Improved the limited shuffle mechanism in Sixteen and Twiddle. They
[sgt/puzzles] / twiddle.c
1 /*
2 * twiddle.c: Puzzle involving rearranging a grid of squares by
3 * rotating subsquares. Adapted and generalised from a
4 * door-unlocking puzzle in Metroid Prime 2 (the one in the Main
5 * Gyro Chamber).
6 */
7
8 #include <stdio.h>
9 #include <stdlib.h>
10 #include <string.h>
11 #include <assert.h>
12 #include <ctype.h>
13 #include <math.h>
14
15 #include "puzzles.h"
16
17 #define TILE_SIZE 48
18 #define BORDER (TILE_SIZE / 2)
19 #define HIGHLIGHT_WIDTH (TILE_SIZE / 20)
20 #define COORD(x) ( (x) * TILE_SIZE + BORDER )
21 #define FROMCOORD(x) ( ((x) - BORDER + TILE_SIZE) / TILE_SIZE - 1 )
22
23 #define PI 3.141592653589793238462643383279502884197169399
24
25 #define ANIM_PER_RADIUS_UNIT 0.13F
26 #define FLASH_FRAME 0.13F
27
28 enum {
29 COL_BACKGROUND,
30 COL_TEXT,
31 COL_HIGHLIGHT,
32 COL_HIGHLIGHT_GENTLE,
33 COL_LOWLIGHT,
34 COL_LOWLIGHT_GENTLE,
35 NCOLOURS
36 };
37
38 struct game_params {
39 int w, h, n;
40 int rowsonly;
41 int orientable;
42 int movetarget;
43 };
44
45 struct game_state {
46 int w, h, n;
47 int orientable;
48 int *grid;
49 int completed;
50 int just_used_solve; /* used to suppress undo animation */
51 int used_solve; /* used to suppress completion flash */
52 int movecount, movetarget;
53 int lastx, lasty, lastr; /* coordinates of last rotation */
54 };
55
56 static game_params *default_params(void)
57 {
58 game_params *ret = snew(game_params);
59
60 ret->w = ret->h = 3;
61 ret->n = 2;
62 ret->rowsonly = ret->orientable = FALSE;
63 ret->movetarget = 0;
64
65 return ret;
66 }
67
68
69 static void free_params(game_params *params)
70 {
71 sfree(params);
72 }
73
74 static game_params *dup_params(game_params *params)
75 {
76 game_params *ret = snew(game_params);
77 *ret = *params; /* structure copy */
78 return ret;
79 }
80
81 static int game_fetch_preset(int i, char **name, game_params **params)
82 {
83 static struct {
84 char *title;
85 game_params params;
86 } presets[] = {
87 { "3x3 rows only", { 3, 3, 2, TRUE, FALSE } },
88 { "3x3 normal", { 3, 3, 2, FALSE, FALSE } },
89 { "3x3 orientable", { 3, 3, 2, FALSE, TRUE } },
90 { "4x4 normal", { 4, 4, 2, FALSE } },
91 { "4x4 orientable", { 4, 4, 2, FALSE, TRUE } },
92 { "4x4 radius 3", { 4, 4, 3, FALSE } },
93 { "5x5 radius 3", { 5, 5, 3, FALSE } },
94 { "6x6 radius 4", { 6, 6, 4, FALSE } },
95 };
96
97 if (i < 0 || i >= lenof(presets))
98 return FALSE;
99
100 *name = dupstr(presets[i].title);
101 *params = dup_params(&presets[i].params);
102
103 return TRUE;
104 }
105
106 static void decode_params(game_params *ret, char const *string)
107 {
108 ret->w = ret->h = atoi(string);
109 ret->n = 2;
110 ret->rowsonly = ret->orientable = FALSE;
111 ret->movetarget = 0;
112 while (*string && isdigit(*string)) string++;
113 if (*string == 'x') {
114 string++;
115 ret->h = atoi(string);
116 while (*string && isdigit(*string)) string++;
117 }
118 if (*string == 'n') {
119 string++;
120 ret->n = atoi(string);
121 while (*string && isdigit(*string)) string++;
122 }
123 while (*string) {
124 if (*string == 'r') {
125 ret->rowsonly = TRUE;
126 } else if (*string == 'o') {
127 ret->orientable = TRUE;
128 } else if (*string == 'm') {
129 string++;
130 ret->movetarget = atoi(string);
131 while (string[1] && isdigit(string[1])) string++;
132 }
133 string++;
134 }
135 }
136
137 static char *encode_params(game_params *params, int full)
138 {
139 char buf[256];
140 sprintf(buf, "%dx%dn%d%s%s", params->w, params->h, params->n,
141 params->rowsonly ? "r" : "",
142 params->orientable ? "o" : "");
143 /* Shuffle limit is part of the limited parameters, because we have to
144 * supply the target move count. */
145 if (params->movetarget)
146 sprintf(buf + strlen(buf), "m%d", params->movetarget);
147 return dupstr(buf);
148 }
149
150 static config_item *game_configure(game_params *params)
151 {
152 config_item *ret;
153 char buf[80];
154
155 ret = snewn(7, config_item);
156
157 ret[0].name = "Width";
158 ret[0].type = C_STRING;
159 sprintf(buf, "%d", params->w);
160 ret[0].sval = dupstr(buf);
161 ret[0].ival = 0;
162
163 ret[1].name = "Height";
164 ret[1].type = C_STRING;
165 sprintf(buf, "%d", params->h);
