Trivial markup fix.
[sgt/puzzles] / loopy.c
CommitLineData
6193da8d 1/*
7c95608a 2 * loopy.c:
3 *
4 * An implementation of the Nikoli game 'Loop the loop'.
121aae4b 5 * (c) Mike Pinna, 2005, 2006
7c95608a 6 * Substantially rewritten to allowing for more general types of grid.
7 * (c) Lambros Lambrou 2008
6193da8d 8 *
9 * vim: set shiftwidth=4 :set textwidth=80:
7c95608a 10 */
6193da8d 11
12/*
a36a26d7 13 * Possible future solver enhancements:
14 *
15 * - There's an interesting deductive technique which makes use
16 * of topology rather than just graph theory. Each _face_ in
17 * the grid is either inside or outside the loop; you can tell
18 * that two faces are on the same side of the loop if they're
19 * separated by a LINE_NO (or, more generally, by a path
20 * crossing no LINE_UNKNOWNs and an even number of LINE_YESes),
21 * and on the opposite side of the loop if they're separated by
22 * a LINE_YES (or an odd number of LINE_YESes and no
23 * LINE_UNKNOWNs). Oh, and any face separated from the outside
24 * of the grid by a LINE_YES or a LINE_NO is on the inside or
25 * outside respectively. So if you can track this for all
26 * faces, you figure out the state of the line between a pair
27 * once their relative insideness is known.
28 * + The way I envisage this working is simply to keep an edsf
29 * of all _faces_, which indicates whether they're on
30 * opposite sides of the loop from one another. We also
31 * include a special entry in the edsf for the infinite
32 * exterior "face".
33 * + So, the simple way to do this is to just go through the
34 * edges: every time we see an edge in a state other than
35 * LINE_UNKNOWN which separates two faces that aren't in the
36 * same edsf class, we can rectify that by merging the
37 * classes. Then, conversely, an edge in LINE_UNKNOWN state
38 * which separates two faces that _are_ in the same edsf
39 * class can immediately have its state determined.
40 * + But you can go one better, if you're prepared to loop
41 * over all _pairs_ of edges. Suppose we have edges A and B,
42 * which respectively separate faces A1,A2 and B1,B2.
43 * Suppose that A,B are in the same edge-edsf class and that
44 * A1,B1 (wlog) are in the same face-edsf class; then we can
45 * immediately place A2,B2 into the same face-edsf class (as
46 * each other, not as A1 and A2) one way round or the other.
47 * And conversely again, if A1,B1 are in the same face-edsf
48 * class and so are A2,B2, then we can put A,B into the same
49 * face-edsf class.
50 * * Of course, this deduction requires a quadratic-time
51 * loop over all pairs of edges in the grid, so it should
52 * be reserved until there's nothing easier left to be
53 * done.
54 *
55 * - The generalised grid support has made me (SGT) notice a
56 * possible extension to the loop-avoidance code. When you have
57 * a path of connected edges such that no other edges at all
58 * are incident on any vertex in the middle of the path - or,
59 * alternatively, such that any such edges are already known to
60 * be LINE_NO - then you know those edges are either all
61 * LINE_YES or all LINE_NO. Hence you can mentally merge the
62 * entire path into a single long curly edge for the purposes
63 * of loop avoidance, and look directly at whether or not the
64 * extreme endpoints of the path are connected by some other
65 * route. I find this coming up fairly often when I play on the
66 * octagonal grid setting, so it might be worth implementing in
67 * the solver.
121aae4b 68 *
69 * - (Just a speed optimisation.) Consider some todo list queue where every
70 * time we modify something we mark it for consideration by other bits of
71 * the solver, to save iteration over things that have already been done.
6193da8d 72 */
73
74#include <stdio.h>
75#include <stdlib.h>
7126ca41 76#include <stddef.h>
6193da8d 77#include <string.h>
78#include <assert.h>
79#include <ctype.h>
80#include <math.h>
81
82#include "puzzles.h"
83#include "tree234.h"
7c95608a 84#include "grid.h"
6193da8d 85
121aae4b 86/* Debugging options */
7c95608a 87
88/*
89#define DEBUG_CACHES
90#define SHOW_WORKING
91#define DEBUG_DLINES
92*/
121aae4b 93
94/* ----------------------------------------------------------------------
95 * Struct, enum and function declarations
96 */
97
98enum {
99 COL_BACKGROUND,
100 COL_FOREGROUND,
7c95608a 101 COL_LINEUNKNOWN,
121aae4b 102 COL_HIGHLIGHT,
103 COL_MISTAKE,
7c95608a 104 COL_SATISFIED,
ec909c7a 105 COL_FAINT,
121aae4b 106 NCOLOURS
107};
108
109struct game_state {
7c95608a 110 grid *game_grid;
111
112 /* Put -1 in a face that doesn't get a clue */
aa8ccc55 113 signed char *clues;
7c95608a 114
115 /* Array of line states, to store whether each line is
116 * YES, NO or UNKNOWN */
117 char *lines;
121aae4b 118
b6bf0adc 119 unsigned char *line_errors;
120
121aae4b 121 int solved;
122 int cheated;
123
7c95608a 124 /* Used in game_text_format(), so that it knows what type of
125 * grid it's trying to render as ASCII text. */
126 int grid_type;
121aae4b 127};
128
129enum solver_status {
130 SOLVER_SOLVED, /* This is the only solution the solver could find */
131 SOLVER_MISTAKE, /* This is definitely not a solution */
132 SOLVER_AMBIGUOUS, /* This _might_ be an ambiguous solution */
133 SOLVER_INCOMPLETE /* This may be a partial solution */
134};
135
7c95608a 136/* ------ Solver state ------ */
121aae4b 137typedef struct solver_state {
138 game_state *state;
121aae4b 139 enum solver_status solver_status;
140 /* NB looplen is the number of dots that are joined together at a point, ie a
141 * looplen of 1 means there are no lines to a particular dot */
142 int *looplen;
143
315e47b9 144 /* Difficulty level of solver. Used by solver functions that want to
145 * vary their behaviour depending on the requested difficulty level. */
146 int diff;
147
121aae4b 148 /* caches */
7c95608a 149 char *dot_yes_count;
150 char *dot_no_count;
151 char *face_yes_count;
152 char *face_no_count;
153 char *dot_solved, *face_solved;
121aae4b 154 int *dotdsf;
155
315e47b9 156 /* Information for Normal level deductions:
157 * For each dline, store a bitmask for whether we know:
158 * (bit 0) at least one is YES
159 * (bit 1) at most one is YES */
160 char *dlines;
161
162 /* Hard level information */
163 int *linedsf;
121aae4b 164} solver_state;
165
166/*
167 * Difficulty levels. I do some macro ickery here to ensure that my
168 * enum and the various forms of my name list always match up.
169 */
170
171#define DIFFLIST(A) \
315e47b9 172 A(EASY,Easy,e) \
173 A(NORMAL,Normal,n) \
174 A(TRICKY,Tricky,t) \
175 A(HARD,Hard,h)
176#define ENUM(upper,title,lower) DIFF_ ## upper,
177#define TITLE(upper,title,lower) #title,
178#define ENCODE(upper,title,lower) #lower
179#define CONFIG(upper,title,lower) ":" #title
1a739e2f 180enum { DIFFLIST(ENUM) DIFF_MAX };
121aae4b 181static char const *const diffnames[] = { DIFFLIST(TITLE) };
182static char const diffchars[] = DIFFLIST(ENCODE);
183#define DIFFCONFIG DIFFLIST(CONFIG)
315e47b9 184
185/*
186 * Solver routines, sorted roughly in order of computational cost.
187 * The solver will run the faster deductions first, and slower deductions are
188 * only invoked when the faster deductions are unable to make progress.
189 * Each function is associated with a difficulty level, so that the generated
190 * puzzles are solvable by applying only the functions with the chosen
191 * difficulty level or lower.
192 */
193#define SOLVERLIST(A) \
194 A(trivial_deductions, DIFF_EASY) \
195 A(dline_deductions, DIFF_NORMAL) \
196 A(linedsf_deductions, DIFF_HARD) \
197 A(loop_deductions, DIFF_EASY)
198#define SOLVER_FN_DECL(fn,diff) static int fn(solver_state *);
199#define SOLVER_FN(fn,diff) &fn,
200#define SOLVER_DIFF(fn,diff) diff,
201SOLVERLIST(SOLVER_FN_DECL)
202static int (*(solver_fns[]))(solver_state *) = { SOLVERLIST(SOLVER_FN) };
203static int const solver_diffs[] = { SOLVERLIST(SOLVER_DIFF) };
204const int NUM_SOLVERS = sizeof(solver_diffs)/sizeof(*solver_diffs);
121aae4b 205
206struct game_params {
207 int w, h;
1a739e2f 208 int diff;
7c95608a 209 int type;
210
211 /* Grid generation is expensive, so keep a (ref-counted) reference to the
212 * grid for these parameters, and only generate when required. */
213 grid *game_grid;
121aae4b 214};
215
b6bf0adc 216/* line_drawstate is the same as line_state, but with the extra ERROR
217 * possibility. The drawing code copies line_state to line_drawstate,
218 * except in the case that the line is an error. */
121aae4b 219enum line_state { LINE_YES, LINE_UNKNOWN, LINE_NO };
b6bf0adc 220enum line_drawstate { DS_LINE_YES, DS_LINE_UNKNOWN,
221 DS_LINE_NO, DS_LINE_ERROR };
121aae4b 222
7c95608a 223#define OPP(line_state) \
224 (2 - line_state)
121aae4b 225
121aae4b 226
227struct game_drawstate {
228 int started;
7c95608a 229 int tilesize;
121aae4b 230 int flashing;
e0936bbd 231 int *textx, *texty;
7c95608a 232 char *lines;
121aae4b 233 char *clue_error;
7c95608a 234 char *clue_satisfied;
121aae4b 235};
236
121aae4b 237static char *validate_desc(game_params *params, char *desc);
7c95608a 238static int dot_order(const game_state* state, int i, char line_type);
239static int face_order(const game_state* state, int i, char line_type);
315e47b9 240static solver_state *solve_game_rec(const solver_state *sstate);
121aae4b 241
242#ifdef DEBUG_CACHES
243static void check_caches(const solver_state* sstate);
244#else
245#define check_caches(s)
246#endif
247
7c95608a 248/* ------- List of grid generators ------- */
249#define GRIDLIST(A) \
e3c9e042 250 A(Squares,grid_new_square,3,3) \
251 A(Triangular,grid_new_triangular,3,3) \
252 A(Honeycomb,grid_new_honeycomb,3,3) \
253 A(Snub-Square,grid_new_snubsquare,3,3) \
254 A(Cairo,grid_new_cairo,3,4) \
255 A(Great-Hexagonal,grid_new_greathexagonal,3,3) \
256 A(Octagonal,grid_new_octagonal,3,3) \
e30d39f6 257 A(Kites,grid_new_kites,3,3) \
918a098a 258 A(Floret,grid_new_floret,1,2) \
259 A(Dodecagonal,grid_new_dodecagonal,2,2) \
260 A(Great-Dodecagonal,grid_new_greatdodecagonal,2,2)
e3c9e042 261
262#define GRID_NAME(title,fn,amin,omin) #title,
263#define GRID_CONFIG(title,fn,amin,omin) ":" #title
264#define GRID_FN(title,fn,amin,omin) &fn,
265#define GRID_SIZES(title,fn,amin,omin) \
266 {amin, omin, \
267 "Width and height for this grid type must both be at least " #amin, \
268 "At least one of width and height for this grid type must be at least " #omin,},
7c95608a 269static char const *const gridnames[] = { GRIDLIST(GRID_NAME) };
270#define GRID_CONFIGS GRIDLIST(GRID_CONFIG)
271static grid * (*(grid_fns[]))(int w, int h) = { GRIDLIST(GRID_FN) };
b1535c90 272#define NUM_GRID_TYPES (sizeof(grid_fns) / sizeof(grid_fns[0]))
e3c9e042 273static const struct {
274 int amin, omin;
275 char *aerr, *oerr;
276} grid_size_limits[] = { GRIDLIST(GRID_SIZES) };
7c95608a 277
278/* Generates a (dynamically allocated) new grid, according to the
279 * type and size requested in params. Does nothing if the grid is already
280 * generated. The allocated grid is owned by the params object, and will be
281 * freed in free_params(). */
282static void params_generate_grid(game_params *params)
283{
284 if (!params->game_grid) {
285 params->game_grid = grid_fns[params->type](params->w, params->h);
286 }
287}
288
121aae4b 289/* ----------------------------------------------------------------------
7c95608a 290 * Preprocessor magic
121aae4b 291 */
292
293/* General constants */
6193da8d 294#define PREFERRED_TILE_SIZE 32
7c95608a 295#define BORDER(tilesize) ((tilesize) / 2)
