distributed over the grid. I'm not actually going to
540 * _enforce_ that I place the gems in such a way as not to
541 * increase that maxdist value; I'm now just going to trust
542 * to the RNG to pick a sensible subset of the POSSGEMs.
543 */
544 j = 0;
545 for (i = 0; i < wh; i++)
546 if (grid[i] == POSSGEM)
547 list[j++] = i;
548 shuffle(list, j, sizeof(*list), rs);
549 for (i = 0; i < j; i++)
550 grid[list[i]] = (i < wh/5 ? GEM : BLANK);
551 break;
552 }
553
554 free_scratch(sc);
555
556 grid[wh] = '\0';
557
558 return grid;
559 }
560
561 static char *new_game_desc(game_params *params, random_state *rs,
562 char **aux, int interactive)
563 {
564 return gengrid(params->w, params->h, rs);
565 }
566
567 static char *validate_desc(game_params *params, char *desc)
568 {
569 int w = params->w, h = params->h, wh = w*h;
570 int starts = 0, gems = 0, i;
571
572 for (i = 0; i < wh; i++) {
573 if (!desc[i])
574 return "Not enough data to fill grid";
575 if (desc[i] != WALL && desc[i] != START && desc[i] != STOP &&
576 desc[i] != GEM && desc[i] != MINE && desc[i] != BLANK)
577 return "Unrecognised character in game description";
578 if (desc[i] == START)
579 starts++;
580 if (desc[i] == GEM)
581 gems++;
582 }
583 if (desc[i])
584 return "Too much data to fill grid";
585 if (starts < 1)
586 return "No starting square specified";
587 if (starts > 1)
588 return "More than one starting square specified";
589 if (gems < 1)
590 return "No gems specified";
591
592 return NULL;
593 }
594
595 static game_state *new_game(midend *me, game_params *params, char *desc)
596 {
597 int w = params->w, h = params->h, wh = w*h;
598 int i;
599 game_state *state = snew(game_state);
600
601 state->p = *params; /* structure copy */
602
603 state->grid = snewn(wh, char);
604 assert(strlen(desc) == wh);
605 memcpy(state->grid, desc, wh);
606
607 state->px = state->py = -1;
608 state->gems = 0;
609 for (i = 0; i < wh; i++) {
610 if (state->grid[i] == START) {
611 state->grid[i] = STOP;
612 state->px = i % w;
613 state->py = i / w;
614 } else if (state->grid[i] == GEM) {
615 state->gems++;
616 }
617 }
618
619 assert(state->gems > 0);
620 assert(state->px >= 0 && state->py >= 0);
621
622 state->distance_moved = 0;
623 state->dead = FALSE;
624
625 return state;
626 }
627
628 static game_state *dup_game(game_state *state)
629 {
630 int w = state->p.w, h = state->p.h, wh = w*h;
631 game_state *ret = snew(game_state);
632
633 ret->p = state->p;
634 ret->px = state->px;
635 ret->py = state->py;
636 ret->gems = state->gems;
637 ret->grid = snewn(wh, char);
638 ret->distance_moved = state->distance_moved;
639 ret->dead = FALSE;
640 memcpy(ret->grid, state->grid, wh);
641
642 return ret;
643 }
644
645 static void free_game(game_state *state)
646 {
647 sfree(state->grid);
648 sfree(state);
649 }
650
651 static char *solve_game(game_state *state, game_state *currstate,
652 char *aux, char **error)
653 {
654 return NULL;
655 }
656
657 static char *game_text_format(game_state *state)
658 {
659 return NULL;
660 }
661
662 struct game_ui {
663 float anim_length;
664 int flashtype;
665 int deaths;
666 int just_made_move;
667 int just_died;
668 };
669
670 static game_ui *new_ui(game_state *state)
671 {
672 game_ui *ui = snew(game_ui);
673 ui->anim_length = 0.0F;
674 ui->flashtype = 0;
675 ui->deaths = 0;
676 ui->just_made_move = FALSE;
677 ui->just_died = FALSE;
678 return ui;
679 }
680
681 static void free_ui(game_ui *ui)
682 {
683 sfree(ui);
684 }
685
686 static char *encode_ui(game_ui *ui)
687 {
688 char buf[80];
689 /*
690 * The deaths counter needs preserving across a serialisation.
