05d66ab3b96efdebd8cc3247a0be9af9a8f60228
[sgt/puzzles] / loopy.c
1 /*
2 * loopy.c:
3 *
4 * An implementation of the Nikoli game 'Loop the loop'.
5 * (c) Mike Pinna, 2005, 2006
6 * Substantially rewritten to allowing for more general types of grid.
7 * (c) Lambros Lambrou 2008
8 *
9 * vim: set shiftwidth=4 :set textwidth=80:
10 */
11
12 /*
13 * Possible future solver enhancements:
14 *
15 * - There's an interesting deductive technique which makes use
16 * of topology rather than just graph theory. Each _face_ in
17 * the grid is either inside or outside the loop; you can tell
18 * that two faces are on the same side of the loop if they're
19 * separated by a LINE_NO (or, more generally, by a path
20 * crossing no LINE_UNKNOWNs and an even number of LINE_YESes),
21 * and on the opposite side of the loop if they're separated by
22 * a LINE_YES (or an odd number of LINE_YESes and no
23 * LINE_UNKNOWNs). Oh, and any face separated from the outside
24 * of the grid by a LINE_YES or a LINE_NO is on the inside or
25 * outside respectively. So if you can track this for all
26 * faces, you figure out the state of the line between a pair
27 * once their relative insideness is known.
28 * + The way I envisage this working is simply to keep an edsf
29 * of all _faces_, which indicates whether they're on
30 * opposite sides of the loop from one another. We also
31 * include a special entry in the edsf for the infinite
32 * exterior "face".
33 * + So, the simple way to do this is to just go through the
34 * edges: every time we see an edge in a state other than
35 * LINE_UNKNOWN which separates two faces that aren't in the
36 * same edsf class, we can rectify that by merging the
37 * classes. Then, conversely, an edge in LINE_UNKNOWN state
38 * which separates two faces that _are_ in the same edsf
39 * class can immediately have its state determined.
40 * + But you can go one better, if you're prepared to loop
41 * over all _pairs_ of edges. Suppose we have edges A and B,
42 * which respectively separate faces A1,A2 and B1,B2.
43 * Suppose that A,B are in the same edge-edsf class and that
44 * A1,B1 (wlog) are in the same face-edsf class; then we can
45 * immediately place A2,B2 into the same face-edsf class (as
46 * each other, not as A1 and A2) one way round or the other.
47 * And conversely again, if A1,B1 are in the same face-edsf
48 * class and so are A2,B2, then we can put A,B into the same
49 * face-edsf class.
50 * * Of course, this deduction requires a quadratic-time
51 * loop over all pairs of edges in the grid, so it should
52 * be reserved until there's nothing easier left to be
53 * done.
54 *
55 * - The generalised grid support has made me (SGT) notice a
56 * possible extension to the loop-avoidance code. When you have
57 * a path of connected edges such that no other edges at all
58 * are incident on any vertex in the middle of the path - or,
59 * alternatively, such that any such edges are already known to
60 * be LINE_NO - then you know those edges are either all
61 * LINE_YES or all LINE_NO. Hence you can mentally merge the
62 * entire path into a single long curly edge for the purposes
63 * of loop avoidance, and look directly at whether or not the
64 * extreme endpoints of the path are connected by some other
65 * route. I find this coming up fairly often when I play on the
66 * octagonal grid setting, so it might be worth implementing in
67 * the solver.
68 *
69 * - (Just a speed optimisation.) Consider some todo list queue where every
70 * time we modify something we mark it for consideration by other bits of
71 * the solver, to save iteration over things that have already been done.
72 */
73
74 #include <stdio.h>
75 #include <stdlib.h>
76 #include <stddef.h>
77 #include <string.h>
78 #include <assert.h>
79 #include <ctype.h>
80 #include <math.h>
81
82 #include "puzzles.h"
83 #include "tree234.h"
84 #include "grid.h"
85
86 /* Debugging options */
87
88 /*
89 #define DEBUG_CACHES
90 #define SHOW_WORKING
91 #define DEBUG_DLINES
92 */
93
94 /* ----------------------------------------------------------------------
95 * Struct, enum and function declarations
96 */
97
98 enum {
99 COL_BACKGROUND,
100 COL_FOREGROUND,
101 COL_LINEUNKNOWN,
102 COL_HIGHLIGHT,
103 COL_MISTAKE,
104 COL_SATISFIED,
105 COL_FAINT,
106 NCOLOURS
107 };
108
109 struct game_state {
110 grid *game_grid;
111
112 /* Put -1 in a face that doesn't get a clue */
113 signed char *clues;
114
115 /* Array of line states, to store whether each line is
116 * YES, NO or UNKNOWN */
117 char *lines;
118
119 unsigned char *line_errors;
120
121 int solved;
122 int cheated;
123
124 /* Used in game_text_format(), so that it knows what type of
125 * grid it's trying to render as ASCII text. */
126 int grid_type;
127 };
128
129 enum solver_status {
130 SOLVER_SOLVED, /* This is the only solution the solver could find */
131 SOLVER_MISTAKE, /* This is definitely not a solution */
132 SOLVER_AMBIGUOUS, /* This _might_ be an ambiguous solution */
133 SOLVER_INCOMPLETE /* This may be a partial solution */
134 };
135
136 /* ------ Solver state ------ */
137 typedef struct solver_state {
138 game_state *state;
139 enum solver_status solver_status;
140 /* NB looplen is the number of dots that are joined together at a point, ie a
141 * looplen of 1 means there are no lines to a particular dot */
142 int *looplen;
143
144 /* Difficulty level of solver. Used by solver functions that want to
145 * vary their behaviour depending on the requested difficulty level. */
146 int diff;
147
148 /* caches */
149 char *dot_yes_count;
150 char *dot_no_count;
151 char *face_yes_count;
152 char *face_no_count;
153 char *dot_solved, *face_solved;
154 int *dotdsf;
155
156 /* Information for Normal level deductions:
157 * For each dline, store a bitmask for whether we know:
158 * (bit 0) at least one is YES
159 * (bit 1) at most one is YES */
160 char *dlines;
161
162 /* Hard level information */
163 int *linedsf;
164 } solver_state;
165
166 /*
167 * Difficulty levels. I do some macro ickery here to ensure that my
168 * enum and the various forms of my name list always match up.
169 */
170
171 #define DIFFLIST(A) \
172 A(EASY,Easy,e) \
173 A(NORMAL,Normal,n) \
174 A(TRICKY,Tricky,t) \
175 A(HARD,Hard,h)
176 #define ENUM(upper,title,lower) DIFF_ ## upper,
177 #define TITLE(upper,title,lower) #title,
178 #define ENCODE(upper,title,lower) #lower
179 #define CONFIG(upper,title,lower) ":" #title
180 enum { DIFFLIST(ENUM) DIFF_MAX };
181 static char const *const diffnames[] = { DIFFLIST(TITLE) };
182 static char const diffchars[] = DIFFLIST(ENCODE);
183 #define DIFFCONFIG DIFFLIST(CONFIG)
184
185 /*
186 * Solver routines, sorted roughly in order of computational cost.
187 * The solver will run the faster deductions first, and slower deductions are
188 * only invoked when the faster deductions are unable to make progress.
189 * Each function is associated with a difficulty level, so that the generated
190 * puzzles are solvable by applying only the functions with the chosen
191 * difficulty level or lower.
192 */
193 #define SOLVERLIST(A) \
194 A(trivial_deductions, DIFF_EASY) \
195 A(dline_deductions, DIFF_NORMAL) \
196 A(linedsf_deductions, DIFF_HARD) \
197 A(loop_deductions, DIFF_EASY)
198 #define SOLVER_FN_DECL(fn,diff) static int fn(solver_state *);
199 #define SOLVER_FN(fn,diff) &fn,
200 #define SOLVER_DIFF(fn,diff) diff,
201 SOLVERLIST(SOLVER_FN_DECL)
202 static int (*(solver_fns[]))(solver_state *) = { SOLVERLIST(SOLVER_FN) };
203 static int const solver_diffs[] = { SOLVERLIST(SOLVER_DIFF) };
204 const int NUM_SOLVERS = sizeof(solver_diffs)/sizeof(*solver_diffs);
205
206 struct game_params {
207 int w, h;
208 int diff;
209 int type;
210
211 /* Grid generation is expensive, so keep a (ref-counted) reference to the
212 * grid for these parameters, and only generate when required. */
213 grid *game_grid;
214 };
215
216 /* line_drawstate is the same as line_state, but with the extra ERROR
217 * possibility. The drawing code copies line_state to line_drawstate,
218 * except in the case that the line is an error. */
219 enum line_state { LINE_YES, LINE_UNKNOWN, LINE_NO };
220 enum line_drawstate { DS_LINE_YES, DS_LINE_UNKNOWN,
221 DS_LINE_NO, DS_LINE_ERROR };
222
223 #define OPP(line_state) \
224 (2 - line_state)
225
226
227 struct game_drawstate {
228 int started;
229 int tilesize;
230 int flashing;
231 int *textx, *texty;
232 char *lines;
233 char *clue_error;
234 char *clue_satisfied;
235 };
236
237 static char *validate_desc(game_params *params, char *desc);
238 static int dot_order(const game_state* state, int i, char line_type);
239 static int face_order(const game_state* state, int i, char line_type);
240 static solver_state *solve_game_rec(const solver_state *sstate);
241
242 #ifdef DEBUG_CACHES
243 static void check_caches(const solver_state* sstate);
244 #else
245 #define check_caches(s)
246 #endif
247
248 /* ------- List of grid generators ------- */
249 #define GRIDLIST(A) \
250 A(Squares,grid_new_square,3,3) \
251 A(Triangular,grid_new_triangular,3,3) \
252 A(Honeycomb,grid_new_honeycomb,3,3) \
253 A(Snub-Square,grid_new_snubsquare,3,3) \
254 A(Cairo,grid_new_cairo,3,4) \
255 A(Great-Hexagonal,grid_new_greathexagonal,3,3) \
256 A(Octagonal,grid_new_octagonal,3,3) \
257 A(Kites,grid_new_kites,3,3) \
258 A(Floret,grid_new_floret,1,2) \
259 A(Dodecagonal,grid_new_dodecagonal,2,2) \
260 A(Great-Dodecagonal,grid_new_greatdodecagonal,2,2)
261
262 #define GRID_NAME(title,fn,amin,omin) #title,
263 #define GRID_CONFIG(title,fn,amin,omin) ":" #title
264 #define GRID_FN(title,fn,amin,omin) &fn,
265 #define GRID_SIZES(title,fn,amin,omin) \
266 {amin, omin, \
267 "Width and height for this grid type must both be at least " #amin, \
268 "At least one of width and height for this grid type must be at least " #omin,},
269 static char const *const gridnames[] = { GRIDLIST(GRID_NAME) };
270 #define GRID_CONFIGS GRIDLIST(GRID_CONFIG)
271 static grid * (*(grid_fns[]))(int w, int h) = { GRIDLIST(GRID_FN) };
272 #define NUM_GRID_TYPES (sizeof(grid_fns) / sizeof(grid_fns[0]))
273 static const struct {
274 int amin, omin;
275 char *aerr, *oerr;
276 } grid_size_limits[] = { GRIDLIST(GRID_SIZES) };
277
278 /* Generates a (dynamically allocated) new grid, according to the
279 * type and size requested in params. Does nothing if the grid is already
280 * generated. The allocated grid is owned by the params object, and will be
281 * freed in free_params(). */
282 static void params_generate_grid(game_params *params)
283 {
284 if (!params->game_grid) {
285 params->game_grid = grid_fns[params->type](params->w, params->h);
286 }
287 }
288
289 /* ----------------------------------------------------------------------
290 * Preprocessor magic
291 */
292
293 /* General constants */
294 #define PREFERRED_TILE_SIZE 32
295 #define BORDER(tilesize) ((tilesize) / 2)
296 #define FLASH_TIME 0.5F
297
298 #define BIT_SET(field, bit) ((field) & (1<<(bit)))
299
300 #define SET_BIT(field, bit) (BIT_SET(field, bit) ? FALSE : \
301 ((field) |= (1<<(bit)), TRUE))
302
303 #define CLEAR_BIT(field, bit) (BIT_SET(field, bit) ? \
304 ((field) &= ~(1<<(bit)), TRUE) : FALSE)
305
306 #define CLUE2CHAR(c) \
307 ((c < 0) ? ' ' : c < 10 ? c + '0' : c - 10 + 'A')
308
309 /* ----------------------------------------------------------------------
310 * General struct manipulation and other straightforward code
311 */
312
313 static game_state *dup_game(game_state *state)
314 {
315 game_state *ret = snew(game_state);
316
317 ret->game_grid = state->game_grid;
318 ret->game_grid->refcount++;
319
320 ret->solved = state->solved;
321 ret->cheated = state->cheated;
322
323 ret->clues = snewn(state->game_grid->num_faces, signed char);
324 memcpy(ret->clues, state->clues, state->game_grid->num_faces);
325
326 ret->lines = snewn(state->game_grid->num_edges, char);
327 memcpy(ret->lines, state->lines, state->game_grid->num_edges);
328
329 ret->line_errors = snewn(state->game_grid->num_edges, unsigned char);
330 memcpy(ret->line_errors, state->line_errors, state->game_grid->num_edges);
331
332 ret->grid_type = state->grid_type;
333 return ret;
334 }
335
336 static void free_game(game_state *state)
337 {
338 if (state) {
339 grid_free(state->game_grid);
340 sfree(state->clues);
341 sfree(state->lines);
342 sfree(state->line_errors);
343 sfree(state);
344 }
345 }
346
347 static solver_state *new_solver_state(game_state *state, int diff) {
348 int i;
349 int num_dots = state->game_grid->num_dots;
350 int num_faces = state->game_grid->num_faces;
351 int num_edges = state->game_grid->num_edges;
352 solver_state *ret = snew(solver_state);
353
354 ret->state = dup_game(state);
355
356 ret->solver_status = SOLVER_INCOMPLETE;
357 ret->diff = diff;
358
359 ret->dotdsf = snew_dsf(num_dots);
360 ret->looplen = snewn(num_dots, int);
361
362 for (i = 0; i < num_dots; i++) {
363 ret->looplen[i] = 1;
364 }
365
366 ret->dot_solved = snewn(num_dots, char);
367 ret->face_solved = snewn(num_faces, char);
368 memset(ret->dot_solved, FALSE, num_dots);
369 memset(ret->face_solved, FALSE, num_faces);
370
371 ret->dot_yes_count = snewn(num_dots, char);
372 memset(ret->dot_yes_count, 0, num_dots);
373 ret->dot_no_count = snewn(num_dots, char);
374 memset(ret->dot_no_count, 0, num_dots);
375 ret->face_yes_count = snewn(num_faces, char);
376 memset(ret->face_yes_count, 0, num_faces);
377 ret->face_no_count = snewn(num_faces, char);
378 memset(ret->face_no_count, 0, num_faces);
379
380 if (diff < DIFF_NORMAL) {
381 ret->dlines = NULL;
382 } else {
383 ret->dlines = snewn(2*num_edges, char);
384 memset(ret->dlines, 0, 2*num_edges);
385 }
386
387 if (diff < DIFF_HARD) {
388 ret->linedsf = NULL;
389 } else {
390 ret->linedsf = snew_dsf(state->game_grid->num_edges);
391 }
392
393 return ret;
394 }
395
396 static void free_solver_state(solver_state *sstate) {
397 if (sstate) {
398 free_game(sstate->state);
399 sfree(sstate->dotdsf);
400 sfree(sstate->looplen);
401 sfree(sstate->dot_solved);
402 sfree(sstate->face_solved);
403 sfree(sstate->dot_yes_count);
404 sfree(sstate->dot_no_count);
405 sfree(sstate->face_yes_count);
406 sfree(sstate->face_no_count);
407
408 /* OK, because sfree(NULL) is a no-op */
409 sfree(sstate->dlines);
410 sfree(sstate->linedsf);
411
412 sfree(sstate);
413 }
414 }
415
416 static solver_state *dup_solver_state(const solver_state *sstate) {
417 game_state *state = sstate->state;
418 int num_dots = state->game_grid->num_dots;
419 int num_faces = state->game_grid->num_faces;
420 int num_edges = state->game_grid->num_edges;
421 solver_state *ret = snew(solver_state);
422
423 ret->state = state = dup_game(sstate->state);
424
425 ret->solver_status = sstate->solver_status;
426 ret->diff = sstate->diff;
427
428 ret->dotdsf = snewn(num_dots, int);
429 ret->looplen = snewn(num_dots, int);
430 memcpy(ret->dotdsf, sstate->dotdsf,
431 num_dots * sizeof(int));
432 memcpy(ret->looplen, sstate->looplen,
433 num_dots * sizeof(int));
434
435 ret->dot_solved = snewn(num_dots, char);
436 ret->face_solved = snewn(num_faces, char);
437 memcpy(ret->dot_solved, sstate->dot_solved, num_dots);
438 memcpy(ret->face_solved, sstate->face_solved, num_faces);
439
440 ret->dot_yes_count = snewn(num_dots, char);
441 memcpy(ret->dot_yes_count, sstate->dot_yes_count, num_dots);
442 ret->dot_no_count = snewn(num_dots, char);
443 memcpy(ret->dot_no_count, sstate->dot_no_count, num_dots);
444
445 ret->face_yes_count = snewn(num_faces, char);
446 memcpy(ret->face_yes_count, sstate->face_yes_count, num_faces);
447 ret->face_no_count = snewn(num_faces, char);
448 memcpy(ret->face_no_count, sstate->face_no_count, num_faces);
449
450 if (sstate->dlines) {
451 ret->dlines = snewn(2*num_edges, char);
452 memcpy(ret->dlines, sstate->dlines,
453 2*num_edges);
454 } else {
455 ret->dlines = NULL;
456 }
457
458 if (sstate->linedsf) {
459 ret->linedsf = snewn(num_edges, int);
460 memcpy(ret->linedsf, sstate->linedsf,
461 num_edges * sizeof(int));
462 } else {
463 ret->linedsf = NULL;
464 }
465
466 return ret;
467 }
468
469 static game_params *default_params(void)
470 {
471 game_params *ret = snew(game_params);
472
473 #ifdef SLOW_SYSTEM
474 ret->h = 7;
475 ret->w = 7;
476 #else
477 ret->h = 10;
478 ret->w = 10;
479 #endif
480 ret->diff = DIFF_EASY;
481 ret->type = 0;
482
483 ret->game_grid = NULL;
484
485 return ret;
486 }
487
488 static game_params *dup_params(game_params *params)
489 {
490 game_params *ret = snew(game_params);
491
492 *ret = *params; /* structure copy */
493 if (ret->game_grid) {
494 ret->game_grid->refcount++;
495 }
496 return ret;
497 }
498
499 static const game_params presets[] = {
500 #ifdef SMALL_SCREEN
501 { 7, 7, DIFF_EASY, 0, NULL },
502 { 7, 7, DIFF_NORMAL, 0, NULL },
503 { 7, 7, DIFF_HARD, 0, NULL },
504 { 7, 7, DIFF_HARD, 1, NULL },
505 { 7, 7, DIFF_HARD, 2, NULL },
506 { 5, 5, DIFF_HARD, 3, NULL },
507 { 7, 7, DIFF_HARD, 4, NULL },
508 { 5, 4, DIFF_HARD, 5, NULL },
509 { 5, 5, DIFF_HARD, 6, NULL },
510 { 5, 5, DIFF_HARD, 7, NULL },
511 { 3, 3, DIFF_HARD, 8, NULL },
512 { 3, 3, DIFF_HARD, 9, NULL },
513 { 3, 3, DIFF_HARD, 10, NULL },
514 #else
515 { 7, 7, DIFF_EASY, 0, NULL },
516 { 10, 10, DIFF_EASY, 0, NULL },
517 { 7, 7, DIFF_NORMAL, 0, NULL },
518 { 10, 10, DIFF_NORMAL, 0, NULL },
519 { 7, 7, DIFF_HARD, 0, NULL },
520 { 10, 10, DIFF_HARD, 0, NULL },
521 { 10, 10, DIFF_HARD, 1, NULL },
522 { 12, 10, DIFF_HARD, 2, NULL },
523 { 7, 7, DIFF_HARD, 3, NULL },
524 { 9, 9, DIFF_HARD, 4, NULL },
525 { 5, 4, DIFF_HARD, 5, NULL },
526 { 7, 7, DIFF_HARD, 6, NULL },
527 { 5, 5, DIFF_HARD, 7, NULL },
528 { 5, 5, DIFF_HARD, 8, NULL },
529 { 5, 4, DIFF_HARD, 9, NULL },
530 { 5, 4, DIFF_HARD, 10, NULL },
531 #endif
532 };
533
534 static int game_fetch_preset(int i, char **name, game_params **params)
535 {
536 game_params *tmppar;
537 char buf[80];
538
539 if (i < 0 || i >= lenof(presets))
540 return FALSE;
541
542 tmppar = snew(game_params);
543 *tmppar = presets[i];
544 *params = tmppar;
545 sprintf(buf, "%dx%d %s - %s", tmppar->h, tmppar->w,
546 gridnames[tmppar->type], diffnames[tmppar->diff]);
547 *name = dupstr(buf);
548
549 return TRUE;
550 }
551
552 static void free_params(game_params *params)
553 {
554 if (params->game_grid) {
555 grid_free(params->game_grid);
556 }
557 sfree(params);
558 }
559
560 static void decode_params(game_params *params, char const *string)
561 {
562 if (params->game_grid) {
563 grid_free(params->game_grid);
564 params->game_grid = NULL;
565 }
566 params->h = params->w = atoi(string);
567 params->diff = DIFF_EASY;
568 while (*string && isdigit((unsigned char)*string)) string++;
569 if (*string == 'x') {
570 string++;
571 params->h = atoi(string);
572 while (*string && isdigit((unsigned char)*string)) string++;
573 }
574 if (*string == 't') {
575 string++;
576 params->type = atoi(string);
577 while (*string && isdigit((unsigned char)*string)) string++;
578 }
579 if (*string == 'd') {
580 int i;
581 string++;
582 for (i = 0; i < DIFF_MAX; i++)
583 if (*string == diffchars[i])
584 params->diff = i;
585 if (*string) string++;
586 }
587 }
588
589 static char *encode_params(game_params *params, int full)
590 {
591 char str[80];
592 sprintf(str, "%dx%dt%d", params->w, params->h, params->type);
593 if (full)
594 sprintf(str + strlen(str), "d%c", diffchars[params->diff]);
595 return dupstr(str);
596 }
597
598 static config_item *game_configure(game_params *params)
599 {
600 config_item *ret;
601 char buf[80];
602
603 ret = snewn(5, config_item);
604
605 ret[0].name = "Width";
606 ret[0].type = C_STRING;
607 sprintf(buf, "%d", params->w);
608 ret[0].sval = dupstr(buf);
609 ret[0].ival = 0;
610
611 ret[1].name = "Height";
612 ret[1].type = C_STRING;
613 sprintf(buf, "%d", params->h);
614 ret[1].sval = dupstr(buf);
615 ret[1].ival = 0;
616
617 ret[2].name = "Grid type";
618 ret[2].type = C_CHOICES;
619 ret[2].sval = GRID_CONFIGS;
620 ret[2].ival = params->type;
621
622 ret[3].name = "Difficulty";
623 ret[3].type = C_CHOICES;
624 ret[3].sval = DIFFCONFIG;
625 ret[3].ival = params->diff;
626
627 ret[4].name = NULL;
628 ret[4].type = C_END;
629 ret[4].sval = NULL;
630 ret[4].ival = 0;
631
632 return ret;
633 }
634
635 static game_params *custom_params(config_item *cfg)
636 {
637 game_params *ret = snew(game_params);
638
639 ret->w = atoi(cfg[0].sval);
640 ret->h = atoi(cfg[1].sval);
641 ret->type = cfg[2].ival;
642 ret->diff = cfg[3].ival;
643
644 ret->game_grid = NULL;
645 return ret;
646 }
647
648 static char *validate_params(game_params *params, int full)
649 {
650 if (params->type < 0 || params->type >= NUM_GRID_TYPES)
651 return "Illegal grid type";
652 if (params->w < grid_size_limits[params->type].amin ||
653 params->h < grid_size_limits[params->type].amin)
654 return grid_size_limits[params->type].aerr;
655 if (params->w < grid_size_limits[params->type].omin &&
656 params->h < grid_size_limits[params->type].omin)
657 return grid_size_limits[params->type].oerr;
658
659 /*
660 * This shouldn't be able to happen at all, since decode_params
661 * and custom_params will never generate anything that isn't
662 * within range.