c0eb17ce 296#define FLASH_TIME 0.5F
6193da8d 297
121aae4b 298#define BIT_SET(field, bit) ((field) & (1<<(bit)))
299
300#define SET_BIT(field, bit) (BIT_SET(field, bit) ? FALSE : \
301 ((field) |= (1<<(bit)), TRUE))
302
303#define CLEAR_BIT(field, bit) (BIT_SET(field, bit) ? \
304 ((field) &= ~(1<<(bit)), TRUE) : FALSE)
305
121aae4b 306#define CLUE2CHAR(c) \
918a098a 307 ((c < 0) ? ' ' : c < 10 ? c + '0' : c - 10 + 'A')
121aae4b 308
121aae4b 309/* ----------------------------------------------------------------------
310 * General struct manipulation and other straightforward code
311 */
6193da8d 312
313static game_state *dup_game(game_state *state)
314{
315 game_state *ret = snew(game_state);
316
7c95608a 317 ret->game_grid = state->game_grid;
318 ret->game_grid->refcount++;
319
6193da8d 320 ret->solved = state->solved;
321 ret->cheated = state->cheated;
322
7c95608a 323 ret->clues = snewn(state->game_grid->num_faces, signed char);
324 memcpy(ret->clues, state->clues, state->game_grid->num_faces);
6193da8d 325
7c95608a 326 ret->lines = snewn(state->game_grid->num_edges, char);
327 memcpy(ret->lines, state->lines, state->game_grid->num_edges);
6193da8d 328
b6bf0adc 329 ret->line_errors = snewn(state->game_grid->num_edges, unsigned char);
330 memcpy(ret->line_errors, state->line_errors, state->game_grid->num_edges);
331
7c95608a 332 ret->grid_type = state->grid_type;
6193da8d 333 return ret;
334}
335
336static void free_game(game_state *state)
337{
338 if (state) {
7c95608a 339 grid_free(state->game_grid);
6193da8d 340 sfree(state->clues);
7c95608a 341 sfree(state->lines);
b6bf0adc 342 sfree(state->line_errors);
6193da8d 343 sfree(state);
344 }
345}
346
7c95608a 347static solver_state *new_solver_state(game_state *state, int diff) {
348 int i;
349 int num_dots = state->game_grid->num_dots;
350 int num_faces = state->game_grid->num_faces;
351 int num_edges = state->game_grid->num_edges;
6193da8d 352 solver_state *ret = snew(solver_state);
6193da8d 353
7c95608a 354 ret->state = dup_game(state);
355
356 ret->solver_status = SOLVER_INCOMPLETE;
315e47b9 357 ret->diff = diff;
6193da8d 358
7c95608a 359 ret->dotdsf = snew_dsf(num_dots);
360 ret->looplen = snewn(num_dots, int);
121aae4b 361
7c95608a 362 for (i = 0; i < num_dots; i++) {
121aae4b 363 ret->looplen[i] = 1;
364 }
365
7c95608a 366 ret->dot_solved = snewn(num_dots, char);
367 ret->face_solved = snewn(num_faces, char);
368 memset(ret->dot_solved, FALSE, num_dots);
369 memset(ret->face_solved, FALSE, num_faces);
121aae4b 370
7c95608a 371 ret->dot_yes_count = snewn(num_dots, char);
372 memset(ret->dot_yes_count, 0, num_dots);
373 ret->dot_no_count = snewn(num_dots, char);
374 memset(ret->dot_no_count, 0, num_dots);
375 ret->face_yes_count = snewn(num_faces, char);
376 memset(ret->face_yes_count, 0, num_faces);
377 ret->face_no_count = snewn(num_faces, char);
378 memset(ret->face_no_count, 0, num_faces);
121aae4b 379
380 if (diff < DIFF_NORMAL) {
315e47b9 381 ret->dlines = NULL;
121aae4b 382 } else {
315e47b9 383 ret->dlines = snewn(2*num_edges, char);
384 memset(ret->dlines, 0, 2*num_edges);
121aae4b 385 }
386
387 if (diff < DIFF_HARD) {
315e47b9 388 ret->linedsf = NULL;
121aae4b 389 } else {
315e47b9 390 ret->linedsf = snew_dsf(state->game_grid->num_edges);
6193da8d 391 }
392
393 return ret;
394}
395
396static void free_solver_state(solver_state *sstate) {
397 if (sstate) {
398 free_game(sstate->state);
9cfc03b7 399 sfree(sstate->dotdsf);
400 sfree(sstate->looplen);
121aae4b 401 sfree(sstate->dot_solved);
7c95608a 402 sfree(sstate->face_solved);
403 sfree(sstate->dot_yes_count);
404 sfree(sstate->dot_no_count);
405 sfree(sstate->face_yes_count);
406 sfree(sstate->face_no_count);
121aae4b 407
315e47b9 408 /* OK, because sfree(NULL) is a no-op */
409 sfree(sstate->dlines);
410 sfree(sstate->linedsf);
121aae4b 411
9cfc03b7 412 sfree(sstate);
6193da8d 413 }
414}
415
121aae4b 416static solver_state *dup_solver_state(const solver_state *sstate) {
7c95608a 417 game_state *state = sstate->state;
418 int num_dots = state->game_grid->num_dots;
419 int num_faces = state->game_grid->num_faces;
420 int num_edges = state->game_grid->num_edges;
6193da8d 421 solver_state *ret = snew(solver_state);
422
9cfc03b7 423 ret->state = state = dup_game(sstate->state);
6193da8d 424
6193da8d 425 ret->solver_status = sstate->solver_status;
315e47b9 426 ret->diff = sstate->diff;
6193da8d 427
7c95608a 428 ret->dotdsf = snewn(num_dots, int);
429 ret->looplen = snewn(num_dots, int);
430 memcpy(ret->dotdsf, sstate->dotdsf,
431 num_dots * sizeof(int));
432 memcpy(ret->looplen, sstate->looplen,
433 num_dots * sizeof(int));
434
435 ret->dot_solved = snewn(num_dots, char);
436 ret->face_solved = snewn(num_faces, char);
437 memcpy(ret->dot_solved, sstate->dot_solved, num_dots);
438 memcpy(ret->face_solved, sstate->face_solved, num_faces);
439
440 ret->dot_yes_count = snewn(num_dots, char);
441 memcpy(ret->dot_yes_count, sstate->dot_yes_count, num_dots);
442 ret->dot_no_count = snewn(num_dots, char);
443 memcpy(ret->dot_no_count, sstate->dot_no_count, num_dots);
444
445 ret->face_yes_count = snewn(num_faces, char);
446 memcpy(ret->face_yes_count, sstate->face_yes_count, num_faces);
447 ret->face_no_count = snewn(num_faces, char);
448 memcpy(ret->face_no_count, sstate->face_no_count, num_faces);
121aae4b 449
315e47b9 450 if (sstate->dlines) {
451 ret->dlines = snewn(2*num_edges, char);
452 memcpy(ret->dlines, sstate->dlines,
7c95608a 453 2*num_edges);
121aae4b 454 } else {
315e47b9 455 ret->dlines = NULL;
121aae4b 456 }
457
315e47b9 458 if (sstate->linedsf) {
459 ret->linedsf = snewn(num_edges, int);
460 memcpy(ret->linedsf, sstate->linedsf,
7c95608a 461 num_edges * sizeof(int));
121aae4b 462 } else {
315e47b9 463 ret->linedsf = NULL;
121aae4b 464 }
6193da8d 465
466 return ret;
467}
468
121aae4b 469static game_params *default_params(void)
6193da8d 470{
121aae4b 471 game_params *ret = snew(game_params);
6193da8d 472
121aae4b 473#ifdef SLOW_SYSTEM
7c95608a 474 ret->h = 7;
475 ret->w = 7;
121aae4b 476#else
477 ret->h = 10;
478 ret->w = 10;
479#endif
480 ret->diff = DIFF_EASY;
7c95608a 481 ret->type = 0;
482
483 ret->game_grid = NULL;
6193da8d 484
121aae4b 485 return ret;
6193da8d 486}
487
121aae4b 488static game_params *dup_params(game_params *params)
6193da8d 489{
121aae4b 490 game_params *ret = snew(game_params);
7c95608a 491
121aae4b 492 *ret = *params; /* structure copy */
7c95608a 493 if (ret->game_grid) {
494 ret->game_grid->refcount++;
495 }
121aae4b 496 return ret;
497}
6193da8d 498
121aae4b 499static const game_params presets[] = {
b1535c90 500#ifdef SMALL_SCREEN
501 { 7, 7, DIFF_EASY, 0, NULL },
502 { 7, 7, DIFF_NORMAL, 0, NULL },
503 { 7, 7, DIFF_HARD, 0, NULL },
504 { 7, 7, DIFF_HARD, 1, NULL },
505 { 7, 7, DIFF_HARD, 2, NULL },
506 { 5, 5, DIFF_HARD, 3, NULL },
507 { 7, 7, DIFF_HARD, 4, NULL },
508 { 5, 4, DIFF_HARD, 5, NULL },
509 { 5, 5, DIFF_HARD, 6, NULL },
510 { 5, 5, DIFF_HARD, 7, NULL },
e30d39f6 511 { 3, 3, DIFF_HARD, 8, NULL },
918a098a 512 { 3, 3, DIFF_HARD, 9, NULL },
513 { 3, 3, DIFF_HARD, 10, NULL },
b1535c90 514#else
7c95608a 515 { 7, 7, DIFF_EASY, 0, NULL },
516 { 10, 10, DIFF_EASY, 0, NULL },
517 { 7, 7, DIFF_NORMAL, 0, NULL },
518 { 10, 10, DIFF_NORMAL, 0, NULL },
519 { 7, 7, DIFF_HARD, 0, NULL },
520 { 10, 10, DIFF_HARD, 0, NULL },
521 { 10, 10, DIFF_HARD, 1, NULL },
522 { 12, 10, DIFF_HARD, 2, NULL },
523 { 7, 7, DIFF_HARD, 3, NULL },
524 { 9, 9, DIFF_HARD, 4, NULL },
525 { 5, 4, DIFF_HARD, 5, NULL },
526 { 7, 7, DIFF_HARD, 6, NULL },
527 { 5, 5, DIFF_HARD, 7, NULL },
e30d39f6 528 { 5, 5, DIFF_HARD, 8, NULL },
918a098a 529 { 5, 4, DIFF_HARD, 9, NULL },
530 { 5, 4, DIFF_HARD, 10, NULL },
b1535c90 531#endif
121aae4b 532};
6193da8d 533
121aae4b 534static int game_fetch_preset(int i, char **name, game_params **params)
6193da8d 535{
1a739e2f 536 game_params *tmppar;
121aae4b 537 char buf[80];
6193da8d 538
121aae4b 539 if (i < 0 || i >= lenof(presets))
540 return FALSE;
6193da8d 541
1a739e2f 542 tmppar = snew(game_params);
543 *tmppar = presets[i];
544 *params = tmppar;
7c95608a 545 sprintf(buf, "%dx%d %s - %s", tmppar->h, tmppar->w,
546 gridnames[tmppar->type], diffnames[tmppar->diff]);
121aae4b 547 *name = dupstr(buf);
548
549 return TRUE;
6193da8d 550}
551
552static void free_params(game_params *params)
553{
7c95608a 554 if (params->game_grid) {
555 grid_free(params->game_grid);
556 }
6193da8d 557 sfree(params);
558}
559
560static void decode_params(game_params *params, char const *string)
561{
7c95608a 562 if (params->game_grid) {
563 grid_free(params->game_grid);
564 params->game_grid = NULL;
565 }
6193da8d 566 params->h = params->w = atoi(string);
c0eb17ce 567 params->diff = DIFF_EASY;
6193da8d 568 while (*string && isdigit((unsigned char)*string)) string++;
569 if (*string == 'x') {
570 string++;
571 params->h = atoi(string);
121aae4b 572 while (*string && isdigit((unsigned char)*string)) string++;
6193da8d 573 }
7c95608a 574 if (*string == 't') {
6193da8d 575 string++;
7c95608a 576 params->type = atoi(string);
121aae4b 577 while (*string && isdigit((unsigned char)*string)) string++;
6193da8d 578 }
c0eb17ce 579 if (*string == 'd') {
580 int i;
c0eb17ce 581 string++;
121aae4b 582 for (i = 0; i < DIFF_MAX; i++)
583 if (*string == diffchars[i])
584 params->diff = i;
585 if (*string) string++;
c0eb17ce 586 }
6193da8d 587}
588
589static char *encode_params(game_params *params, int full)
590{
591 char str[80];
7c95608a 592 sprintf(str, "%dx%dt%d", params->w, params->h, params->type);
6193da8d 593 if (full)
7c95608a 594 sprintf(str + strlen(str), "d%c", diffchars[params->diff]);
6193da8d 595 return dupstr(str);
596}
597
598static config_item *game_configure(game_params *params)
599{
600 config_item *ret;
601 char buf[80];
602
7c95608a 603 ret = snewn(5, config_item);
6193da8d 604
605 ret[0].name = "Width";
606 ret[0].type = C_STRING;
607 sprintf(buf, "%d", params->w);
608 ret[0].sval = dupstr(buf);
609 ret[0].ival = 0;
610
611 ret[1].name = "Height";
612 ret[1].type = C_STRING;
613 sprintf(buf, "%d", params->h);
614 ret[1].sval = dupstr(buf);
615 ret[1].ival = 0;
616
7c95608a 617 ret[2].name = "Grid type";
c0eb17ce 618 ret[2].type = C_CHOICES;
7c95608a 619 ret[2].sval = GRID_CONFIGS;
620 ret[2].ival = params->type;
6193da8d 621
7c95608a 622 ret[3].name = "Difficulty";
623 ret[3].type = C_CHOICES;
624 ret[3].sval = DIFFCONFIG;
625 ret[3].ival = params->diff;
626
627 ret[4].name = NULL;
628 ret[4].type = C_END;
629 ret[4].sval = NULL;
630 ret[4].ival = 0;
6193da8d 631
632 return ret;
633}
634
635static game_params *custom_params(config_item *cfg)
636{
637 game_params *ret = snew(game_params);
638
639 ret->w = atoi(cfg[0].sval);
640 ret->h = atoi(cfg[1].sval);
7c95608a 641 ret->type = cfg[2].ival;
642 ret->diff = cfg[3].ival;
6193da8d 643
7c95608a 644 ret->game_grid = NULL;
6193da8d 645 return ret;
646}
647
648static char *validate_params(game_params *params, int full)
649{
7c95608a 650 if (params->type < 0 || params->type >= NUM_GRID_TYPES)
651 return "Illegal grid type";
e3c9e042 652 if (params->w < grid_size_limits[params->type].amin ||
653 params->h < grid_size_limits[params->type].amin)
654 return grid_size_limits[params->type].aerr;
655 if (params->w < grid_size_limits[params->type].omin &&
656 params->h < grid_size_limits[params->type].omin)
657 return grid_size_limits[params->type].oerr;
c0eb17ce 658
659 /*
660 * This shouldn't be able to happen at all, since decode_params
661 * and custom_params will never generate anything that isn't
662 * within range.