691 */
692 sprintf(buf, "D%d", ui->deaths);
693 return dupstr(buf);
694 }
695
696 static void decode_ui(game_ui *ui, char *encoding)
697 {
698 int p = 0;
699 sscanf(encoding, "D%d%n", &ui->deaths, &p);
700 }
701
702 static void game_changed_state(game_ui *ui, game_state *oldstate,
703 game_state *newstate)
704 {
705 /*
706 * Increment the deaths counter. We only do this if
707 * ui->just_made_move is set (redoing a suicide move doesn't
708 * kill you _again_), and also we only do it if the game isn't
709 * completed (once you're finished, you can play).
710 */
711 if (!oldstate->dead && newstate->dead && ui->just_made_move &&
712 newstate->gems) {
713 ui->deaths++;
714 ui->just_died = TRUE;
715 } else {
716 ui->just_died = FALSE;
717 }
718 ui->just_made_move = FALSE;
719 }
720
721 struct game_drawstate {
722 game_params p;
723 int tilesize;
724 int started;
725 unsigned short *grid;
726 blitter *player_background;
727 int player_bg_saved, pbgx, pbgy;
728 };
729
730 #define PREFERRED_TILESIZE 32
731 #define TILESIZE (ds->tilesize)
732 #define BORDER (TILESIZE)
733 #define HIGHLIGHT_WIDTH (TILESIZE / 10)
734 #define COORD(x) ( (x) * TILESIZE + BORDER )
735 #define FROMCOORD(x) ( ((x) - BORDER + TILESIZE) / TILESIZE - 1 )
736
737 static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
738 int x, int y, int button)
739 {
740 int w = state->p.w, h = state->p.h /*, wh = w*h */;
741 int dir;
742 char buf[80];
743
744 dir = -1;
745
746 if (button == LEFT_BUTTON) {
747 /*
748 * Mouse-clicking near the target point (or, more
749 * accurately, in the appropriate octant) is an alternative
750 * way to input moves.
751 */
752
753 if (FROMCOORD(x) != state->px || FROMCOORD(y) != state->py) {
754 int dx, dy;
755 float angle;
756
757 dx = FROMCOORD(x) - state->px;
758 dy = FROMCOORD(y) - state->py;
759 /* I pass dx,dy rather than dy,dx so that the octants
760 * end up the right way round. */
761 angle = atan2(dx, -dy);
762
763 angle = (angle + (PI/8)) / (PI/4);
764 assert(angle > -16.0F);
765 dir = (int)(angle + 16.0F) & 7;
766 }
767 } else if (button == CURSOR_UP || button == (MOD_NUM_KEYPAD | '8'))
768 dir = 0;
769 else if (button == CURSOR_DOWN || button == (MOD_NUM_KEYPAD | '2'))
770 dir = 4;
771 else if (button == CURSOR_LEFT || button == (MOD_NUM_KEYPAD | '4'))
772 dir = 6;
773 else if (button == CURSOR_RIGHT || button == (MOD_NUM_KEYPAD | '6'))
774 dir = 2;
775 else if (button == (MOD_NUM_KEYPAD | '7'))
776 dir = 7;
777 else if (button == (MOD_NUM_KEYPAD | '1'))
778 dir = 5;
779 else if (button == (MOD_NUM_KEYPAD | '9'))
780 dir = 1;
781 else if (button == (MOD_NUM_KEYPAD | '3'))
782 dir = 3;
783
784 if (dir < 0)
785 return NULL;
786
787 /*
788 * Reject the move if we can't make it at all due to a wall
789 * being in the way.
790 */
791 if (AT(w, h, state->grid, state->px+DX(dir), state->py+DY(dir)) == WALL)
792 return NULL;
793
794 /*
795 * Reject the move if we're dead!
