From James Harvey (via a period of collaborative polishing), a patch
[sgt/puzzles] / loopy.c
CommitLineData
6193da8d 1/*
7c95608a 2 * loopy.c:
3 *
4 * An implementation of the Nikoli game 'Loop the loop'.
121aae4b 5 * (c) Mike Pinna, 2005, 2006
7c95608a 6 * Substantially rewritten to allowing for more general types of grid.
7 * (c) Lambros Lambrou 2008
6193da8d 8 *
9 * vim: set shiftwidth=4 :set textwidth=80:
7c95608a 10 */
6193da8d 11
12/*
a36a26d7 13 * Possible future solver enhancements:
14 *
15 * - There's an interesting deductive technique which makes use
16 * of topology rather than just graph theory. Each _face_ in
17 * the grid is either inside or outside the loop; you can tell
18 * that two faces are on the same side of the loop if they're
19 * separated by a LINE_NO (or, more generally, by a path
20 * crossing no LINE_UNKNOWNs and an even number of LINE_YESes),
21 * and on the opposite side of the loop if they're separated by
22 * a LINE_YES (or an odd number of LINE_YESes and no
23 * LINE_UNKNOWNs). Oh, and any face separated from the outside
24 * of the grid by a LINE_YES or a LINE_NO is on the inside or
25 * outside respectively. So if you can track this for all
26 * faces, you figure out the state of the line between a pair
27 * once their relative insideness is known.
28 * + The way I envisage this working is simply to keep an edsf
29 * of all _faces_, which indicates whether they're on
30 * opposite sides of the loop from one another. We also
31 * include a special entry in the edsf for the infinite
32 * exterior "face".
33 * + So, the simple way to do this is to just go through the
34 * edges: every time we see an edge in a state other than
35 * LINE_UNKNOWN which separates two faces that aren't in the
36 * same edsf class, we can rectify that by merging the
37 * classes. Then, conversely, an edge in LINE_UNKNOWN state
38 * which separates two faces that _are_ in the same edsf
39 * class can immediately have its state determined.
40 * + But you can go one better, if you're prepared to loop
41 * over all _pairs_ of edges. Suppose we have edges A and B,
42 * which respectively separate faces A1,A2 and B1,B2.
43 * Suppose that A,B are in the same edge-edsf class and that
44 * A1,B1 (wlog) are in the same face-edsf class; then we can
45 * immediately place A2,B2 into the same face-edsf class (as
46 * each other, not as A1 and A2) one way round or the other.
47 * And conversely again, if A1,B1 are in the same face-edsf
48 * class and so are A2,B2, then we can put A,B into the same
49 * face-edsf class.
50 * * Of course, this deduction requires a quadratic-time
51 * loop over all pairs of edges in the grid, so it should
52 * be reserved until there's nothing easier left to be
53 * done.
54 *
55 * - The generalised grid support has made me (SGT) notice a
56 * possible extension to the loop-avoidance code. When you have
57 * a path of connected edges such that no other edges at all
58 * are incident on any vertex in the middle of the path - or,
59 * alternatively, such that any such edges are already known to
60 * be LINE_NO - then you know those edges are either all
61 * LINE_YES or all LINE_NO. Hence you can mentally merge the
62 * entire path into a single long curly edge for the purposes
63 * of loop avoidance, and look directly at whether or not the
64 * extreme endpoints of the path are connected by some other
65 * route. I find this coming up fairly often when I play on the
66 * octagonal grid setting, so it might be worth implementing in
67 * the solver.
121aae4b 68 *
69 * - (Just a speed optimisation.) Consider some todo list queue where every
70 * time we modify something we mark it for consideration by other bits of
71 * the solver, to save iteration over things that have already been done.
6193da8d 72 */
73
74#include <stdio.h>
75#include <stdlib.h>
7126ca41 76#include <stddef.h>
6193da8d 77#include <string.h>
78#include <assert.h>
79#include <ctype.h>
80#include <math.h>
81
82#include "puzzles.h"
83#include "tree234.h"
7c95608a 84#include "grid.h"
6193da8d 85
121aae4b 86/* Debugging options */
7c95608a 87
88/*
89#define DEBUG_CACHES
90#define SHOW_WORKING
91#define DEBUG_DLINES
92*/
121aae4b 93
94/* ----------------------------------------------------------------------
95 * Struct, enum and function declarations
96 */
97
98enum {
99 COL_BACKGROUND,
100 COL_FOREGROUND,
7c95608a 101 COL_LINEUNKNOWN,
121aae4b 102 COL_HIGHLIGHT,
103 COL_MISTAKE,
7c95608a 104 COL_SATISFIED,
ec909c7a 105 COL_FAINT,
121aae4b 106 NCOLOURS
107};
108
109struct game_state {
cebf0b0d 110 grid *game_grid; /* ref-counted (internally) */
7c95608a 111
112 /* Put -1 in a face that doesn't get a clue */
aa8ccc55 113 signed char *clues;
7c95608a 114
115 /* Array of line states, to store whether each line is
116 * YES, NO or UNKNOWN */
117 char *lines;
121aae4b 118
b6bf0adc 119 unsigned char *line_errors;
120
121aae4b 121 int solved;
122 int cheated;
123
7c95608a 124 /* Used in game_text_format(), so that it knows what type of
125 * grid it's trying to render as ASCII text. */
126 int grid_type;
121aae4b 127};
128
129enum solver_status {
130 SOLVER_SOLVED, /* This is the only solution the solver could find */
131 SOLVER_MISTAKE, /* This is definitely not a solution */
132 SOLVER_AMBIGUOUS, /* This _might_ be an ambiguous solution */
133 SOLVER_INCOMPLETE /* This may be a partial solution */
134};
135
7c95608a 136/* ------ Solver state ------ */
121aae4b 137typedef struct solver_state {
138 game_state *state;
121aae4b 139 enum solver_status solver_status;
140 /* NB looplen is the number of dots that are joined together at a point, ie a
141 * looplen of 1 means there are no lines to a particular dot */
142 int *looplen;
143
315e47b9 144 /* Difficulty level of solver. Used by solver functions that want to
145 * vary their behaviour depending on the requested difficulty level. */
146 int diff;
147
121aae4b 148 /* caches */
7c95608a 149 char *dot_yes_count;
150 char *dot_no_count;
151 char *face_yes_count;
152 char *face_no_count;
153 char *dot_solved, *face_solved;
121aae4b 154 int *dotdsf;
155
315e47b9 156 /* Information for Normal level deductions:
157 * For each dline, store a bitmask for whether we know:
158 * (bit 0) at least one is YES
159 * (bit 1) at most one is YES */
160 char *dlines;
161
162 /* Hard level information */
163 int *linedsf;
121aae4b 164} solver_state;
165
166/*
167 * Difficulty levels. I do some macro ickery here to ensure that my
168 * enum and the various forms of my name list always match up.
169 */
170
171#define DIFFLIST(A) \
315e47b9 172 A(EASY,Easy,e) \
173 A(NORMAL,Normal,n) \
174 A(TRICKY,Tricky,t) \
175 A(HARD,Hard,h)
176#define ENUM(upper,title,lower) DIFF_ ## upper,
177#define TITLE(upper,title,lower) #title,
178#define ENCODE(upper,title,lower) #lower
179#define CONFIG(upper,title,lower) ":" #title
1a739e2f 180enum { DIFFLIST(ENUM) DIFF_MAX };
121aae4b 181static char const *const diffnames[] = { DIFFLIST(TITLE) };
182static char const diffchars[] = DIFFLIST(ENCODE);
183#define DIFFCONFIG DIFFLIST(CONFIG)
315e47b9 184
185/*
186 * Solver routines, sorted roughly in order of computational cost.
187 * The solver will run the faster deductions first, and slower deductions are
188 * only invoked when the faster deductions are unable to make progress.
189 * Each function is associated with a difficulty level, so that the generated
190 * puzzles are solvable by applying only the functions with the chosen
191 * difficulty level or lower.
192 */
193#define SOLVERLIST(A) \
194 A(trivial_deductions, DIFF_EASY) \
195 A(dline_deductions, DIFF_NORMAL) \
196 A(linedsf_deductions, DIFF_HARD) \
197 A(loop_deductions, DIFF_EASY)
198#define SOLVER_FN_DECL(fn,diff) static int fn(solver_state *);
199#define SOLVER_FN(fn,diff) &fn,
200#define SOLVER_DIFF(fn,diff) diff,
201SOLVERLIST(SOLVER_FN_DECL)
202static int (*(solver_fns[]))(solver_state *) = { SOLVERLIST(SOLVER_FN) };
203static int const solver_diffs[] = { SOLVERLIST(SOLVER_DIFF) };
204const int NUM_SOLVERS = sizeof(solver_diffs)/sizeof(*solver_diffs);
121aae4b 205
206struct game_params {
207 int w, h;
1a739e2f 208 int diff;
7c95608a 209 int type;
121aae4b 210};
211
b6bf0adc 212/* line_drawstate is the same as line_state, but with the extra ERROR
213 * possibility. The drawing code copies line_state to line_drawstate,
214 * except in the case that the line is an error. */
121aae4b 215enum line_state { LINE_YES, LINE_UNKNOWN, LINE_NO };
b6bf0adc 216enum line_drawstate { DS_LINE_YES, DS_LINE_UNKNOWN,
217 DS_LINE_NO, DS_LINE_ERROR };
121aae4b 218
7c95608a 219#define OPP(line_state) \
220 (2 - line_state)
121aae4b 221
121aae4b 222
223struct game_drawstate {
224 int started;
7c95608a 225 int tilesize;
121aae4b 226 int flashing;
e0936bbd 227 int *textx, *texty;
7c95608a 228 char *lines;
121aae4b 229 char *clue_error;
7c95608a 230 char *clue_satisfied;
121aae4b 231};
232
121aae4b 233static char *validate_desc(game_params *params, char *desc);
7c95608a 234static int dot_order(const game_state* state, int i, char line_type);
235static int face_order(const game_state* state, int i, char line_type);
315e47b9 236static solver_state *solve_game_rec(const solver_state *sstate);
121aae4b 237
238#ifdef DEBUG_CACHES
239static void check_caches(const solver_state* sstate);
240#else
241#define check_caches(s)
242#endif
243
7c95608a 244/* ------- List of grid generators ------- */
245#define GRIDLIST(A) \
cebf0b0d 246 A(Squares,GRID_SQUARE,3,3) \
247 A(Triangular,GRID_TRIANGULAR,3,3) \
248 A(Honeycomb,GRID_HONEYCOMB,3,3) \
249 A(Snub-Square,GRID_SNUBSQUARE,3,3) \
250 A(Cairo,GRID_CAIRO,3,4) \
251 A(Great-Hexagonal,GRID_GREATHEXAGONAL,3,3) \
252 A(Octagonal,GRID_OCTAGONAL,3,3) \
253 A(Kites,GRID_KITE,3,3) \
254 A(Floret,GRID_FLORET,1,2) \
255 A(Dodecagonal,GRID_DODECAGONAL,2,2) \
256 A(Great-Dodecagonal,GRID_GREATDODECAGONAL,2,2) \
257 A(Penrose (kite/dart),GRID_PENROSE_P2,3,3) \
258 A(Penrose (rhombs),GRID_PENROSE_P3,3,3)
259
260#define GRID_NAME(title,type,amin,omin) #title,
261#define GRID_CONFIG(title,type,amin,omin) ":" #title
262#define GRID_TYPE(title,type,amin,omin) type,
263#define GRID_SIZES(title,type,amin,omin) \
e3c9e042 264 {amin, omin, \
265 "Width and height for this grid type must both be at least " #amin, \
266 "At least one of width and height for this grid type must be at least " #omin,},
7c95608a 267static char const *const gridnames[] = { GRIDLIST(GRID_NAME) };
268#define GRID_CONFIGS GRIDLIST(GRID_CONFIG)
cebf0b0d 269static grid_type grid_types[] = { GRIDLIST(GRID_TYPE) };
270#define NUM_GRID_TYPES (sizeof(grid_types) / sizeof(grid_types[0]))
e3c9e042 271static const struct {
272 int amin, omin;
273 char *aerr, *oerr;
274} grid_size_limits[] = { GRIDLIST(GRID_SIZES) };
7c95608a 275
276/* Generates a (dynamically allocated) new grid, according to the
277 * type and size requested in params. Does nothing if the grid is already
cebf0b0d 278 * generated. */
279static grid *loopy_generate_grid(game_params *params, char *grid_desc)
7c95608a 280{
cebf0b0d 281 return grid_new(grid_types[params->type], params->w, params->h, grid_desc);
7c95608a 282}
283
121aae4b 284/* ----------------------------------------------------------------------
7c95608a 285 * Preprocessor magic
121aae4b 286 */
287
288/* General constants */
6193da8d 289#define PREFERRED_TILE_SIZE 32
7c95608a 290#define BORDER(tilesize) ((tilesize) / 2)
c0eb17ce 291#define FLASH_TIME 0.5F
6193da8d 292
121aae4b 293#define BIT_SET(field, bit) ((field) & (1<<(bit)))
294
295#define SET_BIT(field, bit) (BIT_SET(field, bit) ? FALSE : \
296 ((field) |= (1<<(bit)), TRUE))
297
298#define CLEAR_BIT(field, bit) (BIT_SET(field, bit) ? \
299 ((field) &= ~(1<<(bit)), TRUE) : FALSE)
300
121aae4b 301#define CLUE2CHAR(c) \
918a098a 302 ((c < 0) ? ' ' : c < 10 ? c + '0' : c - 10 + 'A')
121aae4b 303
121aae4b 304/* ----------------------------------------------------------------------
305 * General struct manipulation and other straightforward code
306 */
6193da8d 307
308static game_state *dup_game(game_state *state)
309{
310 game_state *ret = snew(game_state);
311
7c95608a 312 ret->game_grid = state->game_grid;
313 ret->game_grid->refcount++;
314
6193da8d 315 ret->solved = state->solved;
316 ret->cheated = state->cheated;
317
7c95608a 318 ret->clues = snewn(state->game_grid->num_faces, signed char);
319 memcpy(ret->clues, state->clues, state->game_grid->num_faces);
6193da8d 320
7c95608a 321 ret->lines = snewn(state->game_grid->num_edges, char);
322 memcpy(ret->lines, state->lines, state->game_grid->num_edges);
6193da8d 323
b6bf0adc 324 ret->line_errors = snewn(state->game_grid->num_edges, unsigned char);
325 memcpy(ret->line_errors, state->line_errors, state->game_grid->num_edges);
326
7c95608a 327 ret->grid_type = state->grid_type;
6193da8d 328 return ret;
329}
330
331static void free_game(game_state *state)
332{
333 if (state) {
7c95608a 334 grid_free(state->game_grid);
6193da8d 335 sfree(state->clues);
7c95608a 336 sfree(state->lines);
b6bf0adc 337 sfree(state->line_errors);
6193da8d 338 sfree(state);
339 }
340}
341
7c95608a 342static solver_state *new_solver_state(game_state *state, int diff) {
343 int i;
344 int num_dots = state->game_grid->num_dots;
345 int num_faces = state->game_grid->num_faces;
346 int num_edges = state->game_grid->num_edges;
6193da8d 347 solver_state *ret = snew(solver_state);
6193da8d 348
7c95608a 349 ret->state = dup_game(state);
350
351 ret->solver_status = SOLVER_INCOMPLETE;
315e47b9 352 ret->diff = diff;
6193da8d 353
7c95608a 354 ret->dotdsf = snew_dsf(num_dots);
355 ret->looplen = snewn(num_dots, int);
121aae4b 356
7c95608a 357 for (i = 0; i < num_dots; i++) {
121aae4b 358 ret->looplen[i] = 1;
359 }
360
7c95608a 361 ret->dot_solved = snewn(num_dots, char);
362 ret->face_solved = snewn(num_faces, char);
363 memset(ret->dot_solved, FALSE, num_dots);
364 memset(ret->face_solved, FALSE, num_faces);
121aae4b 365
7c95608a 366 ret->dot_yes_count = snewn(num_dots, char);
367 memset(ret->dot_yes_count, 0, num_dots);
368 ret->dot_no_count = snewn(num_dots, char);
369 memset(ret->dot_no_count, 0, num_dots);
370 ret->face_yes_count = snewn(num_faces, char);
371 memset(ret->face_yes_count, 0, num_faces);
372 ret->face_no_count = snewn(num_faces, char);
373 memset(ret->face_no_count, 0, num_faces);
121aae4b 374
375 if (diff < DIFF_NORMAL) {
315e47b9 376 ret->dlines = NULL;
121aae4b 377 } else {
315e47b9 378 ret->dlines = snewn(2*num_edges, char);
379 memset(ret->dlines, 0, 2*num_edges);
121aae4b 380 }
381
382 if (diff < DIFF_HARD) {
315e47b9 383 ret->linedsf = NULL;
121aae4b 384 } else {
315e47b9 385 ret->linedsf = snew_dsf(state->game_grid->num_edges);
6193da8d 386 }
387
388 return ret;
389}
390
391static void free_solver_state(solver_state *sstate) {
392 if (sstate) {
393 free_game(sstate->state);
9cfc03b7 394 sfree(sstate->dotdsf);
395 sfree(sstate->looplen);
121aae4b 396 sfree(sstate->dot_solved);
7c95608a 397 sfree(sstate->face_solved);
398 sfree(sstate->dot_yes_count);
399 sfree(sstate->dot_no_count);
400 sfree(sstate->face_yes_count);
401 sfree(sstate->face_no_count);
121aae4b 402
315e47b9 403 /* OK, because sfree(NULL) is a no-op */
404 sfree(sstate->dlines);
405 sfree(sstate->linedsf);
121aae4b 406
9cfc03b7 407 sfree(sstate);
6193da8d 408 }
409}
410
121aae4b 411static solver_state *dup_solver_state(const solver_state *sstate) {
7c95608a 412 game_state *state = sstate->state;
413 int num_dots = state->game_grid->num_dots;
414 int num_faces = state->game_grid->num_faces;
415 int num_edges = state->game_grid->num_edges;
6193da8d 416 solver_state *ret = snew(solver_state);
417
9cfc03b7 418 ret->state = state = dup_game(sstate->state);
6193da8d 419
6193da8d 420 ret->solver_status = sstate->solver_status;
315e47b9 421 ret->diff = sstate->diff;
6193da8d 422
7c95608a 423 ret->dotdsf = snewn(num_dots, int);
424 ret->looplen = snewn(num_dots, int);
425 memcpy(ret->dotdsf, sstate->dotdsf,
426 num_dots * sizeof(int));
427 memcpy(ret->looplen, sstate->looplen,
428 num_dots * sizeof(int));
429
430 ret->dot_solved = snewn(num_dots, char);
431 ret->face_solved = snewn(num_faces, char);
432 memcpy(ret->dot_solved, sstate->dot_solved, num_dots);
433 memcpy(ret->face_solved, sstate->face_solved, num_faces);
434
435 ret->dot_yes_count = snewn(num_dots, char);
436 memcpy(ret->dot_yes_count, sstate->dot_yes_count, num_dots);
437 ret->dot_no_count = snewn(num_dots, char);
438 memcpy(ret->dot_no_count, sstate->dot_no_count, num_dots);
439
440 ret->face_yes_count = snewn(num_faces, char);
441 memcpy(ret->face_yes_count, sstate->face_yes_count, num_faces);
442 ret->face_no_count = snewn(num_faces, char);
443 memcpy(ret->face_no_count, sstate->face_no_count, num_faces);
121aae4b 444
315e47b9 445 if (sstate->dlines) {
446 ret->dlines = snewn(2*num_edges, char);
447 memcpy(ret->dlines, sstate->dlines,
7c95608a 448 2*num_edges);
121aae4b 449 } else {
315e47b9 450 ret->dlines = NULL;
121aae4b 451 }
452
315e47b9 453 if (sstate->linedsf) {
454 ret->linedsf = snewn(num_edges, int);
455 memcpy(ret->linedsf, sstate->linedsf,
7c95608a 456 num_edges * sizeof(int));
121aae4b 457 } else {
315e47b9 458 ret->linedsf = NULL;
121aae4b 459 }
6193da8d 460
461 return ret;
462}
463
121aae4b 464static game_params *default_params(void)
6193da8d 465{
121aae4b 466 game_params *ret = snew(game_params);
6193da8d 467
121aae4b 468#ifdef SLOW_SYSTEM
7c95608a 469 ret->h = 7;
470 ret->w = 7;
121aae4b 471#else
472 ret->h = 10;
473 ret->w = 10;
474#endif
475 ret->diff = DIFF_EASY;
7c95608a 476 ret->type = 0;
477
121aae4b 478 return ret;
6193da8d 479}
480
121aae4b 481static game_params *dup_params(game_params *params)
6193da8d 482{
121aae4b 483 game_params *ret = snew(game_params);
7c95608a 484
121aae4b 485 *ret = *params; /* structure copy */
486 return ret;
487}
6193da8d 488
121aae4b 489static const game_params presets[] = {
b1535c90 490#ifdef SMALL_SCREEN
cebf0b0d 491 { 7, 7, DIFF_EASY, 0 },
492 { 7, 7, DIFF_NORMAL, 0 },
493 { 7, 7, DIFF_HARD, 0 },
494 { 7, 7, DIFF_HARD, 1 },
495 { 7, 7, DIFF_HARD, 2 },
496 { 5, 5, DIFF_HARD, 3 },
497 { 7, 7, DIFF_HARD, 4 },
498 { 5, 4, DIFF_HARD, 5 },
499 { 5, 5, DIFF_HARD, 6 },
500 { 5, 5, DIFF_HARD, 7 },
501 { 3, 3, DIFF_HARD, 8 },
502 { 3, 3, DIFF_HARD, 9 },
503 { 3, 3, DIFF_HARD, 10 },
504 { 6, 6, DIFF_HARD, 11 },
505 { 6, 6, DIFF_HARD, 12 },
b1535c90 506#else
cebf0b0d 507 { 7, 7, DIFF_EASY, 0 },
508 { 10, 10, DIFF_EASY, 0 },
509 { 7, 7, DIFF_NORMAL, 0 },
510 { 10, 10, DIFF_NORMAL, 0 },
511 { 7, 7, DIFF_HARD, 0 },
512 { 10, 10, DIFF_HARD, 0 },
513 { 10, 10, DIFF_HARD, 1 },
514 { 12, 10, DIFF_HARD, 2 },
515 { 7, 7, DIFF_HARD, 3 },
516 { 9, 9, DIFF_HARD, 4 },
517 { 5, 4, DIFF_HARD, 5 },
518 { 7, 7, DIFF_HARD, 6 },
519 { 5, 5, DIFF_HARD, 7 },
520 { 5, 5, DIFF_HARD, 8 },
521 { 5, 4, DIFF_HARD, 9 },
522 { 5, 4, DIFF_HARD, 10 },
523 { 10, 10, DIFF_HARD, 11 },
524 { 10, 10, DIFF_HARD, 12 }
b1535c90 525#endif
121aae4b 526};
6193da8d 527
121aae4b 528static int game_fetch_preset(int i, char **name, game_params **params)
6193da8d 529{
1a739e2f 530 game_params *tmppar;
121aae4b 531 char buf[80];
6193da8d 532
121aae4b 533 if (i < 0 || i >= lenof(presets))
534 return FALSE;
6193da8d 535
1a739e2f 536 tmppar = snew(game_params);
537 *tmppar = presets[i];
538 *params = tmppar;
7c95608a 539 sprintf(buf, "%dx%d %s - %s", tmppar->h, tmppar->w,
540 gridnames[tmppar->type], diffnames[tmppar->diff]);
121aae4b 541 *name = dupstr(buf);
542
543 return TRUE;
6193da8d 544}
545
546static void free_params(game_params *params)
547{
548 sfree(params);
549}
550
551static void decode_params(game_params *params, char const *string)
552{
553 params->h = params->w = atoi(string);
c0eb17ce 554 params->diff = DIFF_EASY;
6193da8d 555 while (*string && isdigit((unsigned char)*string)) string++;
556 if (*string == 'x') {
557 string++;
558 params->h = atoi(string);
121aae4b 559 while (*string && isdigit((unsigned char)*string)) string++;
6193da8d 560 }
7c95608a 561 if (*string == 't') {
6193da8d 562 string++;
7c95608a 563 params->type = atoi(string);
121aae4b 564 while (*string && isdigit((unsigned char)*string)) string++;
6193da8d 565 }
c0eb17ce 566 if (*string == 'd') {
567 int i;
c0eb17ce 568 string++;
121aae4b 569 for (i = 0; i < DIFF_MAX; i++)
570 if (*string == diffchars[i])
571 params->diff = i;
572 if (*string) string++;
c0eb17ce 573 }
6193da8d 574}
575
576static char *encode_params(game_params *params, int full)
577{
578 char str[80];
7c95608a 579 sprintf(str, "%dx%dt%d", params->w, params->h, params->type);
6193da8d 580 if (full)
7c95608a 581 sprintf(str + strlen(str), "d%c", diffchars[params->diff]);
6193da8d 582 return dupstr(str);
583}
584
585static config_item *game_configure(game_params *params)
586{
587 config_item *ret;
588 char buf[80];
589
7c95608a 590 ret = snewn(5, config_item);
6193da8d 591
592 ret[0].name = "Width";
593 ret[0].type = C_STRING;
594 sprintf(buf, "%d", params->w);
595 ret[0].sval = dupstr(buf);
596 ret[0].ival = 0;
597
598 ret[1].name = "Height";
599 ret[1].type = C_STRING;
600 sprintf(buf, "%d", params->h);
601 ret[1].sval = dupstr(buf);
602 ret[1].ival = 0;
603
7c95608a 604 ret[2].name = "Grid type";
c0eb17ce 605 ret[2].type = C_CHOICES;
7c95608a 606 ret[2].sval = GRID_CONFIGS;
607 ret[2].ival = params->type;
6193da8d 608
7c95608a 609 ret[3].name = "Difficulty";
610 ret[3].type = C_CHOICES;
611 ret[3].sval = DIFFCONFIG;
612 ret[3].ival = params->diff;
613
614 ret[4].name = NULL;
615 ret[4].type = C_END;
616 ret[4].sval = NULL;
617 ret[4].ival = 0;
6193da8d 618
619 return ret;
620}
621
622static game_params *custom_params(config_item *cfg)
623{
624 game_params *ret = snew(game_params);
625
626 ret->w = atoi(cfg[0].sval);
627 ret->h = atoi(cfg[1].sval);
7c95608a 628 ret->type = cfg[2].ival;
629 ret->diff = cfg[3].ival;
6193da8d 630
631 return ret;
632}
633
634static char *validate_params(game_params *params, int full)
635{
7c95608a 636 if (params->type < 0 || params->type >= NUM_GRID_TYPES)
637 return "Illegal grid type";
e3c9e042 638 if (params->w < grid_size_limits[params->type].amin ||
639 params->h < grid_size_limits[params->type].amin)
640 return grid_size_limits[params->type].aerr;
641 if (params->w < grid_size_limits[params->type].omin &&
642 params->h < grid_size_limits[params->type].omin)
643 return grid_size_limits[params->type].oerr;
c0eb17ce 644
645 /*
646 * This shouldn't be able to happen at all, since decode_params
647 * and custom_params will never generate anything that isn't
648 * within range.