663 */
664 assert(params->diff < DIFF_MAX);
665
666 return NULL;
667 }
668
669 /* Returns a newly allocated string describing the current puzzle */
670 static char *state_to_text(const game_state *state)
671 {
672 grid *g = state->game_grid;
673 char *retval;
674 int num_faces = g->num_faces;
675 char *description = snewn(num_faces + 1, char);
676 char *dp = description;
677 int empty_count = 0;
678 int i;
679
680 for (i = 0; i < num_faces; i++) {
681 if (state->clues[i] < 0) {
682 if (empty_count > 25) {
683 dp += sprintf(dp, "%c", (int)(empty_count + 'a' - 1));
684 empty_count = 0;
685 }
686 empty_count++;
687 } else {
688 if (empty_count) {
689 dp += sprintf(dp, "%c", (int)(empty_count + 'a' - 1));
690 empty_count = 0;
691 }
692 dp += sprintf(dp, "%c", (int)CLUE2CHAR(state->clues[i]));
693 }
694 }
695
696 if (empty_count)
697 dp += sprintf(dp, "%c", (int)(empty_count + 'a' - 1));
698
699 retval = dupstr(description);
700 sfree(description);
701
702 return retval;
703 }
704
705 /* We require that the params pass the test in validate_params and that the
706 * description fills the entire game area */
707 static char *validate_desc(game_params *params, char *desc)
708 {
709 int count = 0;
710 grid *g;
711 params_generate_grid(params);
712 g = params->game_grid;
713
714 for (; *desc; ++desc) {
715 if ((*desc >= '0' && *desc <= '9') || (*desc >= 'A' && *desc <= 'Z')) {
716 count++;
717 continue;
718 }
719 if (*desc >= 'a') {
720 count += *desc - 'a' + 1;
721 continue;
722 }
723 return "Unknown character in description";
724 }
725
726 if (count < g->num_faces)
727 return "Description too short for board size";
728 if (count > g->num_faces)
729 return "Description too long for board size";
730
731 return NULL;
732 }
733
734 /* Sums the lengths of the numbers in range [0,n) */
735 /* See equivalent function in solo.c for justification of this. */
736 static int len_0_to_n(int n)
737 {
738 int len = 1; /* Counting 0 as a bit of a special case */
739 int i;
740
741 for (i = 1; i < n; i *= 10) {
742 len += max(n - i, 0);
743 }
744
745 return len;
746 }
747
748 static char *encode_solve_move(const game_state *state)
749 {
750 int len;
751 char *ret, *p;
752 int i;
753 int num_edges = state->game_grid->num_edges;
754
755 /* This is going to return a string representing the moves needed to set
756 * every line in a grid to be the same as the ones in 'state'. The exact
757 * length of this string is predictable. */
758
759 len = 1; /* Count the 'S' prefix */
760 /* Numbers in all lines */
761 len += len_0_to_n(num_edges);
762 /* For each line we also have a letter */
763 len += num_edges;
764
765 ret = snewn(len + 1, char);
766 p = ret;
767
768 p += sprintf(p, "S");
769
770 for (i = 0; i < num_edges; i++) {
771 switch (state->lines[i]) {
772 case LINE_YES:
773 p += sprintf(p, "%dy", i);
774 break;
775 case LINE_NO:
776 p += sprintf(p, "%dn", i);
777 break;
778 }
779 }
780
781 /* No point in doing sums like that if they're going to be wrong */
782 assert(strlen(ret) <= (size_t)len);
783 return ret;
784 }
785
786 static game_ui *new_ui(game_state *state)
787 {
788 return NULL;
789 }
790
791 static void free_ui(game_ui *ui)
792 {
793 }
794
795 static char *encode_ui(game_ui *ui)
796 {
797 return NULL;
798 }
799
800 static void decode_ui(game_ui *ui, char *encoding)
801 {
802 }
803
804 static void game_changed_state(game_ui *ui, game_state *oldstate,
805 game_state *newstate)
806 {
807 }
808
809 static void game_compute_size(game_params *params, int tilesize,
810 int *x, int *y)
811 {
812 grid *g;
813 int grid_width, grid_height, rendered_width, rendered_height;
814
815 params_generate_grid(params);
816 g = params->game_grid;
817 grid_width = g->highest_x - g->lowest_x;
818 grid_height = g->highest_y - g->lowest_y;
819 /* multiply first to minimise rounding error on integer division */
820 rendered_width = grid_width * tilesize / g->tilesize;
821 rendered_height = grid_height * tilesize / g->tilesize;
822 *x = rendered_width + 2 * BORDER(tilesize) + 1;
823 *y = rendered_height + 2 * BORDER(tilesize) + 1;
824 }
825
826 static void game_set_size(drawing *dr, game_drawstate *ds,
827 game_params *params, int tilesize)
828 {
829 ds->tilesize = tilesize;
830 }
831
832 static float *game_colours(frontend *fe, int *ncolours)
833 {
834 float *ret = snewn(4 * NCOLOURS, float);
835
836 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
837
838 ret[COL_FOREGROUND * 3 + 0] = 0.0F;
839 ret[COL_FOREGROUND * 3 + 1] = 0.0F;
840 ret[COL_FOREGROUND * 3 + 2] = 0.0F;
841
842 /*
843 * We want COL_LINEUNKNOWN to be a yellow which is a bit darker
844 * than the background. (I previously set it to 0.8,0.8,0, but
845 * found that this went badly with the 0.8,0.8,0.8 favoured as a
846 * background by the Java frontend.)
847 */
848 ret[COL_LINEUNKNOWN * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] * 0.9F;
849 ret[COL_LINEUNKNOWN * 3 + 1] = ret[COL_BACKGROUND * 3 + 1] * 0.9F;
850 ret[COL_LINEUNKNOWN * 3 + 2] = 0.0F;
851
852 ret[COL_HIGHLIGHT * 3 + 0] = 1.0F;
853 ret[COL_HIGHLIGHT * 3 + 1] = 1.0F;
854 ret[COL_HIGHLIGHT * 3 + 2] = 1.0F;
855
856 ret[COL_MISTAKE * 3 + 0] = 1.0F;
857 ret[COL_MISTAKE * 3 + 1] = 0.0F;
858 ret[COL_MISTAKE * 3 + 2] = 0.0F;
859
860 ret[COL_SATISFIED * 3 + 0] = 0.0F;
861 ret[COL_SATISFIED * 3 + 1] = 0.0F;
862 ret[COL_SATISFIED * 3 + 2] = 0.0F;
863
864 /* We want the faint lines to be a bit darker than the background.
865 * Except if the background is pretty dark already; then it ought to be a
866 * bit lighter. Oy vey.
867 */
868 ret[COL_FAINT * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] * 0.9F;
869 ret[COL_FAINT * 3 + 1] = ret[COL_BACKGROUND * 3 + 1] * 0.9F;
870 ret[COL_FAINT * 3 + 2] = ret[COL_BACKGROUND * 3 + 2] * 0.9F;
871
872 *ncolours = NCOLOURS;
873 return ret;
874 }
875
876 static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
877 {
878 struct game_drawstate *ds = snew(struct game_drawstate);
879 int num_faces = state->game_grid->num_faces;
880 int num_edges = state->game_grid->num_edges;
881 int i;
882
883 ds->tilesize = 0;
884 ds->started = 0;
885 ds->lines = snewn(num_edges, char);
886 ds->clue_error = snewn(num_faces, char);
887 ds->clue_satisfied = snewn(num_faces, char);
888 ds->textx = snewn(num_faces, int);
889 ds->texty = snewn(num_faces, int);
890 ds->flashing = 0;
891
892 memset(ds->lines, LINE_UNKNOWN, num_edges);
893 memset(ds->clue_error, 0, num_faces);
894 memset(ds->clue_satisfied, 0, num_faces);
895 for (i = 0; i < num_faces; i++)
896 ds->textx[i] = ds->texty[i] = -1;
897
898 return ds;
899 }
900
901 static void game_free_drawstate(drawing *dr, game_drawstate *ds)
902 {
903 sfree(ds->clue_error);
904 sfree(ds->clue_satisfied);
905 sfree(ds->lines);
906 sfree(ds);
907 }
908
909 static int game_timing_state(game_state *state, game_ui *ui)
910 {
911 return TRUE;
912 }
913
914 static float game_anim_length(game_state *oldstate, game_state *newstate,
915 int dir, game_ui *ui)
916 {
917 return 0.0F;
918 }
919
920 static int game_can_format_as_text_now(game_params *params)
921 {
922 if (params->type != 0)
923 return FALSE;
924 return TRUE;
925 }
926
927 static char *game_text_format(game_state *state)
928 {
929 int w, h, W, H;
930 int x, y, i;
931 int cell_size;
932 char *ret;
933 grid *g = state->game_grid;
934 grid_face *f;
935
936 assert(state->grid_type == 0);
937
938 /* Work out the basic size unit */
939 f = g->faces; /* first face */
940 assert(f->order == 4);
941 /* The dots are ordered clockwise, so the two opposite
942 * corners are guaranteed to span the square */
943 cell_size = abs(f->dots[0]->x - f->dots[2]->x);
944
945 w = (g->highest_x - g->lowest_x) / cell_size;
946 h = (g->highest_y - g->lowest_y) / cell_size;
947
948 /* Create a blank "canvas" to "draw" on */
949 W = 2 * w + 2;
950 H = 2 * h + 1;
951 ret = snewn(W * H + 1, char);
952 for (y = 0; y < H; y++) {
953 for (x = 0; x < W-1; x++) {
954 ret[y*W + x] = ' ';
955 }
956 ret[y*W + W-1] = '\n';
957 }
958 ret[H*W] = '\0';
959
960 /* Fill in edge info */
961 for (i = 0; i < g->num_edges; i++) {
962 grid_edge *e = g->edges + i;
963 /* Cell coordinates, from (0,0) to (w-1,h-1) */
964 int x1 = (e->dot1->x - g->lowest_x) / cell_size;
965 int x2 = (e->dot2->x - g->lowest_x) / cell_size;
966 int y1 = (e->dot1->y - g->lowest_y) / cell_size;
967 int y2 = (e->dot2->y - g->lowest_y) / cell_size;
968 /* Midpoint, in canvas coordinates (canvas coordinates are just twice
969 * cell coordinates) */
970 x = x1 + x2;
971 y = y1 + y2;
972 switch (state->lines[i]) {
973 case LINE_YES:
974 ret[y*W + x] = (y1 == y2) ? '-' : '|';
975 break;
976 case LINE_NO:
977 ret[y*W + x] = 'x';
978 break;
979 case LINE_UNKNOWN:
980 break; /* already a space */
981 default:
982 assert(!"Illegal line state");
983 }
984 }
985
986 /* Fill in clues */
987 for (i = 0; i < g->num_faces; i++) {
988 int x1, x2, y1, y2;
989
990 f = g->faces + i;
991 assert(f->order == 4);
992 /* Cell coordinates, from (0,0) to (w-1,h-1) */
993 x1 = (f->dots[0]->x - g->lowest_x) / cell_size;
994 x2 = (f->dots[2]->x - g->lowest_x) / cell_size;
995 y1 = (f->dots[0]->y - g->lowest_y) / cell_size;
996 y2 = (f->dots[2]->y - g->lowest_y) / cell_size;
997 /* Midpoint, in canvas coordinates */
998 x = x1 + x2;
999 y = y1 + y2;
1000 ret[y*W + x] = CLUE2CHAR(state->clues[i]);
1001 }
1002 return ret;
1003 }
1004
1005 /* ----------------------------------------------------------------------
1006 * Debug code
1007 */
1008
1009 #ifdef DEBUG_CACHES
1010 static void check_caches(const solver_state* sstate)
1011 {
1012 int i;
1013 const game_state *state = sstate->state;
1014 const grid *g = state->game_grid;
1015
1016 for (i = 0; i < g->num_dots; i++) {
1017 assert(dot_order(state, i, LINE_YES) == sstate->dot_yes_count[i]);
1018 assert(dot_order(state, i, LINE_NO) == sstate->dot_no_count[i]);
1019 }
1020
1021 for (i = 0; i < g->num_faces; i++) {
1022 assert(face_order(state, i, LINE_YES) == sstate->face_yes_count[i]);
1023 assert(face_order(state, i, LINE_NO) == sstate->face_no_count[i]);
1024 }
1025 }
1026
1027 #if 0
1028 #define check_caches(s) \
1029 do { \
1030 fprintf(stderr, "check_caches at line %d\n", __LINE__); \
1031 check_caches(s); \
1032 } while (0)
1033 #endif
1034 #endif /* DEBUG_CACHES */
1035
1036 /* ----------------------------------------------------------------------
1037 * Solver utility functions
1038 */
1039
1040 /* Sets the line (with index i) to the new state 'line_new', and updates
1041 * the cached counts of any affected faces and dots.
1042 * Returns TRUE if this actually changed the line's state. */
1043 static int solver_set_line(solver_state *sstate, int i,
1044 enum line_state line_new
1045 #ifdef SHOW_WORKING
1046 , const char *reason
1047 #endif
1048 )
1049 {
1050 game_state *state = sstate->state;
1051 grid *g;
1052 grid_edge *e;
1053
1054 assert(line_new != LINE_UNKNOWN);
1055
1056 check_caches(sstate);
1057
1058 if (state->lines[i] == line_new) {
1059 return FALSE; /* nothing changed */
1060 }
1061 state->lines[i] = line_new;
1062
1063 #ifdef SHOW_WORKING
1064 fprintf(stderr, "solver: set line [%d] to %s (%s)\n",
1065 i, line_new == LINE_YES ? "YES" : "NO",
1066 reason);
1067 #endif
1068
1069 g = state->game_grid;
1070 e = g->edges + i;
1071
1072 /* Update the cache for both dots and both faces affected by this. */
1073 if (line_new == LINE_YES) {
1074 sstate->dot_yes_count[e->dot1 - g->dots]++;
1075 sstate->dot_yes_count[e->dot2 - g->dots]++;
1076 if (e->face1) {
1077 sstate->face_yes_count[e->face1 - g->faces]++;
1078 }
1079 if (e->face2) {
1080 sstate->face_yes_count[e->face2 - g->faces]++;
1081 }
1082 } else {
1083 sstate->dot_no_count[e->dot1 - g->dots]++;
1084 sstate->dot_no_count[e->dot2 - g->dots]++;
1085 if (e->face1) {
1086 sstate->face_no_count[e->face1 - g->faces]++;
1087 }
1088 if (e->face2) {
1089 sstate->face_no_count[e->face2 - g->faces]++;
1090 }
1091 }
1092
1093 check_caches(sstate);
1094 return TRUE;
1095 }
1096
1097 #ifdef SHOW_WORKING
1098 #define solver_set_line(a, b, c) \
1099 solver_set_line(a, b, c, __FUNCTION__)
1100 #endif
1101
1102 /*
1103 * Merge two dots due to the existence of an edge between them.