796 */
797 if (state->dead)
798 return NULL;
799
800 /*
801 * Otherwise, we can make the move. All we need to specify is
802 * the direction.
803 */
804 ui->just_made_move = TRUE;
805 sprintf(buf, "%d", dir);
806 return dupstr(buf);
807 }
808
809 static game_state *execute_move(game_state *state, char *move)
810 {
811 int w = state->p.w, h = state->p.h /*, wh = w*h */;
812 int dir = atoi(move);
813 game_state *ret;
814
815 if (dir < 0 || dir >= DIRECTIONS)
816 return NULL; /* huh? */
817
818 if (state->dead)
819 return NULL;
820
821 if (AT(w, h, state->grid, state->px+DX(dir), state->py+DY(dir)) == WALL)
822 return NULL; /* wall in the way! */
823
824 /*
825 * Now make the move.
826 */
827 ret = dup_game(state);
828 ret->distance_moved = 0;
829 while (1) {
830 ret->px += DX(dir);
831 ret->py += DY(dir);
832 ret->distance_moved++;
833
834 if (AT(w, h, ret->grid, ret->px, ret->py) == GEM) {
835 LV_AT(w, h, ret->grid, ret->px, ret->py) = BLANK;
836 ret->gems--;
837 }
838
839 if (AT(w, h, ret->grid, ret->px, ret->py) == MINE) {
840 ret->dead = TRUE;
841 break;
842 }
843
844 if (AT(w, h, ret->grid, ret->px, ret->py) == STOP ||
845 AT(w, h, ret->grid, ret->px+DX(dir),
846 ret->py+DY(dir)) == WALL)
847 break;
848 }
849
850 return ret;
851 }
852
853 /* ----------------------------------------------------------------------
854 * Drawing routines.
855 */
856
857 static void game_compute_size(game_params *params, int tilesize,
858 int *x, int *y)
859 {
860 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
861 struct { int tilesize; } ads, *ds = &ads;
862 ads.tilesize = tilesize;
863
864 *x = 2 * BORDER + 1 + params->w * TILESIZE;
865 *y = 2 * BORDER + 1 + params->h * TILESIZE;
866 }
867
868 static void game_set_size(drawing *dr, game_drawstate *ds,
869 game_params *params, int tilesize)
870 {
871 ds->tilesize = tilesize;
872
873 assert(!ds->player_bg_saved);
874
875 if (ds->player_background)
876 blitter_free(dr, ds->player_background);
877 ds->player_background = blitter_new(dr, TILESIZE, TILESIZE);
878 }
879
880 static float *game_colours(frontend *fe, game_state *state, int *ncolours)
881 {
882 float *ret = snewn(3 * NCOLOURS, float);
883 int i;
884
885 game_mkhighlight(fe, ret, COL_BACKGROUND, COL_HIGHLIGHT, COL_LOWLIGHT);
886
887 ret[COL_OUTLINE * 3 + 0] = 0.0F;
888 ret[COL_OUTLINE * 3 + 1] = 0.0F;
889 ret[COL_OUTLINE * 3 + 2] = 0.0F;
890
891 ret[COL_PLAYER * 3 + 0] = 0.0F;
892 ret[COL_PLAYER * 3 + 1] = 1.0F;
893 ret[COL_PLAYER * 3 + 2] = 0.0F;
894
895 ret[COL_DEAD_PLAYER * 3 + 0] = 1.0F;
896 ret[COL_DEAD_PLAYER * 3 + 1] = 0.0F;
897 ret[COL_DEAD_PLAYER * 3 + 2] = 0.0F;
898
899 ret[COL_MINE * 3 + 0] = 0.0F;
900 ret[COL_MINE * 3 + 1] = 0.0F;
901 ret[COL_MINE * 3 + 2] = 0.0F;