663 */
1a739e2f 664 assert(params->diff < DIFF_MAX);
c0eb17ce 665
6193da8d 666 return NULL;
667}
668
121aae4b 669/* Returns a newly allocated string describing the current puzzle */
670static char *state_to_text(const game_state *state)
6193da8d 671{
7c95608a 672 grid *g = state->game_grid;
121aae4b 673 char *retval;
7c95608a 674 int num_faces = g->num_faces;
675 char *description = snewn(num_faces + 1, char);
121aae4b 676 char *dp = description;
677 int empty_count = 0;
7c95608a 678 int i;
6193da8d 679
7c95608a 680 for (i = 0; i < num_faces; i++) {
681 if (state->clues[i] < 0) {
121aae4b 682 if (empty_count > 25) {
683 dp += sprintf(dp, "%c", (int)(empty_count + 'a' - 1));
684 empty_count = 0;
685 }
686 empty_count++;
687 } else {
688 if (empty_count) {
689 dp += sprintf(dp, "%c", (int)(empty_count + 'a' - 1));
690 empty_count = 0;
691 }
7c95608a 692 dp += sprintf(dp, "%c", (int)CLUE2CHAR(state->clues[i]));
121aae4b 693 }
694 }
6193da8d 695
121aae4b 696 if (empty_count)
1a739e2f 697 dp += sprintf(dp, "%c", (int)(empty_count + 'a' - 1));
121aae4b 698
699 retval = dupstr(description);
700 sfree(description);
701
702 return retval;
6193da8d 703}
704
121aae4b 705/* We require that the params pass the test in validate_params and that the
706 * description fills the entire game area */
707static char *validate_desc(game_params *params, char *desc)
6193da8d 708{
121aae4b 709 int count = 0;
7c95608a 710 grid *g;
711 params_generate_grid(params);
712 g = params->game_grid;
6193da8d 713
121aae4b 714 for (; *desc; ++desc) {
918a098a 715 if ((*desc >= '0' && *desc <= '9') || (*desc >= 'A' && *desc <= 'Z')) {
121aae4b 716 count++;
717 continue;
718 }
719 if (*desc >= 'a') {
720 count += *desc - 'a' + 1;
721 continue;
722 }
723 return "Unknown character in description";
6193da8d 724 }
725
7c95608a 726 if (count < g->num_faces)
121aae4b 727 return "Description too short for board size";
7c95608a 728 if (count > g->num_faces)
121aae4b 729 return "Description too long for board size";
6193da8d 730
121aae4b 731 return NULL;
6193da8d 732}
733
121aae4b 734/* Sums the lengths of the numbers in range [0,n) */
735/* See equivalent function in solo.c for justification of this. */
736static int len_0_to_n(int n)
6193da8d 737{
121aae4b 738 int len = 1; /* Counting 0 as a bit of a special case */
739 int i;
740
741 for (i = 1; i < n; i *= 10) {
742 len += max(n - i, 0);
6193da8d 743 }
121aae4b 744
745 return len;
6193da8d 746}
747
121aae4b 748static char *encode_solve_move(const game_state *state)
749{
7c95608a 750 int len;
121aae4b 751 char *ret, *p;
7c95608a 752 int i;
753 int num_edges = state->game_grid->num_edges;
754
121aae4b 755 /* This is going to return a string representing the moves needed to set
756 * every line in a grid to be the same as the ones in 'state'. The exact
757 * length of this string is predictable. */
6193da8d 758
121aae4b 759 len = 1; /* Count the 'S' prefix */
7c95608a 760 /* Numbers in all lines */
761 len += len_0_to_n(num_edges);
762 /* For each line we also have a letter */
763 len += num_edges;
6193da8d 764
121aae4b 765 ret = snewn(len + 1, char);
766 p = ret;
6193da8d 767
121aae4b 768 p += sprintf(p, "S");
6193da8d 769
7c95608a 770 for (i = 0; i < num_edges; i++) {
771 switch (state->lines[i]) {
772 case LINE_YES:
773 p += sprintf(p, "%dy", i);
774 break;
775 case LINE_NO:
776 p += sprintf(p, "%dn", i);
777 break;
6193da8d 778 }
6193da8d 779 }
121aae4b 780
781 /* No point in doing sums like that if they're going to be wrong */
782 assert(strlen(ret) <= (size_t)len);
783 return ret;
6193da8d 784}
785
121aae4b 786static game_ui *new_ui(game_state *state)
6193da8d 787{
121aae4b 788 return NULL;
789}
6193da8d 790
121aae4b 791static void free_ui(game_ui *ui)
792{
793}
6193da8d 794
121aae4b 795static char *encode_ui(game_ui *ui)
796{
797 return NULL;
798}
6193da8d 799
121aae4b 800static void decode_ui(game_ui *ui, char *encoding)
801{
802}
6193da8d 803
121aae4b 804static void game_changed_state(game_ui *ui, game_state *oldstate,
805 game_state *newstate)
806{
807}
6193da8d 808
121aae4b 809static void game_compute_size(game_params *params, int tilesize,
810 int *x, int *y)
811{
7c95608a 812 grid *g;
1515b973 813 int grid_width, grid_height, rendered_width, rendered_height;
814
7c95608a 815 params_generate_grid(params);
816 g = params->game_grid;
1515b973 817 grid_width = g->highest_x - g->lowest_x;
818 grid_height = g->highest_y - g->lowest_y;
7c95608a 819 /* multiply first to minimise rounding error on integer division */
1515b973 820 rendered_width = grid_width * tilesize / g->tilesize;
821 rendered_height = grid_height * tilesize / g->tilesize;
7c95608a 822 *x = rendered_width + 2 * BORDER(tilesize) + 1;
823 *y = rendered_height + 2 * BORDER(tilesize) + 1;
121aae4b 824}
6193da8d 825
121aae4b 826static void game_set_size(drawing *dr, game_drawstate *ds,
7c95608a 827 game_params *params, int tilesize)
121aae4b 828{
829 ds->tilesize = tilesize;
121aae4b 830}
6193da8d 831
121aae4b 832static float *game_colours(frontend *fe, int *ncolours)
833{
834 float *ret = snewn(4 * NCOLOURS, float);
6193da8d 835
121aae4b 836 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
837
838 ret[COL_FOREGROUND * 3 + 0] = 0.0F;
839 ret[COL_FOREGROUND * 3 + 1] = 0.0F;
840 ret[COL_FOREGROUND * 3 + 2] = 0.0F;
841
7c95608a 842 ret[COL_LINEUNKNOWN * 3 + 0] = 0.8F;
843 ret[COL_LINEUNKNOWN * 3 + 1] = 0.8F;
844 ret[COL_LINEUNKNOWN * 3 + 2] = 0.0F;
845
121aae4b 846 ret[COL_HIGHLIGHT * 3 + 0] = 1.0F;
847 ret[COL_HIGHLIGHT * 3 + 1] = 1.0F;
848 ret[COL_HIGHLIGHT * 3 + 2] = 1.0F;
849
850 ret[COL_MISTAKE * 3 + 0] = 1.0F;
851 ret[COL_MISTAKE * 3 + 1] = 0.0F;
852 ret[COL_MISTAKE * 3 + 2] = 0.0F;
853
7c95608a 854 ret[COL_SATISFIED * 3 + 0] = 0.0F;
855 ret[COL_SATISFIED * 3 + 1] = 0.0F;
856 ret[COL_SATISFIED * 3 + 2] = 0.0F;
857
ec909c7a 858 /* We want the faint lines to be a bit darker than the background.
859 * Except if the background is pretty dark already; then it ought to be a
860 * bit lighter. Oy vey.