649 */
1a739e2f 650 assert(params->diff < DIFF_MAX);
c0eb17ce 651
6193da8d 652 return NULL;
653}
654
121aae4b 655/* Returns a newly allocated string describing the current puzzle */
656static char *state_to_text(const game_state *state)
6193da8d 657{
7c95608a 658 grid *g = state->game_grid;
121aae4b 659 char *retval;
7c95608a 660 int num_faces = g->num_faces;
661 char *description = snewn(num_faces + 1, char);
121aae4b 662 char *dp = description;
663 int empty_count = 0;
7c95608a 664 int i;
6193da8d 665
7c95608a 666 for (i = 0; i < num_faces; i++) {
667 if (state->clues[i] < 0) {
121aae4b 668 if (empty_count > 25) {
669 dp += sprintf(dp, "%c", (int)(empty_count + 'a' - 1));
670 empty_count = 0;
671 }
672 empty_count++;
673 } else {
674 if (empty_count) {
675 dp += sprintf(dp, "%c", (int)(empty_count + 'a' - 1));
676 empty_count = 0;
677 }
7c95608a 678 dp += sprintf(dp, "%c", (int)CLUE2CHAR(state->clues[i]));
121aae4b 679 }
680 }
6193da8d 681
121aae4b 682 if (empty_count)
1a739e2f 683 dp += sprintf(dp, "%c", (int)(empty_count + 'a' - 1));
121aae4b 684
685 retval = dupstr(description);
686 sfree(description);
687
688 return retval;
6193da8d 689}
690
cebf0b0d 691#define GRID_DESC_SEP '_'
692
693/* Splits up a (optional) grid_desc from the game desc. Returns the
694 * grid_desc (which needs freeing) and updates the desc pointer to
695 * start of real desc, or returns NULL if no desc. */
696static char *extract_grid_desc(char **desc)
697{
698 char *sep = strchr(*desc, GRID_DESC_SEP), *gd;
699 int gd_len;
700
701 if (!sep) return NULL;
702
703 gd_len = sep - (*desc);
704 gd = snewn(gd_len+1, char);
705 memcpy(gd, *desc, gd_len);
706 gd[gd_len] = '\0';
707
708 *desc = sep+1;
709
710 return gd;
711}
712
121aae4b 713/* We require that the params pass the test in validate_params and that the
714 * description fills the entire game area */
715static char *validate_desc(game_params *params, char *desc)
6193da8d 716{
121aae4b 717 int count = 0;
7c95608a 718 grid *g;
cebf0b0d 719 char *grid_desc, *ret;
720
721 /* It's pretty inefficient to do this just for validation. All we need to
722 * know is the precise number of faces. */
723 grid_desc = extract_grid_desc(&desc);
724 ret = grid_validate_desc(grid_types[params->type], params->w, params->h, grid_desc);
725 if (ret) return ret;
726
727 g = loopy_generate_grid(params, grid_desc);
728 if (grid_desc) sfree(grid_desc);
6193da8d 729
121aae4b 730 for (; *desc; ++desc) {
918a098a 731 if ((*desc >= '0' && *desc <= '9') || (*desc >= 'A' && *desc <= 'Z')) {
121aae4b 732 count++;
733 continue;
734 }
735 if (*desc >= 'a') {
736 count += *desc - 'a' + 1;
737 continue;
738 }
739 return "Unknown character in description";
6193da8d 740 }
741
7c95608a 742 if (count < g->num_faces)
121aae4b 743 return "Description too short for board size";
7c95608a 744 if (count > g->num_faces)
121aae4b 745 return "Description too long for board size";
6193da8d 746
cebf0b0d 747 grid_free(g);
748
121aae4b 749 return NULL;
6193da8d 750}
751
121aae4b 752/* Sums the lengths of the numbers in range [0,n) */
753/* See equivalent function in solo.c for justification of this. */
754static int len_0_to_n(int n)
6193da8d 755{
121aae4b 756 int len = 1; /* Counting 0 as a bit of a special case */
757 int i;
758
759 for (i = 1; i < n; i *= 10) {
760 len += max(n - i, 0);
6193da8d 761 }
121aae4b 762
763 return len;
6193da8d 764}
765
121aae4b 766static char *encode_solve_move(const game_state *state)
767{
7c95608a 768 int len;
121aae4b 769 char *ret, *p;
7c95608a 770 int i;
771 int num_edges = state->game_grid->num_edges;
772
121aae4b 773 /* This is going to return a string representing the moves needed to set
774 * every line in a grid to be the same as the ones in 'state'. The exact
775 * length of this string is predictable. */
6193da8d 776
121aae4b 777 len = 1; /* Count the 'S' prefix */
7c95608a 778 /* Numbers in all lines */
779 len += len_0_to_n(num_edges);
780 /* For each line we also have a letter */
781 len += num_edges;
6193da8d 782
121aae4b 783 ret = snewn(len + 1, char);
784 p = ret;
6193da8d 785
121aae4b 786 p += sprintf(p, "S");
6193da8d 787
7c95608a 788 for (i = 0; i < num_edges; i++) {
789 switch (state->lines[i]) {
790 case LINE_YES:
791 p += sprintf(p, "%dy", i);
792 break;
793 case LINE_NO:
794 p += sprintf(p, "%dn", i);
795 break;
6193da8d 796 }
6193da8d 797 }
121aae4b 798
799 /* No point in doing sums like that if they're going to be wrong */
800 assert(strlen(ret) <= (size_t)len);
801 return ret;
6193da8d 802}
803
121aae4b 804static game_ui *new_ui(game_state *state)
6193da8d 805{
121aae4b 806 return NULL;
807}
6193da8d 808
121aae4b 809static void free_ui(game_ui *ui)
810{
811}
6193da8d 812
121aae4b 813static char *encode_ui(game_ui *ui)
814{
815 return NULL;
816}
6193da8d 817
121aae4b 818static void decode_ui(game_ui *ui, char *encoding)
819{
820}
6193da8d 821
121aae4b 822static void game_changed_state(game_ui *ui, game_state *oldstate,
823 game_state *newstate)
824{
825}
6193da8d 826
121aae4b 827static void game_compute_size(game_params *params, int tilesize,
828 int *x, int *y)
829{
1515b973 830 int grid_width, grid_height, rendered_width, rendered_height;
cebf0b0d 831 int g_tilesize;
832
833 grid_compute_size(grid_types[params->type], params->w, params->h,
834 &g_tilesize, &grid_width, &grid_height);
1515b973 835
7c95608a 836 /* multiply first to minimise rounding error on integer division */
cebf0b0d 837 rendered_width = grid_width * tilesize / g_tilesize;
838 rendered_height = grid_height * tilesize / g_tilesize;
7c95608a 839 *x = rendered_width + 2 * BORDER(tilesize) + 1;
840 *y = rendered_height + 2 * BORDER(tilesize) + 1;
121aae4b 841}
6193da8d 842
121aae4b 843static void game_set_size(drawing *dr, game_drawstate *ds,
7c95608a 844 game_params *params, int tilesize)
121aae4b 845{
846 ds->tilesize = tilesize;
121aae4b 847}
6193da8d 848
121aae4b 849static float *game_colours(frontend *fe, int *ncolours)
850{
851 float *ret = snewn(4 * NCOLOURS, float);
6193da8d 852
121aae4b 853 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
854
855 ret[COL_FOREGROUND * 3 + 0] = 0.0F;
856 ret[COL_FOREGROUND * 3 + 1] = 0.0F;
857 ret[COL_FOREGROUND * 3 + 2] = 0.0F;
858
32c231bb 859 /*
860 * We want COL_LINEUNKNOWN to be a yellow which is a bit darker
861 * than the background. (I previously set it to 0.8,0.8,0, but
862 * found that this went badly with the 0.8,0.8,0.8 favoured as a
863 * background by the Java frontend.)
864 */
865 ret[COL_LINEUNKNOWN * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] * 0.9F;
866 ret[COL_LINEUNKNOWN * 3 + 1] = ret[COL_BACKGROUND * 3 + 1] * 0.9F;
7c95608a 867 ret[COL_LINEUNKNOWN * 3 + 2] = 0.0F;
868
121aae4b 869 ret[COL_HIGHLIGHT * 3 + 0] = 1.0F;
870 ret[COL_HIGHLIGHT * 3 + 1] = 1.0F;
871 ret[COL_HIGHLIGHT * 3 + 2] = 1.0F;
872
873 ret[COL_MISTAKE * 3 + 0] = 1.0F;
874 ret[COL_MISTAKE * 3 + 1] = 0.0F;
875 ret[COL_MISTAKE * 3 + 2] = 0.0F;
876
7c95608a 877 ret[COL_SATISFIED * 3 + 0] = 0.0F;
878 ret[COL_SATISFIED * 3 + 1] = 0.0F;
879 ret[COL_SATISFIED * 3 + 2] = 0.0F;
880
ec909c7a 881 /* We want the faint lines to be a bit darker than the background.
882 * Except if the background is pretty dark already; then it ought to be a
883 * bit lighter. Oy vey.
884 */
885 ret[COL_FAINT * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] * 0.9F;
886 ret[COL_FAINT * 3 + 1] = ret[COL_BACKGROUND * 3 + 1] * 0.9F;
887 ret[COL_FAINT * 3 + 2] = ret[COL_BACKGROUND * 3 + 2] * 0.9F;
888
121aae4b 889 *ncolours = NCOLOURS;
890 return ret;
891}
892
893static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
894{
895 struct game_drawstate *ds = snew(struct game_drawstate);
7c95608a 896 int num_faces = state->game_grid->num_faces;
897 int num_edges = state->game_grid->num_edges;
e0936bbd 898 int i;
121aae4b 899
7c95608a 900 ds->tilesize = 0;
121aae4b 901 ds->started = 0;
7c95608a 902 ds->lines = snewn(num_edges, char);
903 ds->clue_error = snewn(num_faces, char);
904 ds->clue_satisfied = snewn(num_faces, char);
e0936bbd 905 ds->textx = snewn(num_faces, int);
906 ds->texty = snewn(num_faces, int);
121aae4b 907 ds->flashing = 0;
908
7c95608a 909 memset(ds->lines, LINE_UNKNOWN, num_edges);
910 memset(ds->clue_error, 0, num_faces);
911 memset(ds->clue_satisfied, 0, num_faces);
e0936bbd 912 for (i = 0; i < num_faces; i++)
913 ds->textx[i] = ds->texty[i] = -1;
121aae4b 914
915 return ds;
916}
917
918static void game_free_drawstate(drawing *dr, game_drawstate *ds)
919{
920 sfree(ds->clue_error);
7c95608a 921 sfree(ds->clue_satisfied);
922 sfree(ds->lines);
121aae4b 923 sfree(ds);
924}
925
926static int game_timing_state(game_state *state, game_ui *ui)
927{
928 return TRUE;
929}
930
931static float game_anim_length(game_state *oldstate, game_state *newstate,
932 int dir, game_ui *ui)
933{
934 return 0.0F;
935}
936
7c95608a 937static int game_can_format_as_text_now(game_params *params)
938{
939 if (params->type != 0)
940 return FALSE;
941 return TRUE;
942}
943
121aae4b 944static char *game_text_format(game_state *state)
945{
7c95608a 946 int w, h, W, H;
947 int x, y, i;
948 int cell_size;
949 char *ret;
950 grid *g = state->game_grid;
951 grid_face *f;
952
953 assert(state->grid_type == 0);
954
955 /* Work out the basic size unit */
956 f = g->faces; /* first face */
957 assert(f->order == 4);
958 /* The dots are ordered clockwise, so the two opposite
959 * corners are guaranteed to span the square */
960 cell_size = abs(f->dots[0]->x - f->dots[2]->x);
961
962 w = (g->highest_x - g->lowest_x) / cell_size;
963 h = (g->highest_y - g->lowest_y) / cell_size;
964
965 /* Create a blank "canvas" to "draw" on */
966 W = 2 * w + 2;
967 H = 2 * h + 1;
968 ret = snewn(W * H + 1, char);
969 for (y = 0; y < H; y++) {
970 for (x = 0; x < W-1; x++) {
971 ret[y*W + x] = ' ';
121aae4b 972 }
7c95608a 973 ret[y*W + W-1] = '\n';
974 }
975 ret[H*W] = '\0';
976
977 /* Fill in edge info */
978 for (i = 0; i < g->num_edges; i++) {
979 grid_edge *e = g->edges + i;
980 /* Cell coordinates, from (0,0) to (w-1,h-1) */
981 int x1 = (e->dot1->x - g->lowest_x) / cell_size;
982 int x2 = (e->dot2->x - g->lowest_x) / cell_size;
983 int y1 = (e->dot1->y - g->lowest_y) / cell_size;
984 int y2 = (e->dot2->y - g->lowest_y) / cell_size;
985 /* Midpoint, in canvas coordinates (canvas coordinates are just twice
986 * cell coordinates) */
987 x = x1 + x2;
988 y = y1 + y2;
989 switch (state->lines[i]) {
990 case LINE_YES:
991 ret[y*W + x] = (y1 == y2) ? '-' : '|';
992 break;
993 case LINE_NO:
994 ret[y*W + x] = 'x';
995 break;
996 case LINE_UNKNOWN:
997 break; /* already a space */
998 default:
999 assert(!"Illegal line state");
121aae4b 1000 }
121aae4b 1001 }
7c95608a 1002
1003 /* Fill in clues */
1004 for (i = 0; i < g->num_faces; i++) {
1515b973 1005 int x1, x2, y1, y2;
1006
7c95608a 1007 f = g->faces + i;
1008 assert(f->order == 4);
1009 /* Cell coordinates, from (0,0) to (w-1,h-1) */
1515b973 1010 x1 = (f->dots[0]->x - g->lowest_x) / cell_size;
1011 x2 = (f->dots[2]->x - g->lowest_x) / cell_size;
1012 y1 = (f->dots[0]->y - g->lowest_y) / cell_size;
1013 y2 = (f->dots[2]->y - g->lowest_y) / cell_size;
7c95608a 1014 /* Midpoint, in canvas coordinates */
1015 x = x1 + x2;
1016 y = y1 + y2;
1017 ret[y*W + x] = CLUE2CHAR(state->clues[i]);
121aae4b 1018 }
121aae4b 1019 return ret;
1020}
1021
1022/* ----------------------------------------------------------------------
1023 * Debug code
1024 */
1025
1026#ifdef DEBUG_CACHES
1027static void check_caches(const solver_state* sstate)
1028{
7c95608a 1029 int i;
121aae4b 1030 const game_state *state = sstate->state;
7c95608a 1031 const grid *g = state->game_grid;
121aae4b 1032
7c95608a 1033 for (i = 0; i < g->num_dots; i++) {
1034 assert(dot_order(state, i, LINE_YES) == sstate->dot_yes_count[i]);
1035 assert(dot_order(state, i, LINE_NO) == sstate->dot_no_count[i]);
121aae4b 1036 }
1037
7c95608a 1038 for (i = 0; i < g->num_faces; i++) {
1039 assert(face_order(state, i, LINE_YES) == sstate->face_yes_count[i]);
1040 assert(face_order(state, i, LINE_NO) == sstate->face_no_count[i]);
121aae4b 1041 }
1042}
1043
1044#if 0
1045#define check_caches(s) \
1046 do { \
1047 fprintf(stderr, "check_caches at line %d\n", __LINE__); \
1048 check_caches(s); \
1049 } while (0)
1050#endif
1051#endif /* DEBUG_CACHES */
1052
1053/* ----------------------------------------------------------------------
1054 * Solver utility functions
1055 */
1056
7c95608a 1057/* Sets the line (with index i) to the new state 'line_new', and updates
1058 * the cached counts of any affected faces and dots.