166 ret[1].sval = dupstr(buf);
167 ret[1].ival = 0;
168
169 ret[2].name = "Rotation radius";
170 ret[2].type = C_STRING;
171 sprintf(buf, "%d", params->n);
172 ret[2].sval = dupstr(buf);
173 ret[2].ival = 0;
174
175 ret[3].name = "One number per row";
176 ret[3].type = C_BOOLEAN;
177 ret[3].sval = NULL;
178 ret[3].ival = params->rowsonly;
179
180 ret[4].name = "Orientation matters";
181 ret[4].type = C_BOOLEAN;
182 ret[4].sval = NULL;
183 ret[4].ival = params->orientable;
184
185 ret[5].name = "Number of shuffling moves";
186 ret[5].type = C_STRING;
187 sprintf(buf, "%d", params->movetarget);
188 ret[5].sval = dupstr(buf);
189 ret[5].ival = 0;
190
191 ret[6].name = NULL;
192 ret[6].type = C_END;
193 ret[6].sval = NULL;
194 ret[6].ival = 0;
195
196 return ret;
197 }
198
199 static game_params *custom_params(config_item *cfg)
200 {
201 game_params *ret = snew(game_params);
202
203 ret->w = atoi(cfg[0].sval);
204 ret->h = atoi(cfg[1].sval);
205 ret->n = atoi(cfg[2].sval);
206 ret->rowsonly = cfg[3].ival;
207 ret->orientable = cfg[4].ival;
208 ret->movetarget = atoi(cfg[5].sval);
209
210 return ret;
211 }
212
213 static char *validate_params(game_params *params)
214 {
215 if (params->n < 2)
216 return "Rotation radius must be at least two";
217 if (params->w < params->n)
218 return "Width must be at least the rotation radius";
219 if (params->h < params->n)
220 return "Height must be at least the rotation radius";
221 return NULL;
222 }
223
224 /*
225 * This function actually performs a rotation on a grid. The `x'
226 * and `y' coordinates passed in are the coordinates of the _top
227 * left corner_ of the rotated region. (Using the centre would have
228 * involved half-integers and been annoyingly fiddly. Clicking in
229 * the centre is good for a user interface, but too inconvenient to
230 * use internally.)
231 */
232 static void do_rotate(int *grid, int w, int h, int n, int orientable,
233 int x, int y, int dir)
234 {
235 int i, j;
236
237 assert(x >= 0 && x+n <= w);
238 assert(y >= 0 && y+n <= h);
239 dir &= 3;
240 if (dir == 0)
241 return; /* nothing to do */
242
243 grid += y*w+x; /* translate region to top corner */
244
245 /*
246 * If we were leaving the result of the rotation in a separate
247 * grid, the simple thing to do would be to loop over each
248 * square within the rotated region and assign it from its
249 * source square. However, to do it in place without taking
250 * O(n^2) memory, we need to be marginally more clever. What
251 * I'm going to do is loop over about one _quarter_ of the
252 * rotated region and permute each element within that quarter
253 * with its rotational coset.
254 *
255 * The size of the region I need to loop over is (n+1)/2 by
256 * n/2, which is an obvious exact quarter for even n and is a
257 * rectangle for odd n. (For odd n, this technique leaves out
258 * one element of the square, which is of course the central
259 * one that never moves anyway.)
260 */
261 for (i = 0; i < (n+1)/2; i++) {
262 for (j = 0; j < n/2; j++) {
263 int k;
264 int g[4];
265 int p[4] = {
266 j*w+i,
267 i*w+(n-j-1),
268 (n-j-1)*w+(n-i-1),
269 (n-i-1)*w+j
270 };
271
272 for (k = 0; k < 4; k++)
273 g[k] = grid[p[k]];
274
275 for (k = 0; k < 4; k++) {
276 int v = g[(k+dir) & 3];
277 if (orientable)
278 v ^= ((v+dir) ^ v) & 3; /* alter orientation */
279 grid[p[k]] = v;
280 }
281 }
282 }
283
284 /*
285 * Don't forget the orientation on the centre square, if n is
286 * odd.
287 */
288 if (orientable && (n & 1)) {
289 int v = grid[n/2*(w+1)];
290 v ^= ((v+dir) ^ v) & 3; /* alter orientation */
291 grid[n/2*(w+1)] = v;
292 }
293 }
294
295 static int grid_complete(int *grid, int wh, int orientable)
296 {
297 int ok = TRUE;
298 int i;
299 for (i = 1; i < wh; i++)
300 if (grid[i] < grid[i-1])
301 ok = FALSE;
302 if (orientable) {
303 for (i = 0; i < wh; i++)
304 if (grid[i] & 3)
305 ok = FALSE;
306 }
307 return ok;
308 }
309
310 static char *new_game_desc(game_params *params, random_state *rs,
311 game_aux_info **aux, int interactive)
312 {
313 int *grid;
314 int w = params->w, h = params->h, n = params->n, wh = w*h;
315 int i;
316 char *ret;
317 int retlen;
318 int total_moves;
319
320 /*
321 * Set up a solved grid.