861 */
862 ret[COL_FAINT * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] * 0.9F;
863 ret[COL_FAINT * 3 + 1] = ret[COL_BACKGROUND * 3 + 1] * 0.9F;
864 ret[COL_FAINT * 3 + 2] = ret[COL_BACKGROUND * 3 + 2] * 0.9F;
865
121aae4b 866 *ncolours = NCOLOURS;
867 return ret;
868}
869
870static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
871{
872 struct game_drawstate *ds = snew(struct game_drawstate);
7c95608a 873 int num_faces = state->game_grid->num_faces;
874 int num_edges = state->game_grid->num_edges;
e0936bbd 875 int i;
121aae4b 876
7c95608a 877 ds->tilesize = 0;
121aae4b 878 ds->started = 0;
7c95608a 879 ds->lines = snewn(num_edges, char);
880 ds->clue_error = snewn(num_faces, char);
881 ds->clue_satisfied = snewn(num_faces, char);
e0936bbd 882 ds->textx = snewn(num_faces, int);
883 ds->texty = snewn(num_faces, int);
121aae4b 884 ds->flashing = 0;
885
7c95608a 886 memset(ds->lines, LINE_UNKNOWN, num_edges);
887 memset(ds->clue_error, 0, num_faces);
888 memset(ds->clue_satisfied, 0, num_faces);
e0936bbd 889 for (i = 0; i < num_faces; i++)
890 ds->textx[i] = ds->texty[i] = -1;
121aae4b 891
892 return ds;
893}
894
895static void game_free_drawstate(drawing *dr, game_drawstate *ds)
896{
897 sfree(ds->clue_error);
7c95608a 898 sfree(ds->clue_satisfied);
899 sfree(ds->lines);
121aae4b 900 sfree(ds);
901}
902
903static int game_timing_state(game_state *state, game_ui *ui)
904{
905 return TRUE;
906}
907
908static float game_anim_length(game_state *oldstate, game_state *newstate,
909 int dir, game_ui *ui)
910{
911 return 0.0F;
912}
913
7c95608a 914static int game_can_format_as_text_now(game_params *params)
915{
916 if (params->type != 0)
917 return FALSE;
918 return TRUE;
919}
920
121aae4b 921static char *game_text_format(game_state *state)
922{
7c95608a 923 int w, h, W, H;
924 int x, y, i;
925 int cell_size;
926 char *ret;
927 grid *g = state->game_grid;
928 grid_face *f;
929
930 assert(state->grid_type == 0);
931
932 /* Work out the basic size unit */
933 f = g->faces; /* first face */
934 assert(f->order == 4);
935 /* The dots are ordered clockwise, so the two opposite
936 * corners are guaranteed to span the square */
937 cell_size = abs(f->dots[0]->x - f->dots[2]->x);
938
939 w = (g->highest_x - g->lowest_x) / cell_size;
940 h = (g->highest_y - g->lowest_y) / cell_size;
941
942 /* Create a blank "canvas" to "draw" on */
943 W = 2 * w + 2;
944 H = 2 * h + 1;
945 ret = snewn(W * H + 1, char);
946 for (y = 0; y < H; y++) {
947 for (x = 0; x < W-1; x++) {
948 ret[y*W + x] = ' ';
121aae4b 949 }
7c95608a 950 ret[y*W + W-1] = '\n';
951 }
952 ret[H*W] = '\0';
953
954 /* Fill in edge info */
955 for (i = 0; i < g->num_edges; i++) {
956 grid_edge *e = g->edges + i;
957 /* Cell coordinates, from (0,0) to (w-1,h-1) */
958 int x1 = (e->dot1->x - g->lowest_x) / cell_size;
959 int x2 = (e->dot2->x - g->lowest_x) / cell_size;
960 int y1 = (e->dot1->y - g->lowest_y) / cell_size;
961 int y2 = (e->dot2->y - g->lowest_y) / cell_size;
962 /* Midpoint, in canvas coordinates (canvas coordinates are just twice
963 * cell coordinates) */
964 x = x1 + x2;
965 y = y1 + y2;
966 switch (state->lines[i]) {
967 case LINE_YES:
968 ret[y*W + x] = (y1 == y2) ? '-' : '|';
969 break;
970 case LINE_NO:
971 ret[y*W + x] = 'x';
972 break;
973 case LINE_UNKNOWN:
974 break; /* already a space */
975 default:
976 assert(!"Illegal line state");
121aae4b 977 }
121aae4b 978 }
7c95608a 979
980 /* Fill in clues */
981 for (i = 0; i < g->num_faces; i++) {
1515b973 982 int x1, x2, y1, y2;
983
7c95608a 984 f = g->faces + i;
985 assert(f->order == 4);
986 /* Cell coordinates, from (0,0) to (w-1,h-1) */
1515b973 987 x1 = (f->dots[0]->x - g->lowest_x) / cell_size;
988 x2 = (f->dots[2]->x - g->lowest_x) / cell_size;
989 y1 = (f->dots[0]->y - g->lowest_y) / cell_size;
990 y2 = (f->dots[2]->y - g->lowest_y) / cell_size;
7c95608a 991 /* Midpoint, in canvas coordinates */
992 x = x1 + x2;
993 y = y1 + y2;
994 ret[y*W + x] = CLUE2CHAR(state->clues[i]);
121aae4b 995 }
121aae4b 996 return ret;
997}
998
999/* ----------------------------------------------------------------------
1000 * Debug code
1001 */
1002
1003#ifdef DEBUG_CACHES
1004static void check_caches(const solver_state* sstate)
1005{
7c95608a 1006 int i;
121aae4b 1007 const game_state *state = sstate->state;
7c95608a 1008 const grid *g = state->game_grid;
121aae4b 1009
7c95608a 1010 for (i = 0; i < g->num_dots; i++) {
1011 assert(dot_order(state, i, LINE_YES) == sstate->dot_yes_count[i]);
1012 assert(dot_order(state, i, LINE_NO) == sstate->dot_no_count[i]);
121aae4b 1013 }
1014
7c95608a 1015 for (i = 0; i < g->num_faces; i++) {
1016 assert(face_order(state, i, LINE_YES) == sstate->face_yes_count[i]);
1017 assert(face_order(state, i, LINE_NO) == sstate->face_no_count[i]);
121aae4b 1018 }
1019}
1020
1021#if 0
1022#define check_caches(s) \
1023 do { \
1024 fprintf(stderr, "check_caches at line %d\n", __LINE__); \
1025 check_caches(s); \
1026 } while (0)
1027#endif
1028#endif /* DEBUG_CACHES */
1029
1030/* ----------------------------------------------------------------------
1031 * Solver utility functions
1032 */
1033
7c95608a 1034/* Sets the line (with index i) to the new state 'line_new', and updates
1035 * the cached counts of any affected faces and dots.
1036 * Returns TRUE if this actually changed the line's state. */
1037static int solver_set_line(solver_state *sstate, int i,
1038 enum line_state line_new
121aae4b 1039#ifdef SHOW_WORKING
7c95608a 1040 , const char *reason
121aae4b 1041#endif
7c95608a 1042 )
121aae4b 1043{
1044 game_state *state = sstate->state;
7c95608a 1045 grid *g;
1046 grid_edge *e;
121aae4b 1047
1048 assert(line_new != LINE_UNKNOWN);
1049
1050 check_caches(sstate);
1051
7c95608a 1052 if (state->lines[i] == line_new) {
1053 return FALSE; /* nothing changed */
121aae4b 1054 }
7c95608a 1055 state->lines[i] = line_new;
121aae4b 1056
1057#ifdef SHOW_WORKING
7c95608a 1058 fprintf(stderr, "solver: set line [%d] to %s (%s)\n",
1059 i, line_new == LINE_YES ? "YES" : "NO",
121aae4b 1060 reason);
1061#endif
1062
7c95608a 1063 g = state->game_grid;
1064 e = g->edges + i;
1065
1066 /* Update the cache for both dots and both faces affected by this. */
121aae4b 1067 if (line_new == LINE_YES) {
7c95608a 1068 sstate->dot_yes_count[e->dot1 - g->dots]++;
1069 sstate->dot_yes_count[e->dot2 - g->dots]++;
1070 if (e->face1) {
1071 sstate->face_yes_count[e->face1 - g->faces]++;
1072 }
1073 if (e->face2) {
1074 sstate->face_yes_count[e->face2 - g->faces]++;
1075 }
121aae4b 1076 } else {
7c95608a 1077 sstate->dot_no_count[e->dot1 - g->dots]++;
1078 sstate->dot_no_count[e->dot2 - g->dots]++;
1079 if (e->face1) {
1080 sstate->face_no_count[e->face1 - g->faces]++;
1081 }
1082 if (e->face2) {
1083 sstate->face_no_count[e->face2 - g->faces]++;
1084 }
1085 }
1086
121aae4b 1087 check_caches(sstate);
7c95608a 1088 return TRUE;
121aae4b 1089}
1090
1091#ifdef SHOW_WORKING
7c95608a 1092#define solver_set_line(a, b, c) \
1093 solver_set_line(a, b, c, __FUNCTION__)
121aae4b 1094#endif
1095
1096/*
1097 * Merge two dots due to the existence of an edge between them.
1098 * Updates the dsf tracking equivalence classes, and keeps track of
1099 * the length of path each dot is currently a part of.
1100 * Returns TRUE if the dots were already linked, ie if they are part of a
1101 * closed loop, and false otherwise.
1102 */
7c95608a 1103static int merge_dots(solver_state *sstate, int edge_index)
121aae4b 1104{
1105 int i, j, len;
7c95608a 1106 grid *g = sstate->state->game_grid;
1107 grid_edge *e = g->edges + edge_index;
121aae4b 1108
7c95608a 1109 i = e->dot1 - g->dots;
1110 j = e->dot2 - g->dots;
121aae4b 1111
1112 i = dsf_canonify(sstate->dotdsf, i);
1113 j = dsf_canonify(sstate->dotdsf, j);
1114
1115 if (i == j) {
1116 return TRUE;
1117 } else {
1118 len = sstate->looplen[i] + sstate->looplen[j];
1119 dsf_merge(sstate->dotdsf, i, j);
1120 i = dsf_canonify(sstate->dotdsf, i);
1121 sstate->looplen[i] = len;
1122 return FALSE;
1123 }
1124}
1125
121aae4b 1126/* Merge two lines because the solver has deduced that they must be either
1127 * identical or opposite. Returns TRUE if this is new information, otherwise
1128 * FALSE. */
7c95608a 1129static int merge_lines(solver_state *sstate, int i, int j, int inverse
121aae4b 1130#ifdef SHOW_WORKING
1131 , const char *reason
1132#endif
7c95608a 1133 )
121aae4b 1134{
7c95608a 1135 int inv_tmp;
121aae4b 1136
7c95608a 1137 assert(i < sstate->state->game_grid->num_edges);
1138 assert(j < sstate->state->game_grid->num_edges);
121aae4b 1139
315e47b9 1140 i = edsf_canonify(sstate->linedsf, i, &inv_tmp);
121aae4b 1141 inverse ^= inv_tmp;
315e47b9 1142 j = edsf_canonify(sstate->linedsf, j, &inv_tmp);
121aae4b 1143 inverse ^= inv_tmp;
1144
315e47b9 1145 edsf_merge(sstate->linedsf, i, j, inverse);
121aae4b 1146
1147#ifdef SHOW_WORKING
1148 if (i != j) {
7c95608a 1149 fprintf(stderr, "%s [%d] [%d] %s(%s)\n",
1150 __FUNCTION__, i, j,
121aae4b 1151 inverse ? "inverse " : "", reason);
1152 }
1153#endif
1154 return (i != j);
1155}
1156
1157#ifdef SHOW_WORKING
7c95608a 1158#define merge_lines(a, b, c, d) \
1159 merge_lines(a, b, c, d, __FUNCTION__)
121aae4b 1160#endif
1161
1162/* Count the number of lines of a particular type currently going into the
7c95608a 1163 * given dot. */
1164static int dot_order(const game_state* state, int dot, char line_type)
121aae4b 1165{
1166 int n = 0;
7c95608a 1167 grid *g = state->game_grid;
1168 grid_dot *d = g->dots + dot;
1169 int i;
121aae4b 1170
7c95608a 1171 for (i = 0; i < d->order; i++) {
1172 grid_edge *e = d->edges[i];
1173 if (state->lines[e - g->edges] == line_type)
121aae4b 1174 ++n;
1175 }
121aae4b 1176 return n;
1177}
1178
1179/* Count the number of lines of a particular type currently surrounding the
7c95608a 1180 * given face */
1181static int face_order(const game_state* state, int face, char line_type)
121aae4b 1182{
1183 int n = 0;
7c95608a 1184 grid *g = state->game_grid;
1185 grid_face *f = g->faces + face;
1186 int i;
121aae4b 1187
7c95608a 1188 for (i = 0; i < f->order; i++) {
1189 grid_edge *e = f->edges[i];
1190 if (state->lines[e - g->edges] == line_type)
1191 ++n;
1192 }
121aae4b 1193 return n;
1194}
1195
7c95608a 1196/* Set all lines bordering a dot of type old_type to type new_type
121aae4b 1197 * Return value tells caller whether this function actually did anything */
7c95608a 1198static int dot_setall(solver_state *sstate, int dot,
1199 char old_type, char new_type)
121aae4b 1200{
1201 int retval = FALSE, r;
1202 game_state *state = sstate->state;
7c95608a 1203 grid *g;
1204 grid_dot *d;
1205 int i;
1206
121aae4b 1207 if (old_type == new_type)
1208 return FALSE;
1209
7c95608a 1210 g = state->game_grid;
1211 d = g->dots + dot;
121aae4b 1212
7c95608a 1213 for (i = 0; i < d->order; i++) {
1214 int line_index = d->edges[i] - g->edges;
1215 if (state->lines[line_index] == old_type) {
1216 r = solver_set_line(sstate, line_index, new_type);
1217 assert(r == TRUE);
1218 retval = TRUE;
1219 }
121aae4b 1220 }
121aae4b 1221 return retval;
1222}
1223
7c95608a 1224/* Set all lines bordering a face of type old_type to type new_type */
1225static int face_setall(solver_state *sstate, int face,
1226 char old_type, char new_type)
121aae4b 1227{
7c95608a 1228 int retval = FALSE, r;
121aae4b 1229 game_state *state = sstate->state;
7c95608a 1230 grid *g;
1231 grid_face *f;
1232 int i;
121aae4b 1233
7c95608a 1234 if (old_type == new_type)
1235 return FALSE;
1236
1237 g = state->game_grid;
1238 f = g->faces + face;
121aae4b 1239
7c95608a 1240 for (i = 0; i < f->order; i++) {
1241 int line_index = f->edges[i] - g->edges;
1242 if (state->lines[line_index] == old_type) {
1243 r = solver_set_line(sstate, line_index, new_type);
1244 assert(r == TRUE);
1245 retval = TRUE;
1246 }
1247 }
1248 return retval;
121aae4b 1249}
1250
1251/* ----------------------------------------------------------------------
1252 * Loop generation and clue removal
1253 */
1254
7126ca41 1255/* We're going to store lists of current candidate faces for colouring black
1256 * or white.