1104 * Updates the dsf tracking equivalence classes, and keeps track of
1105 * the length of path each dot is currently a part of.
1106 * Returns TRUE if the dots were already linked, ie if they are part of a
1107 * closed loop, and false otherwise.
1108 */
1109 static int merge_dots(solver_state *sstate, int edge_index)
1110 {
1111 int i, j, len;
1112 grid *g = sstate->state->game_grid;
1113 grid_edge *e = g->edges + edge_index;
1114
1115 i = e->dot1 - g->dots;
1116 j = e->dot2 - g->dots;
1117
1118 i = dsf_canonify(sstate->dotdsf, i);
1119 j = dsf_canonify(sstate->dotdsf, j);
1120
1121 if (i == j) {
1122 return TRUE;
1123 } else {
1124 len = sstate->looplen[i] + sstate->looplen[j];
1125 dsf_merge(sstate->dotdsf, i, j);
1126 i = dsf_canonify(sstate->dotdsf, i);
1127 sstate->looplen[i] = len;
1128 return FALSE;
1129 }
1130 }
1131
1132 /* Merge two lines because the solver has deduced that they must be either
1133 * identical or opposite. Returns TRUE if this is new information, otherwise
1134 * FALSE. */
1135 static int merge_lines(solver_state *sstate, int i, int j, int inverse
1136 #ifdef SHOW_WORKING
1137 , const char *reason
1138 #endif
1139 )
1140 {
1141 int inv_tmp;
1142
1143 assert(i < sstate->state->game_grid->num_edges);
1144 assert(j < sstate->state->game_grid->num_edges);
1145
1146 i = edsf_canonify(sstate->linedsf, i, &inv_tmp);
1147 inverse ^= inv_tmp;
1148 j = edsf_canonify(sstate->linedsf, j, &inv_tmp);
1149 inverse ^= inv_tmp;
1150
1151 edsf_merge(sstate->linedsf, i, j, inverse);
1152
1153 #ifdef SHOW_WORKING
1154 if (i != j) {
1155 fprintf(stderr, "%s [%d] [%d] %s(%s)\n",
1156 __FUNCTION__, i, j,
1157 inverse ? "inverse " : "", reason);
1158 }
1159 #endif
1160 return (i != j);
1161 }
1162
1163 #ifdef SHOW_WORKING
1164 #define merge_lines(a, b, c, d) \
1165 merge_lines(a, b, c, d, __FUNCTION__)
1166 #endif
1167
1168 /* Count the number of lines of a particular type currently going into the
1169 * given dot. */
1170 static int dot_order(const game_state* state, int dot, char line_type)
1171 {
1172 int n = 0;
1173 grid *g = state->game_grid;
1174 grid_dot *d = g->dots + dot;
1175 int i;
1176
1177 for (i = 0; i < d->order; i++) {
1178 grid_edge *e = d->edges[i];
1179 if (state->lines[e - g->edges] == line_type)
1180 ++n;
1181 }
1182 return n;
1183 }
1184
1185 /* Count the number of lines of a particular type currently surrounding the
1186 * given face */
1187 static int face_order(const game_state* state, int face, char line_type)
1188 {
1189 int n = 0;
1190 grid *g = state->game_grid;
1191 grid_face *f = g->faces + face;
1192 int i;
1193
1194 for (i = 0; i < f->order; i++) {
1195 grid_edge *e = f->edges[i];
1196 if (state->lines[e - g->edges] == line_type)
1197 ++n;
1198 }
1199 return n;
1200 }
1201
1202 /* Set all lines bordering a dot of type old_type to type new_type
1203 * Return value tells caller whether this function actually did anything */
1204 static int dot_setall(solver_state *sstate, int dot,
1205 char old_type, char new_type)
1206 {
1207 int retval = FALSE, r;
1208 game_state *state = sstate->state;
1209 grid *g;
1210 grid_dot *d;
1211 int i;
1212
1213 if (old_type == new_type)
1214 return FALSE;
1215
1216 g = state->game_grid;
1217 d = g->dots + dot;
1218
1219 for (i = 0; i < d->order; i++) {
1220 int line_index = d->edges[i] - g->edges;
1221 if (state->lines[line_index] == old_type) {
1222 r = solver_set_line(sstate, line_index, new_type);
1223 assert(r == TRUE);
1224 retval = TRUE;
1225 }
1226 }
1227 return retval;
1228 }
1229
1230 /* Set all lines bordering a face of type old_type to type new_type */
1231 static int face_setall(solver_state *sstate, int face,
1232 char old_type, char new_type)
1233 {
1234 int retval = FALSE, r;
1235 game_state *state = sstate->state;
1236 grid *g;
1237 grid_face *f;
1238 int i;
1239
1240 if (old_type == new_type)
1241 return FALSE;
1242
1243 g = state->game_grid;
1244 f = g->faces + face;
1245
1246 for (i = 0; i < f->order; i++) {
1247 int line_index = f->edges[i] - g->edges;
1248 if (state->lines[line_index] == old_type) {
1249 r = solver_set_line(sstate, line_index, new_type);
1250 assert(r == TRUE);
1251 retval = TRUE;
1252 }
1253 }
1254 return retval;
1255 }
1256
1257 /* ----------------------------------------------------------------------
1258 * Loop generation and clue removal
1259 */
1260
1261 /* We're going to store lists of current candidate faces for colouring black
1262 * or white.
1263 * Each face gets a 'score', which tells us how adding that face right
1264 * now would affect the curliness of the solution loop. We're trying to
1265 * maximise that quantity so will bias our random selection of faces to
1266 * colour those with high scores */
1267 struct face_score {
1268 int white_score;
1269 int black_score;
1270 unsigned long random;
1271 /* No need to store a grid_face* here. The 'face_scores' array will
1272 * be a list of 'face_score' objects, one for each face of the grid, so
1273 * the position (index) within the 'face_scores' array will determine
1274 * which face corresponds to a particular face_score.
1275 * Having a single 'face_scores' array for all faces simplifies memory
1276 * management, and probably improves performance, because we don't have to
1277 * malloc/free each individual face_score, and we don't have to maintain
1278 * a mapping from grid_face* pointers to face_score* pointers.
1279 */
1280 };
1281
1282 static int generic_sort_cmpfn(void *v1, void *v2, size_t offset)
1283 {
1284 struct face_score *f1 = v1;
1285 struct face_score *f2 = v2;
1286 int r;
1287
1288 r = *(int *)((char *)f2 + offset) - *(int *)((char *)f1 + offset);
1289 if (r) {
1290 return r;
1291 }
1292
1293 if (f1->random < f2->random)
1294 return -1;
1295 else if (f1->random > f2->random)
1296 return 1;
1297
1298 /*
1299 * It's _just_ possible that two faces might have been given
1300 * the same random value. In that situation, fall back to
1301 * comparing based on the positions within the face_scores list.
1302 * This introduces a tiny directional bias, but not a significant one.
1303 */
1304 return f1 - f2;
1305 }
1306
1307 static int white_sort_cmpfn(void *v1, void *v2)
1308 {
1309 return generic_sort_cmpfn(v1, v2, offsetof(struct face_score,white_score));
1310 }
1311
1312 static int black_sort_cmpfn(void *v1, void *v2)
1313 {
1314 return generic_sort_cmpfn(v1, v2, offsetof(struct face_score,black_score));
1315 }
1316
1317 enum face_colour { FACE_WHITE, FACE_GREY, FACE_BLACK };
1318
1319 /* face should be of type grid_face* here. */
1320 #define FACE_COLOUR(face) \
1321 ( (face) == NULL ? FACE_BLACK : \
1322 board[(face) - g->faces] )
1323
1324 /* 'board' is an array of these enums, indicating which faces are
1325 * currently black/white/grey. 'colour' is FACE_WHITE or FACE_BLACK.
1326 * Returns whether it's legal to colour the given face with this colour. */
1327 static int can_colour_face(grid *g, char* board, int face_index,
1328 enum face_colour colour)
1329 {
1330 int i, j;
1331 grid_face *test_face = g->faces + face_index;
1332 grid_face *starting_face, *current_face;
1333 grid_dot *starting_dot;
1334 int transitions;
1335 int current_state, s; /* booleans: equal or not-equal to 'colour' */
1336 int found_same_coloured_neighbour = FALSE;
1337 assert(board[face_index] != colour);
1338
1339 /* Can only consider a face for colouring if it's adjacent to a face
1340 * with the same colour. */
1341 for (i = 0; i < test_face->order; i++) {
1342 grid_edge *e = test_face->edges[i];
1343 grid_face *f = (e->face1 == test_face) ? e->face2 : e->face1;
1344 if (FACE_COLOUR(f) == colour) {
1345 found_same_coloured_neighbour = TRUE;
1346 break;
1347 }
1348 }
1349 if (!found_same_coloured_neighbour)
1350 return FALSE;
1351
1352 /* Need to avoid creating a loop of faces of this colour around some
1353 * differently-coloured faces.
1354 * Also need to avoid meeting a same-coloured face at a corner, with
1355 * other-coloured faces in between. Here's a simple test that (I believe)
1356 * takes care of both these conditions:
1357 *
1358 * Take the circular path formed by this face's edges, and inflate it
1359 * slightly outwards. Imagine walking around this path and consider
1360 * the faces that you visit in sequence. This will include all faces
1361 * touching the given face, either along an edge or just at a corner.
1362 * Count the number of 'colour'/not-'colour' transitions you encounter, as
1363 * you walk along the complete loop. This will obviously turn out to be
1364 * an even number.
1365 * If 0, we're either in the middle of an "island" of this colour (should
1366 * be impossible as we're not supposed to create black or white loops),
1367 * or we're about to start a new island - also not allowed.
1368 * If 4 or greater, there are too many separate coloured regions touching
1369 * this face, and colouring it would create a loop or a corner-violation.
1370 * The only allowed case is when the count is exactly 2. */
1371
1372 /* i points to a dot around the test face.
1373 * j points to a face around the i^th dot.
1374 * The current face will always be:
1375 * test_face->dots[i]->faces[j]
1376 * We assume dots go clockwise around the test face,
1377 * and faces go clockwise around dots. */
1378
1379 /*
1380 * The end condition is slightly fiddly. In sufficiently strange
1381 * degenerate grids, our test face may be adjacent to the same
1382 * other face multiple times (typically if it's the exterior
1383 * face). Consider this, in particular:
1384 *
1385 * +--+
1386 * | |
1387 * +--+--+
1388 * | | |
1389 * +--+--+
1390 *
1391 * The bottom left face there is adjacent to the exterior face
1392 * twice, so we can't just terminate our iteration when we reach
1393 * the same _face_ we started at. Furthermore, we can't
1394 * condition on having the same (i,j) pair either, because
1395 * several (i,j) pairs identify the bottom left contiguity with
1396 * the exterior face! We canonicalise the (i,j) pair by taking
1397 * one step around before we set the termination tracking.
1398 */
1399
1400 i = j = 0;
1401 current_face = test_face->dots[0]->faces[0];
1402 if (current_face == test_face) {
1403 j = 1;
1404 current_face = test_face->dots[0]->faces[1];
1405 }
1406 transitions = 0;
1407 current_state = (FACE_COLOUR(current_face) == colour);
1408 starting_dot = NULL;
1409 starting_face = NULL;
1410 while (TRUE) {
1411 /* Advance to next face.
1412 * Need to loop here because it might take several goes to
1413 * find it. */
1414 while (TRUE) {
1415 j++;
1416 if (j == test_face->dots[i]->order)
1417 j = 0;
1418
1419 if (test_face->dots[i]->faces[j] == test_face) {
1420 /* Advance to next dot round test_face, then
1421 * find current_face around new dot
1422 * and advance to the next face clockwise */
1423 i++;
1424 if (i == test_face->order)
1425 i = 0;
1426 for (j = 0; j < test_face->dots[i]->order; j++) {
1427 if (test_face->dots[i]->faces[j] == current_face)
1428 break;
1429 }
1430 /* Must actually find current_face around new dot,
1431 * or else something's wrong with the grid. */
1432 assert(j != test_face->dots[i]->order);
1433 /* Found, so advance to next face and try again */
1434 } else {
1435 break;
1436 }
1437 }
1438 /* (i,j) are now advanced to next face */
1439 current_face = test_face->dots[i]->faces[j];
1440 s = (FACE_COLOUR(current_face) == colour);
1441 if (!starting_dot) {
1442 starting_dot = test_face->dots[i];
1443 starting_face = current_face;
1444 current_state = s;
1445 } else {
1446 if (s != current_state) {
1447 ++transitions;
1448 current_state = s;
1449 if (transitions > 2)
1450 break;
1451 }
1452 if (test_face->dots[i] == starting_dot &&
1453 current_face == starting_face)
1454 break;
1455 }
1456 }
1457
1458 return (transitions == 2) ? TRUE : FALSE;
1459 }
1460
1461 /* Count the number of neighbours of 'face', having colour 'colour' */
1462 static int face_num_neighbours(grid *g, char *board, grid_face *face,
1463 enum face_colour colour)
1464 {
1465 int colour_count = 0;
1466 int i;
1467 grid_face *f;
1468 grid_edge *e;
1469 for (i = 0; i < face->order; i++) {
1470 e = face->edges[i];
1471 f = (e->face1 == face) ? e->face2 : e->face1;
1472 if (FACE_COLOUR(f) == colour)
1473 ++colour_count;
1474 }
1475 return colour_count;
1476 }
1477
1478 /* The 'score' of a face reflects its current desirability for selection
1479 * as the next face to colour white or black. We want to encourage moving
1480 * into grey areas and increasing loopiness, so we give scores according to
1481 * how many of the face's neighbours are currently coloured the same as the
1482 * proposed colour. */
1483 static int face_score(grid *g, char *board, grid_face *face,
1484 enum face_colour colour)
1485 {
1486 /* Simple formula: score = 0 - num. same-coloured neighbours,
1487 * so a higher score means fewer same-coloured neighbours. */
1488 return -face_num_neighbours(g, board, face, colour);
1489 }
1490
1491 /* Generate a new complete set of clues for the given game_state.
1492 * The method is to generate a WHITE/BLACK colouring of all the faces,
1493 * such that the WHITE faces will define the inside of the path, and the
1494 * BLACK faces define the outside.
1495 * To do this, we initially colour all faces GREY. The infinite space outside
1496 * the grid is coloured BLACK, and we choose a random face to colour WHITE.
1497 * Then we gradually grow the BLACK and the WHITE regions, eliminating GREY
1498 * faces, until the grid is filled with BLACK/WHITE. As we grow the regions,
1499 * we avoid creating loops of a single colour, to preserve the topological
1500 * shape of the WHITE and BLACK regions.
1501 * We also try to make the boundary as loopy and twisty as possible, to avoid
1502 * generating paths that are uninteresting.
1503 * The algorithm works by choosing a BLACK/WHITE colour, then choosing a GREY
1504 * face that can be coloured with that colour (without violating the
1505 * topological shape of that region). It's not obvious, but I think this
1506 * algorithm is guaranteed to terminate without leaving any GREY faces behind.
1507 * Indeed, if there are any GREY faces at all, both the WHITE and BLACK
1508 * regions can be grown.
1509 * This is checked using assert()ions, and I haven't seen any failures yet.
1510 *
1511 * Hand-wavy proof: imagine what can go wrong...
1512 *
1513 * Could the white faces get completely cut off by the black faces, and still
1514 * leave some grey faces remaining?
1515 * No, because then the black faces would form a loop around both the white
1516 * faces and the grey faces, which is disallowed because we continually
1517 * maintain the correct topological shape of the black region.
1518 * Similarly, the black faces can never get cut off by the white faces. That
1519 * means both the WHITE and BLACK regions always have some room to grow into
1520 * the GREY regions.
1521 * Could it be that we can't colour some GREY face, because there are too many
1522 * WHITE/BLACK transitions as we walk round the face? (see the
1523 * can_colour_face() function for details)
1524 * No. Imagine otherwise, and we see WHITE/BLACK/WHITE/BLACK as we walk
1525 * around the face. The two WHITE faces would be connected by a WHITE path,
1526 * and the BLACK faces would be connected by a BLACK path. These paths would
1527 * have to cross, which is impossible.
1528 * Another thing that could go wrong: perhaps we can't find any GREY face to
1529 * colour WHITE, because it would create a loop-violation or a corner-violation
1530 * with the other WHITE faces?
1531 * This is a little bit tricky to prove impossible. Imagine you have such a
1532 * GREY face (that is, if you coloured it WHITE, you would create a WHITE loop
1533 * or corner violation).
1534 * That would cut all the non-white area into two blobs. One of those blobs
1535 * must be free of BLACK faces (because the BLACK stuff is a connected blob).
1536 * So we have a connected GREY area, completely surrounded by WHITE
1537 * (including the GREY face we've tentatively coloured WHITE).
1538 * A well-known result in graph theory says that you can always find a GREY
1539 * face whose removal leaves the remaining GREY area connected. And it says
1540 * there are at least two such faces, so we can always choose the one that
1541 * isn't the "tentative" GREY face. Colouring that face WHITE leaves
1542 * everything nice and connected, including that "tentative" GREY face which
1543 * acts as a gateway to the rest of the non-WHITE grid.
1544 */
1545 static void add_full_clues(game_state *state, random_state *rs)
1546 {
1547 signed char *clues = state->clues;
1548 char *board;
1549 grid *g = state->game_grid;
1550 int i, j;
1551 int num_faces = g->num_faces;
1552 struct face_score *face_scores; /* Array of face_score objects */
1553 struct face_score *fs; /* Points somewhere in the above list */
1554 struct grid_face *cur_face;
1555 tree234 *lightable_faces_sorted;
1556 tree234 *darkable_faces_sorted;
1557 int *face_list;
1558 int do_random_pass;
1559
1560 board = snewn(num_faces, char);
1561
1562 /* Make a board */
1563 memset(board, FACE_GREY, num_faces);
1564
1565 /* Create and initialise the list of face_scores */
1566 face_scores = snewn(num_faces, struct face_score);
1567 for (i = 0; i < num_faces; i++) {
1568 face_scores[i].random = random_bits(rs, 31);
1569 face_scores[i].black_score = face_scores[i].white_score = 0;
1570 }
1571
1572 /* Colour a random, finite face white. The infinite face is implicitly
1573 * coloured black. Together, they will seed the random growth process
1574 * for the black and white areas. */
1575 i = random_upto(rs, num_faces);
1576 board[i] = FACE_WHITE;
1577
1578 /* We need a way of favouring faces that will increase our loopiness.
1579 * We do this by maintaining a list of all candidate faces sorted by
1580 * their score and choose randomly from that with appropriate skew.
1581 * In order to avoid consistently biasing towards particular faces, we
1582 * need the sort order _within_ each group of scores to be completely
1583 * random. But it would be abusing the hospitality of the tree234 data
1584 * structure if our comparison function were nondeterministic :-). So with
1585 * each face we associate a random number that does not change during a
1586 * particular run of the generator, and use that as a secondary sort key.