1059 * Returns TRUE if this actually changed the line's state. */
1060static int solver_set_line(solver_state *sstate, int i,
1061 enum line_state line_new
121aae4b 1062#ifdef SHOW_WORKING
7c95608a 1063 , const char *reason
121aae4b 1064#endif
7c95608a 1065 )
121aae4b 1066{
1067 game_state *state = sstate->state;
7c95608a 1068 grid *g;
1069 grid_edge *e;
121aae4b 1070
1071 assert(line_new != LINE_UNKNOWN);
1072
1073 check_caches(sstate);
1074
7c95608a 1075 if (state->lines[i] == line_new) {
1076 return FALSE; /* nothing changed */
121aae4b 1077 }
7c95608a 1078 state->lines[i] = line_new;
121aae4b 1079
1080#ifdef SHOW_WORKING
7c95608a 1081 fprintf(stderr, "solver: set line [%d] to %s (%s)\n",
1082 i, line_new == LINE_YES ? "YES" : "NO",
121aae4b 1083 reason);
1084#endif
1085
7c95608a 1086 g = state->game_grid;
1087 e = g->edges + i;
1088
1089 /* Update the cache for both dots and both faces affected by this. */
121aae4b 1090 if (line_new == LINE_YES) {
7c95608a 1091 sstate->dot_yes_count[e->dot1 - g->dots]++;
1092 sstate->dot_yes_count[e->dot2 - g->dots]++;
1093 if (e->face1) {
1094 sstate->face_yes_count[e->face1 - g->faces]++;
1095 }
1096 if (e->face2) {
1097 sstate->face_yes_count[e->face2 - g->faces]++;
1098 }
121aae4b 1099 } else {
7c95608a 1100 sstate->dot_no_count[e->dot1 - g->dots]++;
1101 sstate->dot_no_count[e->dot2 - g->dots]++;
1102 if (e->face1) {
1103 sstate->face_no_count[e->face1 - g->faces]++;
1104 }
1105 if (e->face2) {
1106 sstate->face_no_count[e->face2 - g->faces]++;
1107 }
1108 }
1109
121aae4b 1110 check_caches(sstate);
7c95608a 1111 return TRUE;
121aae4b 1112}
1113
1114#ifdef SHOW_WORKING
7c95608a 1115#define solver_set_line(a, b, c) \
1116 solver_set_line(a, b, c, __FUNCTION__)
121aae4b 1117#endif
1118
1119/*
1120 * Merge two dots due to the existence of an edge between them.
1121 * Updates the dsf tracking equivalence classes, and keeps track of
1122 * the length of path each dot is currently a part of.
1123 * Returns TRUE if the dots were already linked, ie if they are part of a
1124 * closed loop, and false otherwise.
1125 */
7c95608a 1126static int merge_dots(solver_state *sstate, int edge_index)
121aae4b 1127{
1128 int i, j, len;
7c95608a 1129 grid *g = sstate->state->game_grid;
1130 grid_edge *e = g->edges + edge_index;
121aae4b 1131
7c95608a 1132 i = e->dot1 - g->dots;
1133 j = e->dot2 - g->dots;
121aae4b 1134
1135 i = dsf_canonify(sstate->dotdsf, i);
1136 j = dsf_canonify(sstate->dotdsf, j);
1137
1138 if (i == j) {
1139 return TRUE;
1140 } else {
1141 len = sstate->looplen[i] + sstate->looplen[j];
1142 dsf_merge(sstate->dotdsf, i, j);
1143 i = dsf_canonify(sstate->dotdsf, i);
1144 sstate->looplen[i] = len;
1145 return FALSE;
1146 }
1147}
1148
121aae4b 1149/* Merge two lines because the solver has deduced that they must be either
1150 * identical or opposite. Returns TRUE if this is new information, otherwise
1151 * FALSE. */
7c95608a 1152static int merge_lines(solver_state *sstate, int i, int j, int inverse
121aae4b 1153#ifdef SHOW_WORKING
1154 , const char *reason
1155#endif
7c95608a 1156 )
121aae4b 1157{
7c95608a 1158 int inv_tmp;
121aae4b 1159
7c95608a 1160 assert(i < sstate->state->game_grid->num_edges);
1161 assert(j < sstate->state->game_grid->num_edges);
121aae4b 1162
315e47b9 1163 i = edsf_canonify(sstate->linedsf, i, &inv_tmp);
121aae4b 1164 inverse ^= inv_tmp;
315e47b9 1165 j = edsf_canonify(sstate->linedsf, j, &inv_tmp);
121aae4b 1166 inverse ^= inv_tmp;
1167
315e47b9 1168 edsf_merge(sstate->linedsf, i, j, inverse);
121aae4b 1169
1170#ifdef SHOW_WORKING
1171 if (i != j) {
7c95608a 1172 fprintf(stderr, "%s [%d] [%d] %s(%s)\n",
1173 __FUNCTION__, i, j,
121aae4b 1174 inverse ? "inverse " : "", reason);
1175 }
1176#endif
1177 return (i != j);
1178}
1179
1180#ifdef SHOW_WORKING
7c95608a 1181#define merge_lines(a, b, c, d) \
1182 merge_lines(a, b, c, d, __FUNCTION__)
121aae4b 1183#endif
1184
1185/* Count the number of lines of a particular type currently going into the
7c95608a 1186 * given dot. */
1187static int dot_order(const game_state* state, int dot, char line_type)
121aae4b 1188{
1189 int n = 0;
7c95608a 1190 grid *g = state->game_grid;
1191 grid_dot *d = g->dots + dot;
1192 int i;
121aae4b 1193
7c95608a 1194 for (i = 0; i < d->order; i++) {
1195 grid_edge *e = d->edges[i];
1196 if (state->lines[e - g->edges] == line_type)
121aae4b 1197 ++n;
1198 }
121aae4b 1199 return n;
1200}
1201
1202/* Count the number of lines of a particular type currently surrounding the
7c95608a 1203 * given face */
1204static int face_order(const game_state* state, int face, char line_type)
121aae4b 1205{
1206 int n = 0;
7c95608a 1207 grid *g = state->game_grid;
1208 grid_face *f = g->faces + face;
1209 int i;
121aae4b 1210
7c95608a 1211 for (i = 0; i < f->order; i++) {
1212 grid_edge *e = f->edges[i];
1213 if (state->lines[e - g->edges] == line_type)
1214 ++n;
1215 }
121aae4b 1216 return n;
1217}
1218
7c95608a 1219/* Set all lines bordering a dot of type old_type to type new_type
121aae4b 1220 * Return value tells caller whether this function actually did anything */
7c95608a 1221static int dot_setall(solver_state *sstate, int dot,
1222 char old_type, char new_type)
121aae4b 1223{
1224 int retval = FALSE, r;
1225 game_state *state = sstate->state;
7c95608a 1226 grid *g;
1227 grid_dot *d;
1228 int i;
1229
121aae4b 1230 if (old_type == new_type)
1231 return FALSE;
1232
7c95608a 1233 g = state->game_grid;
1234 d = g->dots + dot;
121aae4b 1235
7c95608a 1236 for (i = 0; i < d->order; i++) {
1237 int line_index = d->edges[i] - g->edges;
1238 if (state->lines[line_index] == old_type) {
1239 r = solver_set_line(sstate, line_index, new_type);
1240 assert(r == TRUE);
1241 retval = TRUE;
1242 }
121aae4b 1243 }
121aae4b 1244 return retval;
1245}
1246
7c95608a 1247/* Set all lines bordering a face of type old_type to type new_type */
1248static int face_setall(solver_state *sstate, int face,
1249 char old_type, char new_type)
121aae4b 1250{
7c95608a 1251 int retval = FALSE, r;
121aae4b 1252 game_state *state = sstate->state;
7c95608a 1253 grid *g;
1254 grid_face *f;
1255 int i;
121aae4b 1256
7c95608a 1257 if (old_type == new_type)
1258 return FALSE;
1259
1260 g = state->game_grid;
1261 f = g->faces + face;
121aae4b 1262
7c95608a 1263 for (i = 0; i < f->order; i++) {
1264 int line_index = f->edges[i] - g->edges;
1265 if (state->lines[line_index] == old_type) {
1266 r = solver_set_line(sstate, line_index, new_type);
1267 assert(r == TRUE);
1268 retval = TRUE;
1269 }
1270 }
1271 return retval;
121aae4b 1272}
1273
1274/* ----------------------------------------------------------------------
1275 * Loop generation and clue removal
1276 */
1277
7126ca41 1278/* We're going to store lists of current candidate faces for colouring black
1279 * or white.
7c95608a 1280 * Each face gets a 'score', which tells us how adding that face right
7126ca41 1281 * now would affect the curliness of the solution loop. We're trying to
7c95608a 1282 * maximise that quantity so will bias our random selection of faces to
7126ca41 1283 * colour those with high scores */
1284struct face_score {
1285 int white_score;
1286 int black_score;
121aae4b 1287 unsigned long random;
7126ca41 1288 /* No need to store a grid_face* here. The 'face_scores' array will
1289 * be a list of 'face_score' objects, one for each face of the grid, so
1290 * the position (index) within the 'face_scores' array will determine
1291 * which face corresponds to a particular face_score.
1292 * Having a single 'face_scores' array for all faces simplifies memory
1293 * management, and probably improves performance, because we don't have to
1294 * malloc/free each individual face_score, and we don't have to maintain
1295 * a mapping from grid_face* pointers to face_score* pointers.
1296 */
121aae4b 1297};
1298
7126ca41 1299static int generic_sort_cmpfn(void *v1, void *v2, size_t offset)
121aae4b 1300{
7126ca41 1301 struct face_score *f1 = v1;
1302 struct face_score *f2 = v2;
121aae4b 1303 int r;
1304
7126ca41 1305 r = *(int *)((char *)f2 + offset) - *(int *)((char *)f1 + offset);
121aae4b 1306 if (r) {
1307 return r;
1308 }
1309
7c95608a 1310 if (f1->random < f2->random)
121aae4b 1311 return -1;
7c95608a 1312 else if (f1->random > f2->random)
121aae4b 1313 return 1;
1314
1315 /*
7c95608a 1316 * It's _just_ possible that two faces might have been given
121aae4b 1317 * the same random value. In that situation, fall back to
7126ca41 1318 * comparing based on the positions within the face_scores list.
7c95608a 1319 * This introduces a tiny directional bias, but not a significant one.
121aae4b 1320 */
7126ca41 1321 return f1 - f2;
1322}
1323
1324static int white_sort_cmpfn(void *v1, void *v2)
1325{
1326 return generic_sort_cmpfn(v1, v2, offsetof(struct face_score,white_score));
1327}
1328
1329static int black_sort_cmpfn(void *v1, void *v2)
1330{
1331 return generic_sort_cmpfn(v1, v2, offsetof(struct face_score,black_score));
121aae4b 1332}
1333
7126ca41 1334enum face_colour { FACE_WHITE, FACE_GREY, FACE_BLACK };
7c95608a 1335
1336/* face should be of type grid_face* here. */
7126ca41 1337#define FACE_COLOUR(face) \
1338 ( (face) == NULL ? FACE_BLACK : \
7c95608a 1339 board[(face) - g->faces] )
1340
1341/* 'board' is an array of these enums, indicating which faces are
7126ca41 1342 * currently black/white/grey. 'colour' is FACE_WHITE or FACE_BLACK.
1343 * Returns whether it's legal to colour the given face with this colour. */
1344static int can_colour_face(grid *g, char* board, int face_index,
1345 enum face_colour colour)
7c95608a 1346{
1347 int i, j;
1348 grid_face *test_face = g->faces + face_index;
1349 grid_face *starting_face, *current_face;
24575af2 1350 grid_dot *starting_dot;
7c95608a 1351 int transitions;
7126ca41 1352 int current_state, s; /* booleans: equal or not-equal to 'colour' */
1353 int found_same_coloured_neighbour = FALSE;
1354 assert(board[face_index] != colour);
7c95608a 1355
7126ca41 1356 /* Can only consider a face for colouring if it's adjacent to a face
1357 * with the same colour. */
7c95608a 1358 for (i = 0; i < test_face->order; i++) {
1359 grid_edge *e = test_face->edges[i];
1360 grid_face *f = (e->face1 == test_face) ? e->face2 : e->face1;
7126ca41 1361 if (FACE_COLOUR(f) == colour) {
1362 found_same_coloured_neighbour = TRUE;
7c95608a 1363 break;
1364 }
1365 }
7126ca41 1366 if (!found_same_coloured_neighbour)
7c95608a 1367 return FALSE;
1368
7126ca41 1369 /* Need to avoid creating a loop of faces of this colour around some
1370 * differently-coloured faces.
1371 * Also need to avoid meeting a same-coloured face at a corner, with
1372 * other-coloured faces in between. Here's a simple test that (I believe)
1373 * takes care of both these conditions:
7c95608a 1374 *
1375 * Take the circular path formed by this face's edges, and inflate it
1376 * slightly outwards. Imagine walking around this path and consider
1377 * the faces that you visit in sequence. This will include all faces
1378 * touching the given face, either along an edge or just at a corner.
7126ca41 1379 * Count the number of 'colour'/not-'colour' transitions you encounter, as
1380 * you walk along the complete loop. This will obviously turn out to be
1381 * an even number.
1382 * If 0, we're either in the middle of an "island" of this colour (should
1383 * be impossible as we're not supposed to create black or white loops),
1384 * or we're about to start a new island - also not allowed.
1385 * If 4 or greater, there are too many separate coloured regions touching
1386 * this face, and colouring it would create a loop or a corner-violation.
7c95608a 1387 * The only allowed case is when the count is exactly 2. */
1388
1389 /* i points to a dot around the test face.
1390 * j points to a face around the i^th dot.
1391 * The current face will always be:
1392 * test_face->dots[i]->faces[j]
1393 * We assume dots go clockwise around the test face,
1394 * and faces go clockwise around dots. */
24575af2 1395
1396 /*
1397 * The end condition is slightly fiddly. In sufficiently strange
1398 * degenerate grids, our test face may be adjacent to the same
1399 * other face multiple times (typically if it's the exterior
1400 * face). Consider this, in particular:
1401 *
1402 * +--+
1403 * | |
1404 * +--+--+
1405 * | | |
1406 * +--+--+
1407 *
1408 * The bottom left face there is adjacent to the exterior face
1409 * twice, so we can't just terminate our iteration when we reach
1410 * the same _face_ we started at. Furthermore, we can't
1411 * condition on having the same (i,j) pair either, because
1412 * several (i,j) pairs identify the bottom left contiguity with
1413 * the exterior face! We canonicalise the (i,j) pair by taking
1414 * one step around before we set the termination tracking.
1415 */
1416
7c95608a 1417 i = j = 0;
24575af2 1418 current_face = test_face->dots[0]->faces[0];
1419 if (current_face == test_face) {
7c95608a 1420 j = 1;
24575af2 1421 current_face = test_face->dots[0]->faces[1];
7c95608a 1422 }
7c95608a 1423 transitions = 0;
7126ca41 1424 current_state = (FACE_COLOUR(current_face) == colour);
24575af2 1425 starting_dot = NULL;
1426 starting_face = NULL;
1427 while (TRUE) {
7c95608a 1428 /* Advance to next face.
1429 * Need to loop here because it might take several goes to
1430 * find it. */
1431 while (TRUE) {
1432 j++;
1433 if (j == test_face->dots[i]->order)
1434 j = 0;
1435
1436 if (test_face->dots[i]->faces[j] == test_face) {
1437 /* Advance to next dot round test_face, then
1438 * find current_face around new dot
1439 * and advance to the next face clockwise */
1440 i++;
1441 if (i == test_face->order)
1442 i = 0;
1443 for (j = 0; j < test_face->dots[i]->order; j++) {
1444 if (test_face->dots[i]->faces[j] == current_face)
1445 break;
1446 }
1447 /* Must actually find current_face around new dot,
1448 * or else something's wrong with the grid. */
1449 assert(j != test_face->dots[i]->order);
1450 /* Found, so advance to next face and try again */
1451 } else {
1452 break;
1453 }
1454 }
1455 /* (i,j) are now advanced to next face */
1456 current_face = test_face->dots[i]->faces[j];
7126ca41 1457 s = (FACE_COLOUR(current_face) == colour);
24575af2 1458 if (!starting_dot) {
1459 starting_dot = test_face->dots[i];
1460 starting_face = current_face;
1461 current_state = s;
1462 } else {
1463 if (s != current_state) {
1464 ++transitions;
1465 current_state = s;
1466 if (transitions > 2)
1467 break;
1468 }
1469 if (test_face->dots[i] == starting_dot &&
1470 current_face == starting_face)
1471 break;
7c95608a 1472 }
24575af2 1473 }
121aae4b 1474
7c95608a 1475 return (transitions == 2) ? TRUE : FALSE;
1476}
121aae4b 1477
7126ca41 1478/* Count the number of neighbours of 'face', having colour 'colour' */
1479static int face_num_neighbours(grid *g, char *board, grid_face *face,
1480 enum face_colour colour)
7c95608a 1481{
7126ca41 1482 int colour_count = 0;
7c95608a 1483 int i;
1484 grid_face *f;
1485 grid_edge *e;
1486 for (i = 0; i < face->order; i++) {
1487 e = face->edges[i];
1488 f = (e->face1 == face) ? e->face2 : e->face1;
7126ca41 1489 if (FACE_COLOUR(f) == colour)
1490 ++colour_count;
7c95608a 1491 }
7126ca41 1492 return colour_count;
7c95608a 1493}
121aae4b 1494
7126ca41 1495/* The 'score' of a face reflects its current desirability for selection
1496 * as the next face to colour white or black. We want to encourage moving
1497 * into grey areas and increasing loopiness, so we give scores according to
1498 * how many of the face's neighbours are currently coloured the same as the
1499 * proposed colour. */
1500static int face_score(grid *g, char *board, grid_face *face,
1501 enum face_colour colour)
1502{
1503 /* Simple formula: score = 0 - num. same-coloured neighbours,
1504 * so a higher score means fewer same-coloured neighbours. */
1505 return -face_num_neighbours(g, board, face, colour);
1506}
1507
1508/* Generate a new complete set of clues for the given game_state.
1509 * The method is to generate a WHITE/BLACK colouring of all the faces,
1510 * such that the WHITE faces will define the inside of the path, and the
1511 * BLACK faces define the outside.
1512 * To do this, we initially colour all faces GREY. The infinite space outside
1513 * the grid is coloured BLACK, and we choose a random face to colour WHITE.
1514 * Then we gradually grow the BLACK and the WHITE regions, eliminating GREY
1515 * faces, until the grid is filled with BLACK/WHITE. As we grow the regions,
1516 * we avoid creating loops of a single colour, to preserve the topological
1517 * shape of the WHITE and BLACK regions.
1518 * We also try to make the boundary as loopy and twisty as possible, to avoid
1519 * generating paths that are uninteresting.
1520 * The algorithm works by choosing a BLACK/WHITE colour, then choosing a GREY
1521 * face that can be coloured with that colour (without violating the
1522 * topological shape of that region). It's not obvious, but I think this
1523 * algorithm is guaranteed to terminate without leaving any GREY faces behind.
1524 * Indeed, if there are any GREY faces at all, both the WHITE and BLACK
1525 * regions can be grown.
1526 * This is checked using assert()ions, and I haven't seen any failures yet.
1527 *
1528 * Hand-wavy proof: imagine what can go wrong...
1529 *
1530 * Could the white faces get completely cut off by the black faces, and still
1531 * leave some grey faces remaining?
1532 * No, because then the black faces would form a loop around both the white
1533 * faces and the grey faces, which is disallowed because we continually
1534 * maintain the correct topological shape of the black region.
1535 * Similarly, the black faces can never get cut off by the white faces. That
1536 * means both the WHITE and BLACK regions always have some room to grow into
1537 * the GREY regions.
1538 * Could it be that we can't colour some GREY face, because there are too many
1539 * WHITE/BLACK transitions as we walk round the face? (see the
1540 * can_colour_face() function for details)
1541 * No. Imagine otherwise, and we see WHITE/BLACK/WHITE/BLACK as we walk
1542 * around the face. The two WHITE faces would be connected by a WHITE path,
1543 * and the BLACK faces would be connected by a BLACK path. These paths would
1544 * have to cross, which is impossible.