7c95608a 1257 * Each face gets a 'score', which tells us how adding that face right
7126ca41 1258 * now would affect the curliness of the solution loop. We're trying to
7c95608a 1259 * maximise that quantity so will bias our random selection of faces to
7126ca41 1260 * colour those with high scores */
1261struct face_score {
1262 int white_score;
1263 int black_score;
121aae4b 1264 unsigned long random;
7126ca41 1265 /* No need to store a grid_face* here. The 'face_scores' array will
1266 * be a list of 'face_score' objects, one for each face of the grid, so
1267 * the position (index) within the 'face_scores' array will determine
1268 * which face corresponds to a particular face_score.
1269 * Having a single 'face_scores' array for all faces simplifies memory
1270 * management, and probably improves performance, because we don't have to
1271 * malloc/free each individual face_score, and we don't have to maintain
1272 * a mapping from grid_face* pointers to face_score* pointers.
1273 */
121aae4b 1274};
1275
7126ca41 1276static int generic_sort_cmpfn(void *v1, void *v2, size_t offset)
121aae4b 1277{
7126ca41 1278 struct face_score *f1 = v1;
1279 struct face_score *f2 = v2;
121aae4b 1280 int r;
1281
7126ca41 1282 r = *(int *)((char *)f2 + offset) - *(int *)((char *)f1 + offset);
121aae4b 1283 if (r) {
1284 return r;
1285 }
1286
7c95608a 1287 if (f1->random < f2->random)
121aae4b 1288 return -1;
7c95608a 1289 else if (f1->random > f2->random)
121aae4b 1290 return 1;
1291
1292 /*
7c95608a 1293 * It's _just_ possible that two faces might have been given
121aae4b 1294 * the same random value. In that situation, fall back to
7126ca41 1295 * comparing based on the positions within the face_scores list.
7c95608a 1296 * This introduces a tiny directional bias, but not a significant one.
121aae4b 1297 */
7126ca41 1298 return f1 - f2;
1299}
1300
1301static int white_sort_cmpfn(void *v1, void *v2)
1302{
1303 return generic_sort_cmpfn(v1, v2, offsetof(struct face_score,white_score));
1304}
1305
1306static int black_sort_cmpfn(void *v1, void *v2)
1307{
1308 return generic_sort_cmpfn(v1, v2, offsetof(struct face_score,black_score));
121aae4b 1309}
1310
7126ca41 1311enum face_colour { FACE_WHITE, FACE_GREY, FACE_BLACK };
7c95608a 1312
1313/* face should be of type grid_face* here. */
7126ca41 1314#define FACE_COLOUR(face) \
1315 ( (face) == NULL ? FACE_BLACK : \
7c95608a 1316 board[(face) - g->faces] )
1317
1318/* 'board' is an array of these enums, indicating which faces are
7126ca41 1319 * currently black/white/grey. 'colour' is FACE_WHITE or FACE_BLACK.
1320 * Returns whether it's legal to colour the given face with this colour. */
1321static int can_colour_face(grid *g, char* board, int face_index,
1322 enum face_colour colour)
7c95608a 1323{
1324 int i, j;
1325 grid_face *test_face = g->faces + face_index;
1326 grid_face *starting_face, *current_face;
24575af2 1327 grid_dot *starting_dot;
7c95608a 1328 int transitions;
7126ca41 1329 int current_state, s; /* booleans: equal or not-equal to 'colour' */
1330 int found_same_coloured_neighbour = FALSE;
1331 assert(board[face_index] != colour);
7c95608a 1332
7126ca41 1333 /* Can only consider a face for colouring if it's adjacent to a face
1334 * with the same colour. */
7c95608a 1335 for (i = 0; i < test_face->order; i++) {
1336 grid_edge *e = test_face->edges[i];
1337 grid_face *f = (e->face1 == test_face) ? e->face2 : e->face1;
7126ca41 1338 if (FACE_COLOUR(f) == colour) {
1339 found_same_coloured_neighbour = TRUE;
7c95608a 1340 break;
1341 }
1342 }
7126ca41 1343 if (!found_same_coloured_neighbour)
7c95608a 1344 return FALSE;
1345
7126ca41 1346 /* Need to avoid creating a loop of faces of this colour around some
1347 * differently-coloured faces.
1348 * Also need to avoid meeting a same-coloured face at a corner, with
1349 * other-coloured faces in between. Here's a simple test that (I believe)
1350 * takes care of both these conditions:
7c95608a 1351 *
1352 * Take the circular path formed by this face's edges, and inflate it
1353 * slightly outwards. Imagine walking around this path and consider
1354 * the faces that you visit in sequence. This will include all faces
1355 * touching the given face, either along an edge or just at a corner.
7126ca41 1356 * Count the number of 'colour'/not-'colour' transitions you encounter, as
1357 * you walk along the complete loop. This will obviously turn out to be
1358 * an even number.
1359 * If 0, we're either in the middle of an "island" of this colour (should
1360 * be impossible as we're not supposed to create black or white loops),
1361 * or we're about to start a new island - also not allowed.
1362 * If 4 or greater, there are too many separate coloured regions touching
1363 * this face, and colouring it would create a loop or a corner-violation.
7c95608a 1364 * The only allowed case is when the count is exactly 2. */
1365
1366 /* i points to a dot around the test face.
1367 * j points to a face around the i^th dot.
1368 * The current face will always be:
1369 * test_face->dots[i]->faces[j]
1370 * We assume dots go clockwise around the test face,
1371 * and faces go clockwise around dots. */
24575af2 1372
1373 /*
1374 * The end condition is slightly fiddly. In sufficiently strange
1375 * degenerate grids, our test face may be adjacent to the same
1376 * other face multiple times (typically if it's the exterior
1377 * face). Consider this, in particular:
1378 *
1379 * +--+
1380 * | |
1381 * +--+--+
1382 * | | |
1383 * +--+--+
1384 *
1385 * The bottom left face there is adjacent to the exterior face
1386 * twice, so we can't just terminate our iteration when we reach
1387 * the same _face_ we started at. Furthermore, we can't
1388 * condition on having the same (i,j) pair either, because
1389 * several (i,j) pairs identify the bottom left contiguity with
1390 * the exterior face! We canonicalise the (i,j) pair by taking
1391 * one step around before we set the termination tracking.
1392 */
1393
7c95608a 1394 i = j = 0;
24575af2 1395 current_face = test_face->dots[0]->faces[0];
1396 if (current_face == test_face) {
7c95608a 1397 j = 1;
24575af2 1398 current_face = test_face->dots[0]->faces[1];
7c95608a 1399 }
7c95608a 1400 transitions = 0;
7126ca41 1401 current_state = (FACE_COLOUR(current_face) == colour);
24575af2 1402 starting_dot = NULL;
1403 starting_face = NULL;
1404 while (TRUE) {
7c95608a 1405 /* Advance to next face.
1406 * Need to loop here because it might take several goes to
1407 * find it. */
1408 while (TRUE) {
1409 j++;
1410 if (j == test_face->dots[i]->order)
1411 j = 0;
1412
1413 if (test_face->dots[i]->faces[j] == test_face) {
1414 /* Advance to next dot round test_face, then
1415 * find current_face around new dot
1416 * and advance to the next face clockwise */
1417 i++;
1418 if (i == test_face->order)
1419 i = 0;
1420 for (j = 0; j < test_face->dots[i]->order; j++) {
1421 if (test_face->dots[i]->faces[j] == current_face)
1422 break;
1423 }
1424 /* Must actually find current_face around new dot,
1425 * or else something's wrong with the grid. */
1426 assert(j != test_face->dots[i]->order);
1427 /* Found, so advance to next face and try again */
1428 } else {
1429 break;
1430 }
1431 }
1432 /* (i,j) are now advanced to next face */
1433 current_face = test_face->dots[i]->faces[j];
7126ca41 1434 s = (FACE_COLOUR(current_face) == colour);
24575af2 1435 if (!starting_dot) {
1436 starting_dot = test_face->dots[i];
1437 starting_face = current_face;
1438 current_state = s;
1439 } else {
1440 if (s != current_state) {
1441 ++transitions;
1442 current_state = s;
1443 if (transitions > 2)
1444 break;
1445 }
1446 if (test_face->dots[i] == starting_dot &&
1447 current_face == starting_face)
1448 break;
7c95608a 1449 }
24575af2 1450 }
121aae4b 1451
7c95608a 1452 return (transitions == 2) ? TRUE : FALSE;
1453}
121aae4b 1454
7126ca41 1455/* Count the number of neighbours of 'face', having colour 'colour' */
1456static int face_num_neighbours(grid *g, char *board, grid_face *face,
1457 enum face_colour colour)
7c95608a 1458{
7126ca41 1459 int colour_count = 0;
7c95608a 1460 int i;
1461 grid_face *f;
1462 grid_edge *e;
1463 for (i = 0; i < face->order; i++) {
1464 e = face->edges[i];
1465 f = (e->face1 == face) ? e->face2 : e->face1;
7126ca41 1466 if (FACE_COLOUR(f) == colour)
1467 ++colour_count;
7c95608a 1468 }
7126ca41 1469 return colour_count;
7c95608a 1470}
121aae4b 1471
7126ca41 1472/* The 'score' of a face reflects its current desirability for selection
1473 * as the next face to colour white or black. We want to encourage moving
1474 * into grey areas and increasing loopiness, so we give scores according to
1475 * how many of the face's neighbours are currently coloured the same as the
1476 * proposed colour. */
1477static int face_score(grid *g, char *board, grid_face *face,
1478 enum face_colour colour)
1479{
1480 /* Simple formula: score = 0 - num. same-coloured neighbours,
1481 * so a higher score means fewer same-coloured neighbours. */
1482 return -face_num_neighbours(g, board, face, colour);
1483}
1484
1485/* Generate a new complete set of clues for the given game_state.
1486 * The method is to generate a WHITE/BLACK colouring of all the faces,
1487 * such that the WHITE faces will define the inside of the path, and the
1488 * BLACK faces define the outside.
1489 * To do this, we initially colour all faces GREY. The infinite space outside
1490 * the grid is coloured BLACK, and we choose a random face to colour WHITE.
1491 * Then we gradually grow the BLACK and the WHITE regions, eliminating GREY
1492 * faces, until the grid is filled with BLACK/WHITE. As we grow the regions,
1493 * we avoid creating loops of a single colour, to preserve the topological
1494 * shape of the WHITE and BLACK regions.
1495 * We also try to make the boundary as loopy and twisty as possible, to avoid
1496 * generating paths that are uninteresting.