322 */
323 grid = snewn(wh, int);
324 for (i = 0; i < wh; i++)
325 grid[i] = ((params->rowsonly ? i/w : i) + 1) * 4;
326
327 /*
328 * Shuffle it. This game is complex enough that I don't feel up
329 * to analysing its full symmetry properties (particularly at
330 * n=4 and above!), so I'm going to do it the pedestrian way
331 * and simply shuffle the grid by making a long sequence of
332 * randomly chosen moves.
333 */
334 total_moves = params->movetarget;
335 if (!total_moves)
336 /* Add a random move to avoid parity issues. */
337 total_moves = w*h*n*n*2 + random_upto(rs, 2);
338
339 do {
340 int *prevmoves;
341 int rw, rh; /* w/h of rotation centre space */
342
343 rw = w - n + 1;
344 rh = h - n + 1;
345 prevmoves = snewn(rw * rh, int);
346 for (i = 0; i < rw * rh; i++)
347 prevmoves[i] = 0;
348
349 for (i = 0; i < total_moves; i++) {
350 int x, y, r, oldtotal, newtotal, dx, dy;
351
352 do {
353 x = random_upto(rs, w - n + 1);
354 y = random_upto(rs, h - n + 1);
355 r = 2 * random_upto(rs, 2) - 1;
356
357 /*
358 * See if any previous rotations has happened at
359 * this point which nothing has overlapped since.
360 * If so, ensure we haven't either undone a
361 * previous move or repeated one so many times that
362 * it turns into fewer moves in the inverse
363 * direction (i.e. three identical rotations).
364 */
365 oldtotal = prevmoves[y*rw+x];
366 newtotal = oldtotal + r;
367 } while (abs(newtotal) < abs(oldtotal) || abs(newtotal) > 2);
368
369 do_rotate(grid, w, h, n, params->orientable, x, y, r);
370
371 /*
372 * Log the rotation we've just performed at this point,
373 * for inversion detection in the next move.
374 *
375 * Also zero a section of the prevmoves array, because
376 * any rotation area which _overlaps_ this one is now
377 * entirely safe to perform further moves in.
378 *
379 * Two rotation areas overlap if their top left
380 * coordinates differ by strictly less than n in both
381 * directions
382 */
383 prevmoves[y*rw+x] += r;
384 for (dy = -n+1; dy <= n-1; dy++) {
385 if (y + dy < 0 || y + dy >= rh)
386 continue;
387 for (dx = -n+1; dx <= n-1; dx++) {
388 if (x + dx < 0 || x + dx >= rw)
389 continue;
390 if (dx == 0 && dy == 0)
391 continue;
392 prevmoves[(y+dy)*rw+(x+dx)] = 0;
393 }
394 }
395 }
396
397 sfree(prevmoves);
398
399 } while (grid_complete(grid, wh, params->orientable));
400
401 /*
402 * Now construct the game description, by describing the grid
403 * as a simple sequence of integers. They're comma-separated,
404 * unless the puzzle is orientable in which case they're
405 * separated by orientation letters `u', `d', `l' and `r'.
406 */
407 ret = NULL;
408 retlen = 0;
409 for (i = 0; i < wh; i++) {
410 char buf[80];
411 int k;
412
413 k = sprintf(buf, "%d%c", grid[i] / 4,
414 params->orientable ? "uldr"[grid[i] & 3] : ',');
415
416 ret = sresize(ret, retlen + k + 1, char);
417 strcpy(ret + retlen, buf);
418 retlen += k;
419 }
420 if (!params->orientable)
421 ret[retlen-1] = '\0'; /* delete last comma */
422
423 sfree(grid);
424 return ret;
425 }
426
427 static void game_free_aux_info(game_aux_info *aux)
428 {
429 assert(!"Shouldn't happen");
430 }
431
432 static char *validate_desc(game_params *params, char *desc)
433 {
434 char *p, *err;
435 int w = params->w, h = params->h, wh = w*h;
436 int i;
437
438 p = desc;
439 err = NULL;
440
441 for (i = 0; i < wh; i++) {
442 if (*p < '0' || *p > '9')
443 return "Not enough numbers in string";
444 while (*p >= '0' && *p <= '9')
445 p++;
446 if (!params->orientable && i < wh-1) {
447 if (*p != ',')
448 return "Expected comma after number";
449 } else if (params->orientable && i < wh) {
450 if (*p != 'l' && *p != 'r' && *p != 'u' && *p != 'd')
451 return "Expected orientation letter after number";
452 } else if (i == wh-1 && *p) {
453 return "Excess junk at end of string";
454 }
455
456 if (*p) p++; /* eat comma */
457 }
458
459 return NULL;
460 }
461
462 static game_state *new_game(midend_data *me, game_params *params, char *desc)
463 {
464 game_state *state = snew(game_state);
465 int w = params->w, h = params->h, n = params->n, wh = w*h;
466 int i;
467 char *p;
468
469 state->w = w;
470 state->h = h;