1587 * Yes, this means we will be biased towards particular random faces in
1588 * any one run but that doesn't actually matter. */
1589
1590 lightable_faces_sorted = newtree234(white_sort_cmpfn);
1591 darkable_faces_sorted = newtree234(black_sort_cmpfn);
1592
1593 /* Initialise the lists of lightable and darkable faces. This is
1594 * slightly different from the code inside the while-loop, because we need
1595 * to check every face of the board (the grid structure does not keep a
1596 * list of the infinite face's neighbours). */
1597 for (i = 0; i < num_faces; i++) {
1598 grid_face *f = g->faces + i;
1599 struct face_score *fs = face_scores + i;
1600 if (board[i] != FACE_GREY) continue;
1601 /* We need the full colourability check here, it's not enough simply
1602 * to check neighbourhood. On some grids, a neighbour of the infinite
1603 * face is not necessarily darkable. */
1604 if (can_colour_face(g, board, i, FACE_BLACK)) {
1605 fs->black_score = face_score(g, board, f, FACE_BLACK);
1606 add234(darkable_faces_sorted, fs);
1607 }
1608 if (can_colour_face(g, board, i, FACE_WHITE)) {
1609 fs->white_score = face_score(g, board, f, FACE_WHITE);
1610 add234(lightable_faces_sorted, fs);
1611 }
1612 }
1613
1614 /* Colour faces one at a time until no more faces are colourable. */
1615 while (TRUE)
1616 {
1617 enum face_colour colour;
1618 struct face_score *fs_white, *fs_black;
1619 int c_lightable = count234(lightable_faces_sorted);
1620 int c_darkable = count234(darkable_faces_sorted);
1621 if (c_lightable == 0 && c_darkable == 0) {
1622 /* No more faces we can use at all. */
1623 break;
1624 }
1625 assert(c_lightable != 0 && c_darkable != 0);
1626
1627 fs_white = (struct face_score *)index234(lightable_faces_sorted, 0);
1628 fs_black = (struct face_score *)index234(darkable_faces_sorted, 0);
1629
1630 /* Choose a colour, and colour the best available face
1631 * with that colour. */
1632 colour = random_upto(rs, 2) ? FACE_WHITE : FACE_BLACK;
1633
1634 if (colour == FACE_WHITE)
1635 fs = fs_white;
1636 else
1637 fs = fs_black;
1638 assert(fs);
1639 i = fs - face_scores;
1640 assert(board[i] == FACE_GREY);
1641 board[i] = colour;
1642
1643 /* Remove this newly-coloured face from the lists. These lists should
1644 * only contain grey faces. */
1645 del234(lightable_faces_sorted, fs);
1646 del234(darkable_faces_sorted, fs);
1647
1648 /* Remember which face we've just coloured */
1649 cur_face = g->faces + i;
1650
1651 /* The face we've just coloured potentially affects the colourability
1652 * and the scores of any neighbouring faces (touching at a corner or
1653 * edge). So the search needs to be conducted around all faces
1654 * touching the one we've just lit. Iterate over its corners, then
1655 * over each corner's faces. For each such face, we remove it from
1656 * the lists, recalculate any scores, then add it back to the lists
1657 * (depending on whether it is lightable, darkable or both). */
1658 for (i = 0; i < cur_face->order; i++) {
1659 grid_dot *d = cur_face->dots[i];
1660 for (j = 0; j < d->order; j++) {
1661 grid_face *f = d->faces[j];
1662 int fi; /* face index of f */
1663
1664 if (f == NULL)
1665 continue;
1666 if (f == cur_face)
1667 continue;
1668
1669 /* If the face is already coloured, it won't be on our
1670 * lightable/darkable lists anyway, so we can skip it without
1671 * bothering with the removal step. */
1672 if (FACE_COLOUR(f) != FACE_GREY) continue;
1673
1674 /* Find the face index and face_score* corresponding to f */
1675 fi = f - g->faces;
1676 fs = face_scores + fi;
1677
1678 /* Remove from lightable list if it's in there. We do this,
1679 * even if it is still lightable, because the score might
1680 * be different, and we need to remove-then-add to maintain
1681 * correct sort order. */
1682 del234(lightable_faces_sorted, fs);
1683 if (can_colour_face(g, board, fi, FACE_WHITE)) {
1684 fs->white_score = face_score(g, board, f, FACE_WHITE);
1685 add234(lightable_faces_sorted, fs);
1686 }
1687 /* Do the same for darkable list. */
1688 del234(darkable_faces_sorted, fs);
1689 if (can_colour_face(g, board, fi, FACE_BLACK)) {
1690 fs->black_score = face_score(g, board, f, FACE_BLACK);
1691 add234(darkable_faces_sorted, fs);
1692 }
1693 }
1694 }
1695 }
1696
1697 /* Clean up */
1698 freetree234(lightable_faces_sorted);
1699 freetree234(darkable_faces_sorted);
1700 sfree(face_scores);
1701
1702 /* The next step requires a shuffled list of all faces */
1703 face_list = snewn(num_faces, int);
1704 for (i = 0; i < num_faces; ++i) {
1705 face_list[i] = i;
1706 }
1707 shuffle(face_list, num_faces, sizeof(int), rs);
1708
1709 /* The above loop-generation algorithm can often leave large clumps
1710 * of faces of one colour. In extreme cases, the resulting path can be
1711 * degenerate and not very satisfying to solve.
1712 * This next step alleviates this problem:
1713 * Go through the shuffled list, and flip the colour of any face we can
1714 * legally flip, and which is adjacent to only one face of the opposite
1715 * colour - this tends to grow 'tendrils' into any clumps.
1716 * Repeat until we can find no more faces to flip. This will
1717 * eventually terminate, because each flip increases the loop's
1718 * perimeter, which cannot increase for ever.
1719 * The resulting path will have maximal loopiness (in the sense that it
1720 * cannot be improved "locally". Unfortunately, this allows a player to
1721 * make some illicit deductions. To combat this (and make the path more
1722 * interesting), we do one final pass making random flips. */
1723
1724 /* Set to TRUE for final pass */
1725 do_random_pass = FALSE;
1726
1727 while (TRUE) {
1728 /* Remember whether a flip occurred during this pass */
1729 int flipped = FALSE;
1730
1731 for (i = 0; i < num_faces; ++i) {
1732 int j = face_list[i];
1733 enum face_colour opp =
1734 (board[j] == FACE_WHITE) ? FACE_BLACK : FACE_WHITE;
1735 if (can_colour_face(g, board, j, opp)) {
1736 grid_face *face = g->faces +j;
1737 if (do_random_pass) {
1738 /* final random pass */
1739 if (!random_upto(rs, 10))
1740 board[j] = opp;
1741 } else {
1742 /* normal pass - flip when neighbour count is 1 */
1743 if (face_num_neighbours(g, board, face, opp) == 1) {
1744 board[j] = opp;
1745 flipped = TRUE;
1746 }
1747 }
1748 }
1749 }
1750
1751 if (do_random_pass) break;
1752 if (!flipped) do_random_pass = TRUE;
1753 }
1754
1755 sfree(face_list);
1756
1757 /* Fill out all the clues by initialising to 0, then iterating over
1758 * all edges and incrementing each clue as we find edges that border
1759 * between BLACK/WHITE faces. While we're at it, we verify that the
1760 * algorithm does work, and there aren't any GREY faces still there. */
1761 memset(clues, 0, num_faces);
1762 for (i = 0; i < g->num_edges; i++) {
1763 grid_edge *e = g->edges + i;
1764 grid_face *f1 = e->face1;
1765 grid_face *f2 = e->face2;
1766 enum face_colour c1 = FACE_COLOUR(f1);
1767 enum face_colour c2 = FACE_COLOUR(f2);
1768 assert(c1 != FACE_GREY);
1769 assert(c2 != FACE_GREY);
1770 if (c1 != c2) {
1771 if (f1) clues[f1 - g->faces]++;
1772 if (f2) clues[f2 - g->faces]++;
1773 }
1774 }
1775
1776 sfree(board);
1777 }
1778
1779
1780 static int game_has_unique_soln(const game_state *state, int diff)
1781 {
1782 int ret;
1783 solver_state *sstate_new;
1784 solver_state *sstate = new_solver_state((game_state *)state, diff);
1785
1786 sstate_new = solve_game_rec(sstate);
1787
1788 assert(sstate_new->solver_status != SOLVER_MISTAKE);
1789 ret = (sstate_new->solver_status == SOLVER_SOLVED);
1790
1791 free_solver_state(sstate_new);
1792 free_solver_state(sstate);
1793
1794 return ret;
1795 }
1796
1797
1798 /* Remove clues one at a time at random. */
1799 static game_state *remove_clues(game_state *state, random_state *rs,
1800 int diff)
1801 {
1802 int *face_list;
1803 int num_faces = state->game_grid->num_faces;
1804 game_state *ret = dup_game(state), *saved_ret;
1805 int n;
1806
1807 /* We need to remove some clues. We'll do this by forming a list of all
1808 * available clues, shuffling it, then going along one at a
1809 * time clearing each clue in turn for which doing so doesn't render the
1810 * board unsolvable. */
1811 face_list = snewn(num_faces, int);
1812 for (n = 0; n < num_faces; ++n) {
1813 face_list[n] = n;
1814 }
1815
1816 shuffle(face_list, num_faces, sizeof(int), rs);
1817
1818 for (n = 0; n < num_faces; ++n) {
1819 saved_ret = dup_game(ret);
1820 ret->clues[face_list[n]] = -1;
1821
1822 if (game_has_unique_soln(ret, diff)) {
1823 free_game(saved_ret);
1824 } else {
1825 free_game(ret);
1826 ret = saved_ret;
1827 }
1828 }
1829 sfree(face_list);
1830
1831 return ret;
1832 }
1833
1834
1835 static char *new_game_desc(game_params *params, random_state *rs,
1836 char **aux, int interactive)
1837 {
1838 /* solution and description both use run-length encoding in obvious ways */
1839 char *retval;
1840 grid *g;
1841 game_state *state = snew(game_state);
1842 game_state *state_new;
1843 params_generate_grid(params);
1844 state->game_grid = g = params->game_grid;
1845 g->refcount++;
1846 state->clues = snewn(g->num_faces, signed char);
1847 state->lines = snewn(g->num_edges, char);
1848 state->line_errors = snewn(g->num_edges, unsigned char);
1849
1850 state->grid_type = params->type;
1851
1852 newboard_please:
1853
1854 memset(state->lines, LINE_UNKNOWN, g->num_edges);
1855 memset(state->line_errors, 0, g->num_edges);
1856
1857 state->solved = state->cheated = FALSE;
1858
1859 /* Get a new random solvable board with all its clues filled in. Yes, this
1860 * can loop for ever if the params are suitably unfavourable, but
1861 * preventing games smaller than 4x4 seems to stop this happening */
1862 do {
1863 add_full_clues(state, rs);
1864 } while (!game_has_unique_soln(state, params->diff));
1865
1866 state_new = remove_clues(state, rs, params->diff);
1867 free_game(state);
1868 state = state_new;
1869
1870
1871 if (params->diff > 0 && game_has_unique_soln(state, params->diff-1)) {
1872 #ifdef SHOW_WORKING
1873 fprintf(stderr, "Rejecting board, it is too easy\n");
1874 #endif
1875 goto newboard_please;
1876 }
1877
1878 retval = state_to_text(state);
1879
1880 free_game(state);
1881
1882 assert(!validate_desc(params, retval));
1883
1884 return retval;
1885 }
1886
1887 static game_state *new_game(midend *me, game_params *params, char *desc)
1888 {
1889 int i;
1890 game_state *state = snew(game_state);
1891 int empties_to_make = 0;
1892 int n,n2;
1893 const char *dp = desc;
1894 grid *g;
1895 int num_faces, num_edges;
1896
1897 params_generate_grid(params);
1898 state->game_grid = g = params->game_grid;
1899 g->refcount++;
1900 num_faces = g->num_faces;
1901 num_edges = g->num_edges;
1902
1903 state->clues = snewn(num_faces, signed char);
1904 state->lines = snewn(num_edges, char);
1905 state->line_errors = snewn(num_edges, unsigned char);
1906
1907 state->solved = state->cheated = FALSE;
1908
1909 state->grid_type = params->type;
1910
1911 for (i = 0; i < num_faces; i++) {
1912 if (empties_to_make) {
1913 empties_to_make--;
1914 state->clues[i] = -1;
1915 continue;
1916 }
1917
1918 assert(*dp);
1919 n = *dp - '0';
1920 n2 = *dp - 'A' + 10;
1921 if (n >= 0 && n < 10) {
1922 state->clues[i] = n;
1923 } else if (n2 >= 10 && n2 < 36) {
1924 state->clues[i] = n2;
1925 } else {
1926 n = *dp - 'a' + 1;
1927 assert(n > 0);
1928 state->clues[i] = -1;
1929 empties_to_make = n - 1;
1930 }
1931 ++dp;
1932 }
1933
1934 memset(state->lines, LINE_UNKNOWN, num_edges);
1935 memset(state->line_errors, 0, num_edges);
1936 return state;
1937 }
1938
1939 /* Calculates the line_errors data, and checks if the current state is a
1940 * solution */
1941 static int check_completion(game_state *state)
1942 {
1943 grid *g = state->game_grid;
1944 int *dsf;
1945 int num_faces = g->num_faces;
1946 int i;
1947 int infinite_area, finite_area;
1948 int loops_found = 0;
1949 int found_edge_not_in_loop = FALSE;
1950
1951 memset(state->line_errors, 0, g->num_edges);
1952
1953 /* LL implementation of SGT's idea:
1954 * A loop will partition the grid into an inside and an outside.
1955 * If there is more than one loop, the grid will be partitioned into
1956 * even more distinct regions. We can therefore track equivalence of
1957 * faces, by saying that two faces are equivalent when there is a non-YES
1958 * edge between them.
1959 * We could keep track of the number of connected components, by counting
1960 * the number of dsf-merges that aren't no-ops.
1961 * But we're only interested in 3 separate cases:
1962 * no loops, one loop, more than one loop.
1963 *
1964 * No loops: all faces are equivalent to the infinite face.
1965 * One loop: only two equivalence classes - finite and infinite.
1966 * >= 2 loops: there are 2 distinct finite regions.
1967 *
1968 * So we simply make two passes through all the edges.
1969 * In the first pass, we dsf-merge the two faces bordering each non-YES
1970 * edge.
1971 * In the second pass, we look for YES-edges bordering:
1972 * a) two non-equivalent faces.
1973 * b) two non-equivalent faces, and one of them is part of a different
1974 * finite area from the first finite area we've seen.
1975 *
1976 * An occurrence of a) means there is at least one loop.
1977 * An occurrence of b) means there is more than one loop.
1978 * Edges satisfying a) are marked as errors.
1979 *
1980 * While we're at it, we set a flag if we find a YES edge that is not
1981 * part of a loop.
1982 * This information will help decide, if there's a single loop, whether it
1983 * is a candidate for being a solution (that is, all YES edges are part of
1984 * this loop).
1985 *
1986 * If there is a candidate loop, we then go through all clues and check
1987 * they are all satisfied. If so, we have found a solution and we can
1988 * unmark all line_errors.
1989 */
1990
1991 /* Infinite face is at the end - its index is num_faces.
1992 * This macro is just to make this obvious! */
1993 #define INF_FACE num_faces
1994 dsf = snewn(num_faces + 1, int);
1995 dsf_init(dsf, num_faces + 1);
1996
1997 /* First pass */
1998 for (i = 0; i < g->num_edges; i++) {
1999 grid_edge *e = g->edges + i;
2000 int f1 = e->face1 ? e->face1 - g->faces : INF_FACE;
2001 int f2 = e->face2 ? e->face2 - g->faces : INF_FACE;
2002 if (state->lines[i] != LINE_YES)
2003 dsf_merge(dsf, f1, f2);
2004 }
2005
2006 /* Second pass */
2007 infinite_area = dsf_canonify(dsf, INF_FACE);
2008 finite_area = -1;
2009 for (i = 0; i < g->num_edges; i++) {
2010 grid_edge *e = g->edges + i;
2011 int f1 = e->face1 ? e->face1 - g->faces : INF_FACE;
2012 int can1 = dsf_canonify(dsf, f1);
2013 int f2 = e->face2 ? e->face2 - g->faces : INF_FACE;
2014 int can2 = dsf_canonify(dsf, f2);
2015 if (state->lines[i] != LINE_YES) continue;
2016
2017 if (can1 == can2) {
2018 /* Faces are equivalent, so this edge not part of a loop */
2019 found_edge_not_in_loop = TRUE;
2020 continue;
2021 }
2022 state->line_errors[i] = TRUE;
2023 if (loops_found == 0) loops_found = 1;
2024
2025 /* Don't bother with further checks if we've already found 2 loops */
2026 if (loops_found == 2) continue;
2027
2028 if (finite_area == -1) {
2029 /* Found our first finite area */
2030 if (can1 != infinite_area)
2031 finite_area = can1;
2032 else
2033 finite_area = can2;
2034 }
2035
2036 /* Have we found a second area? */
2037 if (finite_area != -1) {
2038 if (can1 != infinite_area && can1 != finite_area) {
2039 loops_found = 2;
2040 continue;
2041 }
2042 if (can2 != infinite_area && can2 != finite_area) {
2043 loops_found = 2;
2044 }
2045 }
2046 }
2047
2048 /*
2049 printf("loops_found = %d\n", loops_found);
2050 printf("found_edge_not_in_loop = %s\n",
2051 found_edge_not_in_loop ? "TRUE" : "FALSE");
2052 */
2053
2054 sfree(dsf); /* No longer need the dsf */
2055
2056 /* Have we found a candidate loop? */
2057 if (loops_found == 1 && !found_edge_not_in_loop) {
2058 /* Yes, so check all clues are satisfied */
2059 int found_clue_violation = FALSE;
2060 for (i = 0; i < num_faces; i++) {
2061 int c = state->clues[i];
2062 if (c >= 0) {
2063 if (face_order(state, i, LINE_YES) != c) {
2064 found_clue_violation = TRUE;
2065 break;
2066 }
2067 }
2068 }
2069
2070 if (!found_clue_violation) {
2071 /* The loop is good */
2072 memset(state->line_errors, 0, g->num_edges);
2073 return TRUE; /* No need to bother checking for dot violations */
2074 }
2075 }
2076
2077 /* Check for dot violations */
2078 for (i = 0; i < g->num_dots; i++) {
2079 int yes = dot_order(state, i, LINE_YES);
2080 int unknown = dot_order(state, i, LINE_UNKNOWN);
2081 if ((yes == 1 && unknown == 0) || (yes >= 3)) {
2082 /* violation, so mark all YES edges as errors */
2083 grid_dot *d = g->dots + i;
2084 int j;
2085 for (j = 0; j < d->order; j++) {
2086 int e = d->edges[j] - g->edges;
2087 if (state->lines[e] == LINE_YES)
2088 state->line_errors[e] = TRUE;
2089 }
2090 }
2091 }
2092 return FALSE;
2093 }
2094
2095 /* ----------------------------------------------------------------------
2096 * Solver logic
2097 *
2098 * Our solver modes operate as follows. Each mode also uses the modes above it.
2099 *
2100 * Easy Mode
2101 * Just implement the rules of the game.
2102 *
2103 * Normal and Tricky Modes
2104 * For each (adjacent) pair of lines through each dot we store a bit for
2105 * whether at least one of them is on and whether at most one is on. (If we
2106 * know both or neither is on that's already stored more directly.)
2107 *
2108 * Advanced Mode
2109 * Use edsf data structure to make equivalence classes of lines that are
2110 * known identical to or opposite to one another.
2111 */
2112
2113
2114 /* DLines:
2115 * For general grids, we consider "dlines" to be pairs of lines joined
2116 * at a dot. The lines must be adjacent around the dot, so we can think of
2117 * a dline as being a dot+face combination. Or, a dot+edge combination where
2118 * the second edge is taken to be the next clockwise edge from the dot.
2119 * Original loopy code didn't have this extra restriction of the lines being
2120 * adjacent. From my tests with square grids, this extra restriction seems to
2121 * take little, if anything, away from the quality of the puzzles.