1545 * Another thing that could go wrong: perhaps we can't find any GREY face to
1546 * colour WHITE, because it would create a loop-violation or a corner-violation
1547 * with the other WHITE faces?
1548 * This is a little bit tricky to prove impossible. Imagine you have such a
1549 * GREY face (that is, if you coloured it WHITE, you would create a WHITE loop
1550 * or corner violation).
1551 * That would cut all the non-white area into two blobs. One of those blobs
1552 * must be free of BLACK faces (because the BLACK stuff is a connected blob).
1553 * So we have a connected GREY area, completely surrounded by WHITE
1554 * (including the GREY face we've tentatively coloured WHITE).
1555 * A well-known result in graph theory says that you can always find a GREY
1556 * face whose removal leaves the remaining GREY area connected. And it says
1557 * there are at least two such faces, so we can always choose the one that
1558 * isn't the "tentative" GREY face. Colouring that face WHITE leaves
1559 * everything nice and connected, including that "tentative" GREY face which
1560 * acts as a gateway to the rest of the non-WHITE grid.
1561 */
121aae4b 1562static void add_full_clues(game_state *state, random_state *rs)
1563{
7c95608a 1564 signed char *clues = state->clues;
121aae4b 1565 char *board;
7c95608a 1566 grid *g = state->game_grid;
7126ca41 1567 int i, j;
7c95608a 1568 int num_faces = g->num_faces;
7126ca41 1569 struct face_score *face_scores; /* Array of face_score objects */
1570 struct face_score *fs; /* Points somewhere in the above list */
1571 struct grid_face *cur_face;
1572 tree234 *lightable_faces_sorted;
1573 tree234 *darkable_faces_sorted;
1574 int *face_list;
1575 int do_random_pass;
7c95608a 1576
1577 board = snewn(num_faces, char);
121aae4b 1578
1579 /* Make a board */
7126ca41 1580 memset(board, FACE_GREY, num_faces);
1581
1582 /* Create and initialise the list of face_scores */
1583 face_scores = snewn(num_faces, struct face_score);
1584 for (i = 0; i < num_faces; i++) {
1585 face_scores[i].random = random_bits(rs, 31);
8719c2e7 1586 face_scores[i].black_score = face_scores[i].white_score = 0;
7126ca41 1587 }
1588
1589 /* Colour a random, finite face white. The infinite face is implicitly
1590 * coloured black. Together, they will seed the random growth process
1591 * for the black and white areas. */
1592 i = random_upto(rs, num_faces);
1593 board[i] = FACE_WHITE;
7c95608a 1594
1595 /* We need a way of favouring faces that will increase our loopiness.
1596 * We do this by maintaining a list of all candidate faces sorted by
1597 * their score and choose randomly from that with appropriate skew.
1598 * In order to avoid consistently biasing towards particular faces, we
121aae4b 1599 * need the sort order _within_ each group of scores to be completely
1600 * random. But it would be abusing the hospitality of the tree234 data
1601 * structure if our comparison function were nondeterministic :-). So with
7c95608a 1602 * each face we associate a random number that does not change during a
121aae4b 1603 * particular run of the generator, and use that as a secondary sort key.
7c95608a 1604 * Yes, this means we will be biased towards particular random faces in
121aae4b 1605 * any one run but that doesn't actually matter. */
7c95608a 1606
7126ca41 1607 lightable_faces_sorted = newtree234(white_sort_cmpfn);
1608 darkable_faces_sorted = newtree234(black_sort_cmpfn);
121aae4b 1609
7126ca41 1610 /* Initialise the lists of lightable and darkable faces. This is
1611 * slightly different from the code inside the while-loop, because we need
1612 * to check every face of the board (the grid structure does not keep a
1613 * list of the infinite face's neighbours). */
1614 for (i = 0; i < num_faces; i++) {
1615 grid_face *f = g->faces + i;
1616 struct face_score *fs = face_scores + i;
1617 if (board[i] != FACE_GREY) continue;
1618 /* We need the full colourability check here, it's not enough simply
1619 * to check neighbourhood. On some grids, a neighbour of the infinite
1620 * face is not necessarily darkable. */
1621 if (can_colour_face(g, board, i, FACE_BLACK)) {
1622 fs->black_score = face_score(g, board, f, FACE_BLACK);
1623 add234(darkable_faces_sorted, fs);
1624 }
1625 if (can_colour_face(g, board, i, FACE_WHITE)) {
1626 fs->white_score = face_score(g, board, f, FACE_WHITE);
1627 add234(lightable_faces_sorted, fs);
1628 }
1629 }
7c95608a 1630
7126ca41 1631 /* Colour faces one at a time until no more faces are colourable. */
121aae4b 1632 while (TRUE)
1633 {
7126ca41 1634 enum face_colour colour;
1635 struct face_score *fs_white, *fs_black;
1636 int c_lightable = count234(lightable_faces_sorted);
1637 int c_darkable = count234(darkable_faces_sorted);
24575af2 1638 if (c_lightable == 0 && c_darkable == 0) {
1639 /* No more faces we can use at all. */
7126ca41 1640 break;
1641 }
24575af2 1642 assert(c_lightable != 0 && c_darkable != 0);
121aae4b 1643
7126ca41 1644 fs_white = (struct face_score *)index234(lightable_faces_sorted, 0);
1645 fs_black = (struct face_score *)index234(darkable_faces_sorted, 0);
121aae4b 1646
7126ca41 1647 /* Choose a colour, and colour the best available face
1648 * with that colour. */
1649 colour = random_upto(rs, 2) ? FACE_WHITE : FACE_BLACK;
121aae4b 1650
7126ca41 1651 if (colour == FACE_WHITE)
1652 fs = fs_white;
1653 else
1654 fs = fs_black;
1655 assert(fs);
1656 i = fs - face_scores;
1657 assert(board[i] == FACE_GREY);
1658 board[i] = colour;
1659
1660 /* Remove this newly-coloured face from the lists. These lists should
1661 * only contain grey faces. */
1662 del234(lightable_faces_sorted, fs);
1663 del234(darkable_faces_sorted, fs);
1664
1665 /* Remember which face we've just coloured */
1666 cur_face = g->faces + i;
1667
1668 /* The face we've just coloured potentially affects the colourability
1669 * and the scores of any neighbouring faces (touching at a corner or
1670 * edge). So the search needs to be conducted around all faces
1671 * touching the one we've just lit. Iterate over its corners, then
1672 * over each corner's faces. For each such face, we remove it from
1673 * the lists, recalculate any scores, then add it back to the lists
1674 * (depending on whether it is lightable, darkable or both). */
1675 for (i = 0; i < cur_face->order; i++) {
1676 grid_dot *d = cur_face->dots[i];
7c95608a 1677 for (j = 0; j < d->order; j++) {
7126ca41 1678 grid_face *f = d->faces[j];
1679 int fi; /* face index of f */
1680
1681 if (f == NULL)
121aae4b 1682 continue;
7126ca41 1683 if (f == cur_face)
7c95608a 1684 continue;
7126ca41 1685
1686 /* If the face is already coloured, it won't be on our
1687 * lightable/darkable lists anyway, so we can skip it without
1688 * bothering with the removal step. */
1689 if (FACE_COLOUR(f) != FACE_GREY) continue;
1690
1691 /* Find the face index and face_score* corresponding to f */
1692 fi = f - g->faces;
1693 fs = face_scores + fi;
1694
1695 /* Remove from lightable list if it's in there. We do this,
1696 * even if it is still lightable, because the score might
1697 * be different, and we need to remove-then-add to maintain
1698 * correct sort order. */
1699 del234(lightable_faces_sorted, fs);
1700 if (can_colour_face(g, board, fi, FACE_WHITE)) {
1701 fs->white_score = face_score(g, board, f, FACE_WHITE);
1702 add234(lightable_faces_sorted, fs);
121aae4b 1703 }
7126ca41 1704 /* Do the same for darkable list. */
1705 del234(darkable_faces_sorted, fs);
1706 if (can_colour_face(g, board, fi, FACE_BLACK)) {
1707 fs->black_score = face_score(g, board, f, FACE_BLACK);
1708 add234(darkable_faces_sorted, fs);
121aae4b 1709 }
1710 }
1711 }
121aae4b 1712 }
1713
1714 /* Clean up */
7c95608a 1715 freetree234(lightable_faces_sorted);
7126ca41 1716 freetree234(darkable_faces_sorted);
1717 sfree(face_scores);
1718
1719 /* The next step requires a shuffled list of all faces */
1720 face_list = snewn(num_faces, int);
1721 for (i = 0; i < num_faces; ++i) {
1722 face_list[i] = i;
1723 }
1724 shuffle(face_list, num_faces, sizeof(int), rs);
1725
1726 /* The above loop-generation algorithm can often leave large clumps
1727 * of faces of one colour. In extreme cases, the resulting path can be
1728 * degenerate and not very satisfying to solve.
1729 * This next step alleviates this problem:
1730 * Go through the shuffled list, and flip the colour of any face we can
1731 * legally flip, and which is adjacent to only one face of the opposite
1732 * colour - this tends to grow 'tendrils' into any clumps.
1733 * Repeat until we can find no more faces to flip. This will
1734 * eventually terminate, because each flip increases the loop's
1735 * perimeter, which cannot increase for ever.
1736 * The resulting path will have maximal loopiness (in the sense that it
1737 * cannot be improved "locally". Unfortunately, this allows a player to
1738 * make some illicit deductions. To combat this (and make the path more
1739 * interesting), we do one final pass making random flips. */
1740
1741 /* Set to TRUE for final pass */
1742 do_random_pass = FALSE;
1743
1744 while (TRUE) {
1745 /* Remember whether a flip occurred during this pass */
1746 int flipped = FALSE;
1747
1748 for (i = 0; i < num_faces; ++i) {
1749 int j = face_list[i];
1750 enum face_colour opp =
1751 (board[j] == FACE_WHITE) ? FACE_BLACK : FACE_WHITE;
1752 if (can_colour_face(g, board, j, opp)) {
1753 grid_face *face = g->faces +j;
1754 if (do_random_pass) {
1755 /* final random pass */
1756 if (!random_upto(rs, 10))
1757 board[j] = opp;
1758 } else {
1759 /* normal pass - flip when neighbour count is 1 */
1760 if (face_num_neighbours(g, board, face, opp) == 1) {
1761 board[j] = opp;
1762 flipped = TRUE;
1763 }
1764 }
1765 }
1766 }
1767
1768 if (do_random_pass) break;
1769 if (!flipped) do_random_pass = TRUE;
1770 }
1771
1772 sfree(face_list);
7c95608a 1773
1774 /* Fill out all the clues by initialising to 0, then iterating over
1775 * all edges and incrementing each clue as we find edges that border
7126ca41 1776 * between BLACK/WHITE faces. While we're at it, we verify that the
1777 * algorithm does work, and there aren't any GREY faces still there. */
7c95608a 1778 memset(clues, 0, num_faces);
1779 for (i = 0; i < g->num_edges; i++) {
1780 grid_edge *e = g->edges + i;
1781 grid_face *f1 = e->face1;
1782 grid_face *f2 = e->face2;
7126ca41 1783 enum face_colour c1 = FACE_COLOUR(f1);
1784 enum face_colour c2 = FACE_COLOUR(f2);
1785 assert(c1 != FACE_GREY);
1786 assert(c2 != FACE_GREY);
1787 if (c1 != c2) {
7c95608a 1788 if (f1) clues[f1 - g->faces]++;
1789 if (f2) clues[f2 - g->faces]++;
1790 }
121aae4b 1791 }
1792
1793 sfree(board);
1794}
1795
7c95608a 1796
1a739e2f 1797static int game_has_unique_soln(const game_state *state, int diff)
121aae4b 1798{
1799 int ret;
1800 solver_state *sstate_new;
1801 solver_state *sstate = new_solver_state((game_state *)state, diff);
7c95608a 1802
315e47b9 1803 sstate_new = solve_game_rec(sstate);
121aae4b 1804
1805 assert(sstate_new->solver_status != SOLVER_MISTAKE);
1806 ret = (sstate_new->solver_status == SOLVER_SOLVED);
1807
1808 free_solver_state(sstate_new);
1809 free_solver_state(sstate);
1810
1811 return ret;
1812}
1813
7c95608a 1814
121aae4b 1815/* Remove clues one at a time at random. */
7c95608a 1816static game_state *remove_clues(game_state *state, random_state *rs,
1a739e2f 1817 int diff)
121aae4b 1818{
7c95608a 1819 int *face_list;
1820 int num_faces = state->game_grid->num_faces;
121aae4b 1821 game_state *ret = dup_game(state), *saved_ret;
1822 int n;
121aae4b 1823
1824 /* We need to remove some clues. We'll do this by forming a list of all
1825 * available clues, shuffling it, then going along one at a
1826 * time clearing each clue in turn for which doing so doesn't render the
1827 * board unsolvable. */
7c95608a 1828 face_list = snewn(num_faces, int);
1829 for (n = 0; n < num_faces; ++n) {
1830 face_list[n] = n;
121aae4b 1831 }
1832
7c95608a 1833 shuffle(face_list, num_faces, sizeof(int), rs);
121aae4b 1834
7c95608a 1835 for (n = 0; n < num_faces; ++n) {
1836 saved_ret = dup_game(ret);
1837 ret->clues[face_list[n]] = -1;
121aae4b 1838
1839 if (game_has_unique_soln(ret, diff)) {
1840 free_game(saved_ret);
1841 } else {
1842 free_game(ret);
1843 ret = saved_ret;
1844 }
1845 }
7c95608a 1846 sfree(face_list);
121aae4b 1847
1848 return ret;
1849}
1850
7c95608a 1851
121aae4b 1852static char *new_game_desc(game_params *params, random_state *rs,
1853 char **aux, int interactive)
1854{
1855 /* solution and description both use run-length encoding in obvious ways */
cebf0b0d 1856 char *retval, *game_desc, *grid_desc;
7c95608a 1857 grid *g;
1858 game_state *state = snew(game_state);
1859 game_state *state_new;
cebf0b0d 1860
1861 grid_desc = grid_new_desc(grid_types[params->type], params->w, params->h, rs);
1862 state->game_grid = g = loopy_generate_grid(params, grid_desc);
1863
7c95608a 1864 state->clues = snewn(g->num_faces, signed char);
1865 state->lines = snewn(g->num_edges, char);
b6bf0adc 1866 state->line_errors = snewn(g->num_edges, unsigned char);
121aae4b 1867
7c95608a 1868 state->grid_type = params->type;
121aae4b 1869
7c95608a 1870 newboard_please:
121aae4b 1871
7c95608a 1872 memset(state->lines, LINE_UNKNOWN, g->num_edges);
b6bf0adc 1873 memset(state->line_errors, 0, g->num_edges);
121aae4b 1874
1875 state->solved = state->cheated = FALSE;
121aae4b 1876
1877 /* Get a new random solvable board with all its clues filled in. Yes, this
1878 * can loop for ever if the params are suitably unfavourable, but
1879 * preventing games smaller than 4x4 seems to stop this happening */
121aae4b 1880 do {
1881 add_full_clues(state, rs);
1882 } while (!game_has_unique_soln(state, params->diff));
1883
1884 state_new = remove_clues(state, rs, params->diff);
1885 free_game(state);
1886 state = state_new;
1887
7c95608a 1888
121aae4b 1889 if (params->diff > 0 && game_has_unique_soln(state, params->diff-1)) {
1a739e2f 1890#ifdef SHOW_WORKING
121aae4b 1891 fprintf(stderr, "Rejecting board, it is too easy\n");
1a739e2f 1892#endif
121aae4b 1893 goto newboard_please;
1894 }
1895
cebf0b0d 1896 game_desc = state_to_text(state);
121aae4b 1897
1898 free_game(state);
7c95608a 1899
cebf0b0d 1900 if (grid_desc) {
1901 retval = snewn(strlen(grid_desc) + 1 + strlen(game_desc) + 1, char);
1902 sprintf(retval, "%s%c%s", grid_desc, GRID_DESC_SEP, game_desc);
1903 sfree(grid_desc);
1904 sfree(game_desc);
1905 } else {
1906 retval = game_desc;
1907 }
1908
121aae4b 1909 assert(!validate_desc(params, retval));
1910
1911 return retval;
1912}
1913
1914static game_state *new_game(midend *me, game_params *params, char *desc)
1915{
7c95608a 1916 int i;
121aae4b 1917 game_state *state = snew(game_state);
1918 int empties_to_make = 0;
918a098a 1919 int n,n2;
cebf0b0d 1920 const char *dp;
1921 char *grid_desc;
7c95608a 1922 grid *g;
1515b973 1923 int num_faces, num_edges;
1924
cebf0b0d 1925 grid_desc = extract_grid_desc(&desc);
1926 state->game_grid = g = loopy_generate_grid(params, grid_desc);
1927 if (grid_desc) sfree(grid_desc);
1928
1929 dp = desc;
1930
1515b973 1931 num_faces = g->num_faces;
1932 num_edges = g->num_edges;
121aae4b 1933
7c95608a 1934 state->clues = snewn(num_faces, signed char);
1935 state->lines = snewn(num_edges, char);
b6bf0adc 1936 state->line_errors = snewn(num_edges, unsigned char);
121aae4b 1937
1938 state->solved = state->cheated = FALSE;
1939
7c95608a 1940 state->grid_type = params->type;
1941
1942 for (i = 0; i < num_faces; i++) {
121aae4b 1943 if (empties_to_make) {
1944 empties_to_make--;
7c95608a 1945 state->clues[i] = -1;
121aae4b 1946 continue;
1947 }
1948
1949 assert(*dp);
1950 n = *dp - '0';
918a098a 1951 n2 = *dp - 'A' + 10;
121aae4b 1952 if (n >= 0 && n < 10) {
7c95608a 1953 state->clues[i] = n;
918a098a 1954 } else if (n2 >= 10 && n2 < 36) {
1955 state->clues[i] = n2;
121aae4b 1956 } else {
1957 n = *dp - 'a' + 1;
1958 assert(n > 0);
7c95608a 1959 state->clues[i] = -1;
121aae4b 1960 empties_to_make = n - 1;
1961 }
1962 ++dp;
1963 }
1964
7c95608a 1965 memset(state->lines, LINE_UNKNOWN, num_edges);
b6bf0adc 1966 memset(state->line_errors, 0, num_edges);
121aae4b 1967 return state;
1968}
1969
b6bf0adc 1970/* Calculates the line_errors data, and checks if the current state is a
1971 * solution */
1972static int check_completion(game_state *state)
1973{
1974 grid *g = state->game_grid;
1975 int *dsf;
1976 int num_faces = g->num_faces;
1977 int i;
1978 int infinite_area, finite_area;
1979 int loops_found = 0;
1980 int found_edge_not_in_loop = FALSE;
1981
1982 memset(state->line_errors, 0, g->num_edges);
1983
1984 /* LL implementation of SGT's idea:
1985 * A loop will partition the grid into an inside and an outside.
1986 * If there is more than one loop, the grid will be partitioned into
1987 * even more distinct regions. We can therefore track equivalence of
1988 * faces, by saying that two faces are equivalent when there is a non-YES
1989 * edge between them.
1990 * We could keep track of the number of connected components, by counting
1991 * the number of dsf-merges that aren't no-ops.
1992 * But we're only interested in 3 separate cases:
1993 * no loops, one loop, more than one loop.
1994 *
1995 * No loops: all faces are equivalent to the infinite face.
1996 * One loop: only two equivalence classes - finite and infinite.
1997 * >= 2 loops: there are 2 distinct finite regions.
1998 *
1999 * So we simply make two passes through all the edges.
2000 * In the first pass, we dsf-merge the two faces bordering each non-YES
2001 * edge.
2002 * In the second pass, we look for YES-edges bordering:
2003 * a) two non-equivalent faces.
2004 * b) two non-equivalent faces, and one of them is part of a different
2005 * finite area from the first finite area we've seen.
2006 *
2007 * An occurrence of a) means there is at least one loop.
2008 * An occurrence of b) means there is more than one loop.
2009 * Edges satisfying a) are marked as errors.
2010 *
2011 * While we're at it, we set a flag if we find a YES edge that is not
2012 * part of a loop.
2013 * This information will help decide, if there's a single loop, whether it
2014 * is a candidate for being a solution (that is, all YES edges are part of
2015 * this loop).
2016 *
2017 * If there is a candidate loop, we then go through all clues and check
2018 * they are all satisfied. If so, we have found a solution and we can
2019 * unmark all line_errors.
2020 */
2021
2022 /* Infinite face is at the end - its index is num_faces.