1497 * The algorithm works by choosing a BLACK/WHITE colour, then choosing a GREY
1498 * face that can be coloured with that colour (without violating the
1499 * topological shape of that region). It's not obvious, but I think this
1500 * algorithm is guaranteed to terminate without leaving any GREY faces behind.
1501 * Indeed, if there are any GREY faces at all, both the WHITE and BLACK
1502 * regions can be grown.
1503 * This is checked using assert()ions, and I haven't seen any failures yet.
1504 *
1505 * Hand-wavy proof: imagine what can go wrong...
1506 *
1507 * Could the white faces get completely cut off by the black faces, and still
1508 * leave some grey faces remaining?
1509 * No, because then the black faces would form a loop around both the white
1510 * faces and the grey faces, which is disallowed because we continually
1511 * maintain the correct topological shape of the black region.
1512 * Similarly, the black faces can never get cut off by the white faces. That
1513 * means both the WHITE and BLACK regions always have some room to grow into
1514 * the GREY regions.
1515 * Could it be that we can't colour some GREY face, because there are too many
1516 * WHITE/BLACK transitions as we walk round the face? (see the
1517 * can_colour_face() function for details)
1518 * No. Imagine otherwise, and we see WHITE/BLACK/WHITE/BLACK as we walk
1519 * around the face. The two WHITE faces would be connected by a WHITE path,
1520 * and the BLACK faces would be connected by a BLACK path. These paths would
1521 * have to cross, which is impossible.
1522 * Another thing that could go wrong: perhaps we can't find any GREY face to
1523 * colour WHITE, because it would create a loop-violation or a corner-violation
1524 * with the other WHITE faces?
1525 * This is a little bit tricky to prove impossible. Imagine you have such a
1526 * GREY face (that is, if you coloured it WHITE, you would create a WHITE loop
1527 * or corner violation).
1528 * That would cut all the non-white area into two blobs. One of those blobs
1529 * must be free of BLACK faces (because the BLACK stuff is a connected blob).
1530 * So we have a connected GREY area, completely surrounded by WHITE
1531 * (including the GREY face we've tentatively coloured WHITE).
1532 * A well-known result in graph theory says that you can always find a GREY
1533 * face whose removal leaves the remaining GREY area connected. And it says
1534 * there are at least two such faces, so we can always choose the one that
1535 * isn't the "tentative" GREY face. Colouring that face WHITE leaves
1536 * everything nice and connected, including that "tentative" GREY face which
1537 * acts as a gateway to the rest of the non-WHITE grid.
1538 */
121aae4b 1539static void add_full_clues(game_state *state, random_state *rs)
1540{
7c95608a 1541 signed char *clues = state->clues;
121aae4b 1542 char *board;
7c95608a 1543 grid *g = state->game_grid;
7126ca41 1544 int i, j;
7c95608a 1545 int num_faces = g->num_faces;
7126ca41 1546 struct face_score *face_scores; /* Array of face_score objects */
1547 struct face_score *fs; /* Points somewhere in the above list */
1548 struct grid_face *cur_face;
1549 tree234 *lightable_faces_sorted;
1550 tree234 *darkable_faces_sorted;
1551 int *face_list;
1552 int do_random_pass;
7c95608a 1553
1554 board = snewn(num_faces, char);
121aae4b 1555
1556 /* Make a board */
7126ca41 1557 memset(board, FACE_GREY, num_faces);
1558
1559 /* Create and initialise the list of face_scores */
1560 face_scores = snewn(num_faces, struct face_score);
1561 for (i = 0; i < num_faces; i++) {
1562 face_scores[i].random = random_bits(rs, 31);
8719c2e7 1563 face_scores[i].black_score = face_scores[i].white_score = 0;
7126ca41 1564 }
1565
1566 /* Colour a random, finite face white. The infinite face is implicitly
1567 * coloured black. Together, they will seed the random growth process
1568 * for the black and white areas. */
1569 i = random_upto(rs, num_faces);
1570 board[i] = FACE_WHITE;
7c95608a 1571
1572 /* We need a way of favouring faces that will increase our loopiness.
1573 * We do this by maintaining a list of all candidate faces sorted by
1574 * their score and choose randomly from that with appropriate skew.
1575 * In order to avoid consistently biasing towards particular faces, we
121aae4b 1576 * need the sort order _within_ each group of scores to be completely
1577 * random. But it would be abusing the hospitality of the tree234 data
1578 * structure if our comparison function were nondeterministic :-). So with
7c95608a 1579 * each face we associate a random number that does not change during a
121aae4b 1580 * particular run of the generator, and use that as a secondary sort key.
7c95608a 1581 * Yes, this means we will be biased towards particular random faces in
121aae4b 1582 * any one run but that doesn't actually matter. */
7c95608a 1583
7126ca41 1584 lightable_faces_sorted = newtree234(white_sort_cmpfn);
1585 darkable_faces_sorted = newtree234(black_sort_cmpfn);
121aae4b 1586
7126ca41 1587 /* Initialise the lists of lightable and darkable faces. This is
1588 * slightly different from the code inside the while-loop, because we need
1589 * to check every face of the board (the grid structure does not keep a
1590 * list of the infinite face's neighbours). */
1591 for (i = 0; i < num_faces; i++) {
1592 grid_face *f = g->faces + i;
1593 struct face_score *fs = face_scores + i;
1594 if (board[i] != FACE_GREY) continue;
1595 /* We need the full colourability check here, it's not enough simply
1596 * to check neighbourhood. On some grids, a neighbour of the infinite
1597 * face is not necessarily darkable. */
1598 if (can_colour_face(g, board, i, FACE_BLACK)) {
1599 fs->black_score = face_score(g, board, f, FACE_BLACK);
1600 add234(darkable_faces_sorted, fs);
1601 }
1602 if (can_colour_face(g, board, i, FACE_WHITE)) {
1603 fs->white_score = face_score(g, board, f, FACE_WHITE);
1604 add234(lightable_faces_sorted, fs);
1605 }
1606 }
7c95608a 1607
7126ca41 1608 /* Colour faces one at a time until no more faces are colourable. */
121aae4b 1609 while (TRUE)
1610 {
7126ca41 1611 enum face_colour colour;
1612 struct face_score *fs_white, *fs_black;
1613 int c_lightable = count234(lightable_faces_sorted);
1614 int c_darkable = count234(darkable_faces_sorted);
24575af2 1615 if (c_lightable == 0 && c_darkable == 0) {
1616 /* No more faces we can use at all. */
7126ca41 1617 break;
1618 }
24575af2 1619 assert(c_lightable != 0 && c_darkable != 0);
121aae4b 1620
7126ca41 1621 fs_white = (struct face_score *)index234(lightable_faces_sorted, 0);
1622 fs_black = (struct face_score *)index234(darkable_faces_sorted, 0);
121aae4b 1623
7126ca41 1624 /* Choose a colour, and colour the best available face
1625 * with that colour. */
1626 colour = random_upto(rs, 2) ? FACE_WHITE : FACE_BLACK;
121aae4b 1627
7126ca41 1628 if (colour == FACE_WHITE)
1629 fs = fs_white;
1630 else
1631 fs = fs_black;
1632 assert(fs);
1633 i = fs - face_scores;
1634 assert(board[i] == FACE_GREY);
1635 board[i] = colour;
1636
1637 /* Remove this newly-coloured face from the lists. These lists should
1638 * only contain grey faces. */
1639 del234(lightable_faces_sorted, fs);
1640 del234(darkable_faces_sorted, fs);
1641
1642 /* Remember which face we've just coloured */
1643 cur_face = g->faces + i;
1644
1645 /* The face we've just coloured potentially affects the colourability
1646 * and the scores of any neighbouring faces (touching at a corner or
1647 * edge). So the search needs to be conducted around all faces
1648 * touching the one we've just lit. Iterate over its corners, then
1649 * over each corner's faces. For each such face, we remove it from
1650 * the lists, recalculate any scores, then add it back to the lists
1651 * (depending on whether it is lightable, darkable or both). */
1652 for (i = 0; i < cur_face->order; i++) {
1653 grid_dot *d = cur_face->dots[i];
7c95608a 1654 for (j = 0; j < d->order; j++) {
7126ca41 1655 grid_face *f = d->faces[j];
1656 int fi; /* face index of f */
1657
1658 if (f == NULL)
121aae4b 1659 continue;
7126ca41 1660 if (f == cur_face)
7c95608a 1661 continue;
7126ca41 1662
1663 /* If the face is already coloured, it won't be on our
1664 * lightable/darkable lists anyway, so we can skip it without
1665 * bothering with the removal step. */
1666 if (FACE_COLOUR(f) != FACE_GREY) continue;
1667
1668 /* Find the face index and face_score* corresponding to f */
1669 fi = f - g->faces;
1670 fs = face_scores + fi;
1671
1672 /* Remove from lightable list if it's in there. We do this,
1673 * even if it is still lightable, because the score might
1674 * be different, and we need to remove-then-add to maintain
1675 * correct sort order. */
1676 del234(lightable_faces_sorted, fs);
1677 if (can_colour_face(g, board, fi, FACE_WHITE)) {
1678 fs->white_score = face_score(g, board, f, FACE_WHITE);
1679 add234(lightable_faces_sorted, fs);
121aae4b 1680 }
7126ca41 1681 /* Do the same for darkable list. */
1682 del234(darkable_faces_sorted, fs);
1683 if (can_colour_face(g, board, fi, FACE_BLACK)) {
1684 fs->black_score = face_score(g, board, f, FACE_BLACK);
1685 add234(darkable_faces_sorted, fs);
121aae4b 1686 }
1687 }
1688 }
121aae4b 1689 }
1690
1691 /* Clean up */
7c95608a 1692 freetree234(lightable_faces_sorted);
7126ca41 1693 freetree234(darkable_faces_sorted);
1694 sfree(face_scores);
1695
1696 /* The next step requires a shuffled list of all faces */
1697 face_list = snewn(num_faces, int);
1698 for (i = 0; i < num_faces; ++i) {
1699 face_list[i] = i;
1700 }
1701 shuffle(face_list, num_faces, sizeof(int), rs);
1702
1703 /* The above loop-generation algorithm can often leave large clumps
1704 * of faces of one colour. In extreme cases, the resulting path can be
1705 * degenerate and not very satisfying to solve.
1706 * This next step alleviates this problem:
1707 * Go through the shuffled list, and flip the colour of any face we can
1708 * legally flip, and which is adjacent to only one face of the opposite
1709 * colour - this tends to grow 'tendrils' into any clumps.
1710 * Repeat until we can find no more faces to flip. This will
1711 * eventually terminate, because each flip increases the loop's
1712 * perimeter, which cannot increase for ever.