2122 * A dline can be uniquely identified by an edge/dot combination, given that
2123 * a dline-pair always goes clockwise around its common dot. The edge/dot
2124 * combination can be represented by an edge/bool combination - if bool is
2125 * TRUE, use edge->dot1 else use edge->dot2. So the total number of dlines is
2126 * exactly twice the number of edges in the grid - although the dlines
2127 * spanning the infinite face are not all that useful to the solver.
2128 * Note that, by convention, a dline goes clockwise around its common dot,
2129 * which means the dline goes anti-clockwise around its common face.
2130 */
2131
2132 /* Helper functions for obtaining an index into an array of dlines, given
2133 * various information. We assume the grid layout conventions about how
2134 * the various lists are interleaved - see grid_make_consistent() for
2135 * details. */
2136
2137 /* i points to the first edge of the dline pair, reading clockwise around
2138 * the dot. */
2139 static int dline_index_from_dot(grid *g, grid_dot *d, int i)
2140 {
2141 grid_edge *e = d->edges[i];
2142 int ret;
2143 #ifdef DEBUG_DLINES
2144 grid_edge *e2;
2145 int i2 = i+1;
2146 if (i2 == d->order) i2 = 0;
2147 e2 = d->edges[i2];
2148 #endif
2149 ret = 2 * (e - g->edges) + ((e->dot1 == d) ? 1 : 0);
2150 #ifdef DEBUG_DLINES
2151 printf("dline_index_from_dot: d=%d,i=%d, edges [%d,%d] - %d\n",
2152 (int)(d - g->dots), i, (int)(e - g->edges),
2153 (int)(e2 - g->edges), ret);
2154 #endif
2155 return ret;
2156 }
2157 /* i points to the second edge of the dline pair, reading clockwise around
2158 * the face. That is, the edges of the dline, starting at edge{i}, read
2159 * anti-clockwise around the face. By layout conventions, the common dot
2160 * of the dline will be f->dots[i] */
2161 static int dline_index_from_face(grid *g, grid_face *f, int i)
2162 {
2163 grid_edge *e = f->edges[i];
2164 grid_dot *d = f->dots[i];
2165 int ret;
2166 #ifdef DEBUG_DLINES
2167 grid_edge *e2;
2168 int i2 = i - 1;
2169 if (i2 < 0) i2 += f->order;
2170 e2 = f->edges[i2];
2171 #endif
2172 ret = 2 * (e - g->edges) + ((e->dot1 == d) ? 1 : 0);
2173 #ifdef DEBUG_DLINES
2174 printf("dline_index_from_face: f=%d,i=%d, edges [%d,%d] - %d\n",
2175 (int)(f - g->faces), i, (int)(e - g->edges),
2176 (int)(e2 - g->edges), ret);
2177 #endif
2178 return ret;
2179 }
2180 static int is_atleastone(const char *dline_array, int index)
2181 {
2182 return BIT_SET(dline_array[index], 0);
2183 }
2184 static int set_atleastone(char *dline_array, int index)
2185 {
2186 return SET_BIT(dline_array[index], 0);
2187 }
2188 static int is_atmostone(const char *dline_array, int index)
2189 {
2190 return BIT_SET(dline_array[index], 1);
2191 }
2192 static int set_atmostone(char *dline_array, int index)
2193 {
2194 return SET_BIT(dline_array[index], 1);
2195 }
2196
2197 static void array_setall(char *array, char from, char to, int len)
2198 {
2199 char *p = array, *p_old = p;
2200 int len_remaining = len;
2201
2202 while ((p = memchr(p, from, len_remaining))) {
2203 *p = to;
2204 len_remaining -= p - p_old;
2205 p_old = p;
2206 }
2207 }
2208
2209 /* Helper, called when doing dline dot deductions, in the case where we
2210 * have 4 UNKNOWNs, and two of them (adjacent) have *exactly* one YES between
2211 * them (because of dline atmostone/atleastone).
2212 * On entry, edge points to the first of these two UNKNOWNs. This function
2213 * will find the opposite UNKNOWNS (if they are adjacent to one another)
2214 * and set their corresponding dline to atleastone. (Setting atmostone
2215 * already happens in earlier dline deductions) */
2216 static int dline_set_opp_atleastone(solver_state *sstate,
2217 grid_dot *d, int edge)
2218 {
2219 game_state *state = sstate->state;
2220 grid *g = state->game_grid;
2221 int N = d->order;
2222 int opp, opp2;
2223 for (opp = 0; opp < N; opp++) {
2224 int opp_dline_index;
2225 if (opp == edge || opp == edge+1 || opp == edge-1)
2226 continue;
2227 if (opp == 0 && edge == N-1)
2228 continue;
2229 if (opp == N-1 && edge == 0)
2230 continue;
2231 opp2 = opp + 1;
2232 if (opp2 == N) opp2 = 0;
2233 /* Check if opp, opp2 point to LINE_UNKNOWNs */
2234 if (state->lines[d->edges[opp] - g->edges] != LINE_UNKNOWN)
2235 continue;
2236 if (state->lines[d->edges[opp2] - g->edges] != LINE_UNKNOWN)
2237 continue;
2238 /* Found opposite UNKNOWNS and they're next to each other */
2239 opp_dline_index = dline_index_from_dot(g, d, opp);
2240 return set_atleastone(sstate->dlines, opp_dline_index);
2241 }
2242 return FALSE;
2243 }
2244
2245
2246 /* Set pairs of lines around this face which are known to be identical, to
2247 * the given line_state */
2248 static int face_setall_identical(solver_state *sstate, int face_index,
2249 enum line_state line_new)
2250 {
2251 /* can[dir] contains the canonical line associated with the line in
2252 * direction dir from the square in question. Similarly inv[dir] is
2253 * whether or not the line in question is inverse to its canonical
2254 * element. */
2255 int retval = FALSE;
2256 game_state *state = sstate->state;
2257 grid *g = state->game_grid;
2258 grid_face *f = g->faces + face_index;
2259 int N = f->order;
2260 int i, j;
2261 int can1, can2, inv1, inv2;
2262
2263 for (i = 0; i < N; i++) {
2264 int line1_index = f->edges[i] - g->edges;
2265 if (state->lines[line1_index] != LINE_UNKNOWN)
2266 continue;
2267 for (j = i + 1; j < N; j++) {
2268 int line2_index = f->edges[j] - g->edges;
2269 if (state->lines[line2_index] != LINE_UNKNOWN)
2270 continue;
2271
2272 /* Found two UNKNOWNS */
2273 can1 = edsf_canonify(sstate->linedsf, line1_index, &inv1);
2274 can2 = edsf_canonify(sstate->linedsf, line2_index, &inv2);
2275 if (can1 == can2 && inv1 == inv2) {
2276 solver_set_line(sstate, line1_index, line_new);
2277 solver_set_line(sstate, line2_index, line_new);
2278 }
2279 }
2280 }
2281 return retval;
2282 }
2283
2284 /* Given a dot or face, and a count of LINE_UNKNOWNs, find them and
2285 * return the edge indices into e. */
2286 static void find_unknowns(game_state *state,
2287 grid_edge **edge_list, /* Edge list to search (from a face or a dot) */
2288 int expected_count, /* Number of UNKNOWNs (comes from solver's cache) */
2289 int *e /* Returned edge indices */)
2290 {
2291 int c = 0;
2292 grid *g = state->game_grid;
2293 while (c < expected_count) {
2294 int line_index = *edge_list - g->edges;
2295 if (state->lines[line_index] == LINE_UNKNOWN) {
2296 e[c] = line_index;
2297 c++;
2298 }
2299 ++edge_list;
2300 }
2301 }
2302
2303 /* If we have a list of edges, and we know whether the number of YESs should
2304 * be odd or even, and there are only a few UNKNOWNs, we can do some simple
2305 * linedsf deductions. This can be used for both face and dot deductions.
2306 * Returns the difficulty level of the next solver that should be used,
2307 * or DIFF_MAX if no progress was made. */
2308 static int parity_deductions(solver_state *sstate,
2309 grid_edge **edge_list, /* Edge list (from a face or a dot) */
2310 int total_parity, /* Expected number of YESs modulo 2 (either 0 or 1) */
2311 int unknown_count)
2312 {
2313 game_state *state = sstate->state;
2314 int diff = DIFF_MAX;
2315 int *linedsf = sstate->linedsf;
2316
2317 if (unknown_count == 2) {
2318 /* Lines are known alike/opposite, depending on inv. */
2319 int e[2];
2320 find_unknowns(state, edge_list, 2, e);
2321 if (merge_lines(sstate, e[0], e[1], total_parity))
2322 diff = min(diff, DIFF_HARD);
2323 } else if (unknown_count == 3) {
2324 int e[3];
2325 int can[3]; /* canonical edges */
2326 int inv[3]; /* whether can[x] is inverse to e[x] */
2327 find_unknowns(state, edge_list, 3, e);
2328 can[0] = edsf_canonify(linedsf, e[0], inv);
2329 can[1] = edsf_canonify(linedsf, e[1], inv+1);
2330 can[2] = edsf_canonify(linedsf, e[2], inv+2);
2331 if (can[0] == can[1]) {
2332 if (solver_set_line(sstate, e[2], (total_parity^inv[0]^inv[1]) ?
2333 LINE_YES : LINE_NO))
2334 diff = min(diff, DIFF_EASY);
2335 }
2336 if (can[0] == can[2]) {
2337 if (solver_set_line(sstate, e[1], (total_parity^inv[0]^inv[2]) ?
2338 LINE_YES : LINE_NO))
2339 diff = min(diff, DIFF_EASY);
2340 }
2341 if (can[1] == can[2]) {
2342 if (solver_set_line(sstate, e[0], (total_parity^inv[1]^inv[2]) ?
2343 LINE_YES : LINE_NO))
2344 diff = min(diff, DIFF_EASY);
2345 }
2346 } else if (unknown_count == 4) {
2347 int e[4];
2348 int can[4]; /* canonical edges */
2349 int inv[4]; /* whether can[x] is inverse to e[x] */
2350 find_unknowns(state, edge_list, 4, e);
2351 can[0] = edsf_canonify(linedsf, e[0], inv);
2352 can[1] = edsf_canonify(linedsf, e[1], inv+1);
2353 can[2] = edsf_canonify(linedsf, e[2], inv+2);
2354 can[3] = edsf_canonify(linedsf, e[3], inv+3);
2355 if (can[0] == can[1]) {
2356 if (merge_lines(sstate, e[2], e[3], total_parity^inv[0]^inv[1]))
2357 diff = min(diff, DIFF_HARD);
2358 } else if (can[0] == can[2]) {
2359 if (merge_lines(sstate, e[1], e[3], total_parity^inv[0]^inv[2]))
2360 diff = min(diff, DIFF_HARD);
2361 } else if (can[0] == can[3]) {
2362 if (merge_lines(sstate, e[1], e[2], total_parity^inv[0]^inv[3]))
2363 diff = min(diff, DIFF_HARD);
2364 } else if (can[1] == can[2]) {
2365 if (merge_lines(sstate, e[0], e[3], total_parity^inv[1]^inv[2]))
2366 diff = min(diff, DIFF_HARD);
2367 } else if (can[1] == can[3]) {
2368 if (merge_lines(sstate, e[0], e[2], total_parity^inv[1]^inv[3]))
2369 diff = min(diff, DIFF_HARD);
2370 } else if (can[2] == can[3]) {
2371 if (merge_lines(sstate, e[0], e[1], total_parity^inv[2]^inv[3]))
2372 diff = min(diff, DIFF_HARD);
2373 }
2374 }
2375 return diff;
2376 }
2377
2378
2379 /*
2380 * These are the main solver functions.
2381 *
2382 * Their return values are diff values corresponding to the lowest mode solver
2383 * that would notice the work that they have done. For example if the normal
2384 * mode solver adds actual lines or crosses, it will return DIFF_EASY as the
2385 * easy mode solver might be able to make progress using that. It doesn't make
2386 * sense for one of them to return a diff value higher than that of the
2387 * function itself.
2388 *
2389 * Each function returns the lowest value it can, as early as possible, in
2390 * order to try and pass as much work as possible back to the lower level
2391 * solvers which progress more quickly.
2392 */
2393
2394 /* PROPOSED NEW DESIGN:
2395 * We have a work queue consisting of 'events' notifying us that something has
2396 * happened that a particular solver mode might be interested in. For example
2397 * the hard mode solver might do something that helps the normal mode solver at
2398 * dot [x,y] in which case it will enqueue an event recording this fact. Then
2399 * we pull events off the work queue, and hand each in turn to the solver that
2400 * is interested in them. If a solver reports that it failed we pass the same
2401 * event on to progressively more advanced solvers and the loop detector. Once
2402 * we've exhausted an event, or it has helped us progress, we drop it and
2403 * continue to the next one. The events are sorted first in order of solver
2404 * complexity (easy first) then order of insertion (oldest first).
2405 * Once we run out of events we loop over each permitted solver in turn
2406 * (easiest first) until either a deduction is made (and an event therefore
2407 * emerges) or no further deductions can be made (in which case we've failed).
2408 *
2409 * QUESTIONS:
2410 * * How do we 'loop over' a solver when both dots and squares are concerned.
2411 * Answer: first all squares then all dots.
2412 */
2413
2414 static int trivial_deductions(solver_state *sstate)
2415 {
2416 int i, current_yes, current_no;
2417 game_state *state = sstate->state;
2418 grid *g = state->game_grid;
2419 int diff = DIFF_MAX;
2420
2421 /* Per-face deductions */
2422 for (i = 0; i < g->num_faces; i++) {
2423 grid_face *f = g->faces + i;
2424
2425 if (sstate->face_solved[i])
2426 continue;
2427
2428 current_yes = sstate->face_yes_count[i];
2429 current_no = sstate->face_no_count[i];
2430
2431 if (current_yes + current_no == f->order) {
2432 sstate->face_solved[i] = TRUE;
2433 continue;
2434 }
2435
2436 if (state->clues[i] < 0)
2437 continue;
2438
2439 /*
2440 * This code checks whether the numeric clue on a face is so
2441 * large as to permit all its remaining LINE_UNKNOWNs to be
2442 * filled in as LINE_YES, or alternatively so small as to
2443 * permit them all to be filled in as LINE_NO.
2444 */
2445
2446 if (state->clues[i] < current_yes) {
2447 sstate->solver_status = SOLVER_MISTAKE;
2448 return DIFF_EASY;
2449 }
2450 if (state->clues[i] == current_yes) {
2451 if (face_setall(sstate, i, LINE_UNKNOWN, LINE_NO))
2452 diff = min(diff, DIFF_EASY);
2453 sstate->face_solved[i] = TRUE;
2454 continue;
2455 }
2456
2457 if (f->order - state->clues[i] < current_no) {
2458 sstate->solver_status = SOLVER_MISTAKE;
2459 return DIFF_EASY;
2460 }
2461 if (f->order - state->clues[i] == current_no) {
2462 if (face_setall(sstate, i, LINE_UNKNOWN, LINE_YES))
2463 diff = min(diff, DIFF_EASY);
2464 sstate->face_solved[i] = TRUE;
2465 continue;
2466 }
2467
2468 if (f->order - state->clues[i] == current_no + 1 &&
2469 f->order - current_yes - current_no > 2) {
2470 /*
2471 * One small refinement to the above: we also look for any
2472 * adjacent pair of LINE_UNKNOWNs around the face with
2473 * some LINE_YES incident on it from elsewhere. If we find
2474 * one, then we know that pair of LINE_UNKNOWNs can't
2475 * _both_ be LINE_YES, and hence that pushes us one line
2476 * closer to being able to determine all the rest.
2477 */
2478 int j, k, e1, e2, e, d;
2479
2480 for (j = 0; j < f->order; j++) {
2481 e1 = f->edges[j] - g->edges;
2482 e2 = f->edges[j+1 < f->order ? j+1 : 0] - g->edges;
2483
2484 if (g->edges[e1].dot1 == g->edges[e2].dot1 ||
2485 g->edges[e1].dot1 == g->edges[e2].dot2) {
2486 d = g->edges[e1].dot1 - g->dots;
2487 } else {
2488 assert(g->edges[e1].dot2 == g->edges[e2].dot1 ||
2489 g->edges[e1].dot2 == g->edges[e2].dot2);
2490 d = g->edges[e1].dot2 - g->dots;
2491 }
2492
2493 if (state->lines[e1] == LINE_UNKNOWN &&
2494 state->lines[e2] == LINE_UNKNOWN) {
2495 for (k = 0; k < g->dots[d].order; k++) {
2496 int e = g->dots[d].edges[k] - g->edges;
2497 if (state->lines[e] == LINE_YES)
2498 goto found; /* multi-level break */
2499 }
2500 }
2501 }
2502 continue;
2503
2504 found:
2505 /*
2506 * If we get here, we've found such a pair of edges, and
2507 * they're e1 and e2.
2508 */
2509 for (j = 0; j < f->order; j++) {
2510 e = f->edges[j] - g->edges;
2511 if (state->lines[e] == LINE_UNKNOWN && e != e1 && e != e2) {
2512 int r = solver_set_line(sstate, e, LINE_YES);
2513 assert(r);
2514 diff = min(diff, DIFF_EASY);
2515 }
2516 }
2517 }
2518 }
2519
2520 check_caches(sstate);
2521
2522 /* Per-dot deductions */
2523 for (i = 0; i < g->num_dots; i++) {
2524 grid_dot *d = g->dots + i;
2525 int yes, no, unknown;
2526
2527 if (sstate->dot_solved[i])
2528 continue;
2529
2530 yes = sstate->dot_yes_count[i];
2531 no = sstate->dot_no_count[i];
2532 unknown = d->order - yes - no;
2533
2534 if (yes == 0) {
2535 if (unknown == 0) {
2536 sstate->dot_solved[i] = TRUE;
2537 } else if (unknown == 1) {
2538 dot_setall(sstate, i, LINE_UNKNOWN, LINE_NO);
2539 diff = min(diff, DIFF_EASY);
2540 sstate->dot_solved[i] = TRUE;
2541 }
2542 } else if (yes == 1) {
2543 if (unknown == 0) {
2544 sstate->solver_status = SOLVER_MISTAKE;
2545 return DIFF_EASY;
2546 } else if (unknown == 1) {
2547 dot_setall(sstate, i, LINE_UNKNOWN, LINE_YES);
2548 diff = min(diff, DIFF_EASY);
2549 }
2550 } else if (yes == 2) {
2551 if (unknown > 0) {
2552 dot_setall(sstate, i, LINE_UNKNOWN, LINE_NO);
2553 diff = min(diff, DIFF_EASY);
2554 }
2555 sstate->dot_solved[i] = TRUE;
2556 } else {
2557 sstate->solver_status = SOLVER_MISTAKE;
2558 return DIFF_EASY;
2559 }
2560 }
2561
2562 check_caches(sstate);
2563
2564 return diff;
2565 }
2566
2567 static int dline_deductions(solver_state *sstate)
2568 {
2569 game_state *state = sstate->state;
2570 grid *g = state->game_grid;
2571 char *dlines = sstate->dlines;
2572 int i;
2573 int diff = DIFF_MAX;
2574
2575 /* ------ Face deductions ------ */
2576
2577 /* Given a set of dline atmostone/atleastone constraints, need to figure
2578 * out if we can deduce any further info. For more general faces than
2579 * squares, this turns out to be a tricky problem.
2580 * The approach taken here is to define (per face) NxN matrices:
2581 * "maxs" and "mins".
2582 * The entries maxs(j,k) and mins(j,k) define the upper and lower limits
2583 * for the possible number of edges that are YES between positions j and k
2584 * going clockwise around the face. Can think of j and k as marking dots
2585 * around the face (recall the labelling scheme: edge0 joins dot0 to dot1,
2586 * edge1 joins dot1 to dot2 etc).