2023 * This macro is just to make this obvious! */
2024 #define INF_FACE num_faces
2025 dsf = snewn(num_faces + 1, int);
2026 dsf_init(dsf, num_faces + 1);
2027
2028 /* First pass */
2029 for (i = 0; i < g->num_edges; i++) {
2030 grid_edge *e = g->edges + i;
2031 int f1 = e->face1 ? e->face1 - g->faces : INF_FACE;
2032 int f2 = e->face2 ? e->face2 - g->faces : INF_FACE;
2033 if (state->lines[i] != LINE_YES)
2034 dsf_merge(dsf, f1, f2);
2035 }
2036
2037 /* Second pass */
2038 infinite_area = dsf_canonify(dsf, INF_FACE);
2039 finite_area = -1;
2040 for (i = 0; i < g->num_edges; i++) {
2041 grid_edge *e = g->edges + i;
2042 int f1 = e->face1 ? e->face1 - g->faces : INF_FACE;
2043 int can1 = dsf_canonify(dsf, f1);
2044 int f2 = e->face2 ? e->face2 - g->faces : INF_FACE;
2045 int can2 = dsf_canonify(dsf, f2);
2046 if (state->lines[i] != LINE_YES) continue;
2047
2048 if (can1 == can2) {
2049 /* Faces are equivalent, so this edge not part of a loop */
2050 found_edge_not_in_loop = TRUE;
2051 continue;
2052 }
2053 state->line_errors[i] = TRUE;
2054 if (loops_found == 0) loops_found = 1;
2055
2056 /* Don't bother with further checks if we've already found 2 loops */
2057 if (loops_found == 2) continue;
2058
2059 if (finite_area == -1) {
2060 /* Found our first finite area */
2061 if (can1 != infinite_area)
2062 finite_area = can1;
2063 else
2064 finite_area = can2;
2065 }
2066
2067 /* Have we found a second area? */
2068 if (finite_area != -1) {
2069 if (can1 != infinite_area && can1 != finite_area) {
2070 loops_found = 2;
2071 continue;
2072 }
2073 if (can2 != infinite_area && can2 != finite_area) {
2074 loops_found = 2;
2075 }
2076 }
2077 }
2078
2079/*
2080 printf("loops_found = %d\n", loops_found);
2081 printf("found_edge_not_in_loop = %s\n",
2082 found_edge_not_in_loop ? "TRUE" : "FALSE");
2083*/
2084
2085 sfree(dsf); /* No longer need the dsf */
2086
2087 /* Have we found a candidate loop? */
2088 if (loops_found == 1 && !found_edge_not_in_loop) {
2089 /* Yes, so check all clues are satisfied */
2090 int found_clue_violation = FALSE;
2091 for (i = 0; i < num_faces; i++) {
2092 int c = state->clues[i];
2093 if (c >= 0) {
2094 if (face_order(state, i, LINE_YES) != c) {
2095 found_clue_violation = TRUE;
2096 break;
2097 }
2098 }
2099 }
2100
2101 if (!found_clue_violation) {
2102 /* The loop is good */
2103 memset(state->line_errors, 0, g->num_edges);
2104 return TRUE; /* No need to bother checking for dot violations */
2105 }
2106 }
2107
2108 /* Check for dot violations */
2109 for (i = 0; i < g->num_dots; i++) {
2110 int yes = dot_order(state, i, LINE_YES);
2111 int unknown = dot_order(state, i, LINE_UNKNOWN);
2112 if ((yes == 1 && unknown == 0) || (yes >= 3)) {
2113 /* violation, so mark all YES edges as errors */
2114 grid_dot *d = g->dots + i;
2115 int j;
2116 for (j = 0; j < d->order; j++) {
2117 int e = d->edges[j] - g->edges;
2118 if (state->lines[e] == LINE_YES)
2119 state->line_errors[e] = TRUE;
2120 }
2121 }
2122 }
2123 return FALSE;
2124}
121aae4b 2125
2126/* ----------------------------------------------------------------------
2127 * Solver logic
2128 *
2129 * Our solver modes operate as follows. Each mode also uses the modes above it.
2130 *
2131 * Easy Mode
2132 * Just implement the rules of the game.
2133 *
315e47b9 2134 * Normal and Tricky Modes
7c95608a 2135 * For each (adjacent) pair of lines through each dot we store a bit for
2136 * whether at least one of them is on and whether at most one is on. (If we
2137 * know both or neither is on that's already stored more directly.)
121aae4b 2138 *
2139 * Advanced Mode
2140 * Use edsf data structure to make equivalence classes of lines that are
2141 * known identical to or opposite to one another.
2142 */
2143
121aae4b 2144
7c95608a 2145/* DLines:
2146 * For general grids, we consider "dlines" to be pairs of lines joined
2147 * at a dot. The lines must be adjacent around the dot, so we can think of
2148 * a dline as being a dot+face combination. Or, a dot+edge combination where
2149 * the second edge is taken to be the next clockwise edge from the dot.
2150 * Original loopy code didn't have this extra restriction of the lines being
2151 * adjacent. From my tests with square grids, this extra restriction seems to
2152 * take little, if anything, away from the quality of the puzzles.
2153 * A dline can be uniquely identified by an edge/dot combination, given that
2154 * a dline-pair always goes clockwise around its common dot. The edge/dot
2155 * combination can be represented by an edge/bool combination - if bool is
2156 * TRUE, use edge->dot1 else use edge->dot2. So the total number of dlines is
2157 * exactly twice the number of edges in the grid - although the dlines
2158 * spanning the infinite face are not all that useful to the solver.
2159 * Note that, by convention, a dline goes clockwise around its common dot,
2160 * which means the dline goes anti-clockwise around its common face.
2161 */
121aae4b 2162
7c95608a 2163/* Helper functions for obtaining an index into an array of dlines, given
2164 * various information. We assume the grid layout conventions about how
2165 * the various lists are interleaved - see grid_make_consistent() for
2166 * details. */
121aae4b 2167
7c95608a 2168/* i points to the first edge of the dline pair, reading clockwise around
2169 * the dot. */
2170static int dline_index_from_dot(grid *g, grid_dot *d, int i)
121aae4b 2171{
7c95608a 2172 grid_edge *e = d->edges[i];
121aae4b 2173 int ret;
7c95608a 2174#ifdef DEBUG_DLINES
2175 grid_edge *e2;
2176 int i2 = i+1;
2177 if (i2 == d->order) i2 = 0;
2178 e2 = d->edges[i2];
2179#endif
2180 ret = 2 * (e - g->edges) + ((e->dot1 == d) ? 1 : 0);
2181#ifdef DEBUG_DLINES
2182 printf("dline_index_from_dot: d=%d,i=%d, edges [%d,%d] - %d\n",
2183 (int)(d - g->dots), i, (int)(e - g->edges),
2184 (int)(e2 - g->edges), ret);
121aae4b 2185#endif
2186 return ret;
2187}
7c95608a 2188/* i points to the second edge of the dline pair, reading clockwise around
2189 * the face. That is, the edges of the dline, starting at edge{i}, read
2190 * anti-clockwise around the face. By layout conventions, the common dot
2191 * of the dline will be f->dots[i] */
2192static int dline_index_from_face(grid *g, grid_face *f, int i)
121aae4b 2193{
7c95608a 2194 grid_edge *e = f->edges[i];
2195 grid_dot *d = f->dots[i];
121aae4b 2196 int ret;
7c95608a 2197#ifdef DEBUG_DLINES
2198 grid_edge *e2;
2199 int i2 = i - 1;
2200 if (i2 < 0) i2 += f->order;
2201 e2 = f->edges[i2];
2202#endif
2203 ret = 2 * (e - g->edges) + ((e->dot1 == d) ? 1 : 0);
2204#ifdef DEBUG_DLINES
2205 printf("dline_index_from_face: f=%d,i=%d, edges [%d,%d] - %d\n",
2206 (int)(f - g->faces), i, (int)(e - g->edges),
2207 (int)(e2 - g->edges), ret);
121aae4b 2208#endif
2209 return ret;
2210}
7c95608a 2211static int is_atleastone(const char *dline_array, int index)
121aae4b 2212{
7c95608a 2213 return BIT_SET(dline_array[index], 0);
121aae4b 2214}
7c95608a 2215static int set_atleastone(char *dline_array, int index)
121aae4b 2216{
7c95608a 2217 return SET_BIT(dline_array[index], 0);
121aae4b 2218}
7c95608a 2219static int is_atmostone(const char *dline_array, int index)
121aae4b 2220{
7c95608a 2221 return BIT_SET(dline_array[index], 1);
2222}
2223static int set_atmostone(char *dline_array, int index)
2224{
2225 return SET_BIT(dline_array[index], 1);
121aae4b 2226}
121aae4b 2227
2228static void array_setall(char *array, char from, char to, int len)
2229{
2230 char *p = array, *p_old = p;
2231 int len_remaining = len;
2232
2233 while ((p = memchr(p, from, len_remaining))) {
2234 *p = to;
2235 len_remaining -= p - p_old;
2236 p_old = p;
2237 }
2238}
6193da8d 2239
7c95608a 2240/* Helper, called when doing dline dot deductions, in the case where we
2241 * have 4 UNKNOWNs, and two of them (adjacent) have *exactly* one YES between
2242 * them (because of dline atmostone/atleastone).
2243 * On entry, edge points to the first of these two UNKNOWNs. This function
2244 * will find the opposite UNKNOWNS (if they are adjacent to one another)
2245 * and set their corresponding dline to atleastone. (Setting atmostone
2246 * already happens in earlier dline deductions) */
2247static int dline_set_opp_atleastone(solver_state *sstate,
2248 grid_dot *d, int edge)
121aae4b 2249{
7c95608a 2250 game_state *state = sstate->state;
2251 grid *g = state->game_grid;
2252 int N = d->order;
2253 int opp, opp2;
2254 for (opp = 0; opp < N; opp++) {
2255 int opp_dline_index;
2256 if (opp == edge || opp == edge+1 || opp == edge-1)
2257 continue;
2258 if (opp == 0 && edge == N-1)
2259 continue;
2260 if (opp == N-1 && edge == 0)
2261 continue;
2262 opp2 = opp + 1;
2263 if (opp2 == N) opp2 = 0;
2264 /* Check if opp, opp2 point to LINE_UNKNOWNs */
2265 if (state->lines[d->edges[opp] - g->edges] != LINE_UNKNOWN)
2266 continue;
2267 if (state->lines[d->edges[opp2] - g->edges] != LINE_UNKNOWN)
2268 continue;
2269 /* Found opposite UNKNOWNS and they're next to each other */
2270 opp_dline_index = dline_index_from_dot(g, d, opp);
315e47b9 2271 return set_atleastone(sstate->dlines, opp_dline_index);
121aae4b 2272 }
7c95608a 2273 return FALSE;
121aae4b 2274}
6193da8d 2275
121aae4b 2276
7c95608a 2277/* Set pairs of lines around this face which are known to be identical, to
121aae4b 2278 * the given line_state */
7c95608a 2279static int face_setall_identical(solver_state *sstate, int face_index,
2280 enum line_state line_new)
121aae4b 2281{
2282 /* can[dir] contains the canonical line associated with the line in
2283 * direction dir from the square in question. Similarly inv[dir] is
2284 * whether or not the line in question is inverse to its canonical
2285 * element. */
121aae4b 2286 int retval = FALSE;
7c95608a 2287 game_state *state = sstate->state;
2288 grid *g = state->game_grid;
2289 grid_face *f = g->faces + face_index;
2290 int N = f->order;
2291 int i, j;
2292 int can1, can2, inv1, inv2;
6193da8d 2293
7c95608a 2294 for (i = 0; i < N; i++) {
2295 int line1_index = f->edges[i] - g->edges;
2296 if (state->lines[line1_index] != LINE_UNKNOWN)
2297 continue;
2298 for (j = i + 1; j < N; j++) {
2299 int line2_index = f->edges[j] - g->edges;
2300 if (state->lines[line2_index] != LINE_UNKNOWN)
121aae4b 2301 continue;
6193da8d 2302
7c95608a 2303 /* Found two UNKNOWNS */
315e47b9 2304 can1 = edsf_canonify(sstate->linedsf, line1_index, &inv1);
2305 can2 = edsf_canonify(sstate->linedsf, line2_index, &inv2);
7c95608a 2306 if (can1 == can2 && inv1 == inv2) {
2307 solver_set_line(sstate, line1_index, line_new);
2308 solver_set_line(sstate, line2_index, line_new);
6193da8d 2309 }
2310 }
6193da8d 2311 }
121aae4b 2312 return retval;
2313}
2314
7c95608a 2315/* Given a dot or face, and a count of LINE_UNKNOWNs, find them and
2316 * return the edge indices into e. */
2317static void find_unknowns(game_state *state,
2318 grid_edge **edge_list, /* Edge list to search (from a face or a dot) */
2319 int expected_count, /* Number of UNKNOWNs (comes from solver's cache) */
2320 int *e /* Returned edge indices */)
2321{
2322 int c = 0;
2323 grid *g = state->game_grid;
2324 while (c < expected_count) {
2325 int line_index = *edge_list - g->edges;
2326 if (state->lines[line_index] == LINE_UNKNOWN) {
2327 e[c] = line_index;
2328 c++;
6193da8d 2329 }
7c95608a 2330 ++edge_list;
6193da8d 2331 }
6193da8d 2332}
2333
7c95608a 2334/* If we have a list of edges, and we know whether the number of YESs should
2335 * be odd or even, and there are only a few UNKNOWNs, we can do some simple
2336 * linedsf deductions. This can be used for both face and dot deductions.
2337 * Returns the difficulty level of the next solver that should be used,
2338 * or DIFF_MAX if no progress was made. */
2339static int parity_deductions(solver_state *sstate,
2340 grid_edge **edge_list, /* Edge list (from a face or a dot) */
2341 int total_parity, /* Expected number of YESs modulo 2 (either 0 or 1) */
2342 int unknown_count)
6193da8d 2343{
121aae4b 2344 game_state *state = sstate->state;
7c95608a 2345 int diff = DIFF_MAX;
315e47b9 2346 int *linedsf = sstate->linedsf;
7c95608a 2347
2348 if (unknown_count == 2) {
2349 /* Lines are known alike/opposite, depending on inv. */
2350 int e[2];
2351 find_unknowns(state, edge_list, 2, e);
2352 if (merge_lines(sstate, e[0], e[1], total_parity))
2353 diff = min(diff, DIFF_HARD);
2354 } else if (unknown_count == 3) {
2355 int e[3];
2356 int can[3]; /* canonical edges */
2357 int inv[3]; /* whether can[x] is inverse to e[x] */
2358 find_unknowns(state, edge_list, 3, e);
2359 can[0] = edsf_canonify(linedsf, e[0], inv);
2360 can[1] = edsf_canonify(linedsf, e[1], inv+1);
2361 can[2] = edsf_canonify(linedsf, e[2], inv+2);
2362 if (can[0] == can[1]) {
2363 if (solver_set_line(sstate, e[2], (total_parity^inv[0]^inv[1]) ?
2364 LINE_YES : LINE_NO))
2365 diff = min(diff, DIFF_EASY);
2366 }
2367 if (can[0] == can[2]) {
2368 if (solver_set_line(sstate, e[1], (total_parity^inv[0]^inv[2]) ?
2369 LINE_YES : LINE_NO))
2370 diff = min(diff, DIFF_EASY);
2371 }
2372 if (can[1] == can[2]) {
2373 if (solver_set_line(sstate, e[0], (total_parity^inv[1]^inv[2]) ?
2374 LINE_YES : LINE_NO))
2375 diff = min(diff, DIFF_EASY);
2376 }
2377 } else if (unknown_count == 4) {
2378 int e[4];
2379 int can[4]; /* canonical edges */
2380 int inv[4]; /* whether can[x] is inverse to e[x] */
2381 find_unknowns(state, edge_list, 4, e);
2382 can[0] = edsf_canonify(linedsf, e[0], inv);
2383 can[1] = edsf_canonify(linedsf, e[1], inv+1);
2384 can[2] = edsf_canonify(linedsf, e[2], inv+2);
2385 can[3] = edsf_canonify(linedsf, e[3], inv+3);
2386 if (can[0] == can[1]) {
2387 if (merge_lines(sstate, e[2], e[3], total_parity^inv[0]^inv[1]))
2388 diff = min(diff, DIFF_HARD);
2389 } else if (can[0] == can[2]) {
2390 if (merge_lines(sstate, e[1], e[3], total_parity^inv[0]^inv[2]))
2391 diff = min(diff, DIFF_HARD);
2392 } else if (can[0] == can[3]) {
2393 if (merge_lines(sstate, e[1], e[2], total_parity^inv[0]^inv[3]))
2394 diff = min(diff, DIFF_HARD);
2395 } else if (can[1] == can[2]) {
2396 if (merge_lines(sstate, e[0], e[3], total_parity^inv[1]^inv[2]))
2397 diff = min(diff, DIFF_HARD);
2398 } else if (can[1] == can[3]) {
2399 if (merge_lines(sstate, e[0], e[2], total_parity^inv[1]^inv[3]))
2400 diff = min(diff, DIFF_HARD);
2401 } else if (can[2] == can[3]) {
2402 if (merge_lines(sstate, e[0], e[1], total_parity^inv[2]^inv[3]))
2403 diff = min(diff, DIFF_HARD);
6193da8d 2404 }
2405 }
7c95608a 2406 return diff;
6193da8d 2407}
2408
7c95608a 2409
121aae4b 2410/*
7c95608a 2411 * These are the main solver functions.
121aae4b 2412 *
2413 * Their return values are diff values corresponding to the lowest mode solver
2414 * that would notice the work that they have done. For example if the normal
2415 * mode solver adds actual lines or crosses, it will return DIFF_EASY as the
2416 * easy mode solver might be able to make progress using that. It doesn't make
2417 * sense for one of them to return a diff value higher than that of the
7c95608a 2418 * function itself.
121aae4b 2419 *
2420 * Each function returns the lowest value it can, as early as possible, in
2421 * order to try and pass as much work as possible back to the lower level
2422 * solvers which progress more quickly.
2423 */
6193da8d 2424
121aae4b 2425/* PROPOSED NEW DESIGN:
2426 * We have a work queue consisting of 'events' notifying us that something has
2427 * happened that a particular solver mode might be interested in. For example
2428 * the hard mode solver might do something that helps the normal mode solver at
2429 * dot [x,y] in which case it will enqueue an event recording this fact. Then
2430 * we pull events off the work queue, and hand each in turn to the solver that
2431 * is interested in them. If a solver reports that it failed we pass the same
2432 * event on to progressively more advanced solvers and the loop detector. Once
2433 * we've exhausted an event, or it has helped us progress, we drop it and
2434 * continue to the next one. The events are sorted first in order of solver
2435 * complexity (easy first) then order of insertion (oldest first).
2436 * Once we run out of events we loop over each permitted solver in turn
2437 * (easiest first) until either a deduction is made (and an event therefore
2438 * emerges) or no further deductions can be made (in which case we've failed).
2439 *
7c95608a 2440 * QUESTIONS:
121aae4b 2441 * * How do we 'loop over' a solver when both dots and squares are concerned.
2442 * Answer: first all squares then all dots.
2443 */
2444
315e47b9 2445static int trivial_deductions(solver_state *sstate)
6193da8d 2446{
7c95608a 2447 int i, current_yes, current_no;
2448 game_state *state = sstate->state;
2449 grid *g = state->game_grid;
1a739e2f 2450 int diff = DIFF_MAX;
6193da8d 2451
7c95608a 2452 /* Per-face deductions */
2453 for (i = 0; i < g->num_faces; i++) {
2454 grid_face *f = g->faces + i;
2455
2456 if (sstate->face_solved[i])
121aae4b 2457 continue;
6193da8d 2458
7c95608a 2459 current_yes = sstate->face_yes_count[i];
2460 current_no = sstate->face_no_count[i];
c0eb17ce 2461
7c95608a 2462 if (current_yes + current_no == f->order) {
2463 sstate->face_solved[i] = TRUE;
121aae4b 2464 continue;
2465 }
6193da8d 2466
7c95608a 2467 if (state->clues[i] < 0)
121aae4b 2468 continue;
6193da8d 2469
dba1fdaf 2470 /*
2471 * This code checks whether the numeric clue on a face is so
2472 * large as to permit all its remaining LINE_UNKNOWNs to be
2473 * filled in as LINE_YES, or alternatively so small as to
2474 * permit them all to be filled in as LINE_NO.
2475 */
2476
7c95608a 2477 if (state->clues[i] < current_yes) {
121aae4b 2478 sstate->solver_status = SOLVER_MISTAKE;
2479 return DIFF_EASY;
2480 }
7c95608a 2481 if (state->clues[i] == current_yes) {
2482 if (face_setall(sstate, i, LINE_UNKNOWN, LINE_NO))
121aae4b 2483 diff = min(diff, DIFF_EASY);
7c95608a 2484 sstate->face_solved[i] = TRUE;
121aae4b 2485 continue;
2486 }
c0eb17ce 2487
7c95608a 2488 if (f->order - state->clues[i] < current_no) {
121aae4b 2489 sstate->solver_status = SOLVER_MISTAKE;
2490 return DIFF_EASY;
2491 }
7c95608a 2492 if (f->order - state->clues[i] == current_no) {
2493 if (face_setall(sstate, i, LINE_UNKNOWN, LINE_YES))
121aae4b 2494 diff = min(diff, DIFF_EASY);
7c95608a 2495 sstate->face_solved[i] = TRUE;
121aae4b 2496 continue;
2497 }
dba1fdaf 2498
2499 if (f->order - state->clues[i] == current_no + 1 &&
2500 f->order - current_yes - current_no > 2) {
2501 /*
2502 * One small refinement to the above: we also look for any
2503 * adjacent pair of LINE_UNKNOWNs around the face with
2504 * some LINE_YES incident on it from elsewhere. If we find
2505 * one, then we know that pair of LINE_UNKNOWNs can't
2506 * _both_ be LINE_YES, and hence that pushes us one line
2507 * closer to being able to determine all the rest.