902
903 ret[COL_GEM * 3 + 0] = 0.6F;
904 ret[COL_GEM * 3 + 1] = 1.0F;
905 ret[COL_GEM * 3 + 2] = 1.0F;
906
907 for (i = 0; i < 3; i++) {
908 ret[COL_WALL * 3 + i] = (3 * ret[COL_BACKGROUND * 3 + i] +
909 1 * ret[COL_HIGHLIGHT * 3 + i]) / 4;
910 }
911
912 *ncolours = NCOLOURS;
913 return ret;
914 }
915
916 static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
917 {
918 int w = state->p.w, h = state->p.h, wh = w*h;
919 struct game_drawstate *ds = snew(struct game_drawstate);
920 int i;
921
922 ds->tilesize = 0;
923
924 /* We can't allocate the blitter rectangle for the player background
925 * until we know what size to make it. */
926 ds->player_background = NULL;
927 ds->player_bg_saved = FALSE;
928 ds->pbgx = ds->pbgy = -1;
929
930 ds->p = state->p; /* structure copy */
931 ds->started = FALSE;
932 ds->grid = snewn(wh, unsigned short);
933 for (i = 0; i < wh; i++)
934 ds->grid[i] = UNDRAWN;
935
936 return ds;
937 }
938
939 static void game_free_drawstate(drawing *dr, game_drawstate *ds)
940 {
941 sfree(ds->grid);
942 sfree(ds);
943 }
944
945 static void draw_player(drawing *dr, game_drawstate *ds, int x, int y,
946 int dead)
947 {
948 if (dead) {
949 int coords[DIRECTIONS*4];
950 int d;
951
952 for (d = 0; d < DIRECTIONS; d++) {
953 float x1, y1, x2, y2, x3, y3, len;
954
955 x1 = DX(d);
956 y1 = DY(d);
957 len = sqrt(x1*x1+y1*y1); x1 /= len; y1 /= len;
958
959 x3 = DX(d+1);
960 y3 = DY(d+1);
961 len = sqrt(x3*x3+y3*y3); x3 /= len; y3 /= len;
962
963 x2 = (x1+x3) / 4;
964 y2 = (y1+y3) / 4;
965
966 coords[d*4+0] = x + TILESIZE/2 + (int)((TILESIZE*3/7) * x1);
967 coords[d*4+1] = y + TILESIZE/2 + (int)((TILESIZE*3/7) * y1);
968 coords[d*4+2] = x + TILESIZE/2 + (int)((TILESIZE*3/7) * x2);
969 coords[d*4+3] = y + TILESIZE/2 + (int)((TILESIZE*3/7) * y2);
970 }
971 draw_polygon(dr, coords, DIRECTIONS*2, COL_DEAD_PLAYER, COL_OUTLINE);
972 } else {
973 draw_circle(dr, x + TILESIZE/2, y + TILESIZE/2,
974 TILESIZE/3, COL_PLAYER, COL_OUTLINE);
975 }
976 draw_update(dr, x, y, TILESIZE, TILESIZE);
977 }
978
979 #define FLASH_DEAD 0x100
980 #define FLASH_WIN 0x200
981 #define FLASH_MASK 0x300
982
983 static void draw_tile(drawing *dr, game_drawstate *ds, int x, int y, int v)
984 {
985 int tx = COORD(x), ty = COORD(y);
986 int bg = (v & FLASH_DEAD ? COL_DEAD_PLAYER :
987 v & FLASH_WIN ? COL_HIGHLIGHT : COL_BACKGROUND);
988
989 v &= ~FLASH_MASK;
990
991 clip(dr, tx+1, ty+1, TILESIZE-1, TILESIZE-1);
992 draw_rect(dr, tx+1, ty+1, TILESIZE-1, TILESIZE-1, bg);
993
994 if (v == WALL) {
995 int coords[6];
996
997 coords[0] = tx + TILESIZE;
998 coords[1] = ty + TILESIZE;
999 coords[2] = tx + TILESIZE;
1000 coords[3] = ty + 1;
1001 coords[4] = tx + 1;
1002 coords[5] = ty + TILESIZE;