2587 * Trivially, mins(j,j) = maxs(j,j) = 0, and we don't even bother storing
2588 * these. mins(j,j+1) and maxs(j,j+1) are determined by whether edge{j}
2589 * is YES, NO or UNKNOWN. mins(j,j+2) and maxs(j,j+2) are related to
2590 * the dline atmostone/atleastone status for edges j and j+1.
2591 *
2592 * Then we calculate the remaining entries recursively. We definitely
2593 * know that
2594 * mins(j,k) >= { mins(j,u) + mins(u,k) } for any u between j and k.
2595 * This is because any valid placement of YESs between j and k must give
2596 * a valid placement between j and u, and also between u and k.
2597 * I believe it's sufficient to use just the two values of u:
2598 * j+1 and j+2. Seems to work well in practice - the bounds we compute
2599 * are rigorous, even if they might not be best-possible.
2600 *
2601 * Once we have maxs and mins calculated, we can make inferences about
2602 * each dline{j,j+1} by looking at the possible complementary edge-counts
2603 * mins(j+2,j) and maxs(j+2,j) and comparing these with the face clue.
2604 * As well as dlines, we can make similar inferences about single edges.
2605 * For example, consider a pentagon with clue 3, and we know at most one
2606 * of (edge0, edge1) is YES, and at most one of (edge2, edge3) is YES.
2607 * We could then deduce edge4 is YES, because maxs(0,4) would be 2, so
2608 * that final edge would have to be YES to make the count up to 3.
2609 */
2610
2611 /* Much quicker to allocate arrays on the stack than the heap, so
2612 * define the largest possible face size, and base our array allocations
2613 * on that. We check this with an assertion, in case someone decides to
2614 * make a grid which has larger faces than this. Note, this algorithm
2615 * could get quite expensive if there are many large faces. */
2616 #define MAX_FACE_SIZE 12
2617
2618 for (i = 0; i < g->num_faces; i++) {
2619 int maxs[MAX_FACE_SIZE][MAX_FACE_SIZE];
2620 int mins[MAX_FACE_SIZE][MAX_FACE_SIZE];
2621 grid_face *f = g->faces + i;
2622 int N = f->order;
2623 int j,m;
2624 int clue = state->clues[i];
2625 assert(N <= MAX_FACE_SIZE);
2626 if (sstate->face_solved[i])
2627 continue;
2628 if (clue < 0) continue;
2629
2630 /* Calculate the (j,j+1) entries */
2631 for (j = 0; j < N; j++) {
2632 int edge_index = f->edges[j] - g->edges;
2633 int dline_index;
2634 enum line_state line1 = state->lines[edge_index];
2635 enum line_state line2;
2636 int tmp;
2637 int k = j + 1;
2638 if (k >= N) k = 0;
2639 maxs[j][k] = (line1 == LINE_NO) ? 0 : 1;
2640 mins[j][k] = (line1 == LINE_YES) ? 1 : 0;
2641 /* Calculate the (j,j+2) entries */
2642 dline_index = dline_index_from_face(g, f, k);
2643 edge_index = f->edges[k] - g->edges;
2644 line2 = state->lines[edge_index];
2645 k++;
2646 if (k >= N) k = 0;
2647
2648 /* max */
2649 tmp = 2;
2650 if (line1 == LINE_NO) tmp--;
2651 if (line2 == LINE_NO) tmp--;
2652 if (tmp == 2 && is_atmostone(dlines, dline_index))
2653 tmp = 1;
2654 maxs[j][k] = tmp;
2655
2656 /* min */
2657 tmp = 0;
2658 if (line1 == LINE_YES) tmp++;
2659 if (line2 == LINE_YES) tmp++;
2660 if (tmp == 0 && is_atleastone(dlines, dline_index))
2661 tmp = 1;
2662 mins[j][k] = tmp;
2663 }
2664
2665 /* Calculate the (j,j+m) entries for m between 3 and N-1 */
2666 for (m = 3; m < N; m++) {
2667 for (j = 0; j < N; j++) {
2668 int k = j + m;
2669 int u = j + 1;
2670 int v = j + 2;
2671 int tmp;
2672 if (k >= N) k -= N;
2673 if (u >= N) u -= N;
2674 if (v >= N) v -= N;
2675 maxs[j][k] = maxs[j][u] + maxs[u][k];
2676 mins[j][k] = mins[j][u] + mins[u][k];
2677 tmp = maxs[j][v] + maxs[v][k];
2678 maxs[j][k] = min(maxs[j][k], tmp);
2679 tmp = mins[j][v] + mins[v][k];
2680 mins[j][k] = max(mins[j][k], tmp);
2681 }
2682 }
2683
2684 /* See if we can make any deductions */
2685 for (j = 0; j < N; j++) {
2686 int k;
2687 grid_edge *e = f->edges[j];
2688 int line_index = e - g->edges;
2689 int dline_index;
2690
2691 if (state->lines[line_index] != LINE_UNKNOWN)
2692 continue;
2693 k = j + 1;
2694 if (k >= N) k = 0;
2695
2696 /* minimum YESs in the complement of this edge */
2697 if (mins[k][j] > clue) {
2698 sstate->solver_status = SOLVER_MISTAKE;
2699 return DIFF_EASY;
2700 }
2701 if (mins[k][j] == clue) {
2702 /* setting this edge to YES would make at least
2703 * (clue+1) edges - contradiction */
2704 solver_set_line(sstate, line_index, LINE_NO);
2705 diff = min(diff, DIFF_EASY);
2706 }
2707 if (maxs[k][j] < clue - 1) {
2708 sstate->solver_status = SOLVER_MISTAKE;
2709 return DIFF_EASY;
2710 }
2711 if (maxs[k][j] == clue - 1) {
2712 /* Only way to satisfy the clue is to set edge{j} as YES */
2713 solver_set_line(sstate, line_index, LINE_YES);
2714 diff = min(diff, DIFF_EASY);
2715 }
2716
2717 /* More advanced deduction that allows propagation along diagonal
2718 * chains of faces connected by dots, for example, 3-2-...-2-3
2719 * in square grids. */
2720 if (sstate->diff >= DIFF_TRICKY) {
2721 /* Now see if we can make dline deduction for edges{j,j+1} */
2722 e = f->edges[k];
2723 if (state->lines[e - g->edges] != LINE_UNKNOWN)
2724 /* Only worth doing this for an UNKNOWN,UNKNOWN pair.
2725 * Dlines where one of the edges is known, are handled in the
2726 * dot-deductions */
2727 continue;
2728
2729 dline_index = dline_index_from_face(g, f, k);
2730 k++;
2731 if (k >= N) k = 0;
2732
2733 /* minimum YESs in the complement of this dline */
2734 if (mins[k][j] > clue - 2) {
2735 /* Adding 2 YESs would break the clue */
2736 if (set_atmostone(dlines, dline_index))
2737 diff = min(diff, DIFF_NORMAL);
2738 }
2739 /* maximum YESs in the complement of this dline */
2740 if (maxs[k][j] < clue) {
2741 /* Adding 2 NOs would mean not enough YESs */
2742 if (set_atleastone(dlines, dline_index))
2743 diff = min(diff, DIFF_NORMAL);
2744 }
2745 }
2746 }
2747 }
2748
2749 if (diff < DIFF_NORMAL)
2750 return diff;
2751
2752 /* ------ Dot deductions ------ */
2753
2754 for (i = 0; i < g->num_dots; i++) {
2755 grid_dot *d = g->dots + i;
2756 int N = d->order;
2757 int yes, no, unknown;
2758 int j;
2759 if (sstate->dot_solved[i])
2760 continue;
2761 yes = sstate->dot_yes_count[i];
2762 no = sstate->dot_no_count[i];
2763 unknown = N - yes - no;
2764
2765 for (j = 0; j < N; j++) {
2766 int k;
2767 int dline_index;
2768 int line1_index, line2_index;
2769 enum line_state line1, line2;
2770 k = j + 1;
2771 if (k >= N) k = 0;
2772 dline_index = dline_index_from_dot(g, d, j);
2773 line1_index = d->edges[j] - g->edges;
2774 line2_index = d->edges[k] - g->edges;
2775 line1 = state->lines[line1_index];
2776 line2 = state->lines[line2_index];
2777
2778 /* Infer dline state from line state */
2779 if (line1 == LINE_NO || line2 == LINE_NO) {
2780 if (set_atmostone(dlines, dline_index))
2781 diff = min(diff, DIFF_NORMAL);
2782 }
2783 if (line1 == LINE_YES || line2 == LINE_YES) {
2784 if (set_atleastone(dlines, dline_index))
2785 diff = min(diff, DIFF_NORMAL);
2786 }
2787 /* Infer line state from dline state */
2788 if (is_atmostone(dlines, dline_index)) {
2789 if (line1 == LINE_YES && line2 == LINE_UNKNOWN) {
2790 solver_set_line(sstate, line2_index, LINE_NO);
2791 diff = min(diff, DIFF_EASY);
2792 }
2793 if (line2 == LINE_YES && line1 == LINE_UNKNOWN) {
2794 solver_set_line(sstate, line1_index, LINE_NO);
2795 diff = min(diff, DIFF_EASY);
2796 }
2797 }
2798 if (is_atleastone(dlines, dline_index)) {
2799 if (line1 == LINE_NO && line2 == LINE_UNKNOWN) {
2800 solver_set_line(sstate, line2_index, LINE_YES);
2801 diff = min(diff, DIFF_EASY);
2802 }
2803 if (line2 == LINE_NO && line1 == LINE_UNKNOWN) {
2804 solver_set_line(sstate, line1_index, LINE_YES);
2805 diff = min(diff, DIFF_EASY);
2806 }
2807 }
2808 /* Deductions that depend on the numbers of lines.
2809 * Only bother if both lines are UNKNOWN, otherwise the
2810 * easy-mode solver (or deductions above) would have taken
2811 * care of it. */
2812 if (line1 != LINE_UNKNOWN || line2 != LINE_UNKNOWN)
2813 continue;
2814
2815 if (yes == 0 && unknown == 2) {
2816 /* Both these unknowns must be identical. If we know
2817 * atmostone or atleastone, we can make progress. */
2818 if (is_atmostone(dlines, dline_index)) {
2819 solver_set_line(sstate, line1_index, LINE_NO);
2820 solver_set_line(sstate, line2_index, LINE_NO);
2821 diff = min(diff, DIFF_EASY);
2822 }
2823 if (is_atleastone(dlines, dline_index)) {
2824 solver_set_line(sstate, line1_index, LINE_YES);
2825 solver_set_line(sstate, line2_index, LINE_YES);
2826 diff = min(diff, DIFF_EASY);
2827 }
2828 }
2829 if (yes == 1) {
2830 if (set_atmostone(dlines, dline_index))
2831 diff = min(diff, DIFF_NORMAL);
2832 if (unknown == 2) {
2833 if (set_atleastone(dlines, dline_index))
2834 diff = min(diff, DIFF_NORMAL);
2835 }
2836 }
2837
2838 /* More advanced deduction that allows propagation along diagonal
2839 * chains of faces connected by dots, for example: 3-2-...-2-3
2840 * in square grids. */
2841 if (sstate->diff >= DIFF_TRICKY) {
2842 /* If we have atleastone set for this dline, infer
2843 * atmostone for each "opposite" dline (that is, each
2844 * dline without edges in common with this one).
2845 * Again, this test is only worth doing if both these
2846 * lines are UNKNOWN. For if one of these lines were YES,
2847 * the (yes == 1) test above would kick in instead. */
2848 if (is_atleastone(dlines, dline_index)) {
2849 int opp;
2850 for (opp = 0; opp < N; opp++) {
2851 int opp_dline_index;
2852 if (opp == j || opp == j+1 || opp == j-1)
2853 continue;
2854 if (j == 0 && opp == N-1)
2855 continue;
2856 if (j == N-1 && opp == 0)
2857 continue;
2858 opp_dline_index = dline_index_from_dot(g, d, opp);
2859 if (set_atmostone(dlines, opp_dline_index))
2860 diff = min(diff, DIFF_NORMAL);
2861 }
2862 if (yes == 0 && is_atmostone(dlines, dline_index)) {
2863 /* This dline has *exactly* one YES and there are no
2864 * other YESs. This allows more deductions. */
2865 if (unknown == 3) {
2866 /* Third unknown must be YES */
2867 for (opp = 0; opp < N; opp++) {
2868 int opp_index;
2869 if (opp == j || opp == k)
2870 continue;
2871 opp_index = d->edges[opp] - g->edges;
2872 if (state->lines[opp_index] == LINE_UNKNOWN) {
2873 solver_set_line(sstate, opp_index,
2874 LINE_YES);
2875 diff = min(diff, DIFF_EASY);
2876 }
2877 }
2878 } else if (unknown == 4) {
2879 /* Exactly one of opposite UNKNOWNS is YES. We've
2880 * already set atmostone, so set atleastone as
2881 * well.
2882 */
2883 if (dline_set_opp_atleastone(sstate, d, j))
2884 diff = min(diff, DIFF_NORMAL);
2885 }
2886 }
2887 }
2888 }
2889 }
2890 }
2891 return diff;
2892 }
2893
2894 static int linedsf_deductions(solver_state *sstate)
2895 {
2896 game_state *state = sstate->state;
2897 grid *g = state->game_grid;
2898 char *dlines = sstate->dlines;
2899 int i;
2900 int diff = DIFF_MAX;
2901 int diff_tmp;
2902
2903 /* ------ Face deductions ------ */
2904
2905 /* A fully-general linedsf deduction seems overly complicated
2906 * (I suspect the problem is NP-complete, though in practice it might just
2907 * be doable because faces are limited in size).
2908 * For simplicity, we only consider *pairs* of LINE_UNKNOWNS that are
2909 * known to be identical. If setting them both to YES (or NO) would break
2910 * the clue, set them to NO (or YES). */
2911
2912 for (i = 0; i < g->num_faces; i++) {
2913 int N, yes, no, unknown;
2914 int clue;
2915
2916 if (sstate->face_solved[i])
2917 continue;
2918 clue = state->clues[i];
2919 if (clue < 0)
2920 continue;
2921
2922 N = g->faces[i].order;
2923 yes = sstate->face_yes_count[i];
2924 if (yes + 1 == clue) {
2925 if (face_setall_identical(sstate, i, LINE_NO))
2926 diff = min(diff, DIFF_EASY);
2927 }
2928 no = sstate->face_no_count[i];
2929 if (no + 1 == N - clue) {
2930 if (face_setall_identical(sstate, i, LINE_YES))
2931 diff = min(diff, DIFF_EASY);
2932 }
2933
2934 /* Reload YES count, it might have changed */
2935 yes = sstate->face_yes_count[i];
2936 unknown = N - no - yes;
2937
2938 /* Deductions with small number of LINE_UNKNOWNs, based on overall
2939 * parity of lines. */
2940 diff_tmp = parity_deductions(sstate, g->faces[i].edges,
2941 (clue - yes) % 2, unknown);
2942 diff = min(diff, diff_tmp);
2943 }
2944
2945 /* ------ Dot deductions ------ */
2946 for (i = 0; i < g->num_dots; i++) {
2947 grid_dot *d = g->dots + i;
2948 int N = d->order;
2949 int j;
2950 int yes, no, unknown;
2951 /* Go through dlines, and do any dline<->linedsf deductions wherever
2952 * we find two UNKNOWNS. */
2953 for (j = 0; j < N; j++) {
2954 int dline_index = dline_index_from_dot(g, d, j);
2955 int line1_index;
2956 int line2_index;
2957 int can1, can2, inv1, inv2;
2958 int j2;
2959 line1_index = d->edges[j] - g->edges;
2960 if (state->lines[line1_index] != LINE_UNKNOWN)
2961 continue;
2962 j2 = j + 1;
2963 if (j2 == N) j2 = 0;
2964 line2_index = d->edges[j2] - g->edges;
2965 if (state->lines[line2_index] != LINE_UNKNOWN)
2966 continue;
2967 /* Infer dline flags from linedsf */
2968 can1 = edsf_canonify(sstate->linedsf, line1_index, &inv1);
2969 can2 = edsf_canonify(sstate->linedsf, line2_index, &inv2);
2970 if (can1 == can2 && inv1 != inv2) {
2971 /* These are opposites, so set dline atmostone/atleastone */
2972 if (set_atmostone(dlines, dline_index))
2973 diff = min(diff, DIFF_NORMAL);
2974 if (set_atleastone(dlines, dline_index))
2975 diff = min(diff, DIFF_NORMAL);
2976 continue;
2977 }
2978 /* Infer linedsf from dline flags */
2979 if (is_atmostone(dlines, dline_index)
2980 && is_atleastone(dlines, dline_index)) {
2981 if (merge_lines(sstate, line1_index, line2_index, 1))
2982 diff = min(diff, DIFF_HARD);
2983 }
2984 }
2985
2986 /* Deductions with small number of LINE_UNKNOWNs, based on overall
2987 * parity of lines. */
2988 yes = sstate->dot_yes_count[i];
2989 no = sstate->dot_no_count[i];
2990 unknown = N - yes - no;
2991 diff_tmp = parity_deductions(sstate, d->edges,
2992 yes % 2, unknown);
2993 diff = min(diff, diff_tmp);
2994 }
2995
2996 /* ------ Edge dsf deductions ------ */
2997
2998 /* If the state of a line is known, deduce the state of its canonical line
2999 * too, and vice versa. */
3000 for (i = 0; i < g->num_edges; i++) {
3001 int can, inv;
3002 enum line_state s;
3003 can = edsf_canonify(sstate->linedsf, i, &inv);
3004 if (can == i)
3005 continue;
3006 s = sstate->state->lines[can];
3007 if (s != LINE_UNKNOWN) {
3008 if (solver_set_line(sstate, i, inv ? OPP(s) : s))
3009 diff = min(diff, DIFF_EASY);
3010 } else {
3011 s = sstate->state->lines[i];
3012 if (s != LINE_UNKNOWN) {
3013 if (solver_set_line(sstate, can, inv ? OPP(s) : s))
3014 diff = min(diff, DIFF_EASY);
3015 }
3016 }
3017 }
3018
3019 return diff;
3020 }
3021
3022 static int loop_deductions(solver_state *sstate)
3023 {
3024 int edgecount = 0, clues = 0, satclues = 0, sm1clues = 0;
3025 game_state *state = sstate->state;
3026 grid *g = state->game_grid;
3027 int shortest_chainlen = g->num_dots;
3028 int loop_found = FALSE;
3029 int dots_connected;
3030 int progress = FALSE;
3031 int i;
3032
3033 /*
3034 * Go through the grid and update for all the new edges.
3035 * Since merge_dots() is idempotent, the simplest way to
3036 * do this is just to update for _all_ the edges.
3037 * Also, while we're here, we count the edges.
3038 */
3039 for (i = 0; i < g->num_edges; i++) {
3040 if (state->lines[i] == LINE_YES) {
3041 loop_found |= merge_dots(sstate, i);
3042 edgecount++;
3043 }
3044 }
3045
3046 /*
3047 * Count the clues, count the satisfied clues, and count the
3048 * satisfied-minus-one clues.