2508 */
2509 int j, k, e1, e2, e, d;
2510
2511 for (j = 0; j < f->order; j++) {
2512 e1 = f->edges[j] - g->edges;
2513 e2 = f->edges[j+1 < f->order ? j+1 : 0] - g->edges;
2514
2515 if (g->edges[e1].dot1 == g->edges[e2].dot1 ||
2516 g->edges[e1].dot1 == g->edges[e2].dot2) {
2517 d = g->edges[e1].dot1 - g->dots;
2518 } else {
2519 assert(g->edges[e1].dot2 == g->edges[e2].dot1 ||
2520 g->edges[e1].dot2 == g->edges[e2].dot2);
2521 d = g->edges[e1].dot2 - g->dots;
2522 }
2523
2524 if (state->lines[e1] == LINE_UNKNOWN &&
2525 state->lines[e2] == LINE_UNKNOWN) {
2526 for (k = 0; k < g->dots[d].order; k++) {
2527 int e = g->dots[d].edges[k] - g->edges;
2528 if (state->lines[e] == LINE_YES)
2529 goto found; /* multi-level break */
2530 }
2531 }
2532 }
2533 continue;
2534
2535 found:
2536 /*
2537 * If we get here, we've found such a pair of edges, and
2538 * they're e1 and e2.
2539 */
2540 for (j = 0; j < f->order; j++) {
2541 e = f->edges[j] - g->edges;
2542 if (state->lines[e] == LINE_UNKNOWN && e != e1 && e != e2) {
2543 int r = solver_set_line(sstate, e, LINE_YES);
2544 assert(r);
2545 diff = min(diff, DIFF_EASY);
2546 }
2547 }
2548 }
121aae4b 2549 }
6193da8d 2550
121aae4b 2551 check_caches(sstate);
6193da8d 2552
121aae4b 2553 /* Per-dot deductions */
7c95608a 2554 for (i = 0; i < g->num_dots; i++) {
2555 grid_dot *d = g->dots + i;
2556 int yes, no, unknown;
2557
2558 if (sstate->dot_solved[i])
121aae4b 2559 continue;
c0eb17ce 2560
7c95608a 2561 yes = sstate->dot_yes_count[i];
2562 no = sstate->dot_no_count[i];
2563 unknown = d->order - yes - no;
2564
2565 if (yes == 0) {
2566 if (unknown == 0) {
2567 sstate->dot_solved[i] = TRUE;
2568 } else if (unknown == 1) {
2569 dot_setall(sstate, i, LINE_UNKNOWN, LINE_NO);
121aae4b 2570 diff = min(diff, DIFF_EASY);
7c95608a 2571 sstate->dot_solved[i] = TRUE;
2572 }
2573 } else if (yes == 1) {
2574 if (unknown == 0) {
121aae4b 2575 sstate->solver_status = SOLVER_MISTAKE;
2576 return DIFF_EASY;
7c95608a 2577 } else if (unknown == 1) {
2578 dot_setall(sstate, i, LINE_UNKNOWN, LINE_YES);
2579 diff = min(diff, DIFF_EASY);
2580 }
2581 } else if (yes == 2) {
2582 if (unknown > 0) {
2583 dot_setall(sstate, i, LINE_UNKNOWN, LINE_NO);
2584 diff = min(diff, DIFF_EASY);
2585 }
2586 sstate->dot_solved[i] = TRUE;
2587 } else {
2588 sstate->solver_status = SOLVER_MISTAKE;
2589 return DIFF_EASY;
6193da8d 2590 }
2591 }
6193da8d 2592
121aae4b 2593 check_caches(sstate);
6193da8d 2594
121aae4b 2595 return diff;
6193da8d 2596}
2597
315e47b9 2598static int dline_deductions(solver_state *sstate)
6193da8d 2599{
121aae4b 2600 game_state *state = sstate->state;
7c95608a 2601 grid *g = state->game_grid;
315e47b9 2602 char *dlines = sstate->dlines;
7c95608a 2603 int i;
1a739e2f 2604 int diff = DIFF_MAX;
6193da8d 2605
7c95608a 2606 /* ------ Face deductions ------ */
2607
2608 /* Given a set of dline atmostone/atleastone constraints, need to figure
2609 * out if we can deduce any further info. For more general faces than
2610 * squares, this turns out to be a tricky problem.
2611 * The approach taken here is to define (per face) NxN matrices:
2612 * "maxs" and "mins".
2613 * The entries maxs(j,k) and mins(j,k) define the upper and lower limits
2614 * for the possible number of edges that are YES between positions j and k
2615 * going clockwise around the face. Can think of j and k as marking dots
2616 * around the face (recall the labelling scheme: edge0 joins dot0 to dot1,
2617 * edge1 joins dot1 to dot2 etc).
2618 * Trivially, mins(j,j) = maxs(j,j) = 0, and we don't even bother storing
2619 * these. mins(j,j+1) and maxs(j,j+1) are determined by whether edge{j}
2620 * is YES, NO or UNKNOWN. mins(j,j+2) and maxs(j,j+2) are related to
2621 * the dline atmostone/atleastone status for edges j and j+1.
2622 *
2623 * Then we calculate the remaining entries recursively. We definitely
2624 * know that
2625 * mins(j,k) >= { mins(j,u) + mins(u,k) } for any u between j and k.
2626 * This is because any valid placement of YESs between j and k must give
2627 * a valid placement between j and u, and also between u and k.
2628 * I believe it's sufficient to use just the two values of u:
2629 * j+1 and j+2. Seems to work well in practice - the bounds we compute
2630 * are rigorous, even if they might not be best-possible.
2631 *
2632 * Once we have maxs and mins calculated, we can make inferences about
2633 * each dline{j,j+1} by looking at the possible complementary edge-counts
2634 * mins(j+2,j) and maxs(j+2,j) and comparing these with the face clue.
2635 * As well as dlines, we can make similar inferences about single edges.
2636 * For example, consider a pentagon with clue 3, and we know at most one
2637 * of (edge0, edge1) is YES, and at most one of (edge2, edge3) is YES.
2638 * We could then deduce edge4 is YES, because maxs(0,4) would be 2, so
2639 * that final edge would have to be YES to make the count up to 3.
2640 */
121aae4b 2641
7c95608a 2642 /* Much quicker to allocate arrays on the stack than the heap, so
2643 * define the largest possible face size, and base our array allocations
2644 * on that. We check this with an assertion, in case someone decides to
2645 * make a grid which has larger faces than this. Note, this algorithm
2646 * could get quite expensive if there are many large faces. */
918a098a 2647#define MAX_FACE_SIZE 12
7c95608a 2648
2649 for (i = 0; i < g->num_faces; i++) {
2650 int maxs[MAX_FACE_SIZE][MAX_FACE_SIZE];
2651 int mins[MAX_FACE_SIZE][MAX_FACE_SIZE];
2652 grid_face *f = g->faces + i;
2653 int N = f->order;
2654 int j,m;
2655 int clue = state->clues[i];
2656 assert(N <= MAX_FACE_SIZE);
2657 if (sstate->face_solved[i])
6193da8d 2658 continue;
7c95608a 2659 if (clue < 0) continue;
2660
2661 /* Calculate the (j,j+1) entries */
2662 for (j = 0; j < N; j++) {
2663 int edge_index = f->edges[j] - g->edges;
2664 int dline_index;
2665 enum line_state line1 = state->lines[edge_index];
2666 enum line_state line2;
2667 int tmp;
2668 int k = j + 1;
2669 if (k >= N) k = 0;
2670 maxs[j][k] = (line1 == LINE_NO) ? 0 : 1;
2671 mins[j][k] = (line1 == LINE_YES) ? 1 : 0;
2672 /* Calculate the (j,j+2) entries */
2673 dline_index = dline_index_from_face(g, f, k);
2674 edge_index = f->edges[k] - g->edges;
2675 line2 = state->lines[edge_index];
2676 k++;
2677 if (k >= N) k = 0;
2678
2679 /* max */
2680 tmp = 2;
2681 if (line1 == LINE_NO) tmp--;
2682 if (line2 == LINE_NO) tmp--;
2683 if (tmp == 2 && is_atmostone(dlines, dline_index))
2684 tmp = 1;
2685 maxs[j][k] = tmp;
2686
2687 /* min */
2688 tmp = 0;
2689 if (line1 == LINE_YES) tmp++;
2690 if (line2 == LINE_YES) tmp++;
2691 if (tmp == 0 && is_atleastone(dlines, dline_index))
2692 tmp = 1;
2693 mins[j][k] = tmp;
2694 }
121aae4b 2695
7c95608a 2696 /* Calculate the (j,j+m) entries for m between 3 and N-1 */
2697 for (m = 3; m < N; m++) {
2698 for (j = 0; j < N; j++) {
2699 int k = j + m;
2700 int u = j + 1;
2701 int v = j + 2;
2702 int tmp;
2703 if (k >= N) k -= N;
2704 if (u >= N) u -= N;
2705 if (v >= N) v -= N;
2706 maxs[j][k] = maxs[j][u] + maxs[u][k];
2707 mins[j][k] = mins[j][u] + mins[u][k];
2708 tmp = maxs[j][v] + maxs[v][k];
2709 maxs[j][k] = min(maxs[j][k], tmp);
2710 tmp = mins[j][v] + mins[v][k];
2711 mins[j][k] = max(mins[j][k], tmp);
2712 }
2713 }
121aae4b 2714
7c95608a 2715 /* See if we can make any deductions */
2716 for (j = 0; j < N; j++) {
2717 int k;
2718 grid_edge *e = f->edges[j];
2719 int line_index = e - g->edges;
2720 int dline_index;
121aae4b 2721
7c95608a 2722 if (state->lines[line_index] != LINE_UNKNOWN)
2723 continue;
2724 k = j + 1;
2725 if (k >= N) k = 0;
121aae4b 2726
7c95608a 2727 /* minimum YESs in the complement of this edge */
2728 if (mins[k][j] > clue) {
2729 sstate->solver_status = SOLVER_MISTAKE;
2730 return DIFF_EASY;
2731 }
2732 if (mins[k][j] == clue) {
2733 /* setting this edge to YES would make at least
2734 * (clue+1) edges - contradiction */
2735 solver_set_line(sstate, line_index, LINE_NO);
2736 diff = min(diff, DIFF_EASY);
2737 }
2738 if (maxs[k][j] < clue - 1) {
2739 sstate->solver_status = SOLVER_MISTAKE;
2740 return DIFF_EASY;
2741 }
2742 if (maxs[k][j] == clue - 1) {
2743 /* Only way to satisfy the clue is to set edge{j} as YES */
2744 solver_set_line(sstate, line_index, LINE_YES);
2745 diff = min(diff, DIFF_EASY);
2746 }
2747
315e47b9 2748 /* More advanced deduction that allows propagation along diagonal
2749 * chains of faces connected by dots, for example, 3-2-...-2-3
2750 * in square grids. */
2751 if (sstate->diff >= DIFF_TRICKY) {
2752 /* Now see if we can make dline deduction for edges{j,j+1} */
2753 e = f->edges[k];
2754 if (state->lines[e - g->edges] != LINE_UNKNOWN)
2755 /* Only worth doing this for an UNKNOWN,UNKNOWN pair.
2756 * Dlines where one of the edges is known, are handled in the
2757 * dot-deductions */
2758 continue;
2759
2760 dline_index = dline_index_from_face(g, f, k);
2761 k++;
2762 if (k >= N) k = 0;
2763
2764 /* minimum YESs in the complement of this dline */
2765 if (mins[k][j] > clue - 2) {
2766 /* Adding 2 YESs would break the clue */
2767 if (set_atmostone(dlines, dline_index))
2768 diff = min(diff, DIFF_NORMAL);
2769 }
2770 /* maximum YESs in the complement of this dline */
2771 if (maxs[k][j] < clue) {
2772 /* Adding 2 NOs would mean not enough YESs */
2773 if (set_atleastone(dlines, dline_index))
2774 diff = min(diff, DIFF_NORMAL);
2775 }
7c95608a 2776 }
6193da8d 2777 }
6193da8d 2778 }
2779
121aae4b 2780 if (diff < DIFF_NORMAL)
2781 return diff;
6193da8d 2782
7c95608a 2783 /* ------ Dot deductions ------ */
6193da8d 2784
7c95608a 2785 for (i = 0; i < g->num_dots; i++) {
2786 grid_dot *d = g->dots + i;
2787 int N = d->order;
2788 int yes, no, unknown;
2789 int j;
2790 if (sstate->dot_solved[i])
2791 continue;
2792 yes = sstate->dot_yes_count[i];
2793 no = sstate->dot_no_count[i];
2794 unknown = N - yes - no;
2795
2796 for (j = 0; j < N; j++) {
2797 int k;
2798 int dline_index;
2799 int line1_index, line2_index;
2800 enum line_state line1, line2;
2801 k = j + 1;
2802 if (k >= N) k = 0;
2803 dline_index = dline_index_from_dot(g, d, j);
2804 line1_index = d->edges[j] - g->edges;
2805 line2_index = d->edges[k] - g->edges;
2806 line1 = state->lines[line1_index];
2807 line2 = state->lines[line2_index];
2808
2809 /* Infer dline state from line state */
2810 if (line1 == LINE_NO || line2 == LINE_NO) {
2811 if (set_atmostone(dlines, dline_index))
2812 diff = min(diff, DIFF_NORMAL);
2813 }
2814 if (line1 == LINE_YES || line2 == LINE_YES) {
2815 if (set_atleastone(dlines, dline_index))
2816 diff = min(diff, DIFF_NORMAL);
2817 }
2818 /* Infer line state from dline state */
2819 if (is_atmostone(dlines, dline_index)) {
2820 if (line1 == LINE_YES && line2 == LINE_UNKNOWN) {
2821 solver_set_line(sstate, line2_index, LINE_NO);
2822 diff = min(diff, DIFF_EASY);
2823 }
2824 if (line2 == LINE_YES && line1 == LINE_UNKNOWN) {
2825 solver_set_line(sstate, line1_index, LINE_NO);
2826 diff = min(diff, DIFF_EASY);
2827 }
2828 }
2829 if (is_atleastone(dlines, dline_index)) {
2830 if (line1 == LINE_NO && line2 == LINE_UNKNOWN) {
2831 solver_set_line(sstate, line2_index, LINE_YES);
2832 diff = min(diff, DIFF_EASY);
2833 }
2834 if (line2 == LINE_NO && line1 == LINE_UNKNOWN) {
2835 solver_set_line(sstate, line1_index, LINE_YES);
2836 diff = min(diff, DIFF_EASY);
2837 }
2838 }
2839 /* Deductions that depend on the numbers of lines.
2840 * Only bother if both lines are UNKNOWN, otherwise the
2841 * easy-mode solver (or deductions above) would have taken
2842 * care of it. */
2843 if (line1 != LINE_UNKNOWN || line2 != LINE_UNKNOWN)
2844 continue;
6193da8d 2845
7c95608a 2846 if (yes == 0 && unknown == 2) {
2847 /* Both these unknowns must be identical. If we know
2848 * atmostone or atleastone, we can make progress. */
2849 if (is_atmostone(dlines, dline_index)) {
2850 solver_set_line(sstate, line1_index, LINE_NO);
2851 solver_set_line(sstate, line2_index, LINE_NO);
2852 diff = min(diff, DIFF_EASY);
2853 }
2854 if (is_atleastone(dlines, dline_index)) {
2855 solver_set_line(sstate, line1_index, LINE_YES);
2856 solver_set_line(sstate, line2_index, LINE_YES);
2857 diff = min(diff, DIFF_EASY);
2858 }
2859 }
2860 if (yes == 1) {
2861 if (set_atmostone(dlines, dline_index))
2862 diff = min(diff, DIFF_NORMAL);
2863 if (unknown == 2) {
2864 if (set_atleastone(dlines, dline_index))
2865 diff = min(diff, DIFF_NORMAL);
2866 }
121aae4b 2867 }
6193da8d 2868
315e47b9 2869 /* More advanced deduction that allows propagation along diagonal
2870 * chains of faces connected by dots, for example: 3-2-...-2-3
2871 * in square grids. */
2872 if (sstate->diff >= DIFF_TRICKY) {
2873 /* If we have atleastone set for this dline, infer
2874 * atmostone for each "opposite" dline (that is, each
2875 * dline without edges in common with this one).
2876 * Again, this test is only worth doing if both these
2877 * lines are UNKNOWN. For if one of these lines were YES,
2878 * the (yes == 1) test above would kick in instead. */
2879 if (is_atleastone(dlines, dline_index)) {
2880 int opp;
2881 for (opp = 0; opp < N; opp++) {
2882 int opp_dline_index;
2883 if (opp == j || opp == j+1 || opp == j-1)
2884 continue;
2885 if (j == 0 && opp == N-1)
2886 continue;
2887 if (j == N-1 && opp == 0)
2888 continue;
2889 opp_dline_index = dline_index_from_dot(g, d, opp);
2890 if (set_atmostone(dlines, opp_dline_index))
2891 diff = min(diff, DIFF_NORMAL);
2892 }
2893 if (yes == 0 && is_atmostone(dlines, dline_index)) {
2894 /* This dline has *exactly* one YES and there are no
2895 * other YESs. This allows more deductions. */
2896 if (unknown == 3) {
2897 /* Third unknown must be YES */
2898 for (opp = 0; opp < N; opp++) {
2899 int opp_index;
2900 if (opp == j || opp == k)
2901 continue;
2902 opp_index = d->edges[opp] - g->edges;
2903 if (state->lines[opp_index] == LINE_UNKNOWN) {
2904 solver_set_line(sstate, opp_index,
2905 LINE_YES);
2906 diff = min(diff, DIFF_EASY);
2907 }
121aae4b 2908 }
315e47b9 2909 } else if (unknown == 4) {
2910 /* Exactly one of opposite UNKNOWNS is YES. We've
2911 * already set atmostone, so set atleastone as
2912 * well.
2913 */
2914 if (dline_set_opp_atleastone(sstate, d, j))
2915 diff = min(diff, DIFF_NORMAL);
121aae4b 2916 }
2917 }
121aae4b 2918 }
6193da8d 2919 }
6193da8d 2920 }
121aae4b 2921 }
121aae4b 2922 return diff;
6193da8d 2923}
2924
315e47b9 2925static int linedsf_deductions(solver_state *sstate)
6193da8d 2926{
121aae4b 2927 game_state *state = sstate->state;
7c95608a 2928 grid *g = state->game_grid;
315e47b9 2929 char *dlines = sstate->dlines;
7c95608a 2930 int i;
1a739e2f 2931 int diff = DIFF_MAX;
7c95608a 2932 int diff_tmp;
121aae4b 2933
7c95608a 2934 /* ------ Face deductions ------ */
6193da8d 2935
7c95608a 2936 /* A fully-general linedsf deduction seems overly complicated
2937 * (I suspect the problem is NP-complete, though in practice it might just
2938 * be doable because faces are limited in size).