471 state->n = n;
472 state->orientable = params->orientable;
473 state->completed = 0;
474 state->used_solve = state->just_used_solve = FALSE;
475 state->movecount = 0;
476 state->movetarget = params->movetarget;
477 state->lastx = state->lasty = state->lastr = -1;
478
479 state->grid = snewn(wh, int);
480
481 p = desc;
482
483 for (i = 0; i < wh; i++) {
484 state->grid[i] = 4 * atoi(p);
485 while (*p >= '0' && *p <= '9')
486 p++;
487 if (*p) {
488 if (params->orientable) {
489 switch (*p) {
490 case 'l': state->grid[i] |= 1; break;
491 case 'd': state->grid[i] |= 2; break;
492 case 'r': state->grid[i] |= 3; break;
493 }
494 }
495 p++;
496 }
497 }
498
499 return state;
500 }
501
502 static game_state *dup_game(game_state *state)
503 {
504 game_state *ret = snew(game_state);
505
506 ret->w = state->w;
507 ret->h = state->h;
508 ret->n = state->n;
509 ret->orientable = state->orientable;
510 ret->completed = state->completed;
511 ret->movecount = state->movecount;
512 ret->movetarget = state->movetarget;
513 ret->lastx = state->lastx;
514 ret->lasty = state->lasty;
515 ret->lastr = state->lastr;
516 ret->used_solve = state->used_solve;
517 ret->just_used_solve = state->just_used_solve;
518
519 ret->grid = snewn(ret->w * ret->h, int);
520 memcpy(ret->grid, state->grid, ret->w * ret->h * sizeof(int));
521
522 return ret;
523 }
524
525 static void free_game(game_state *state)
526 {
527 sfree(state->grid);
528 sfree(state);
529 }
530
531 static int compare_int(const void *av, const void *bv)
532 {
533 const int *a = (const int *)av;
534 const int *b = (const int *)bv;
535 if (*a < *b)
536 return -1;
537 else if (*a > *b)
538 return +1;
539 else
540 return 0;
541 }
542
543 static game_state *solve_game(game_state *state, game_aux_info *aux,
544 char **error)
545 {
546 game_state *ret = dup_game(state);
547 int i;
548
549 /*
550 * Simply replace the grid with a solved one. For this game,
551 * this isn't a useful operation for actually telling the user
552 * what they should have done, but it is useful for
553 * conveniently being able to get hold of a clean state from
554 * which to practise manoeuvres.
555 */
556 qsort(ret->grid, ret->w*ret->h, sizeof(int), compare_int);
557 for (i = 0; i < ret->w*ret->h; i++)
558 ret->grid[i] &= ~3;
559 ret->used_solve = ret->just_used_solve = TRUE;
560 ret->completed = ret->movecount = 1;
561
562 return ret;
563 }
564
565 static char *game_text_format(game_state *state)
566 {
567 char *ret, *p, buf[80];
568 int i, x, y, col, o, maxlen;
569
570 /*
571 * First work out how many characters we need to display each
572 * number. We're pretty flexible on grid contents here, so we
573 * have to scan the entire grid.
574 */
575 col = 0;
576 for (i = 0; i < state->w * state->h; i++) {
577 x = sprintf(buf, "%d", state->grid[i] / 4);
578 if (col < x) col = x;
579 }
580 o = (state->orientable ? 1 : 0);
581
582 /*
583 * Now we know the exact total size of the grid we're going to
584 * produce: it's got h rows, each containing w lots of col+o,
585 * w-1 spaces and a trailing newline.
586 */
587 maxlen = state->h * state->w * (col+o+1);
588
589 ret = snewn(maxlen+1, char);
590 p = ret;
591
592 for (y = 0; y < state->h; y++) {
593 for (x = 0; x < state->w; x++) {
594 int v = state->grid[state->w*y+x];
595 sprintf(buf, "%*d", col, v/4);
596 memcpy(p, buf, col);
597 p += col;
598 if (o)
599 *p++ = "^<v>"[v & 3];
600 if (x+1 == state->w)
601 *p++ = '\n';
602 else
603 *p++ = ' ';
604 }
605 }
606
607 assert(p - ret == maxlen);
608 *p = '\0';
609 return ret;
610 }
611
612 static game_ui *new_ui(game_state *state)
613 {
614 return NULL;
615 }
616
617 static void free_ui(game_ui *ui)
618 {
619 }
620
621 static game_state *make_move(game_state *from, game_ui *ui, int x, int y,
622 int button)
623 {
624 int w = from->w, h = from->h, n = from->n, wh = w*h;
625 game_state *ret;
626 int dir;
627
628 button = button & (~MOD_MASK | MOD_NUM_KEYPAD);
629
630 if (button == LEFT_BUTTON || button == RIGHT_BUTTON) {
631 /*
632 * Determine the coordinates of the click. We offset by n-1
633 * half-blocks so that the user must click at the centre of
634 * a rotation region rather than at the corner.