3049 */
3050 for (i = 0; i < g->num_faces; i++) {
3051 int c = state->clues[i];
3052 if (c >= 0) {
3053 int o = sstate->face_yes_count[i];
3054 if (o == c)
3055 satclues++;
3056 else if (o == c-1)
3057 sm1clues++;
3058 clues++;
3059 }
3060 }
3061
3062 for (i = 0; i < g->num_dots; ++i) {
3063 dots_connected =
3064 sstate->looplen[dsf_canonify(sstate->dotdsf, i)];
3065 if (dots_connected > 1)
3066 shortest_chainlen = min(shortest_chainlen, dots_connected);
3067 }
3068
3069 assert(sstate->solver_status == SOLVER_INCOMPLETE);
3070
3071 if (satclues == clues && shortest_chainlen == edgecount) {
3072 sstate->solver_status = SOLVER_SOLVED;
3073 /* This discovery clearly counts as progress, even if we haven't
3074 * just added any lines or anything */
3075 progress = TRUE;
3076 goto finished_loop_deductionsing;
3077 }
3078
3079 /*
3080 * Now go through looking for LINE_UNKNOWN edges which
3081 * connect two dots that are already in the same
3082 * equivalence class. If we find one, test to see if the
3083 * loop it would create is a solution.
3084 */
3085 for (i = 0; i < g->num_edges; i++) {
3086 grid_edge *e = g->edges + i;
3087 int d1 = e->dot1 - g->dots;
3088 int d2 = e->dot2 - g->dots;
3089 int eqclass, val;
3090 if (state->lines[i] != LINE_UNKNOWN)
3091 continue;
3092
3093 eqclass = dsf_canonify(sstate->dotdsf, d1);
3094 if (eqclass != dsf_canonify(sstate->dotdsf, d2))
3095 continue;
3096
3097 val = LINE_NO; /* loop is bad until proven otherwise */
3098
3099 /*
3100 * This edge would form a loop. Next
3101 * question: how long would the loop be?
3102 * Would it equal the total number of edges
3103 * (plus the one we'd be adding if we added
3104 * it)?
3105 */
3106 if (sstate->looplen[eqclass] == edgecount + 1) {
3107 int sm1_nearby;
3108
3109 /*
3110 * This edge would form a loop which
3111 * took in all the edges in the entire
3112 * grid. So now we need to work out
3113 * whether it would be a valid solution
3114 * to the puzzle, which means we have to
3115 * check if it satisfies all the clues.
3116 * This means that every clue must be
3117 * either satisfied or satisfied-minus-
3118 * 1, and also that the number of
3119 * satisfied-minus-1 clues must be at
3120 * most two and they must lie on either
3121 * side of this edge.
3122 */
3123 sm1_nearby = 0;
3124 if (e->face1) {
3125 int f = e->face1 - g->faces;
3126 int c = state->clues[f];
3127 if (c >= 0 && sstate->face_yes_count[f] == c - 1)
3128 sm1_nearby++;
3129 }
3130 if (e->face2) {
3131 int f = e->face2 - g->faces;
3132 int c = state->clues[f];
3133 if (c >= 0 && sstate->face_yes_count[f] == c - 1)
3134 sm1_nearby++;
3135 }
3136 if (sm1clues == sm1_nearby &&
3137 sm1clues + satclues == clues) {
3138 val = LINE_YES; /* loop is good! */
3139 }
3140 }
3141
3142 /*
3143 * Right. Now we know that adding this edge
3144 * would form a loop, and we know whether
3145 * that loop would be a viable solution or
3146 * not.
3147 *
3148 * If adding this edge produces a solution,
3149 * then we know we've found _a_ solution but
3150 * we don't know that it's _the_ solution -
3151 * if it were provably the solution then
3152 * we'd have deduced this edge some time ago
3153 * without the need to do loop detection. So
3154 * in this state we return SOLVER_AMBIGUOUS,
3155 * which has the effect that hitting Solve
3156 * on a user-provided puzzle will fill in a
3157 * solution but using the solver to
3158 * construct new puzzles won't consider this
3159 * a reasonable deduction for the user to
3160 * make.
3161 */
3162 progress = solver_set_line(sstate, i, val);
3163 assert(progress == TRUE);
3164 if (val == LINE_YES) {
3165 sstate->solver_status = SOLVER_AMBIGUOUS;
3166 goto finished_loop_deductionsing;
3167 }
3168 }
3169
3170 finished_loop_deductionsing:
3171 return progress ? DIFF_EASY : DIFF_MAX;
3172 }
3173
3174 /* This will return a dynamically allocated solver_state containing the (more)
3175 * solved grid */
3176 static solver_state *solve_game_rec(const solver_state *sstate_start)
3177 {
3178 solver_state *sstate;
3179
3180 /* Index of the solver we should call next. */
3181 int i = 0;
3182
3183 /* As a speed-optimisation, we avoid re-running solvers that we know
3184 * won't make any progress. This happens when a high-difficulty
3185 * solver makes a deduction that can only help other high-difficulty
3186 * solvers.
3187 * For example: if a new 'dline' flag is set by dline_deductions, the
3188 * trivial_deductions solver cannot do anything with this information.
3189 * If we've already run the trivial_deductions solver (because it's
3190 * earlier in the list), there's no point running it again.
3191 *
3192 * Therefore: if a solver is earlier in the list than "threshold_index",
3193 * we don't bother running it if it's difficulty level is less than
3194 * "threshold_diff".
3195 */
3196 int threshold_diff = 0;
3197 int threshold_index = 0;
3198
3199 sstate = dup_solver_state(sstate_start);
3200
3201 check_caches(sstate);
3202
3203 while (i < NUM_SOLVERS) {
3204 if (sstate->solver_status == SOLVER_MISTAKE)
3205 return sstate;
3206 if (sstate->solver_status == SOLVER_SOLVED ||
3207 sstate->solver_status == SOLVER_AMBIGUOUS) {
3208 /* solver finished */
3209 break;
3210 }
3211
3212 if ((solver_diffs[i] >= threshold_diff || i >= threshold_index)
3213 && solver_diffs[i] <= sstate->diff) {
3214 /* current_solver is eligible, so use it */
3215 int next_diff = solver_fns[i](sstate);
3216 if (next_diff != DIFF_MAX) {
3217 /* solver made progress, so use new thresholds and
3218 * start again at top of list. */
3219 threshold_diff = next_diff;
3220 threshold_index = i;
3221 i = 0;
3222 continue;
3223 }
3224 }
3225 /* current_solver is ineligible, or failed to make progress, so
3226 * go to the next solver in the list */
3227 i++;
3228 }
3229
3230 if (sstate->solver_status == SOLVER_SOLVED ||
3231 sstate->solver_status == SOLVER_AMBIGUOUS) {
3232 /* s/LINE_UNKNOWN/LINE_NO/g */
3233 array_setall(sstate->state->lines, LINE_UNKNOWN, LINE_NO,
3234 sstate->state->game_grid->num_edges);
3235 return sstate;
3236 }
3237
3238 return sstate;
3239 }
3240
3241 static char *solve_game(game_state *state, game_state *currstate,
3242 char *aux, char **error)
3243 {
3244 char *soln = NULL;
3245 solver_state *sstate, *new_sstate;
3246
3247 sstate = new_solver_state(state, DIFF_MAX);
3248 new_sstate = solve_game_rec(sstate);
3249
3250 if (new_sstate->solver_status == SOLVER_SOLVED) {
3251 soln = encode_solve_move(new_sstate->state);
3252 } else if (new_sstate->solver_status == SOLVER_AMBIGUOUS) {
3253 soln = encode_solve_move(new_sstate->state);
3254 /**error = "Solver found ambiguous solutions"; */
3255 } else {
3256 soln = encode_solve_move(new_sstate->state);
3257 /**error = "Solver failed"; */
3258 }
3259
3260 free_solver_state(new_sstate);
3261 free_solver_state(sstate);
3262
3263 return soln;
3264 }
3265
3266 /* ----------------------------------------------------------------------
3267 * Drawing and mouse-handling
3268 */
3269
3270 static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
3271 int x, int y, int button)
3272 {
3273 grid *g = state->game_grid;
3274 grid_edge *e;
3275 int i;
3276 char *ret, buf[80];
3277 char button_char = ' ';
3278 enum line_state old_state;
3279
3280 button &= ~MOD_MASK;
3281
3282 /* Convert mouse-click (x,y) to grid coordinates */
3283 x -= BORDER(ds->tilesize);
3284 y -= BORDER(ds->tilesize);
3285 x = x * g->tilesize / ds->tilesize;
3286 y = y * g->tilesize / ds->tilesize;
3287 x += g->lowest_x;
3288 y += g->lowest_y;
3289
3290 e = grid_nearest_edge(g, x, y);
3291 if (e == NULL)
3292 return NULL;
3293
3294 i = e - g->edges;
3295
3296 /* I think it's only possible to play this game with mouse clicks, sorry */
3297 /* Maybe will add mouse drag support some time */
3298 old_state = state->lines[i];
3299
3300 switch (button) {
3301 case LEFT_BUTTON:
3302 switch (old_state) {
3303 case LINE_UNKNOWN:
3304 button_char = 'y';
3305 break;
3306 case LINE_YES:
3307 #ifdef STYLUS_BASED
3308 button_char = 'n';
3309 break;
3310 #endif
3311 case LINE_NO:
3312 button_char = 'u';
3313 break;
3314 }
3315 break;
3316 case MIDDLE_BUTTON:
3317 button_char = 'u';
3318 break;
3319 case RIGHT_BUTTON:
3320 switch (old_state) {
3321 case LINE_UNKNOWN:
3322 button_char = 'n';
3323 break;
3324 case LINE_NO:
3325 #ifdef STYLUS_BASED
3326 button_char = 'y';
3327 break;
3328 #endif
3329 case LINE_YES:
3330 button_char = 'u';
3331 break;
3332 }
3333 break;
3334 default:
3335 return NULL;
3336 }
3337
3338
3339 sprintf(buf, "%d%c", i, (int)button_char);
3340 ret = dupstr(buf);
3341
3342 return ret;
3343 }
3344
3345 static game_state *execute_move(game_state *state, char *move)
3346 {
3347 int i;
3348 game_state *newstate = dup_game(state);
3349
3350 if (move[0] == 'S') {
3351 move++;
3352 newstate->cheated = TRUE;
3353 }
3354
3355 while (*move) {
3356 i = atoi(move);
3357 if (i < 0 || i >= newstate->game_grid->num_edges)
3358 goto fail;
3359 move += strspn(move, "1234567890");
3360 switch (*(move++)) {
3361 case 'y':
3362 newstate->lines[i] = LINE_YES;
3363 break;
3364 case 'n':
3365 newstate->lines[i] = LINE_NO;
3366 break;
3367 case 'u':
3368 newstate->lines[i] = LINE_UNKNOWN;
3369 break;
3370 default:
3371 goto fail;
3372 }
3373 }
3374
3375 /*
3376 * Check for completion.
3377 */
3378 if (check_completion(newstate))
3379 newstate->solved = TRUE;
3380
3381 return newstate;
3382
3383 fail:
3384 free_game(newstate);
3385 return NULL;
3386 }
3387
3388 /* ----------------------------------------------------------------------
3389 * Drawing routines.
3390 */
3391
3392 /* Convert from grid coordinates to screen coordinates */
3393 static void grid_to_screen(const game_drawstate *ds, const grid *g,
3394 int grid_x, int grid_y, int *x, int *y)
3395 {
3396 *x = grid_x - g->lowest_x;
3397 *y = grid_y - g->lowest_y;
3398 *x = *x * ds->tilesize / g->tilesize;
3399 *y = *y * ds->tilesize / g->tilesize;
3400 *x += BORDER(ds->tilesize);
3401 *y += BORDER(ds->tilesize);
3402 }
3403
3404 /* Returns (into x,y) position of centre of face for rendering the text clue.
3405 */
3406 static void face_text_pos(const game_drawstate *ds, const grid *g,
3407 const grid_face *f, int *xret, int *yret)
3408 {
3409 int x, y, x0, y0, x1, y1, xbest, ybest, i, shift;
3410 long bestdist;
3411 int faceindex = f - g->faces;
3412
3413 /*
3414 * Return the cached position for this face, if we've already
3415 * worked it out.
3416 */
3417 if (ds->textx[faceindex] >= 0) {
3418 *xret = ds->textx[faceindex];
3419 *yret = ds->texty[faceindex];
3420 return;
3421 }
3422
3423 /*
3424 * Otherwise, try to find the point in the polygon with the
3425 * maximum distance to any edge or corner.
3426 *
3427 * Start by working out the face's bounding box, in grid
3428 * coordinates.
3429 */
3430 x0 = x1 = f->dots[0]->x;
3431 y0 = y1 = f->dots[0]->y;
3432 for (i = 1; i < f->order; i++) {
3433 if (x0 > f->dots[i]->x) x0 = f->dots[i]->x;
3434 if (x1 < f->dots[i]->x) x1 = f->dots[i]->x;
3435 if (y0 > f->dots[i]->y) y0 = f->dots[i]->y;
3436 if (y1 < f->dots[i]->y) y1 = f->dots[i]->y;
3437 }
3438
3439 /*
3440 * If the grid is at excessive resolution, decide on a scaling
3441 * factor to bring it within reasonable bounds so we don't have to
3442 * think too hard or suffer integer overflow.
3443 */
3444 shift = 0;
3445 while (x1 - x0 > 128 || y1 - y0 > 128) {
3446 shift++;
3447 x0 >>= 1;
3448 x1 >>= 1;
3449 y0 >>= 1;
3450 y1 >>= 1;
3451 }
3452
3453 /*
3454 * Now iterate over every point in that bounding box.
3455 */
3456 xbest = ybest = -1;
3457 bestdist = -1;
3458 for (y = y0; y <= y1; y++) {
3459 for (x = x0; x <= x1; x++) {
3460 /*
3461 * First, disqualify the point if it's not inside the
3462 * polygon, which we work out by counting the edges to the
3463 * right of the point. (For tiebreaking purposes when
3464 * edges start or end on our y-coordinate or go right
3465 * through it, we consider our point to be offset by a
3466 * small _positive_ epsilon in both the x- and
3467 * y-direction.)
3468 */
3469 int in = 0;
3470 for (i = 0; i < f->order; i++) {
3471 int xs = f->edges[i]->dot1->x >> shift;
3472 int xe = f->edges[i]->dot2->x >> shift;
3473 int ys = f->edges[i]->dot1->y >> shift;
3474 int ye = f->edges[i]->dot2->y >> shift;
3475 if ((y >= ys && y < ye) || (y >= ye && y < ys)) {
3476 /*
3477 * The line goes past our y-position. Now we need
3478 * to know if its x-coordinate when it does so is
3479 * to our right.
3480 *
3481 * The x-coordinate in question is mathematically
3482 * (y - ys) * (xe - xs) / (ye - ys), and we want
3483 * to know whether (x - xs) >= that. Of course we
3484 * avoid the division, so we can work in integers;
3485 * to do this we must multiply both sides of the
3486 * inequality by ye - ys, which means we must
3487 * first check that's not negative.
3488 */
3489 int num = xe - xs, denom = ye - ys;
3490 if (denom < 0) {
3491 num = -num;
3492 denom = -denom;
3493 }
3494 if ((x - xs) * denom >= (y - ys) * num)
3495 in ^= 1;
3496 }
3497 }
3498
3499 if (in) {
3500 long mindist = LONG_MAX;
3501
3502 /*
3503 * This point is inside the polygon, so now we check
3504 * its minimum distance to every edge and corner.
3505 * First the corners ...
3506 */
3507 for (i = 0; i < f->order; i++) {
3508 int xp = f->dots[i]->x >> shift;
3509 int yp = f->dots[i]->y >> shift;
3510 int dx = x - xp, dy = y - yp;
3511 long dist = (long)dx*dx + (long)dy*dy;
3512 if (mindist > dist)
3513 mindist = dist;
3514 }
3515
3516 /*
3517 * ... and now also check the perpendicular distance
3518 * to every edge, if the perpendicular lies between
3519 * the edge's endpoints.
3520 */
3521 for (i = 0; i < f->order; i++) {
3522 int xs = f->edges[i]->dot1->x >> shift;
3523 int xe = f->edges[i]->dot2->x >> shift;
3524 int ys = f->edges[i]->dot1->y >> shift;
3525 int ye = f->edges[i]->dot2->y >> shift;
3526
3527 /*
3528 * If s and e are our endpoints, and p our
3529 * candidate circle centre, the foot of a
3530 * perpendicular from p to the line se lies
3531 * between s and e if and only if (p-s).(e-s) lies
3532 * strictly between 0 and (e-s).(e-s).
3533 */
3534 int edx = xe - xs, edy = ye - ys;
3535 int pdx = x - xs, pdy = y - ys;
3536 long pde = (long)pdx * edx + (long)pdy * edy;
3537 long ede = (long)edx * edx + (long)edy * edy;
3538 if (0 < pde && pde < ede) {
3539 /*
3540 * Yes, the nearest point on this edge is
3541 * closer than either endpoint, so we must
3542 * take it into account by measuring the
3543 * perpendicular distance to the edge and
3544 * checking its square against mindist.
3545 */
3546
3547 long pdre = (long)pdx * edy - (long)pdy * edx;
3548 long sqlen = pdre * pdre / ede;
3549
3550 if (mindist > sqlen)
3551 mindist = sqlen;
3552 }
3553 }
3554
3555 /*
3556 * Right. Now we know the biggest circle around this
3557 * point, so we can check it against bestdist.