2939 * For simplicity, we only consider *pairs* of LINE_UNKNOWNS that are
2940 * known to be identical. If setting them both to YES (or NO) would break
2941 * the clue, set them to NO (or YES). */
121aae4b 2942
7c95608a 2943 for (i = 0; i < g->num_faces; i++) {
2944 int N, yes, no, unknown;
2945 int clue;
6193da8d 2946
7c95608a 2947 if (sstate->face_solved[i])
121aae4b 2948 continue;
7c95608a 2949 clue = state->clues[i];
2950 if (clue < 0)
121aae4b 2951 continue;
6193da8d 2952
7c95608a 2953 N = g->faces[i].order;
2954 yes = sstate->face_yes_count[i];
2955 if (yes + 1 == clue) {
2956 if (face_setall_identical(sstate, i, LINE_NO))
2957 diff = min(diff, DIFF_EASY);
121aae4b 2958 }
7c95608a 2959 no = sstate->face_no_count[i];
2960 if (no + 1 == N - clue) {
2961 if (face_setall_identical(sstate, i, LINE_YES))
2962 diff = min(diff, DIFF_EASY);
6193da8d 2963 }
6193da8d 2964
7c95608a 2965 /* Reload YES count, it might have changed */
2966 yes = sstate->face_yes_count[i];
2967 unknown = N - no - yes;
2968
2969 /* Deductions with small number of LINE_UNKNOWNs, based on overall
2970 * parity of lines. */
2971 diff_tmp = parity_deductions(sstate, g->faces[i].edges,
2972 (clue - yes) % 2, unknown);
2973 diff = min(diff, diff_tmp);
2974 }
2975
2976 /* ------ Dot deductions ------ */
2977 for (i = 0; i < g->num_dots; i++) {
2978 grid_dot *d = g->dots + i;
2979 int N = d->order;
2980 int j;
2981 int yes, no, unknown;
2982 /* Go through dlines, and do any dline<->linedsf deductions wherever
2983 * we find two UNKNOWNS. */
2984 for (j = 0; j < N; j++) {
2985 int dline_index = dline_index_from_dot(g, d, j);
2986 int line1_index;
2987 int line2_index;
2988 int can1, can2, inv1, inv2;
2989 int j2;
2990 line1_index = d->edges[j] - g->edges;
2991 if (state->lines[line1_index] != LINE_UNKNOWN)
121aae4b 2992 continue;
7c95608a 2993 j2 = j + 1;
2994 if (j2 == N) j2 = 0;
2995 line2_index = d->edges[j2] - g->edges;
2996 if (state->lines[line2_index] != LINE_UNKNOWN)
121aae4b 2997 continue;
7c95608a 2998 /* Infer dline flags from linedsf */
315e47b9 2999 can1 = edsf_canonify(sstate->linedsf, line1_index, &inv1);
3000 can2 = edsf_canonify(sstate->linedsf, line2_index, &inv2);
7c95608a 3001 if (can1 == can2 && inv1 != inv2) {
3002 /* These are opposites, so set dline atmostone/atleastone */
3003 if (set_atmostone(dlines, dline_index))
3004 diff = min(diff, DIFF_NORMAL);
3005 if (set_atleastone(dlines, dline_index))
3006 diff = min(diff, DIFF_NORMAL);
121aae4b 3007 continue;
7c95608a 3008 }
3009 /* Infer linedsf from dline flags */
3010 if (is_atmostone(dlines, dline_index)
3011 && is_atleastone(dlines, dline_index)) {
3012 if (merge_lines(sstate, line1_index, line2_index, 1))
121aae4b 3013 diff = min(diff, DIFF_HARD);
121aae4b 3014 }
3015 }
7c95608a 3016
3017 /* Deductions with small number of LINE_UNKNOWNs, based on overall
3018 * parity of lines. */
3019 yes = sstate->dot_yes_count[i];
3020 no = sstate->dot_no_count[i];
3021 unknown = N - yes - no;
3022 diff_tmp = parity_deductions(sstate, d->edges,
3023 yes % 2, unknown);
3024 diff = min(diff, diff_tmp);
121aae4b 3025 }
6193da8d 3026
7c95608a 3027 /* ------ Edge dsf deductions ------ */
3028
3029 /* If the state of a line is known, deduce the state of its canonical line
3030 * too, and vice versa. */
3031 for (i = 0; i < g->num_edges; i++) {
3032 int can, inv;
3033 enum line_state s;
315e47b9 3034 can = edsf_canonify(sstate->linedsf, i, &inv);
7c95608a 3035 if (can == i)
3036 continue;
3037 s = sstate->state->lines[can];
3038 if (s != LINE_UNKNOWN) {
3039 if (solver_set_line(sstate, i, inv ? OPP(s) : s))
3040 diff = min(diff, DIFF_EASY);
3041 } else {
3042 s = sstate->state->lines[i];
3043 if (s != LINE_UNKNOWN) {
3044 if (solver_set_line(sstate, can, inv ? OPP(s) : s))
121aae4b 3045 diff = min(diff, DIFF_EASY);
3046 }
3047 }
3048 }
6193da8d 3049
121aae4b 3050 return diff;
3051}
6193da8d 3052
121aae4b 3053static int loop_deductions(solver_state *sstate)
3054{
3055 int edgecount = 0, clues = 0, satclues = 0, sm1clues = 0;
3056 game_state *state = sstate->state;
7c95608a 3057 grid *g = state->game_grid;
3058 int shortest_chainlen = g->num_dots;
121aae4b 3059 int loop_found = FALSE;
121aae4b 3060 int dots_connected;
3061 int progress = FALSE;
7c95608a 3062 int i;
6193da8d 3063
121aae4b 3064 /*
3065 * Go through the grid and update for all the new edges.
3066 * Since merge_dots() is idempotent, the simplest way to
3067 * do this is just to update for _all_ the edges.
7c95608a 3068 * Also, while we're here, we count the edges.
121aae4b 3069 */
7c95608a 3070 for (i = 0; i < g->num_edges; i++) {
3071 if (state->lines[i] == LINE_YES) {
3072 loop_found |= merge_dots(sstate, i);
121aae4b 3073 edgecount++;
3074 }
7c95608a 3075 }
6193da8d 3076
7c95608a 3077 /*
3078 * Count the clues, count the satisfied clues, and count the
3079 * satisfied-minus-one clues.
3080 */
3081 for (i = 0; i < g->num_faces; i++) {
3082 int c = state->clues[i];
3083 if (c >= 0) {
3084 int o = sstate->face_yes_count[i];
121aae4b 3085 if (o == c)
3086 satclues++;
3087 else if (o == c-1)
3088 sm1clues++;
3089 clues++;
3090 }
3091 }
6193da8d 3092
7c95608a 3093 for (i = 0; i < g->num_dots; ++i) {
3094 dots_connected =
121aae4b 3095 sstate->looplen[dsf_canonify(sstate->dotdsf, i)];
3096 if (dots_connected > 1)
3097 shortest_chainlen = min(shortest_chainlen, dots_connected);
6193da8d 3098 }
6193da8d 3099
121aae4b 3100 assert(sstate->solver_status == SOLVER_INCOMPLETE);
6c42c563 3101
121aae4b 3102 if (satclues == clues && shortest_chainlen == edgecount) {
3103 sstate->solver_status = SOLVER_SOLVED;
3104 /* This discovery clearly counts as progress, even if we haven't
3105 * just added any lines or anything */
7c95608a 3106 progress = TRUE;
121aae4b 3107 goto finished_loop_deductionsing;
3108 }
6193da8d 3109
121aae4b 3110 /*
3111 * Now go through looking for LINE_UNKNOWN edges which
3112 * connect two dots that are already in the same
3113 * equivalence class. If we find one, test to see if the
3114 * loop it would create is a solution.
3115 */
7c95608a 3116 for (i = 0; i < g->num_edges; i++) {
3117 grid_edge *e = g->edges + i;
3118 int d1 = e->dot1 - g->dots;
3119 int d2 = e->dot2 - g->dots;
3120 int eqclass, val;
3121 if (state->lines[i] != LINE_UNKNOWN)
3122 continue;
121aae4b 3123
7c95608a 3124 eqclass = dsf_canonify(sstate->dotdsf, d1);
3125 if (eqclass != dsf_canonify(sstate->dotdsf, d2))
3126 continue;
121aae4b 3127
7c95608a 3128 val = LINE_NO; /* loop is bad until proven otherwise */
6193da8d 3129
7c95608a 3130 /*
3131 * This edge would form a loop. Next
3132 * question: how long would the loop be?
3133 * Would it equal the total number of edges
3134 * (plus the one we'd be adding if we added
3135 * it)?
3136 */
3137 if (sstate->looplen[eqclass] == edgecount + 1) {
3138 int sm1_nearby;
121aae4b 3139
3140 /*
7c95608a 3141 * This edge would form a loop which
3142 * took in all the edges in the entire
3143 * grid. So now we need to work out
3144 * whether it would be a valid solution
3145 * to the puzzle, which means we have to
3146 * check if it satisfies all the clues.
3147 * This means that every clue must be
3148 * either satisfied or satisfied-minus-
3149 * 1, and also that the number of
3150 * satisfied-minus-1 clues must be at
3151 * most two and they must lie on either
3152 * side of this edge.
121aae4b 3153 */
7c95608a 3154 sm1_nearby = 0;
3155 if (e->face1) {
3156 int f = e->face1 - g->faces;
3157 int c = state->clues[f];
3158 if (c >= 0 && sstate->face_yes_count[f] == c - 1)
121aae4b 3159 sm1_nearby++;
6c42c563 3160 }
7c95608a 3161 if (e->face2) {
3162 int f = e->face2 - g->faces;
3163 int c = state->clues[f];
3164 if (c >= 0 && sstate->face_yes_count[f] == c - 1)
3165 sm1_nearby++;
6c42c563 3166 }
7c95608a 3167 if (sm1clues == sm1_nearby &&
3168 sm1clues + satclues == clues) {
3169 val = LINE_YES; /* loop is good! */
6c42c563 3170 }
121aae4b 3171 }
7c95608a 3172
3173 /*
3174 * Right. Now we know that adding this edge
3175 * would form a loop, and we know whether
3176 * that loop would be a viable solution or
3177 * not.
3178 *
3179 * If adding this edge produces a solution,
3180 * then we know we've found _a_ solution but
3181 * we don't know that it's _the_ solution -
3182 * if it were provably the solution then
3183 * we'd have deduced this edge some time ago
3184 * without the need to do loop detection. So
3185 * in this state we return SOLVER_AMBIGUOUS,
3186 * which has the effect that hitting Solve
3187 * on a user-provided puzzle will fill in a
3188 * solution but using the solver to
3189 * construct new puzzles won't consider this
3190 * a reasonable deduction for the user to
3191 * make.
3192 */
3193 progress = solver_set_line(sstate, i, val);
3194 assert(progress == TRUE);
3195 if (val == LINE_YES) {
3196 sstate->solver_status = SOLVER_AMBIGUOUS;
3197 goto finished_loop_deductionsing;
3198 }
6193da8d 3199 }
6193da8d 3200
7c95608a 3201 finished_loop_deductionsing:
121aae4b 3202 return progress ? DIFF_EASY : DIFF_MAX;
c0eb17ce 3203}
6193da8d 3204
3205/* This will return a dynamically allocated solver_state containing the (more)
3206 * solved grid */
315e47b9 3207static solver_state *solve_game_rec(const solver_state *sstate_start)
121aae4b 3208{
315e47b9 3209 solver_state *sstate;
6193da8d 3210
315e47b9 3211 /* Index of the solver we should call next. */
3212 int i = 0;
3213
3214 /* As a speed-optimisation, we avoid re-running solvers that we know
3215 * won't make any progress. This happens when a high-difficulty
3216 * solver makes a deduction that can only help other high-difficulty
3217 * solvers.
3218 * For example: if a new 'dline' flag is set by dline_deductions, the
3219 * trivial_deductions solver cannot do anything with this information.
3220 * If we've already run the trivial_deductions solver (because it's
3221 * earlier in the list), there's no point running it again.
3222 *
3223 * Therefore: if a solver is earlier in the list than "threshold_index",
3224 * we don't bother running it if it's difficulty level is less than
3225 * "threshold_diff".
3226 */
3227 int threshold_diff = 0;
3228 int threshold_index = 0;
3229
121aae4b 3230 sstate = dup_solver_state(sstate_start);
7c95608a 3231
121aae4b 3232 check_caches(sstate);
6193da8d 3233
315e47b9 3234 while (i < NUM_SOLVERS) {
121aae4b 3235 if (sstate->solver_status == SOLVER_MISTAKE)
3236 return sstate;
7c95608a 3237 if (sstate->solver_status == SOLVER_SOLVED ||
121aae4b 3238 sstate->solver_status == SOLVER_AMBIGUOUS) {
315e47b9 3239 /* solver finished */
121aae4b 3240 break;
3241 }
99dd160e 3242
315e47b9 3243 if ((solver_diffs[i] >= threshold_diff || i >= threshold_index)
3244 && solver_diffs[i] <= sstate->diff) {
3245 /* current_solver is eligible, so use it */
3246 int next_diff = solver_fns[i](sstate);
3247 if (next_diff != DIFF_MAX) {
3248 /* solver made progress, so use new thresholds and
3249 * start again at top of list. */
3250 threshold_diff = next_diff;
3251 threshold_index = i;
3252 i = 0;
3253 continue;
3254 }
3255 }
3256 /* current_solver is ineligible, or failed to make progress, so
3257 * go to the next solver in the list */
3258 i++;
3259 }
121aae4b 3260
3261 if (sstate->solver_status == SOLVER_SOLVED ||
3262 sstate->solver_status == SOLVER_AMBIGUOUS) {
3263 /* s/LINE_UNKNOWN/LINE_NO/g */
7c95608a 3264 array_setall(sstate->state->lines, LINE_UNKNOWN, LINE_NO,
3265 sstate->state->game_grid->num_edges);
121aae4b 3266 return sstate;
3267 }
6193da8d 3268
121aae4b 3269 return sstate;
6193da8d 3270}
3271
6193da8d 3272static char *solve_game(game_state *state, game_state *currstate,
3273 char *aux, char **error)
3274{
3275 char *soln = NULL;
3276 solver_state *sstate, *new_sstate;
3277
121aae4b 3278 sstate = new_solver_state(state, DIFF_MAX);
315e47b9 3279 new_sstate = solve_game_rec(sstate);
6193da8d 3280
3281 if (new_sstate->solver_status == SOLVER_SOLVED) {
3282 soln = encode_solve_move(new_sstate->state);
3283 } else if (new_sstate->solver_status == SOLVER_AMBIGUOUS) {
3284 soln = encode_solve_move(new_sstate->state);
3285 /**error = "Solver found ambiguous solutions"; */
3286 } else {
3287 soln = encode_solve_move(new_sstate->state);
3288 /**error = "Solver failed"; */
3289 }
3290
3291 free_solver_state(new_sstate);
3292 free_solver_state(sstate);
3293
3294 return soln;
3295}
3296
121aae4b 3297/* ----------------------------------------------------------------------
3298 * Drawing and mouse-handling
3299 */
6193da8d 3300
3301static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
3302 int x, int y, int button)
3303{
7c95608a 3304 grid *g = state->game_grid;
3305 grid_edge *e;
3306 int i;
6193da8d 3307 char *ret, buf[80];
3308 char button_char = ' ';
3309 enum line_state old_state;
3310
3311 button &= ~MOD_MASK;
3312
7c95608a 3313 /* Convert mouse-click (x,y) to grid coordinates */
3314 x -= BORDER(ds->tilesize);
3315 y -= BORDER(ds->tilesize);
3316 x = x * g->tilesize / ds->tilesize;
3317 y = y * g->tilesize / ds->tilesize;
3318 x += g->lowest_x;
3319 y += g->lowest_y;
6193da8d 3320
7c95608a 3321 e = grid_nearest_edge(g, x, y);
3322 if (e == NULL)
6193da8d 3323 return NULL;
3324
7c95608a 3325 i = e - g->edges;
6193da8d 3326
3327 /* I think it's only possible to play this game with mouse clicks, sorry */
3328 /* Maybe will add mouse drag support some time */
7c95608a 3329 old_state = state->lines[i];
6193da8d 3330
3331 switch (button) {
7c95608a 3332 case LEFT_BUTTON:
3333 switch (old_state) {
3334 case LINE_UNKNOWN:
3335 button_char = 'y';
3336 break;
3337 case LINE_YES:
80e7e37c 3338#ifdef STYLUS_BASED
3339 button_char = 'n';
3340 break;
3341#endif
7c95608a 3342 case LINE_NO:
3343 button_char = 'u';
3344 break;
3345 }
3346 break;
3347 case MIDDLE_BUTTON:
3348 button_char = 'u';
3349 break;
3350 case RIGHT_BUTTON:
3351 switch (old_state) {
3352 case LINE_UNKNOWN:
3353 button_char = 'n';
3354 break;
3355 case LINE_NO:
80e7e37c 3356#ifdef STYLUS_BASED
3357 button_char = 'y';
3358 break;
3359#endif
7c95608a 3360 case LINE_YES:
3361 button_char = 'u';
3362 break;
3363 }
3364 break;
3365 default:
3366 return NULL;
3367 }
3368
3369
3370 sprintf(buf, "%d%c", i, (int)button_char);
6193da8d 3371 ret = dupstr(buf);
3372
3373 return ret;
3374}
3375
3376static game_state *execute_move(game_state *state, char *move)
3377{
7c95608a 3378 int i;
6193da8d 3379 game_state *newstate = dup_game(state);
3380
3381 if (move[0] == 'S') {
3382 move++;
3383 newstate->cheated = TRUE;
3384 }
3385
3386 while (*move) {
3387 i = atoi(move);
8719c2e7 3388 if (i < 0 || i >= newstate->game_grid->num_edges)
3389 goto fail;
6193da8d 3390 move += strspn(move, "1234567890");
3391 switch (*(move++)) {
7c95608a 3392 case 'y':
3393 newstate->lines[i] = LINE_YES;
3394 break;
3395 case 'n':
3396 newstate->lines[i] = LINE_NO;
3397 break;
3398 case 'u':
3399 newstate->lines[i] = LINE_UNKNOWN;
3400 break;
3401 default:
3402 goto fail;
6193da8d 3403 }
3404 }
3405
3406 /*
3407 * Check for completion.
3408 */
b6bf0adc 3409 if (check_completion(newstate))
121aae4b 3410 newstate->solved = TRUE;
6193da8d 3411
6193da8d 3412 return newstate;
3413
7c95608a 3414 fail:
6193da8d 3415 free_game(newstate);
3416 return NULL;
3417}
3418
3419/* ----------------------------------------------------------------------
3420 * Drawing routines.
3421 */
7c95608a 3422
3423/* Convert from grid coordinates to screen coordinates */
3424static void grid_to_screen(const game_drawstate *ds, const grid *g,
3425 int grid_x, int grid_y, int *x, int *y)
3426{
3427 *x = grid_x - g->lowest_x;
3428 *y = grid_y - g->lowest_y;
3429 *x = *x * ds->tilesize / g->tilesize;
3430 *y = *y * ds->tilesize / g->tilesize;
3431 *x += BORDER(ds->tilesize);
3432 *y += BORDER(ds->tilesize);
3433}
3434
3435/* Returns (into x,y) position of centre of face for rendering the text clue.
3436 */
3437static void face_text_pos(const game_drawstate *ds, const grid *g,
e64991db 3438 grid_face *f, int *xret, int *yret)
7c95608a 3439{
e0936bbd 3440 int faceindex = f - g->faces;
7c95608a 3441
e0936bbd 3442 /*
3443 * Return the cached position for this face, if we've already
3444 * worked it out.