635 */
636 x -= (n-1) * TILE_SIZE / 2;
637 y -= (n-1) * TILE_SIZE / 2;
638 x = FROMCOORD(x);
639 y = FROMCOORD(y);
640 dir = (button == LEFT_BUTTON ? 1 : -1);
641 if (x < 0 || x > w-n || y < 0 || y > h-n)
642 return NULL;
643 } else if (button == 'a' || button == 'A' || button==MOD_NUM_KEYPAD+'7') {
644 x = y = 0;
645 dir = (button == 'A' ? -1 : +1);
646 } else if (button == 'b' || button == 'B' || button==MOD_NUM_KEYPAD+'9') {
647 x = w-n;
648 y = 0;
649 dir = (button == 'B' ? -1 : +1);
650 } else if (button == 'c' || button == 'C' || button==MOD_NUM_KEYPAD+'1') {
651 x = 0;
652 y = h-n;
653 dir = (button == 'C' ? -1 : +1);
654 } else if (button == 'd' || button == 'D' || button==MOD_NUM_KEYPAD+'3') {
655 x = w-n;
656 y = h-n;
657 dir = (button == 'D' ? -1 : +1);
658 } else if (button==MOD_NUM_KEYPAD+'8' && (w-n) % 2 == 0) {
659 x = (w-n) / 2;
660 y = 0;
661 dir = +1;
662 } else if (button==MOD_NUM_KEYPAD+'2' && (w-n) % 2 == 0) {
663 x = (w-n) / 2;
664 y = h-n;
665 dir = +1;
666 } else if (button==MOD_NUM_KEYPAD+'4' && (h-n) % 2 == 0) {
667 x = 0;
668 y = (h-n) / 2;
669 dir = +1;
670 } else if (button==MOD_NUM_KEYPAD+'6' && (h-n) % 2 == 0) {
671 x = w-n;
672 y = (h-n) / 2;
673 dir = +1;
674 } else if (button==MOD_NUM_KEYPAD+'5' && (w-n) % 2 == 0 && (h-n) % 2 == 0){
675 x = (w-n) / 2;
676 y = (h-n) / 2;
677 dir = +1;
678 } else {
679 return NULL; /* no move to be made */
680 }
681
682 /*
683 * This is a valid move. Make it.
684 */
685 ret = dup_game(from);
686 ret->just_used_solve = FALSE; /* zero this in a hurry */
687 ret->movecount++;
688 do_rotate(ret->grid, w, h, n, ret->orientable, x, y, dir);
689 ret->lastx = x;
690 ret->lasty = y;
691 ret->lastr = dir;
692
693 /*
694 * See if the game has been completed. To do this we simply
695 * test that the grid contents are in increasing order.
696 */
697 if (!ret->completed && grid_complete(ret->grid, wh, ret->orientable))
698 ret->completed = ret->movecount;
699 return ret;
700 }
701
702 /* ----------------------------------------------------------------------
703 * Drawing routines.
704 */
705
706 struct game_drawstate {
707 int started;
708 int w, h, bgcolour;
709 int *grid;
710 };
711
712 static void game_size(game_params *params, int *x, int *y)
713 {
714 *x = TILE_SIZE * params->w + 2 * BORDER;
715 *y = TILE_SIZE * params->h + 2 * BORDER;
716 }
717
718 static float *game_colours(frontend *fe, game_state *state, int *ncolours)
719 {
720 float *ret = snewn(3 * NCOLOURS, float);
721 int i;
722 float max;
723
724 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
725
726 /*
727 * Drop the background colour so that the highlight is
728 * noticeably brighter than it while still being under 1.
729 */
730 max = ret[COL_BACKGROUND*3];
731 for (i = 1; i < 3; i++)
732 if (ret[COL_BACKGROUND*3+i] > max)
733 max = ret[COL_BACKGROUND*3+i];
734 if (max * 1.2F > 1.0F) {
735 for (i = 0; i < 3; i++)
736 ret[COL_BACKGROUND*3+i] /= (max * 1.2F);
737 }
738
739 for (i = 0; i < 3; i++) {
740 ret[COL_HIGHLIGHT * 3 + i] = ret[COL_BACKGROUND * 3 + i] * 1.2F;
741 ret[COL_HIGHLIGHT_GENTLE * 3 + i] = ret[COL_BACKGROUND * 3 + i] * 1.1F;
742 ret[COL_LOWLIGHT * 3 + i] = ret[COL_BACKGROUND * 3 + i] * 0.8F;
743 ret[COL_LOWLIGHT_GENTLE * 3 + i] = ret[COL_BACKGROUND * 3 + i] * 0.9F;
744 ret[COL_TEXT * 3 + i] = 0.0;
745 }
746
747 *ncolours = NCOLOURS;
748 return ret;
749 }
750
751 static game_drawstate *game_new_drawstate(game_state *state)
752 {
753 struct game_drawstate *ds = snew(struct game_drawstate);
754 int i;
755
756 ds->started = FALSE;
757 ds->w = state->w;
758 ds->h = state->h;
759 ds->bgcolour = COL_BACKGROUND;
760 ds->grid = snewn(ds->w*ds->h, int);
761 for (i = 0; i < ds->w*ds->h; i++)
762 ds->grid[i] = -1;
763
764 return ds;
765 }
766
767 static void game_free_drawstate(game_drawstate *ds)
768 {
769 sfree(ds);
770 }
771
772 struct rotation {
773 int cx, cy, cw, ch; /* clip region */
774 int ox, oy; /* rotation origin */
775 float c, s; /* cos and sin of rotation angle */
776 int lc, rc, tc, bc; /* colours of tile edges */
777 };
778
779 static void rotate(int *xy, struct rotation *rot)
780 {
781 if (rot) {
782 float xf = xy[0] - rot->ox, yf = xy[1] - rot->oy;
783 float xf2, yf2;
784
785 xf2 = rot->c * xf + rot->s * yf;
786 yf2 = - rot->s * xf + rot->c * yf;
787
788 xy[0] = xf2 + rot->ox + 0.5; /* round to nearest */
789 xy[1] = yf2 + rot->oy + 0.5; /* round to nearest */
790 }
791 }
792
793 static void draw_tile(frontend *fe, game_state *state, int x, int y,
794 int tile, int flash_colour, struct rotation *rot)
795 {
796 int coords[8];
797 char str[40];
798
799 /*
800 * If we've been passed a rotation region but we're drawing a
801 * tile which is outside it, we must draw it normally. This can
802 * occur if we're cleaning up after a completion flash while a
803 * new move is also being made.