1003 draw_polygon(dr, coords, 3, COL_LOWLIGHT, COL_LOWLIGHT);
1004
1005 coords[0] = tx + 1;
1006 coords[1] = ty + 1;
1007 draw_polygon(dr, coords, 3, COL_HIGHLIGHT, COL_HIGHLIGHT);
1008
1009 draw_rect(dr, tx + 1 + HIGHLIGHT_WIDTH, ty + 1 + HIGHLIGHT_WIDTH,
1010 TILESIZE - 2*HIGHLIGHT_WIDTH,
1011 TILESIZE - 2*HIGHLIGHT_WIDTH, COL_WALL);
1012 } else if (v == MINE) {
1013 int cx = tx + TILESIZE / 2;
1014 int cy = ty + TILESIZE / 2;
1015 int r = TILESIZE / 2 - 3;
1016 int coords[4*5*2];
1017 int xdx = 1, xdy = 0, ydx = 0, ydy = 1;
1018 int tdx, tdy, i;
1019
1020 for (i = 0; i < 4*5*2; i += 5*2) {
1021 coords[i+2*0+0] = cx - r/6*xdx + r*4/5*ydx;
1022 coords[i+2*0+1] = cy - r/6*xdy + r*4/5*ydy;
1023 coords[i+2*1+0] = cx - r/6*xdx + r*ydx;
1024 coords[i+2*1+1] = cy - r/6*xdy + r*ydy;
1025 coords[i+2*2+0] = cx + r/6*xdx + r*ydx;
1026 coords[i+2*2+1] = cy + r/6*xdy + r*ydy;
1027 coords[i+2*3+0] = cx + r/6*xdx + r*4/5*ydx;
1028 coords[i+2*3+1] = cy + r/6*xdy + r*4/5*ydy;
1029 coords[i+2*4+0] = cx + r*3/5*xdx + r*3/5*ydx;
1030 coords[i+2*4+1] = cy + r*3/5*xdy + r*3/5*ydy;
1031
1032 tdx = ydx;
1033 tdy = ydy;
1034 ydx = xdx;
1035 ydy = xdy;
1036 xdx = -tdx;
1037 xdy = -tdy;
1038 }
1039
1040 draw_polygon(dr, coords, 5*4, COL_MINE, COL_MINE);
1041
1042 draw_rect(dr, cx-r/3, cy-r/3, r/3, r/4, COL_HIGHLIGHT);
1043 } else if (v == STOP) {
1044 draw_circle(dr, tx + TILESIZE/2, ty + TILESIZE/2,
1045 TILESIZE*3/7, -1, COL_OUTLINE);
1046 draw_rect(dr, tx + TILESIZE*3/7, ty+1,
1047 TILESIZE - 2*(TILESIZE*3/7) + 1, TILESIZE-1, bg);
1048 draw_rect(dr, tx+1, ty + TILESIZE*3/7,
1049 TILESIZE-1, TILESIZE - 2*(TILESIZE*3/7) + 1, bg);
1050 } else if (v == GEM) {
1051 int coords[8];
1052
1053 coords[0] = tx+TILESIZE/2;
1054 coords[1] = ty+TILESIZE*1/7;
1055 coords[2] = tx+TILESIZE*1/7;
1056 coords[3] = ty+TILESIZE/2;
1057 coords[4] = tx+TILESIZE/2;
1058 coords[5] = ty+TILESIZE-TILESIZE*1/7;
1059 coords[6] = tx+TILESIZE-TILESIZE*1/7;
1060 coords[7] = ty+TILESIZE/2;
1061
1062 draw_polygon(dr, coords, 4, COL_GEM, COL_OUTLINE);
1063 }
1064
1065 unclip(dr);
1066 draw_update(dr, tx, ty, TILESIZE, TILESIZE);
1067 }
1068
1069 #define BASE_ANIM_LENGTH 0.1F
1070 #define FLASH_LENGTH 0.3F
1071
1072 static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
1073 game_state *state, int dir, game_ui *ui,
1074 float animtime, float flashtime)
1075 {
1076 int w = state->p.w, h = state->p.h /*, wh = w*h */;
1077 int x, y;
1078 float ap;
1079 int player_dist;
1080 int flashtype;
1081 int gems, deaths;
1082 char status[256];
1083
1084 if (flashtime &&
1085 !((int)(flashtime * 3 / FLASH_LENGTH) % 2))
1086 flashtype = ui->flashtype;
1087 else
1088 flashtype = 0;
1089
1090 /*
1091 * Erase the player sprite.