3445 */
3446 if (ds->textx[faceindex] >= 0) {
3447 *xret = ds->textx[faceindex];
3448 *yret = ds->texty[faceindex];
3449 return;
3450 }
7c95608a 3451
e0936bbd 3452 /*
e64991db 3453 * Otherwise, use the incentre computed by grid.c and convert it
3454 * to screen coordinates.
e0936bbd 3455 */
e64991db 3456 grid_find_incentre(f);
3457 grid_to_screen(ds, g, f->ix, f->iy,
e0936bbd 3458 &ds->textx[faceindex], &ds->texty[faceindex]);
3459
3460 *xret = ds->textx[faceindex];
3461 *yret = ds->texty[faceindex];
7c95608a 3462}
3463
1463f9f1 3464static void face_text_bbox(game_drawstate *ds, grid *g, grid_face *f,
3465 int *x, int *y, int *w, int *h)
3466{
3467 int xx, yy;
3468 face_text_pos(ds, g, f, &xx, &yy);
3469
3470 /* There seems to be a certain amount of trial-and-error involved
3471 * in working out the correct bounding-box for the text. */
3472
3473 *x = xx - ds->tilesize/4 - 1;
3474 *y = yy - ds->tilesize/4 - 3;
3475 *w = ds->tilesize/2 + 2;
3476 *h = ds->tilesize/2 + 5;
3477}
3478
d68b2c10 3479static void game_redraw_clue(drawing *dr, game_drawstate *ds,
3480 game_state *state, int i)
3481{
3482 grid *g = state->game_grid;
3483 grid_face *f = g->faces + i;
3484 int x, y;
918a098a 3485 char c[3];
d68b2c10 3486
918a098a 3487 if (state->clues[i] < 10) {
3488 c[0] = CLUE2CHAR(state->clues[i]);
3489 c[1] = '\0';
3490 } else {
3491 sprintf(c, "%d", state->clues[i]);
3492 }
d68b2c10 3493
3494 face_text_pos(ds, g, f, &x, &y);
3495 draw_text(dr, x, y,
3496 FONT_VARIABLE, ds->tilesize/2,
3497 ALIGN_VCENTRE | ALIGN_HCENTRE,
3498 ds->clue_error[i] ? COL_MISTAKE :
3499 ds->clue_satisfied[i] ? COL_SATISFIED : COL_FOREGROUND, c);
3500}
3501
1463f9f1 3502static void edge_bbox(game_drawstate *ds, grid *g, grid_edge *e,
3503 int *x, int *y, int *w, int *h)
3504{
3505 int x1 = e->dot1->x;
3506 int y1 = e->dot1->y;
3507 int x2 = e->dot2->x;
3508 int y2 = e->dot2->y;
3509 int xmin, xmax, ymin, ymax;
3510
3511 grid_to_screen(ds, g, x1, y1, &x1, &y1);
3512 grid_to_screen(ds, g, x2, y2, &x2, &y2);
3513 /* Allow extra margin for dots, and thickness of lines */
3514 xmin = min(x1, x2) - 2;
3515 xmax = max(x1, x2) + 2;
3516 ymin = min(y1, y2) - 2;
3517 ymax = max(y1, y2) + 2;
3518
3519 *x = xmin;
3520 *y = ymin;
3521 *w = xmax - xmin + 1;
3522 *h = ymax - ymin + 1;
3523}
3524
3525static void dot_bbox(game_drawstate *ds, grid *g, grid_dot *d,
3526 int *x, int *y, int *w, int *h)
3527{
3528 int x1, y1;
3529
3530 grid_to_screen(ds, g, d->x, d->y, &x1, &y1);
3531
3532 *x = x1 - 2;
3533 *y = y1 - 2;
3534 *w = 5;
3535 *h = 5;
3536}
3537
b0a2ee96 3538static const int loopy_line_redraw_phases[] = {
3539 COL_FAINT, COL_LINEUNKNOWN, COL_FOREGROUND, COL_HIGHLIGHT, COL_MISTAKE
3540};
3541#define NPHASES lenof(loopy_line_redraw_phases)
3542
d68b2c10 3543static void game_redraw_line(drawing *dr, game_drawstate *ds,
b0a2ee96 3544 game_state *state, int i, int phase)
d68b2c10 3545{
3546 grid *g = state->game_grid;
3547 grid_edge *e = g->edges + i;
3548 int x1, x2, y1, y2;
3549 int xmin, ymin, xmax, ymax;
3550 int line_colour;
3551
3552 if (state->line_errors[i])
3553 line_colour = COL_MISTAKE;
3554 else if (state->lines[i] == LINE_UNKNOWN)
3555 line_colour = COL_LINEUNKNOWN;
3556 else if (state->lines[i] == LINE_NO)
3557 line_colour = COL_FAINT;
3558 else if (ds->flashing)
3559 line_colour = COL_HIGHLIGHT;
3560 else
3561 line_colour = COL_FOREGROUND;
b0a2ee96 3562 if (line_colour != loopy_line_redraw_phases[phase])
3563 return;
d68b2c10 3564
3565 /* Convert from grid to screen coordinates */
3566 grid_to_screen(ds, g, e->dot1->x, e->dot1->y, &x1, &y1);
3567 grid_to_screen(ds, g, e->dot2->x, e->dot2->y, &x2, &y2);
3568
3569 xmin = min(x1, x2);
3570 xmax = max(x1, x2);
3571 ymin = min(y1, y2);
3572 ymax = max(y1, y2);
3573
3574 if (line_colour == COL_FAINT) {
3575 static int draw_faint_lines = -1;
3576 if (draw_faint_lines < 0) {
3577 char *env = getenv("LOOPY_FAINT_LINES");
3578 draw_faint_lines = (!env || (env[0] == 'y' ||
3579 env[0] == 'Y'));
3580 }
3581 if (draw_faint_lines)
3582 draw_line(dr, x1, y1, x2, y2, line_colour);
3583 } else {
3584 draw_thick_line(dr, 3.0,
3585 x1 + 0.5, y1 + 0.5,
3586 x2 + 0.5, y2 + 0.5,
3587 line_colour);
3588 }
3589}
3590
3591static void game_redraw_dot(drawing *dr, game_drawstate *ds,
3592 game_state *state, int i)
3593{
3594 grid *g = state->game_grid;
3595 grid_dot *d = g->dots + i;
3596 int x, y;
3597
3598 grid_to_screen(ds, g, d->x, d->y, &x, &y);
3599 draw_circle(dr, x, y, 2, COL_FOREGROUND, COL_FOREGROUND);
3600}
3601
1463f9f1 3602static int boxes_intersect(int x0, int y0, int w0, int h0,
3603 int x1, int y1, int w1, int h1)
3604{
3605 /*
3606 * Two intervals intersect iff neither is wholly on one side of
3607 * the other. Two boxes intersect iff their horizontal and
3608 * vertical intervals both intersect.
3609 */
3610 return (x0 < x1+w1 && x1 < x0+w0 && y0 < y1+h1 && y1 < y0+h0);
3611}
3612
3613static void game_redraw_in_rect(drawing *dr, game_drawstate *ds,
3614 game_state *state, int x, int y, int w, int h)
3615{
3616 grid *g = state->game_grid;
3617 int i, phase;
3618 int bx, by, bw, bh;
3619
3620 clip(dr, x, y, w, h);
3621 draw_rect(dr, x, y, w, h, COL_BACKGROUND);
3622
3623 for (i = 0; i < g->num_faces; i++) {
75a52b16 3624 if (state->clues[i] >= 0) {
3625 face_text_bbox(ds, g, &g->faces[i], &bx, &by, &bw, &bh);
3626 if (boxes_intersect(x, y, w, h, bx, by, bw, bh))
3627 game_redraw_clue(dr, ds, state, i);
3628 }
1463f9f1 3629 }
3630 for (phase = 0; phase < NPHASES; phase++) {
3631 for (i = 0; i < g->num_edges; i++) {
3632 edge_bbox(ds, g, &g->edges[i], &bx, &by, &bw, &bh);
3633 if (boxes_intersect(x, y, w, h, bx, by, bw, bh))
3634 game_redraw_line(dr, ds, state, i, phase);
3635 }
3636 }
3637 for (i = 0; i < g->num_dots; i++) {
3638 dot_bbox(ds, g, &g->dots[i], &bx, &by, &bw, &bh);
3639 if (boxes_intersect(x, y, w, h, bx, by, bw, bh))
3640 game_redraw_dot(dr, ds, state, i);
3641 }
3642
3643 unclip(dr);
3644 draw_update(dr, x, y, w, h);
3645}
3646
6193da8d 3647static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
3648 game_state *state, int dir, game_ui *ui,
3649 float animtime, float flashtime)
3650{
d68b2c10 3651#define REDRAW_OBJECTS_LIMIT 16 /* Somewhat arbitrary tradeoff */
3652
7c95608a 3653 grid *g = state->game_grid;
3654 int border = BORDER(ds->tilesize);
1463f9f1 3655 int i;
d68b2c10 3656 int flash_changed;
3657 int redraw_everything = FALSE;
3658
3659 int edges[REDRAW_OBJECTS_LIMIT], nedges = 0;
3660 int faces[REDRAW_OBJECTS_LIMIT], nfaces = 0;
3661
3662 /* Redrawing is somewhat involved.
3663 *
3664 * An update can theoretically affect an arbitrary number of edges
3665 * (consider, for example, completing or breaking a cycle which doesn't
3666 * satisfy all the clues -- we'll switch many edges between error and
3667 * normal states). On the other hand, redrawing the whole grid takes a
3668 * while, making the game feel sluggish, and many updates are actually
3669 * quite well localized.
3670 *
3671 * This redraw algorithm attempts to cope with both situations gracefully
3672 * and correctly. For localized changes, we set a clip rectangle, fill
3673 * it with background, and then redraw (a plausible but conservative
3674 * guess at) the objects which intersect the rectangle; if several
3675 * objects need redrawing, we'll do them individually. However, if lots
3676 * of objects are affected, we'll just redraw everything.
3677 *
3678 * The reason for all of this is that it's just not safe to do the redraw
3679 * piecemeal. If you try to draw an antialiased diagonal line over
3680 * itself, you get a slightly thicker antialiased diagonal line, which
3681 * looks rather ugly after a while.
3682 *
3683 * So, we take two passes over the grid. The first attempts to work out
3684 * what needs doing, and the second actually does it.
3685 */
3686
3687 if (!ds->started)
3688 redraw_everything = TRUE;
3689 else {
3690
3691 /* First, trundle through the faces. */
3692 for (i = 0; i < g->num_faces; i++) {
3693 grid_face *f = g->faces + i;
3694 int sides = f->order;
3695 int clue_mistake;
3696 int clue_satisfied;
3697 int n = state->clues[i];
3698 if (n < 0)
3699 continue;
3700
3701 clue_mistake = (face_order(state, i, LINE_YES) > n ||
3702 face_order(state, i, LINE_NO ) > (sides-n));
3703 clue_satisfied = (face_order(state, i, LINE_YES) == n &&
3704 face_order(state, i, LINE_NO ) == (sides-n));
3705
3706 if (clue_mistake != ds->clue_error[i] ||
3707 clue_satisfied != ds->clue_satisfied[i]) {
3708 ds->clue_error[i] = clue_mistake;
3709 ds->clue_satisfied[i] = clue_satisfied;
3710 if (nfaces == REDRAW_OBJECTS_LIMIT)
3711 redraw_everything = TRUE;
3712 else
3713 faces[nfaces++] = i;
3714 }
3715 }
3716
3717 /* Work out what the flash state needs to be. */
3718 if (flashtime > 0 &&
3719 (flashtime <= FLASH_TIME/3 ||
3720 flashtime >= FLASH_TIME*2/3)) {
3721 flash_changed = !ds->flashing;
3722 ds->flashing = TRUE;
3723 } else {
3724 flash_changed = ds->flashing;
3725 ds->flashing = FALSE;
3726 }
3727
3728 /* Now, trundle through the edges. */
3729 for (i = 0; i < g->num_edges; i++) {
3730 char new_ds =
3731 state->line_errors[i] ? DS_LINE_ERROR : state->lines[i];
3732 if (new_ds != ds->lines[i] ||
3733 (flash_changed && state->lines[i] == LINE_YES)) {
3734 ds->lines[i] = new_ds;
3735 if (nedges == REDRAW_OBJECTS_LIMIT)
3736 redraw_everything = TRUE;
3737 else
3738 edges[nedges++] = i;
3739 }
3740 }
3741 }
3742
3743 /* Pass one is now done. Now we do the actual drawing. */
3744 if (redraw_everything) {
7c95608a 3745 int grid_width = g->highest_x - g->lowest_x;
3746 int grid_height = g->highest_y - g->lowest_y;
3747 int w = grid_width * ds->tilesize / g->tilesize;
3748 int h = grid_height * ds->tilesize / g->tilesize;
6193da8d 3749
1463f9f1 3750 game_redraw_in_rect(dr, ds, state,
3751 0, 0, w + 2*border + 1, h + 2*border + 1);
d68b2c10 3752 } else {
c0eb17ce 3753
d68b2c10 3754 /* Right. Now we roll up our sleeves. */
3755
3756 for (i = 0; i < nfaces; i++) {
3757 grid_face *f = g->faces + faces[i];
d68b2c10 3758 int x, y, w, h;
1463f9f1 3759
3760 face_text_bbox(ds, g, f, &x, &y, &w, &h);
3761 game_redraw_in_rect(dr, ds, state, x, y, w, h);
d68b2c10 3762 }
c0eb17ce 3763
d68b2c10 3764 for (i = 0; i < nedges; i++) {
1463f9f1 3765 grid_edge *e = g->edges + edges[i];
3766 int x, y, w, h;
6193da8d 3767
1463f9f1 3768 edge_bbox(ds, g, e, &x, &y, &w, &h);
3769 game_redraw_in_rect(dr, ds, state, x, y, w, h);
d68b2c10 3770 }
6193da8d 3771 }
d68b2c10 3772
7c95608a 3773 ds->started = TRUE;
6193da8d 3774}
3775
6193da8d 3776static float game_flash_length(game_state *oldstate, game_state *newstate,
3777 int dir, game_ui *ui)
3778{
3779 if (!oldstate->solved && newstate->solved &&
3780 !oldstate->cheated && !newstate->cheated) {
3781 return FLASH_TIME;
3782 }
3783
3784 return 0.0F;
3785}
3786
4496362f 3787static int game_is_solved(game_state *state)
3788{
3789 return state->solved;
3790}
3791
6193da8d 3792static void game_print_size(game_params *params, float *x, float *y)
3793{
3794 int pw, ph;
3795
3796 /*
7c95608a 3797 * I'll use 7mm "squares" by default.
6193da8d 3798 */
3799 game_compute_size(params, 700, &pw, &ph);
3800 *x = pw / 100.0F;
3801 *y = ph / 100.0F;
3802}
3803
3804static void game_print(drawing *dr, game_state *state, int tilesize)
3805{
6193da8d 3806 int ink = print_mono_colour(dr, 0);
7c95608a 3807 int i;
6193da8d 3808 game_drawstate ads, *ds = &ads;
7c95608a 3809 grid *g = state->game_grid;
4413ef0f 3810
092e9395 3811 ds->tilesize = tilesize;
6193da8d 3812
7c95608a 3813 for (i = 0; i < g->num_dots; i++) {
3814 int x, y;
3815 grid_to_screen(ds, g, g->dots[i].x, g->dots[i].y, &x, &y);
3816 draw_circle(dr, x, y, ds->tilesize / 15, ink, ink);
121aae4b 3817 }
6193da8d 3818
3819 /*
3820 * Clues.
3821 */
7c95608a 3822 for (i = 0; i < g->num_faces; i++) {
3823 grid_face *f = g->faces + i;
3824 int clue = state->clues[i];
3825 if (clue >= 0) {
121aae4b 3826 char c[2];
7c95608a 3827 int x, y;
3828 c[0] = CLUE2CHAR(clue);
121aae4b 3829 c[1] = '\0';
7c95608a 3830 face_text_pos(ds, g, f, &x, &y);
3831 draw_text(dr, x, y,
3832 FONT_VARIABLE, ds->tilesize / 2,
121aae4b 3833 ALIGN_VCENTRE | ALIGN_HCENTRE, ink, c);
3834 }
3835 }
6193da8d 3836
3837 /*
7c95608a 3838 * Lines.
6193da8d 3839 */
7c95608a 3840 for (i = 0; i < g->num_edges; i++) {
3841 int thickness = (state->lines[i] == LINE_YES) ? 30 : 150;
3842 grid_edge *e = g->edges + i;
3843 int x1, y1, x2, y2;
3844 grid_to_screen(ds, g, e->dot1->x, e->dot1->y, &x1, &y1);
3845 grid_to_screen(ds, g, e->dot2->x, e->dot2->y, &x2, &y2);
3846 if (state->lines[i] == LINE_YES)
3847 {
3848 /* (dx, dy) points from (x1, y1) to (x2, y2).
3849 * The line is then "fattened" in a perpendicular
3850 * direction to create a thin rectangle. */
3851 double d = sqrt(SQ((double)x1 - x2) + SQ((double)y1 - y2));
3852 double dx = (x2 - x1) / d;
3853 double dy = (y2 - y1) / d;
1515b973 3854 int points[8];
3855
7c95608a 3856 dx = (dx * ds->tilesize) / thickness;
3857 dy = (dy * ds->tilesize) / thickness;
b1535c90 3858 points[0] = x1 + (int)dy;
3859 points[1] = y1 - (int)dx;
3860 points[2] = x1 - (int)dy;
3861 points[3] = y1 + (int)dx;
3862 points[4] = x2 - (int)dy;
3863 points[5] = y2 + (int)dx;
3864 points[6] = x2 + (int)dy;
3865 points[7] = y2 - (int)dx;
7c95608a 3866 draw_polygon(dr, points, 4, ink, ink);
3867 }
3868 else
3869 {
3870 /* Draw a dotted line */
3871 int divisions = 6;
3872 int j;
3873 for (j = 1; j < divisions; j++) {
3874 /* Weighted average */
3875 int x = (x1 * (divisions -j) + x2 * j) / divisions;
3876 int y = (y1 * (divisions -j) + y2 * j) / divisions;
3877 draw_circle(dr, x, y, ds->tilesize / thickness, ink, ink);
3878 }
3879 }
121aae4b 3880 }
6193da8d 3881}
3882
3883#ifdef COMBINED
3884#define thegame loopy
3885#endif
3886
3887const struct game thegame = {
750037d7 3888 "Loopy", "games.loopy", "loopy",
6193da8d 3889 default_params,
3890 game_fetch_preset,
3891 decode_params,
3892 encode_params,
3893 free_params,
3894 dup_params,
3895 TRUE, game_configure, custom_params,
3896 validate_params,
3897 new_game_desc,
3898 validate_desc,
3899 new_game,
3900 dup_game,
3901 free_game,
3902 1, solve_game,
fa3abef5 3903 TRUE, game_can_format_as_text_now, game_text_format,
6193da8d 3904 new_ui,
3905 free_ui,
3906 encode_ui,
3907 decode_ui,
3908 game_changed_state,
3909 interpret_move,
3910 execute_move,
3911 PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
3912 game_colours,
3913 game_new_drawstate,
3914 game_free_drawstate,
3915 game_redraw,
3916 game_anim_length,
3917 game_flash_length,
4496362f 3918 game_is_solved,
6193da8d 3919 TRUE, FALSE, game_print_size, game_print,
121aae4b 3920 FALSE /* wants_statusbar */,
6193da8d 3921 FALSE, game_timing_state,
121aae4b 3922 0, /* mouse_priorities */
6193da8d 3923};
5ca89681 3924
3925#ifdef STANDALONE_SOLVER
3926
3927/*
3928 * Half-hearted standalone solver. It can't output the solution to
3929 * anything but a square puzzle, and it can't log the deductions
3930 * it makes either. But it can solve square puzzles, and more
3931 * importantly it can use its solver to grade the difficulty of
3932 * any puzzle you give it.
3933 */
3934
3935#include <stdarg.h>
3936
3937int main(int argc, char **argv)
3938{
3939 game_params *p;
3940 game_state *s;
3941 char *id = NULL, *desc, *err;
3942 int grade = FALSE;
3943 int ret, diff;
3944#if 0 /* verbose solver not supported here (yet) */
3945 int really_verbose = FALSE;
3946#endif
3947
3948 while (--argc > 0) {
3949 char *p = *++argv;
3950#if 0 /* verbose solver not supported here (yet) */
3951 if (!strcmp(p, "-v")) {
3952 really_verbose = TRUE;
3953 } else
3954#endif
3955 if (!strcmp(p, "-g")) {
3956 grade = TRUE;
3957 } else if (*p == '-') {
3958 fprintf(stderr, "%s: unrecognised option `%s'\n", argv[0], p);
3959 return 1;
3960 } else {
3961 id = p;
3962 }
3963 }
3964
3965 if (!id) {
3966 fprintf(stderr, "usage: %s [-g | -v] <game_id>\n", argv[0]);
3967 return 1;
3968 }
3969
3970 desc = strchr(id, ':');
3971 if (!desc) {
3972 fprintf(stderr, "%s: game id expects a colon in it\n", argv[0]);
3973 return 1;
3974 }
3975 *desc++ = '\0';
3976
3977 p = default_params();
3978 decode_params(p, id);
3979 err = validate_desc(p, desc);
3980 if (err) {
3981 fprintf(stderr, "%s: %s\n", argv[0], err);
3982 return 1;
3983 }
3984 s = new_game(NULL, p, desc);
3985
3986 /*
3987 * When solving an Easy puzzle, we don't want to bother the
3988 * user with Hard-level deductions. For this reason, we grade
3989 * the puzzle internally before doing anything else.
3990 */
3991 ret = -1; /* placate optimiser */
3992 for (diff = 0; diff < DIFF_MAX; diff++) {
3993 solver_state *sstate_new;
3994 solver_state *sstate = new_solver_state((game_state *)s, diff);
3995
315e47b9 3996 sstate_new = solve_game_rec(sstate);
5ca89681 3997
3998 if (sstate_new->solver_status == SOLVER_MISTAKE)
3999 ret = 0;
4000 else if (sstate_new->solver_status == SOLVER_SOLVED)
4001 ret = 1;
4002 else
4003 ret = 2;
4004
4005 free_solver_state(sstate_new);
4006 free_solver_state(sstate);
4007
4008 if (ret < 2)
4009 break;
4010 }
4011
4012 if (diff == DIFF_MAX) {
4013 if (grade)
4014 printf("Difficulty rating: harder than Hard, or ambiguous\n");
4015 else
4016 printf("Unable to find a unique solution\n");
4017 } else {
4018 if (grade) {
4019 if (ret == 0)
4020 printf("Difficulty rating: impossible (no solution exists)\n");
4021 else if (ret == 1)
4022 printf("Difficulty rating: %s\n", diffnames[diff]);
4023 } else {
4024 solver_state *sstate_new;
4025 solver_state *sstate = new_solver_state((game_state *)s, diff);
4026
4027 /* If we supported a verbose solver, we'd set verbosity here */
4028
315e47b9 4029 sstate_new = solve_game_rec(sstate);
5ca89681 4030
4031 if (sstate_new->solver_status == SOLVER_MISTAKE)
4032 printf("Puzzle is inconsistent\n");
4033 else {
4034 assert(sstate_new->solver_status == SOLVER_SOLVED);
4035 if (s->grid_type == 0) {
4036 fputs(game_text_format(sstate_new->state), stdout);
4037 } else {
4038 printf("Unable to output non-square grids\n");
4039 }
4040 }
4041
4042 free_solver_state(sstate_new);
4043 free_solver_state(sstate);
4044 }
4045 }
4046
4047 return 0;
4048}
4049
4050#endif
cebf0b0d 4051
4052/* vim: set shiftwidth=4 tabstop=8: */