804 */
805 if (rot && (x < rot->cx || y < rot->cy ||
806 x >= rot->cx+rot->cw || y >= rot->cy+rot->ch))
807 rot = NULL;
808
809 if (rot)
810 clip(fe, rot->cx, rot->cy, rot->cw, rot->ch);
811
812 /*
813 * We must draw each side of the tile's highlight separately,
814 * because in some cases (during rotation) they will all need
815 * to be different colours.
816 */
817
818 /* The centre point is common to all sides. */
819 coords[4] = x + TILE_SIZE / 2;
820 coords[5] = y + TILE_SIZE / 2;
821 rotate(coords+4, rot);
822
823 /* Right side. */
824 coords[0] = x + TILE_SIZE - 1;
825 coords[1] = y + TILE_SIZE - 1;
826 rotate(coords+0, rot);
827 coords[2] = x + TILE_SIZE - 1;
828 coords[3] = y;
829 rotate(coords+2, rot);
830 draw_polygon(fe, coords, 3, TRUE, rot ? rot->rc : COL_LOWLIGHT);
831 draw_polygon(fe, coords, 3, FALSE, rot ? rot->rc : COL_LOWLIGHT);
832
833 /* Bottom side. */
834 coords[2] = x;
835 coords[3] = y + TILE_SIZE - 1;
836 rotate(coords+2, rot);
837 draw_polygon(fe, coords, 3, TRUE, rot ? rot->bc : COL_LOWLIGHT);
838 draw_polygon(fe, coords, 3, FALSE, rot ? rot->bc : COL_LOWLIGHT);
839
840 /* Left side. */
841 coords[0] = x;
842 coords[1] = y;
843 rotate(coords+0, rot);
844 draw_polygon(fe, coords, 3, TRUE, rot ? rot->lc : COL_HIGHLIGHT);
845 draw_polygon(fe, coords, 3, FALSE, rot ? rot->lc : COL_HIGHLIGHT);
846
847 /* Top side. */
848 coords[2] = x + TILE_SIZE - 1;
849 coords[3] = y;
850 rotate(coords+2, rot);
851 draw_polygon(fe, coords, 3, TRUE, rot ? rot->tc : COL_HIGHLIGHT);
852 draw_polygon(fe, coords, 3, FALSE, rot ? rot->tc : COL_HIGHLIGHT);
853
854 /*
855 * Now the main blank area in the centre of the tile.
856 */
857 if (rot) {
858 coords[0] = x + HIGHLIGHT_WIDTH;
859 coords[1] = y + HIGHLIGHT_WIDTH;
860 rotate(coords+0, rot);
861 coords[2] = x + HIGHLIGHT_WIDTH;
862 coords[3] = y + TILE_SIZE - 1 - HIGHLIGHT_WIDTH;
863 rotate(coords+2, rot);
864 coords[4] = x + TILE_SIZE - 1 - HIGHLIGHT_WIDTH;
865 coords[5] = y + TILE_SIZE - 1 - HIGHLIGHT_WIDTH;
866 rotate(coords+4, rot);
867 coords[6] = x + TILE_SIZE - 1 - HIGHLIGHT_WIDTH;
868 coords[7] = y + HIGHLIGHT_WIDTH;
869 rotate(coords+6, rot);
870 draw_polygon(fe, coords, 4, TRUE, flash_colour);
871 draw_polygon(fe, coords, 4, FALSE, flash_colour);
872 } else {
873 draw_rect(fe, x + HIGHLIGHT_WIDTH, y + HIGHLIGHT_WIDTH,
874 TILE_SIZE - 2*HIGHLIGHT_WIDTH, TILE_SIZE - 2*HIGHLIGHT_WIDTH,
875 flash_colour);
876 }
877
878 /*
879 * Next, the triangles for orientation.