1713 * The resulting path will have maximal loopiness (in the sense that it
1714 * cannot be improved "locally". Unfortunately, this allows a player to
1715 * make some illicit deductions. To combat this (and make the path more
1716 * interesting), we do one final pass making random flips. */
1717
1718 /* Set to TRUE for final pass */
1719 do_random_pass = FALSE;
1720
1721 while (TRUE) {
1722 /* Remember whether a flip occurred during this pass */
1723 int flipped = FALSE;
1724
1725 for (i = 0; i < num_faces; ++i) {
1726 int j = face_list[i];
1727 enum face_colour opp =
1728 (board[j] == FACE_WHITE) ? FACE_BLACK : FACE_WHITE;
1729 if (can_colour_face(g, board, j, opp)) {
1730 grid_face *face = g->faces +j;
1731 if (do_random_pass) {
1732 /* final random pass */
1733 if (!random_upto(rs, 10))
1734 board[j] = opp;
1735 } else {
1736 /* normal pass - flip when neighbour count is 1 */
1737 if (face_num_neighbours(g, board, face, opp) == 1) {
1738 board[j] = opp;
1739 flipped = TRUE;
1740 }
1741 }
1742 }
1743 }
1744
1745 if (do_random_pass) break;
1746 if (!flipped) do_random_pass = TRUE;
1747 }
1748
1749 sfree(face_list);
7c95608a 1750
1751 /* Fill out all the clues by initialising to 0, then iterating over
1752 * all edges and incrementing each clue as we find edges that border
7126ca41 1753 * between BLACK/WHITE faces. While we're at it, we verify that the
1754 * algorithm does work, and there aren't any GREY faces still there. */
7c95608a 1755 memset(clues, 0, num_faces);
1756 for (i = 0; i < g->num_edges; i++) {
1757 grid_edge *e = g->edges + i;
1758 grid_face *f1 = e->face1;
1759 grid_face *f2 = e->face2;
7126ca41 1760 enum face_colour c1 = FACE_COLOUR(f1);
1761 enum face_colour c2 = FACE_COLOUR(f2);
1762 assert(c1 != FACE_GREY);
1763 assert(c2 != FACE_GREY);
1764 if (c1 != c2) {
7c95608a 1765 if (f1) clues[f1 - g->faces]++;
1766 if (f2) clues[f2 - g->faces]++;
1767 }
121aae4b 1768 }
1769
1770 sfree(board);
1771}
1772
7c95608a 1773
1a739e2f 1774static int game_has_unique_soln(const game_state *state, int diff)
121aae4b 1775{
1776 int ret;
1777 solver_state *sstate_new;
1778 solver_state *sstate = new_solver_state((game_state *)state, diff);
7c95608a 1779
315e47b9 1780 sstate_new = solve_game_rec(sstate);
121aae4b 1781
1782 assert(sstate_new->solver_status != SOLVER_MISTAKE);
1783 ret = (sstate_new->solver_status == SOLVER_SOLVED);
1784
1785 free_solver_state(sstate_new);
1786 free_solver_state(sstate);
1787
1788 return ret;
1789}
1790
7c95608a 1791
121aae4b 1792/* Remove clues one at a time at random. */
7c95608a 1793static game_state *remove_clues(game_state *state, random_state *rs,
1a739e2f 1794 int diff)
121aae4b 1795{
7c95608a 1796 int *face_list;
1797 int num_faces = state->game_grid->num_faces;
121aae4b 1798 game_state *ret = dup_game(state), *saved_ret;
1799 int n;
121aae4b 1800
1801 /* We need to remove some clues. We'll do this by forming a list of all
1802 * available clues, shuffling it, then going along one at a
1803 * time clearing each clue in turn for which doing so doesn't render the
1804 * board unsolvable. */
7c95608a 1805 face_list = snewn(num_faces, int);
1806 for (n = 0; n < num_faces; ++n) {
1807 face_list[n] = n;
121aae4b 1808 }
1809
7c95608a 1810 shuffle(face_list, num_faces, sizeof(int), rs);
121aae4b 1811
7c95608a 1812 for (n = 0; n < num_faces; ++n) {
1813 saved_ret = dup_game(ret);
1814 ret->clues[face_list[n]] = -1;
121aae4b 1815
1816 if (game_has_unique_soln(ret, diff)) {
1817 free_game(saved_ret);
1818 } else {
1819 free_game(ret);
1820 ret = saved_ret;
1821 }
1822 }
7c95608a 1823 sfree(face_list);
121aae4b 1824
1825 return ret;
1826}
1827
7c95608a 1828
121aae4b 1829static char *new_game_desc(game_params *params, random_state *rs,
1830 char **aux, int interactive)
1831{
1832 /* solution and description both use run-length encoding in obvious ways */
1833 char *retval;
7c95608a 1834 grid *g;
1835 game_state *state = snew(game_state);
1836 game_state *state_new;
1837 params_generate_grid(params);
1838 state->game_grid = g = params->game_grid;
1839 g->refcount++;
1840 state->clues = snewn(g->num_faces, signed char);
1841 state->lines = snewn(g->num_edges, char);
b6bf0adc 1842 state->line_errors = snewn(g->num_edges, unsigned char);
121aae4b 1843
7c95608a 1844 state->grid_type = params->type;
121aae4b 1845
7c95608a 1846 newboard_please:
121aae4b 1847
7c95608a 1848 memset(state->lines, LINE_UNKNOWN, g->num_edges);
b6bf0adc 1849 memset(state->line_errors, 0, g->num_edges);
121aae4b 1850
1851 state->solved = state->cheated = FALSE;
121aae4b 1852
1853 /* Get a new random solvable board with all its clues filled in. Yes, this
1854 * can loop for ever if the params are suitably unfavourable, but
1855 * preventing games smaller than 4x4 seems to stop this happening */
121aae4b 1856 do {
1857 add_full_clues(state, rs);
1858 } while (!game_has_unique_soln(state, params->diff));
1859
1860 state_new = remove_clues(state, rs, params->diff);
1861 free_game(state);
1862 state = state_new;
1863
7c95608a 1864
121aae4b 1865 if (params->diff > 0 && game_has_unique_soln(state, params->diff-1)) {
1a739e2f 1866#ifdef SHOW_WORKING
121aae4b 1867 fprintf(stderr, "Rejecting board, it is too easy\n");
1a739e2f 1868#endif
121aae4b 1869 goto newboard_please;
1870 }
1871
1872 retval = state_to_text(state);
1873
1874 free_game(state);
7c95608a 1875
121aae4b 1876 assert(!validate_desc(params, retval));
1877
1878 return retval;
1879}
1880
1881static game_state *new_game(midend *me, game_params *params, char *desc)
1882{
7c95608a 1883 int i;
121aae4b 1884 game_state *state = snew(game_state);
1885 int empties_to_make = 0;
918a098a 1886 int n,n2;
121aae4b 1887 const char *dp = desc;
7c95608a 1888 grid *g;
1515b973 1889 int num_faces, num_edges;
1890
7c95608a 1891 params_generate_grid(params);
1892 state->game_grid = g = params->game_grid;
1893 g->refcount++;
1515b973 1894 num_faces = g->num_faces;
1895 num_edges = g->num_edges;
121aae4b 1896
7c95608a 1897 state->clues = snewn(num_faces, signed char);
1898 state->lines = snewn(num_edges, char);
b6bf0adc 1899 state->line_errors = snewn(num_edges, unsigned char);
121aae4b 1900
1901 state->solved = state->cheated = FALSE;
1902
7c95608a 1903 state->grid_type = params->type;
1904
1905 for (i = 0; i < num_faces; i++) {
121aae4b 1906 if (empties_to_make) {
1907 empties_to_make--;
7c95608a 1908 state->clues[i] = -1;
121aae4b 1909 continue;
1910 }
1911
1912 assert(*dp);
1913 n = *dp - '0';
918a098a 1914 n2 = *dp - 'A' + 10;
121aae4b 1915 if (n >= 0 && n < 10) {
7c95608a 1916 state->clues[i] = n;
918a098a 1917 } else if (n2 >= 10 && n2 < 36) {
1918 state->clues[i] = n2;
121aae4b 1919 } else {
1920 n = *dp - 'a' + 1;
1921 assert(n > 0);
7c95608a 1922 state->clues[i] = -1;
121aae4b 1923 empties_to_make = n - 1;
1924 }
1925 ++dp;
1926 }
1927
7c95608a 1928 memset(state->lines, LINE_UNKNOWN, num_edges);
b6bf0adc 1929 memset(state->line_errors, 0, num_edges);
121aae4b 1930 return state;
1931}
1932
b6bf0adc 1933/* Calculates the line_errors data, and checks if the current state is a
1934 * solution */
1935static int check_completion(game_state *state)
1936{
1937 grid *g = state->game_grid;
1938 int *dsf;
1939 int num_faces = g->num_faces;
1940 int i;
1941 int infinite_area, finite_area;
1942 int loops_found = 0;
1943 int found_edge_not_in_loop = FALSE;
1944
1945 memset(state->line_errors, 0, g->num_edges);
1946
1947 /* LL implementation of SGT's idea:
1948 * A loop will partition the grid into an inside and an outside.
1949 * If there is more than one loop, the grid will be partitioned into
1950 * even more distinct regions. We can therefore track equivalence of
1951 * faces, by saying that two faces are equivalent when there is a non-YES
1952 * edge between them.
1953 * We could keep track of the number of connected components, by counting
1954 * the number of dsf-merges that aren't no-ops.
1955 * But we're only interested in 3 separate cases:
1956 * no loops, one loop, more than one loop.
1957 *
1958 * No loops: all faces are equivalent to the infinite face.
1959 * One loop: only two equivalence classes - finite and infinite.
1960 * >= 2 loops: there are 2 distinct finite regions.
1961 *
1962 * So we simply make two passes through all the edges.
1963 * In the first pass, we dsf-merge the two faces bordering each non-YES
1964 * edge.
1965 * In the second pass, we look for YES-edges bordering:
1966 * a) two non-equivalent faces.
1967 * b) two non-equivalent faces, and one of them is part of a different
1968 * finite area from the first finite area we've seen.
1969 *
1970 * An occurrence of a) means there is at least one loop.
1971 * An occurrence of b) means there is more than one loop.
1972 * Edges satisfying a) are marked as errors.
1973 *
1974 * While we're at it, we set a flag if we find a YES edge that is not
1975 * part of a loop.
1976 * This information will help decide, if there's a single loop, whether it
1977 * is a candidate for being a solution (that is, all YES edges are part of
1978 * this loop).
1979 *
1980 * If there is a candidate loop, we then go through all clues and check
1981 * they are all satisfied. If so, we have found a solution and we can
1982 * unmark all line_errors.
1983 */
1984
1985 /* Infinite face is at the end - its index is num_faces.
1986 * This macro is just to make this obvious! */
1987 #define INF_FACE num_faces
1988 dsf = snewn(num_faces + 1, int);
1989 dsf_init(dsf, num_faces + 1);
1990
1991 /* First pass */
1992 for (i = 0; i < g->num_edges; i++) {
1993 grid_edge *e = g->edges + i;
1994 int f1 = e->face1 ? e->face1 - g->faces : INF_FACE;
1995 int f2 = e->face2 ? e->face2 - g->faces : INF_FACE;
1996 if (state->lines[i] != LINE_YES)
1997 dsf_merge(dsf, f1, f2);
1998 }
1999
2000 /* Second pass */
2001 infinite_area = dsf_canonify(dsf, INF_FACE);
2002 finite_area = -1;
2003 for (i = 0; i < g->num_edges; i++) {
2004 grid_edge *e = g->edges + i;
2005 int f1 = e->face1 ? e->face1 - g->faces : INF_FACE;
2006 int can1 = dsf_canonify(dsf, f1);
2007 int f2 = e->face2 ? e->face2 - g->faces : INF_FACE;
2008 int can2 = dsf_canonify(dsf, f2);
2009 if (state->lines[i] != LINE_YES) continue;
2010
2011 if (can1 == can2) {
2012 /* Faces are equivalent, so this edge not part of a loop */
2013 found_edge_not_in_loop = TRUE;
2014 continue;
2015 }
2016 state->line_errors[i] = TRUE;
2017 if (loops_found == 0) loops_found = 1;
2018
2019 /* Don't bother with further checks if we've already found 2 loops */
2020 if (loops_found == 2) continue;
2021
2022 if (finite_area == -1) {
2023 /* Found our first finite area */
2024 if (can1 != infinite_area)
2025 finite_area = can1;
2026 else
2027 finite_area = can2;
2028 }
2029
2030 /* Have we found a second area? */
2031 if (finite_area != -1) {
2032 if (can1 != infinite_area && can1 != finite_area) {
2033 loops_found = 2;
2034 continue;
2035 }
2036 if (can2 != infinite_area && can2 != finite_area) {
2037 loops_found = 2;
2038 }
2039 }
2040 }
2041
2042/*
2043 printf("loops_found = %d\n", loops_found);
2044 printf("found_edge_not_in_loop = %s\n",
2045 found_edge_not_in_loop ? "TRUE" : "FALSE");
2046*/
2047
2048 sfree(dsf); /* No longer need the dsf */
2049
2050 /* Have we found a candidate loop? */
2051 if (loops_found == 1 && !found_edge_not_in_loop) {
2052 /* Yes, so check all clues are satisfied */
2053 int found_clue_violation = FALSE;
2054 for (i = 0; i < num_faces; i++) {
2055 int c = state->clues[i];
2056 if (c >= 0) {
2057 if (face_order(state, i, LINE_YES) != c) {
2058 found_clue_violation = TRUE;
2059 break;
2060 }
2061 }
2062 }
2063
2064 if (!found_clue_violation) {
2065 /* The loop is good */
2066 memset(state->line_errors, 0, g->num_edges);
2067 return TRUE; /* No need to bother checking for dot violations */
2068 }
2069 }
2070
2071 /* Check for dot violations */
2072 for (i = 0; i < g->num_dots; i++) {
2073 int yes = dot_order(state, i, LINE_YES);
2074 int unknown = dot_order(state, i, LINE_UNKNOWN);
2075 if ((yes == 1 && unknown == 0) || (yes >= 3)) {
2076 /* violation, so mark all YES edges as errors */
2077 grid_dot *d = g->dots + i;
2078 int j;
2079 for (j = 0; j < d->order; j++) {
2080 int e = d->edges[j] - g->edges;
2081 if (state->lines[e] == LINE_YES)
2082 state->line_errors[e] = TRUE;
2083 }
2084 }
2085 }
2086 return FALSE;
2087}
121aae4b 2088
2089/* ----------------------------------------------------------------------
2090 * Solver logic
2091 *
2092 * Our solver modes operate as follows. Each mode also uses the modes above it.