1092 */
1093 if (ds->player_bg_saved) {
1094 assert(ds->player_background);
1095 blitter_load(dr, ds->player_background, ds->pbgx, ds->pbgy);
1096 draw_update(dr, ds->pbgx, ds->pbgy, TILESIZE, TILESIZE);
1097 ds->player_bg_saved = FALSE;
1098 }
1099
1100 /*
1101 * Initialise a fresh drawstate.
1102 */
1103 if (!ds->started) {
1104 int wid, ht;
1105
1106 /*
1107 * Blank out the window initially.
1108 */
1109 game_compute_size(&ds->p, TILESIZE, &wid, &ht);
1110 draw_rect(dr, 0, 0, wid, ht, COL_BACKGROUND);
1111 draw_update(dr, 0, 0, wid, ht);
1112
1113 /*
1114 * Draw the grid lines.
1115 */
1116 for (y = 0; y <= h; y++)
1117 draw_line(dr, COORD(0), COORD(y), COORD(w), COORD(y),
1118 COL_LOWLIGHT);
1119 for (x = 0; x <= w; x++)
1120 draw_line(dr, COORD(x), COORD(0), COORD(x), COORD(h),
1121 COL_LOWLIGHT);
1122
1123 ds->started = TRUE;
1124 }
1125
1126 /*
1127 * If we're in the process of animating a move, let's start by
1128 * working out how far the player has moved from their _older_
1129 * state.
1130 */
1131 if (oldstate) {
1132 ap = animtime / ui->anim_length;
1133 player_dist = ap * (dir > 0 ? state : oldstate)->distance_moved;
1134 } else {
1135 player_dist = 0;
1136 ap = 0.0F;
1137 }
1138
1139 /*
1140 * Draw the grid contents.
1141 *
1142 * We count the gems as we go round this loop, for the purposes
1143 * of the status bar. Of course we have a gems counter in the
1144 * game_state already, but if we do the counting in this loop
1145 * then it tracks gems being picked up in a sliding move, and
1146 * updates one by one.
1147 */
1148 gems = 0;
1149 for (y = 0; y < h; y++)
1150 for (x = 0; x < w; x++) {
1151 unsigned short v = (unsigned char)state->grid[y*w+x];
1152
1153 /*
1154 * Special case: if the player is in the process of
1155 * moving over a gem, we draw the gem iff they haven't
1156 * gone past it yet.
1157 */
1158 if (oldstate && oldstate->grid[y*w+x] != state->grid[y*w+x]) {
1159 /*
1160 * Compute the distance from this square to the
1161 * original player position.
1162 */
1163 int dist = max(abs(x - oldstate->px), abs(y - oldstate->py));
1164
1165 /*
1166 * If the player has reached here, use the new grid
1167 * element. Otherwise use the old one.
1168 */
1169 if (player_dist < dist)
1170 v = oldstate->grid[y*w+x];
1171 else
1172 v = state->grid[y*w+x];
1173 }
1174
1175 /*
1176 * Special case: erase the mine the dead player is
1177 * sitting on. Only at the end of the move.
1178 */
1179 if (v == MINE && !oldstate && state->dead &&
1180 x == state->px && y == state->py)
1181 v = BLANK;
1182
1183 if (v == GEM)
1184 gems++;
1185
1186 v |= flashtype;
1187
1188 if (ds->grid[y*w+x] != v) {
1189 draw_tile(dr, ds, x, y, v);
1190 ds->grid[y*w+x] = v;
1191 }
1192 }
1193
1194 /*
1195 * Gem counter in the status bar. We replace it with
1196 * `COMPLETED!' when it reaches zero ... or rather, when the
1197 * _current state_'s gem counter is zero. (Thus, `Gems: 0' is
1198 * shown between the collection of the last gem and the
1199 * completion of the move animation that did it.)