880 */
881 if (state->orientable) {
882 int xdx, xdy, ydx, ydy;
883 int cx, cy, displ, displ2;
884 switch (tile & 3) {
885 case 0:
886 xdx = 1, xdy = 0;
887 ydx = 0, ydy = 1;
888 break;
889 case 1:
890 xdx = 0, xdy = -1;
891 ydx = 1, ydy = 0;
892 break;
893 case 2:
894 xdx = -1, xdy = 0;
895 ydx = 0, ydy = -1;
896 break;
897 default /* case 3 */:
898 xdx = 0, xdy = 1;
899 ydx = -1, ydy = 0;
900 break;
901 }
902
903 cx = x + TILE_SIZE / 2;
904 cy = y + TILE_SIZE / 2;
905 displ = TILE_SIZE / 2 - HIGHLIGHT_WIDTH - 2;
906 displ2 = TILE_SIZE / 3 - HIGHLIGHT_WIDTH;
907
908 coords[0] = cx - displ * xdx + displ2 * ydx;
909 coords[1] = cy - displ * xdy + displ2 * ydy;
910 rotate(coords+0, rot);
911 coords[2] = cx + displ * xdx + displ2 * ydx;
912 coords[3] = cy + displ * xdy + displ2 * ydy;
913 rotate(coords+2, rot);
914 coords[4] = cx - displ * ydx;
915 coords[5] = cy - displ * ydy;
916 rotate(coords+4, rot);
917 draw_polygon(fe, coords, 3, TRUE, COL_LOWLIGHT_GENTLE);
918 draw_polygon(fe, coords, 3, FALSE, COL_LOWLIGHT_GENTLE);
919 }
920
921 coords[0] = x + TILE_SIZE/2;
922 coords[1] = y + TILE_SIZE/2;
923 rotate(coords+0, rot);
924 sprintf(str, "%d", tile / 4);
925 draw_text(fe, coords[0], coords[1],
926 FONT_VARIABLE, TILE_SIZE/3, ALIGN_VCENTRE | ALIGN_HCENTRE,
927 COL_TEXT, str);
928
929 if (rot)
930 unclip(fe);
931
932 draw_update(fe, x, y, TILE_SIZE, TILE_SIZE);
933 }
934
935 static int highlight_colour(float angle)
936 {
937 int colours[32] = {
938 COL_LOWLIGHT,
939 COL_LOWLIGHT_GENTLE,
940 COL_LOWLIGHT_GENTLE,
941 COL_LOWLIGHT_GENTLE,
942 COL_HIGHLIGHT_GENTLE,
943 COL_HIGHLIGHT_GENTLE,
944 COL_HIGHLIGHT_GENTLE,
945 COL_HIGHLIGHT,
946 COL_HIGHLIGHT,
947 COL_HIGHLIGHT,
948 COL_HIGHLIGHT,
949 COL_HIGHLIGHT,
950 COL_HIGHLIGHT,
951 COL_HIGHLIGHT,
952 COL_HIGHLIGHT,
953 COL_HIGHLIGHT,
954 COL_HIGHLIGHT,
955 COL_HIGHLIGHT_GENTLE,
956 COL_HIGHLIGHT_GENTLE,
957 COL_HIGHLIGHT_GENTLE,
958 COL_LOWLIGHT_GENTLE,
959 COL_LOWLIGHT_GENTLE,
960 COL_LOWLIGHT_GENTLE,
961 COL_LOWLIGHT,
962 COL_LOWLIGHT,
963 COL_LOWLIGHT,
964 COL_LOWLIGHT,
965 COL_LOWLIGHT,
966 COL_LOWLIGHT,
967 COL_LOWLIGHT,
968 COL_LOWLIGHT,
969 COL_LOWLIGHT,
970 };
971
972 return colours[(int)((angle + 2*PI) / (PI/16)) & 31];
973 }
974
975 static float game_anim_length(game_state *oldstate, game_state *newstate,
976 int dir, game_ui *ui)
977 {
978 if ((dir > 0 && newstate->just_used_solve) ||
979 (dir < 0 && oldstate->just_used_solve))
980 return 0.0F;
981 else
982 return ANIM_PER_RADIUS_UNIT * sqrt(newstate->n-1);
983 }
984
985 static float game_flash_length(game_state *oldstate, game_state *newstate,
986 int dir, game_ui *ui)
987 {
988 if (!oldstate->completed && newstate->completed &&
989 !oldstate->used_solve && !newstate->used_solve)
990 return 2 * FLASH_FRAME;
991 else
992 return 0.0F;
993 }
994
995 static void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate,
996 game_state *state, int dir, game_ui *ui,
997 float animtime, float flashtime)
998 {
999 int i, bgcolour;
1000 struct rotation srot, *rot;
1001 int lastx = -1, lasty = -1, lastr = -1;
1002
1003 if (flashtime > 0) {
1004 int frame = (int)(flashtime / FLASH_FRAME);
1005 bgcolour = (frame % 2 ? COL_LOWLIGHT : COL_HIGHLIGHT);
1006 } else
1007 bgcolour = COL_BACKGROUND;
1008
1009 if (!ds->started) {
1010 int coords[6];
1011
1012 draw_rect(fe, 0, 0,
1013 TILE_SIZE * state->w + 2 * BORDER,
1014 TILE_SIZE * state->h + 2 * BORDER, COL_BACKGROUND);
1015 draw_update(fe, 0, 0,
1016 TILE_SIZE * state->w + 2 * BORDER,
1017 TILE_SIZE * state->h + 2 * BORDER);
1018
1019 /*
1020 * Recessed area containing the whole puzzle.