3558 */
3559 if (bestdist < mindist) {
3560 bestdist = mindist;
3561 xbest = x;
3562 ybest = y;
3563 }
3564 }
3565 }
3566 }
3567
3568 assert(bestdist >= 0);
3569
3570 /* convert to screen coordinates */
3571 grid_to_screen(ds, g, xbest << shift, ybest << shift,
3572 &ds->textx[faceindex], &ds->texty[faceindex]);
3573
3574 *xret = ds->textx[faceindex];
3575 *yret = ds->texty[faceindex];
3576 }
3577
3578 static void face_text_bbox(game_drawstate *ds, grid *g, grid_face *f,
3579 int *x, int *y, int *w, int *h)
3580 {
3581 int xx, yy;
3582 face_text_pos(ds, g, f, &xx, &yy);
3583
3584 /* There seems to be a certain amount of trial-and-error involved
3585 * in working out the correct bounding-box for the text. */
3586
3587 *x = xx - ds->tilesize/4 - 1;
3588 *y = yy - ds->tilesize/4 - 3;
3589 *w = ds->tilesize/2 + 2;
3590 *h = ds->tilesize/2 + 5;
3591 }
3592
3593 static void game_redraw_clue(drawing *dr, game_drawstate *ds,
3594 game_state *state, int i)
3595 {
3596 grid *g = state->game_grid;
3597 grid_face *f = g->faces + i;
3598 int x, y;
3599 char c[3];
3600
3601 if (state->clues[i] < 10) {
3602 c[0] = CLUE2CHAR(state->clues[i]);
3603 c[1] = '\0';
3604 } else {
3605 sprintf(c, "%d", state->clues[i]);
3606 }
3607
3608 face_text_pos(ds, g, f, &x, &y);
3609 draw_text(dr, x, y,
3610 FONT_VARIABLE, ds->tilesize/2,
3611 ALIGN_VCENTRE | ALIGN_HCENTRE,
3612 ds->clue_error[i] ? COL_MISTAKE :
3613 ds->clue_satisfied[i] ? COL_SATISFIED : COL_FOREGROUND, c);
3614 }
3615
3616 static void edge_bbox(game_drawstate *ds, grid *g, grid_edge *e,
3617 int *x, int *y, int *w, int *h)
3618 {
3619 int x1 = e->dot1->x;
3620 int y1 = e->dot1->y;
3621 int x2 = e->dot2->x;
3622 int y2 = e->dot2->y;
3623 int xmin, xmax, ymin, ymax;
3624
3625 grid_to_screen(ds, g, x1, y1, &x1, &y1);
3626 grid_to_screen(ds, g, x2, y2, &x2, &y2);
3627 /* Allow extra margin for dots, and thickness of lines */
3628 xmin = min(x1, x2) - 2;
3629 xmax = max(x1, x2) + 2;
3630 ymin = min(y1, y2) - 2;
3631 ymax = max(y1, y2) + 2;
3632
3633 *x = xmin;
3634 *y = ymin;
3635 *w = xmax - xmin + 1;
3636 *h = ymax - ymin + 1;
3637 }
3638
3639 static void dot_bbox(game_drawstate *ds, grid *g, grid_dot *d,
3640 int *x, int *y, int *w, int *h)
3641 {
3642 int x1, y1;
3643
3644 grid_to_screen(ds, g, d->x, d->y, &x1, &y1);
3645
3646 *x = x1 - 2;
3647 *y = y1 - 2;
3648 *w = 5;
3649 *h = 5;
3650 }
3651
3652 static const int loopy_line_redraw_phases[] = {
3653 COL_FAINT, COL_LINEUNKNOWN, COL_FOREGROUND, COL_HIGHLIGHT, COL_MISTAKE
3654 };
3655 #define NPHASES lenof(loopy_line_redraw_phases)
3656
3657 static void game_redraw_line(drawing *dr, game_drawstate *ds,
3658 game_state *state, int i, int phase)
3659 {
3660 grid *g = state->game_grid;
3661 grid_edge *e = g->edges + i;
3662 int x1, x2, y1, y2;
3663 int xmin, ymin, xmax, ymax;
3664 int line_colour;
3665
3666 if (state->line_errors[i])
3667 line_colour = COL_MISTAKE;
3668 else if (state->lines[i] == LINE_UNKNOWN)
3669 line_colour = COL_LINEUNKNOWN;
3670 else if (state->lines[i] == LINE_NO)
3671 line_colour = COL_FAINT;
3672 else if (ds->flashing)
3673 line_colour = COL_HIGHLIGHT;
3674 else
3675 line_colour = COL_FOREGROUND;
3676 if (line_colour != loopy_line_redraw_phases[phase])
3677 return;
3678
3679 /* Convert from grid to screen coordinates */
3680 grid_to_screen(ds, g, e->dot1->x, e->dot1->y, &x1, &y1);
3681 grid_to_screen(ds, g, e->dot2->x, e->dot2->y, &x2, &y2);
3682
3683 xmin = min(x1, x2);
3684 xmax = max(x1, x2);
3685 ymin = min(y1, y2);
3686 ymax = max(y1, y2);
3687
3688 if (line_colour == COL_FAINT) {
3689 static int draw_faint_lines = -1;
3690 if (draw_faint_lines < 0) {
3691 char *env = getenv("LOOPY_FAINT_LINES");
3692 draw_faint_lines = (!env || (env[0] == 'y' ||
3693 env[0] == 'Y'));
3694 }
3695 if (draw_faint_lines)
3696 draw_line(dr, x1, y1, x2, y2, line_colour);
3697 } else {
3698 draw_thick_line(dr, 3.0,
3699 x1 + 0.5, y1 + 0.5,
3700 x2 + 0.5, y2 + 0.5,
3701 line_colour);
3702 }
3703 }
3704
3705 static void game_redraw_dot(drawing *dr, game_drawstate *ds,
3706 game_state *state, int i)
3707 {
3708 grid *g = state->game_grid;
3709 grid_dot *d = g->dots + i;
3710 int x, y;
3711
3712 grid_to_screen(ds, g, d->x, d->y, &x, &y);
3713 draw_circle(dr, x, y, 2, COL_FOREGROUND, COL_FOREGROUND);
3714 }
3715
3716 static int boxes_intersect(int x0, int y0, int w0, int h0,
3717 int x1, int y1, int w1, int h1)
3718 {
3719 /*
3720 * Two intervals intersect iff neither is wholly on one side of
3721 * the other. Two boxes intersect iff their horizontal and
3722 * vertical intervals both intersect.
3723 */
3724 return (x0 < x1+w1 && x1 < x0+w0 && y0 < y1+h1 && y1 < y0+h0);
3725 }
3726
3727 static void game_redraw_in_rect(drawing *dr, game_drawstate *ds,
3728 game_state *state, int x, int y, int w, int h)
3729 {
3730 grid *g = state->game_grid;
3731 int i, phase;
3732 int bx, by, bw, bh;
3733
3734 clip(dr, x, y, w, h);
3735 draw_rect(dr, x, y, w, h, COL_BACKGROUND);
3736
3737 for (i = 0; i < g->num_faces; i++) {
3738 if (state->clues[i] >= 0) {
3739 face_text_bbox(ds, g, &g->faces[i], &bx, &by, &bw, &bh);
3740 if (boxes_intersect(x, y, w, h, bx, by, bw, bh))
3741 game_redraw_clue(dr, ds, state, i);
3742 }
3743 }
3744 for (phase = 0; phase < NPHASES; phase++) {
3745 for (i = 0; i < g->num_edges; i++) {
3746 edge_bbox(ds, g, &g->edges[i], &bx, &by, &bw, &bh);
3747 if (boxes_intersect(x, y, w, h, bx, by, bw, bh))
3748 game_redraw_line(dr, ds, state, i, phase);
3749 }
3750 }
3751 for (i = 0; i < g->num_dots; i++) {
3752 dot_bbox(ds, g, &g->dots[i], &bx, &by, &bw, &bh);
3753 if (boxes_intersect(x, y, w, h, bx, by, bw, bh))
3754 game_redraw_dot(dr, ds, state, i);
3755 }
3756
3757 unclip(dr);
3758 draw_update(dr, x, y, w, h);
3759 }
3760
3761 static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
3762 game_state *state, int dir, game_ui *ui,
3763 float animtime, float flashtime)
3764 {
3765 #define REDRAW_OBJECTS_LIMIT 16 /* Somewhat arbitrary tradeoff */
3766
3767 grid *g = state->game_grid;
3768 int border = BORDER(ds->tilesize);
3769 int i;
3770 int flash_changed;
3771 int redraw_everything = FALSE;
3772
3773 int edges[REDRAW_OBJECTS_LIMIT], nedges = 0;
3774 int faces[REDRAW_OBJECTS_LIMIT], nfaces = 0;
3775
3776 /* Redrawing is somewhat involved.
3777 *
3778 * An update can theoretically affect an arbitrary number of edges
3779 * (consider, for example, completing or breaking a cycle which doesn't
3780 * satisfy all the clues -- we'll switch many edges between error and
3781 * normal states). On the other hand, redrawing the whole grid takes a
3782 * while, making the game feel sluggish, and many updates are actually
3783 * quite well localized.
3784 *
3785 * This redraw algorithm attempts to cope with both situations gracefully
3786 * and correctly. For localized changes, we set a clip rectangle, fill
3787 * it with background, and then redraw (a plausible but conservative
3788 * guess at) the objects which intersect the rectangle; if several
3789 * objects need redrawing, we'll do them individually. However, if lots
3790 * of objects are affected, we'll just redraw everything.
3791 *
3792 * The reason for all of this is that it's just not safe to do the redraw
3793 * piecemeal. If you try to draw an antialiased diagonal line over
3794 * itself, you get a slightly thicker antialiased diagonal line, which
3795 * looks rather ugly after a while.
3796 *
3797 * So, we take two passes over the grid. The first attempts to work out
3798 * what needs doing, and the second actually does it.
3799 */
3800
3801 if (!ds->started)
3802 redraw_everything = TRUE;
3803 else {
3804
3805 /* First, trundle through the faces. */
3806 for (i = 0; i < g->num_faces; i++) {
3807 grid_face *f = g->faces + i;
3808 int sides = f->order;
3809 int clue_mistake;
3810 int clue_satisfied;
3811 int n = state->clues[i];
3812 if (n < 0)
3813 continue;
3814
3815 clue_mistake = (face_order(state, i, LINE_YES) > n ||
3816 face_order(state, i, LINE_NO ) > (sides-n));
3817 clue_satisfied = (face_order(state, i, LINE_YES) == n &&
3818 face_order(state, i, LINE_NO ) == (sides-n));
3819
3820 if (clue_mistake != ds->clue_error[i] ||
3821 clue_satisfied != ds->clue_satisfied[i]) {
3822 ds->clue_error[i] = clue_mistake;
3823 ds->clue_satisfied[i] = clue_satisfied;
3824 if (nfaces == REDRAW_OBJECTS_LIMIT)
3825 redraw_everything = TRUE;
3826 else
3827 faces[nfaces++] = i;
3828 }
3829 }
3830
3831 /* Work out what the flash state needs to be. */
3832 if (flashtime > 0 &&
3833 (flashtime <= FLASH_TIME/3 ||
3834 flashtime >= FLASH_TIME*2/3)) {
3835 flash_changed = !ds->flashing;
3836 ds->flashing = TRUE;
3837 } else {
3838 flash_changed = ds->flashing;
3839 ds->flashing = FALSE;
3840 }
3841
3842 /* Now, trundle through the edges. */
3843 for (i = 0; i < g->num_edges; i++) {
3844 char new_ds =
3845 state->line_errors[i] ? DS_LINE_ERROR : state->lines[i];
3846 if (new_ds != ds->lines[i] ||
3847 (flash_changed && state->lines[i] == LINE_YES)) {
3848 ds->lines[i] = new_ds;
3849 if (nedges == REDRAW_OBJECTS_LIMIT)
3850 redraw_everything = TRUE;
3851 else
3852 edges[nedges++] = i;
3853 }
3854 }
3855 }
3856
3857 /* Pass one is now done. Now we do the actual drawing. */
3858 if (redraw_everything) {
3859 int grid_width = g->highest_x - g->lowest_x;
3860 int grid_height = g->highest_y - g->lowest_y;
3861 int w = grid_width * ds->tilesize / g->tilesize;
3862 int h = grid_height * ds->tilesize / g->tilesize;
3863
3864 game_redraw_in_rect(dr, ds, state,
3865 0, 0, w + 2*border + 1, h + 2*border + 1);
3866 } else {
3867
3868 /* Right. Now we roll up our sleeves. */
3869
3870 for (i = 0; i < nfaces; i++) {
3871 grid_face *f = g->faces + faces[i];
3872 int x, y, w, h;
3873
3874 face_text_bbox(ds, g, f, &x, &y, &w, &h);
3875 game_redraw_in_rect(dr, ds, state, x, y, w, h);
3876 }
3877
3878 for (i = 0; i < nedges; i++) {
3879 grid_edge *e = g->edges + edges[i];
3880 int x, y, w, h;
3881
3882 edge_bbox(ds, g, e, &x, &y, &w, &h);
3883 game_redraw_in_rect(dr, ds, state, x, y, w, h);
3884 }
3885 }
3886
3887 ds->started = TRUE;
3888 }
3889
3890 static float game_flash_length(game_state *oldstate, game_state *newstate,
3891 int dir, game_ui *ui)
3892 {
3893 if (!oldstate->solved && newstate->solved &&
3894 !oldstate->cheated && !newstate->cheated) {
3895 return FLASH_TIME;
3896 }
3897
3898 return 0.0F;
3899 }
3900
3901 static int game_is_solved(game_state *state)
3902 {
3903 return state->solved;
3904 }
3905
3906 static void game_print_size(game_params *params, float *x, float *y)
3907 {
3908 int pw, ph;
3909
3910 /*
3911 * I'll use 7mm "squares" by default.
3912 */
3913 game_compute_size(params, 700, &pw, &ph);
3914 *x = pw / 100.0F;
3915 *y = ph / 100.0F;
3916 }
3917
3918 static void game_print(drawing *dr, game_state *state, int tilesize)
3919 {
3920 int ink = print_mono_colour(dr, 0);
3921 int i;
3922 game_drawstate ads, *ds = &ads;
3923 grid *g = state->game_grid;
3924
3925 ds->tilesize = tilesize;
3926
3927 for (i = 0; i < g->num_dots; i++) {
3928 int x, y;
3929 grid_to_screen(ds, g, g->dots[i].x, g->dots[i].y, &x, &y);
3930 draw_circle(dr, x, y, ds->tilesize / 15, ink, ink);
3931 }
3932
3933 /*
3934 * Clues.
3935 */
3936 for (i = 0; i < g->num_faces; i++) {
3937 grid_face *f = g->faces + i;
3938 int clue = state->clues[i];
3939 if (clue >= 0) {
3940 char c[2];
3941 int x, y;
3942 c[0] = CLUE2CHAR(clue);
3943 c[1] = '\0';
3944 face_text_pos(ds, g, f, &x, &y);
3945 draw_text(dr, x, y,
3946 FONT_VARIABLE, ds->tilesize / 2,
3947 ALIGN_VCENTRE | ALIGN_HCENTRE, ink, c);
3948 }
3949 }
3950
3951 /*
3952 * Lines.
3953 */
3954 for (i = 0; i < g->num_edges; i++) {
3955 int thickness = (state->lines[i] == LINE_YES) ? 30 : 150;
3956 grid_edge *e = g->edges + i;
3957 int x1, y1, x2, y2;
3958 grid_to_screen(ds, g, e->dot1->x, e->dot1->y, &x1, &y1);
3959 grid_to_screen(ds, g, e->dot2->x, e->dot2->y, &x2, &y2);
3960 if (state->lines[i] == LINE_YES)
3961 {
3962 /* (dx, dy) points from (x1, y1) to (x2, y2).
3963 * The line is then "fattened" in a perpendicular
3964 * direction to create a thin rectangle. */
3965 double d = sqrt(SQ((double)x1 - x2) + SQ((double)y1 - y2));
3966 double dx = (x2 - x1) / d;
3967 double dy = (y2 - y1) / d;
3968 int points[8];
3969
3970 dx = (dx * ds->tilesize) / thickness;
3971 dy = (dy * ds->tilesize) / thickness;
3972 points[0] = x1 + (int)dy;
3973 points[1] = y1 - (int)dx;
3974 points[2] = x1 - (int)dy;
3975 points[3] = y1 + (int)dx;
3976 points[4] = x2 - (int)dy;
3977 points[5] = y2 + (int)dx;
3978 points[6] = x2 + (int)dy;
3979 points[7] = y2 - (int)dx;
3980 draw_polygon(dr, points, 4, ink, ink);
3981 }
3982 else
3983 {
3984 /* Draw a dotted line */
3985 int divisions = 6;
3986 int j;
3987 for (j = 1; j < divisions; j++) {
3988 /* Weighted average */
3989 int x = (x1 * (divisions -j) + x2 * j) / divisions;
3990 int y = (y1 * (divisions -j) + y2 * j) / divisions;
3991 draw_circle(dr, x, y, ds->tilesize / thickness, ink, ink);
3992 }
3993 }
3994 }
3995 }
3996
3997 #ifdef COMBINED
3998 #define thegame loopy
3999 #endif
4000
4001 const struct game thegame = {
4002 "Loopy", "games.loopy", "loopy",
4003 default_params,
4004 game_fetch_preset,
4005 decode_params,
4006 encode_params,
4007 free_params,
4008 dup_params,
4009 TRUE, game_configure, custom_params,
4010 validate_params,
4011 new_game_desc,
4012 validate_desc,
4013 new_game,
4014 dup_game,
4015 free_game,
4016 1, solve_game,
4017 TRUE, game_can_format_as_text_now, game_text_format,
4018 new_ui,
4019 free_ui,
4020 encode_ui,
4021 decode_ui,
4022 game_changed_state,
4023 interpret_move,
4024 execute_move,
4025 PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
4026 game_colours,
4027 game_new_drawstate,
4028 game_free_drawstate,
4029 game_redraw,
4030 game_anim_length,
4031 game_flash_length,
4032 game_is_solved,
4033 TRUE, FALSE, game_print_size, game_print,
4034 FALSE /* wants_statusbar */,
4035 FALSE, game_timing_state,
4036 0, /* mouse_priorities */
4037 };
4038
4039 #ifdef STANDALONE_SOLVER
4040
4041 /*
4042 * Half-hearted standalone solver. It can't output the solution to
4043 * anything but a square puzzle, and it can't log the deductions
4044 * it makes either. But it can solve square puzzles, and more
4045 * importantly it can use its solver to grade the difficulty of
4046 * any puzzle you give it.
4047 */
4048
4049 #include <stdarg.h>
4050
4051 int main(int argc, char **argv)
4052 {
4053 game_params *p;
4054 game_state *s;
4055 char *id = NULL, *desc, *err;
4056 int grade = FALSE;
4057 int ret, diff;
4058 #if 0 /* verbose solver not supported here (yet) */
4059 int really_verbose = FALSE;
4060 #endif
4061
4062 while (--argc > 0) {
4063 char *p = *++argv;
4064 #if 0 /* verbose solver not supported here (yet) */
4065 if (!strcmp(p, "-v")) {
4066 really_verbose = TRUE;
4067 } else
4068 #endif
4069 if (!strcmp(p, "-g")) {
4070 grade = TRUE;
4071 } else if (*p == '-') {
4072 fprintf(stderr, "%s: unrecognised option `%s'\n", argv[0], p);
4073 return 1;
4074 } else {
4075 id = p;
4076 }
4077 }
4078
4079 if (!id) {
4080 fprintf(stderr, "usage: %s [-g | -v] <game_id>\n", argv[0]);
4081 return 1;
4082 }
4083
4084 desc = strchr(id, ':');
4085 if (!desc) {
4086 fprintf(stderr, "%s: game id expects a colon in it\n", argv[0]);
4087 return 1;
4088 }
4089 *desc++ = '\0';
4090
4091 p = default_params();
4092 decode_params(p, id);
4093 err = validate_desc(p, desc);
4094 if (err) {
4095 fprintf(stderr, "%s: %s\n", argv[0], err);
4096 return 1;
4097 }
4098 s = new_game(NULL, p, desc);
4099
4100 /*
4101 * When solving an Easy puzzle, we don't want to bother the
4102 * user with Hard-level deductions. For this reason, we grade
4103 * the puzzle internally before doing anything else.
4104 */
4105 ret = -1; /* placate optimiser */
4106 for (diff = 0; diff < DIFF_MAX; diff++) {
4107 solver_state *sstate_new;
4108 solver_state *sstate = new_solver_state((game_state *)s, diff);
4109
4110 sstate_new = solve_game_rec(sstate);
4111
4112 if (sstate_new->solver_status == SOLVER_MISTAKE)
4113 ret = 0;
4114 else if (sstate_new->solver_status == SOLVER_SOLVED)
4115 ret = 1;
4116 else
4117 ret = 2;
4118
4119 free_solver_state(sstate_new);
4120 free_solver_state(sstate);
4121
4122 if (ret < 2)
4123 break;
4124 }
4125
4126 if (diff == DIFF_MAX) {
4127 if (grade)
4128 printf("Difficulty rating: harder than Hard, or ambiguous\n");
4129 else
4130 printf("Unable to find a unique solution\n");
4131 } else {
4132 if (grade) {
4133 if (ret == 0)
4134 printf("Difficulty rating: impossible (no solution exists)\n");
4135 else if (ret == 1)
4136 printf("Difficulty rating: %s\n", diffnames[diff]);
4137 } else {
4138 solver_state *sstate_new;
4139 solver_state *sstate = new_solver_state((game_state *)s, diff);
4140
4141 /* If we supported a verbose solver, we'd set verbosity here */
4142
4143 sstate_new = solve_game_rec(sstate);
4144
4145 if (sstate_new->solver_status == SOLVER_MISTAKE)
4146 printf("Puzzle is inconsistent\n");
4147 else {
4148 assert(sstate_new->solver_status == SOLVER_SOLVED);
4149 if (s->grid_type == 0) {
4150 fputs(game_text_format(sstate_new->state), stdout);
4151 } else {
4152 printf("Unable to output non-square grids\n");
4153 }
4154 }
4155
4156 free_solver_state(sstate_new);
4157 free_solver_state(sstate);
4158 }
4159 }
4160
4161 return 0;
4162 }
4163
4164 #endif