1200 */
1201 if (state->dead && (!oldstate || oldstate->dead))
1202 sprintf(status, "DEAD!");
1203 else if (state->gems || (oldstate && oldstate->gems))
1204 sprintf(status, "Gems: %d", gems);
1205 else
1206 sprintf(status, "COMPLETED!");
1207 /* We subtract one from the visible death counter if we're still
1208 * animating the move at the end of which the death took place. */
1209 deaths = ui->deaths;
1210 if (oldstate && ui->just_died) {
1211 assert(deaths > 0);
1212 deaths--;
1213 }
1214 if (deaths)
1215 sprintf(status + strlen(status), " Deaths: %d", deaths);
1216 status_bar(dr, status);
1217
1218 /*
1219 * Draw the player sprite.
1220 */
1221 assert(!ds->player_bg_saved);
1222 assert(ds->player_background);
1223 {
1224 int ox, oy, nx, ny;
1225 nx = COORD(state->px);
1226 ny = COORD(state->py);
1227 if (oldstate) {
1228 ox = COORD(oldstate->px);
1229 oy = COORD(oldstate->py);
1230 } else {
1231 ox = nx;
1232 oy = ny;
1233 }
1234 ds->pbgx = ox + ap * (nx - ox);
1235 ds->pbgy = oy + ap * (ny - oy);
1236 }
1237 blitter_save(dr, ds->player_background, ds->pbgx, ds->pbgy);
1238 draw_player(dr, ds, ds->pbgx, ds->pbgy, (state->dead && !oldstate));
1239 ds->player_bg_saved = TRUE;
1240 }
1241
1242 static float game_anim_length(game_state *oldstate, game_state *newstate,
1243 int dir, game_ui *ui)
1244 {
1245 int dist;
1246 if (dir > 0)
1247 dist = newstate->distance_moved;
1248 else
1249 dist = oldstate->distance_moved;
1250 ui->anim_length = sqrt(dist) * BASE_ANIM_LENGTH;
1251 return ui->anim_length;
1252 }
1253
1254 static float game_flash_length(game_state *oldstate, game_state *newstate,
1255 int dir, game_ui *ui)
1256 {
1257 if (!oldstate->dead && newstate->dead) {
1258 ui->flashtype = FLASH_DEAD;
1259 return FLASH_LENGTH;
1260 } else if (oldstate->gems && !newstate->gems) {
1261 ui->flashtype = FLASH_WIN;
1262 return FLASH_LENGTH;
1263 }
1264 return 0.0F;
1265 }
1266
1267 static int game_wants_statusbar(void)
1268 {
1269 return TRUE;
1270 }
1271
1272 static int game_timing_state(game_state *state, game_ui *ui)
1273 {
1274 return TRUE;
1275 }
1276
1277 static void game_print_size(game_params *params, float *x, float *y)
1278 {
1279 }
1280
1281 static void game_print(drawing *dr, game_state *state, int tilesize)
1282 {
1283 }
1284
1285 #ifdef COMBINED
1286 #define thegame inertia
1287 #endif
1288
1289 const struct game thegame = {
1290 "Inertia", "games.inertia",
1291 default_params,
1292 game_fetch_preset,
1293 decode_params,
1294 encode_params,
1295 free_params,
1296 dup_params,
1297 TRUE, game_configure, custom_params,
1298 validate_params,
1299 new_game_desc,
1300 validate_desc,
1301 new_game,
1302 dup_game,
1303 free_game,
1304 FALSE, solve_game,
1305 FALSE, game_text_format,
1306 new_ui,
1307 free_ui,
1308 encode_ui,
1309 decode_ui,
1310 game_changed_state,
1311 interpret_move,
1312 execute_move,
1313 PREFERRED_TILESIZE, game_compute_size, game_set_size,
1314 game_colours,
1315 game_new_drawstate,
1316 game_free_drawstate,
1317 game_redraw,
1318 game_anim_length,
1319 game_flash_length,
1320 FALSE, FALSE, game_print_size, game_print,
1321 game_wants_statusbar,
1322 FALSE, game_timing_state,
1323 0, /* mouse_priorities */
1324 };