1021 */
1022 coords[0] = COORD(state->w) + HIGHLIGHT_WIDTH - 1;
1023 coords[1] = COORD(state->h) + HIGHLIGHT_WIDTH - 1;
1024 coords[2] = COORD(state->w) + HIGHLIGHT_WIDTH - 1;
1025 coords[3] = COORD(0) - HIGHLIGHT_WIDTH;
1026 coords[4] = COORD(0) - HIGHLIGHT_WIDTH;
1027 coords[5] = COORD(state->h) + HIGHLIGHT_WIDTH - 1;
1028 draw_polygon(fe, coords, 3, TRUE, COL_HIGHLIGHT);
1029 draw_polygon(fe, coords, 3, FALSE, COL_HIGHLIGHT);
1030
1031 coords[1] = COORD(0) - HIGHLIGHT_WIDTH;
1032 coords[0] = COORD(0) - HIGHLIGHT_WIDTH;
1033 draw_polygon(fe, coords, 3, TRUE, COL_LOWLIGHT);
1034 draw_polygon(fe, coords, 3, FALSE, COL_LOWLIGHT);
1035
1036 ds->started = TRUE;
1037 }
1038
1039 /*
1040 * If we're drawing any rotated tiles, sort out the rotation
1041 * parameters, and also zap the rotation region to the
1042 * background colour before doing anything else.
1043 */
1044 if (oldstate) {
1045 float angle;
1046 float anim_max = game_anim_length(oldstate, state, dir, ui);
1047
1048 if (dir > 0) {
1049 lastx = state->lastx;
1050 lasty = state->lasty;
1051 lastr = state->lastr;
1052 } else {
1053 lastx = oldstate->lastx;
1054 lasty = oldstate->lasty;
1055 lastr = -oldstate->lastr;
1056 }
1057
1058 rot = &srot;
1059 rot->cx = COORD(lastx);
1060 rot->cy = COORD(lasty);
1061 rot->cw = rot->ch = TILE_SIZE * state->n;
1062 rot->ox = rot->cx + rot->cw/2;
1063 rot->oy = rot->cy + rot->ch/2;
1064 angle = (-PI/2 * lastr) * (1.0 - animtime / anim_max);
1065 rot->c = cos(angle);
1066 rot->s = sin(angle);
1067
1068 /*
1069 * Sort out the colours of the various sides of the tile.
1070 */
1071 rot->lc = highlight_colour(PI + angle);
1072 rot->rc = highlight_colour(angle);
1073 rot->tc = highlight_colour(PI/2 + angle);
1074 rot->bc = highlight_colour(-PI/2 + angle);
1075
1076 draw_rect(fe, rot->cx, rot->cy, rot->cw, rot->ch, bgcolour);
1077 } else
1078 rot = NULL;
1079
1080 /*
1081 * Now draw each tile.
1082 */
1083 for (i = 0; i < state->w * state->h; i++) {
1084 int t;
1085 int tx = i % state->w, ty = i / state->w;
1086
1087 /*
1088 * Figure out what should be displayed at this location.
1089 * Usually it will be state->grid[i], unless we're in the
1090 * middle of animating an actual rotation and this cell is
1091 * within the rotation region, in which case we set -1
1092 * (always display).
1093 */
1094 if (oldstate && lastx >= 0 && lasty >= 0 &&
1095 tx >= lastx && tx < lastx + state->n &&
1096 ty >= lasty && ty < lasty + state->n)
1097 t = -1;
1098 else
1099 t = state->grid[i];
1100
1101 if (ds->bgcolour != bgcolour || /* always redraw when flashing */
1102 ds->grid[i] != t || ds->grid[i] == -1 || t == -1) {
1103 int x = COORD(tx), y = COORD(ty);
1104
1105 draw_tile(fe, state, x, y, state->grid[i], bgcolour, rot);
1106 ds->grid[i] = t;
1107 }
1108 }
1109 ds->bgcolour = bgcolour;
1110
1111 /*
1112 * Update the status bar.
1113 */
1114 {
1115 char statusbuf[256];
1116
1117 /*
1118 * Don't show the new status until we're also showing the
1119 * new _state_ - after the game animation is complete.
1120 */
1121 if (oldstate)
1122 state = oldstate;
1123
1124 if (state->used_solve)
1125 sprintf(statusbuf, "Moves since auto-solve: %d",
1126 state->movecount - state->completed);
1127 else {
1128 sprintf(statusbuf, "%sMoves: %d",
1129 (state->completed ? "COMPLETED! " : ""),
1130 (state->completed ? state->completed : state->movecount));
1131 if (state->movetarget)
1132 sprintf(statusbuf+strlen(statusbuf), " (target %d)",
1133 state->movetarget);
1134 }
1135
1136 status_bar(fe, statusbuf);
1137 }
1138 }
1139
1140 static int game_wants_statusbar(void)
1141 {
1142 return TRUE;
1143 }
1144
1145 static int game_timing_state(game_state *state)
1146 {
1147 return TRUE;
1148 }
1149
1150 #ifdef COMBINED
1151 #define thegame twiddle
1152 #endif
1153
1154 const struct game thegame = {
1155 "Twiddle", "games.twiddle",
1156 default_params,
1157 game_fetch_preset,
1158 decode_params,
1159 encode_params,
1160 free_params,
1161 dup_params,
1162 TRUE, game_configure, custom_params,
1163 validate_params,
1164 new_game_desc,
1165 game_free_aux_info,
1166 validate_desc,
1167 new_game,
1168 dup_game,
1169 free_game,
1170 TRUE, solve_game,
1171 TRUE, game_text_format,
1172 new_ui,
1173 free_ui,
1174 make_move,
1175 game_size,
1176 game_colours,
1177 game_new_drawstate,
1178 game_free_drawstate,
1179 game_redraw,
1180 game_anim_length,
1181 game_flash_length,
1182 game_wants_statusbar,
1183 FALSE, game_timing_state,
1184 };