2093 *
2094 * Easy Mode
2095 * Just implement the rules of the game.
2096 *
315e47b9 2097 * Normal and Tricky Modes
7c95608a 2098 * For each (adjacent) pair of lines through each dot we store a bit for
2099 * whether at least one of them is on and whether at most one is on. (If we
2100 * know both or neither is on that's already stored more directly.)
121aae4b 2101 *
2102 * Advanced Mode
2103 * Use edsf data structure to make equivalence classes of lines that are
2104 * known identical to or opposite to one another.
2105 */
2106
121aae4b 2107
7c95608a 2108/* DLines:
2109 * For general grids, we consider "dlines" to be pairs of lines joined
2110 * at a dot. The lines must be adjacent around the dot, so we can think of
2111 * a dline as being a dot+face combination. Or, a dot+edge combination where
2112 * the second edge is taken to be the next clockwise edge from the dot.
2113 * Original loopy code didn't have this extra restriction of the lines being
2114 * adjacent. From my tests with square grids, this extra restriction seems to
2115 * take little, if anything, away from the quality of the puzzles.
2116 * A dline can be uniquely identified by an edge/dot combination, given that
2117 * a dline-pair always goes clockwise around its common dot. The edge/dot
2118 * combination can be represented by an edge/bool combination - if bool is
2119 * TRUE, use edge->dot1 else use edge->dot2. So the total number of dlines is
2120 * exactly twice the number of edges in the grid - although the dlines
2121 * spanning the infinite face are not all that useful to the solver.
2122 * Note that, by convention, a dline goes clockwise around its common dot,
2123 * which means the dline goes anti-clockwise around its common face.
2124 */
121aae4b 2125
7c95608a 2126/* Helper functions for obtaining an index into an array of dlines, given
2127 * various information. We assume the grid layout conventions about how
2128 * the various lists are interleaved - see grid_make_consistent() for
2129 * details. */
121aae4b 2130
7c95608a 2131/* i points to the first edge of the dline pair, reading clockwise around
2132 * the dot. */
2133static int dline_index_from_dot(grid *g, grid_dot *d, int i)
121aae4b 2134{
7c95608a 2135 grid_edge *e = d->edges[i];
121aae4b 2136 int ret;
7c95608a 2137#ifdef DEBUG_DLINES
2138 grid_edge *e2;
2139 int i2 = i+1;
2140 if (i2 == d->order) i2 = 0;
2141 e2 = d->edges[i2];
2142#endif
2143 ret = 2 * (e - g->edges) + ((e->dot1 == d) ? 1 : 0);
2144#ifdef DEBUG_DLINES
2145 printf("dline_index_from_dot: d=%d,i=%d, edges [%d,%d] - %d\n",
2146 (int)(d - g->dots), i, (int)(e - g->edges),
2147 (int)(e2 - g->edges), ret);
121aae4b 2148#endif
2149 return ret;
2150}
7c95608a 2151/* i points to the second edge of the dline pair, reading clockwise around
2152 * the face. That is, the edges of the dline, starting at edge{i}, read
2153 * anti-clockwise around the face. By layout conventions, the common dot
2154 * of the dline will be f->dots[i] */
2155static int dline_index_from_face(grid *g, grid_face *f, int i)
121aae4b 2156{
7c95608a 2157 grid_edge *e = f->edges[i];
2158 grid_dot *d = f->dots[i];
121aae4b 2159 int ret;
7c95608a 2160#ifdef DEBUG_DLINES
2161 grid_edge *e2;
2162 int i2 = i - 1;
2163 if (i2 < 0) i2 += f->order;
2164 e2 = f->edges[i2];
2165#endif
2166 ret = 2 * (e - g->edges) + ((e->dot1 == d) ? 1 : 0);
2167#ifdef DEBUG_DLINES
2168 printf("dline_index_from_face: f=%d,i=%d, edges [%d,%d] - %d\n",
2169 (int)(f - g->faces), i, (int)(e - g->edges),
2170 (int)(e2 - g->edges), ret);
121aae4b 2171#endif
2172 return ret;
2173}
7c95608a 2174static int is_atleastone(const char *dline_array, int index)
121aae4b 2175{
7c95608a 2176 return BIT_SET(dline_array[index], 0);
121aae4b 2177}
7c95608a 2178static int set_atleastone(char *dline_array, int index)
121aae4b 2179{
7c95608a 2180 return SET_BIT(dline_array[index], 0);
121aae4b 2181}
7c95608a 2182static int is_atmostone(const char *dline_array, int index)
121aae4b 2183{
7c95608a 2184 return BIT_SET(dline_array[index], 1);
2185}
2186static int set_atmostone(char *dline_array, int index)
2187{
2188 return SET_BIT(dline_array[index], 1);
121aae4b 2189}
121aae4b 2190
2191static void array_setall(char *array, char from, char to, int len)
2192{
2193 char *p = array, *p_old = p;
2194 int len_remaining = len;
2195
2196 while ((p = memchr(p, from, len_remaining))) {
2197 *p = to;
2198 len_remaining -= p - p_old;
2199 p_old = p;
2200 }
2201}
6193da8d 2202
7c95608a 2203/* Helper, called when doing dline dot deductions, in the case where we
2204 * have 4 UNKNOWNs, and two of them (adjacent) have *exactly* one YES between
2205 * them (because of dline atmostone/atleastone).
2206 * On entry, edge points to the first of these two UNKNOWNs. This function
2207 * will find the opposite UNKNOWNS (if they are adjacent to one another)
2208 * and set their corresponding dline to atleastone. (Setting atmostone
2209 * already happens in earlier dline deductions) */
2210static int dline_set_opp_atleastone(solver_state *sstate,
2211 grid_dot *d, int edge)
121aae4b 2212{
7c95608a 2213 game_state *state = sstate->state;
2214 grid *g = state->game_grid;
2215 int N = d->order;
2216 int opp, opp2;
2217 for (opp = 0; opp < N; opp++) {
2218 int opp_dline_index;
2219 if (opp == edge || opp == edge+1 || opp == edge-1)
2220 continue;
2221 if (opp == 0 && edge == N-1)
2222 continue;
2223 if (opp == N-1 && edge == 0)
2224 continue;
2225 opp2 = opp + 1;
2226 if (opp2 == N) opp2 = 0;
2227 /* Check if opp, opp2 point to LINE_UNKNOWNs */
2228 if (state->lines[d->edges[opp] - g->edges] != LINE_UNKNOWN)
2229 continue;
2230 if (state->lines[d->edges[opp2] - g->edges] != LINE_UNKNOWN)
2231 continue;
2232 /* Found opposite UNKNOWNS and they're next to each other */
2233 opp_dline_index = dline_index_from_dot(g, d, opp);
315e47b9 2234 return set_atleastone(sstate->dlines, opp_dline_index);
121aae4b 2235 }
7c95608a 2236 return FALSE;
121aae4b 2237}
6193da8d 2238
121aae4b 2239
7c95608a 2240/* Set pairs of lines around this face which are known to be identical, to
121aae4b 2241 * the given line_state */
7c95608a 2242static int face_setall_identical(solver_state *sstate, int face_index,
2243 enum line_state line_new)
121aae4b 2244{
2245 /* can[dir] contains the canonical line associated with the line in
2246 * direction dir from the square in question. Similarly inv[dir] is
2247 * whether or not the line in question is inverse to its canonical
2248 * element. */
121aae4b 2249 int retval = FALSE;
7c95608a 2250 game_state *state = sstate->state;
2251 grid *g = state->game_grid;
2252 grid_face *f = g->faces + face_index;
2253 int N = f->order;
2254 int i, j;
2255 int can1, can2, inv1, inv2;
6193da8d 2256
7c95608a 2257 for (i = 0; i < N; i++) {
2258 int line1_index = f->edges[i] - g->edges;
2259 if (state->lines[line1_index] != LINE_UNKNOWN)
2260 continue;
2261 for (j = i + 1; j < N; j++) {
2262 int line2_index = f->edges[j] - g->edges;
2263 if (state->lines[line2_index] != LINE_UNKNOWN)
121aae4b 2264 continue;
6193da8d 2265
7c95608a 2266 /* Found two UNKNOWNS */
315e47b9 2267 can1 = edsf_canonify(sstate->linedsf, line1_index, &inv1);
2268 can2 = edsf_canonify(sstate->linedsf, line2_index, &inv2);
7c95608a 2269 if (can1 == can2 && inv1 == inv2) {
2270 solver_set_line(sstate, line1_index, line_new);
2271 solver_set_line(sstate, line2_index, line_new);
6193da8d 2272 }
2273 }
6193da8d 2274 }
121aae4b 2275 return retval;
2276}
2277
7c95608a 2278/* Given a dot or face, and a count of LINE_UNKNOWNs, find them and
2279 * return the edge indices into e. */
2280static void find_unknowns(game_state *state,
2281 grid_edge **edge_list, /* Edge list to search (from a face or a dot) */
2282 int expected_count, /* Number of UNKNOWNs (comes from solver's cache) */
2283 int *e /* Returned edge indices */)
2284{
2285 int c = 0;
2286 grid *g = state->game_grid;
2287 while (c < expected_count) {
2288 int line_index = *edge_list - g->edges;
2289 if (state->lines[line_index] == LINE_UNKNOWN) {
2290 e[c] = line_index;
2291 c++;
6193da8d 2292 }
7c95608a 2293 ++edge_list;
6193da8d 2294 }
6193da8d 2295}
2296
7c95608a 2297/* If we have a list of edges, and we know whether the number of YESs should
2298 * be odd or even, and there are only a few UNKNOWNs, we can do some simple
2299 * linedsf deductions. This can be used for both face and dot deductions.
2300 * Returns the difficulty level of the next solver that should be used,
2301 * or DIFF_MAX if no progress was made. */
2302static int parity_deductions(solver_state *sstate,
2303 grid_edge **edge_list, /* Edge list (from a face or a dot) */
2304 int total_parity, /* Expected number of YESs modulo 2 (either 0 or 1) */
2305 int unknown_count)
6193da8d 2306{
121aae4b 2307 game_state *state = sstate->state;
7c95608a 2308 int diff = DIFF_MAX;
315e47b9 2309 int *linedsf = sstate->linedsf;
7c95608a 2310
2311 if (unknown_count == 2) {
2312 /* Lines are known alike/opposite, depending on inv. */
2313 int e[2];
2314 find_unknowns(state, edge_list, 2, e);
2315 if (merge_lines(sstate, e[0], e[1], total_parity))
2316 diff = min(diff, DIFF_HARD);
2317 } else if (unknown_count == 3) {
2318 int e[3];
2319 int can[3]; /* canonical edges */
2320 int inv[3]; /* whether can[x] is inverse to e[x] */
2321 find_unknowns(state, edge_list, 3, e);
2322 can[0] = edsf_canonify(linedsf, e[0], inv);
2323 can[1] = edsf_canonify(linedsf, e[1], inv+1);
2324 can[2] = edsf_canonify(linedsf, e[2], inv+2);
2325 if (can[0] == can[1]) {
2326 if (solver_set_line(sstate, e[2], (total_parity^inv[0]^inv[1]) ?
2327 LINE_YES : LINE_NO))
2328 diff = min(diff, DIFF_EASY);
2329 }
2330 if (can[0] == can[2]) {
2331 if (solver_set_line(sstate, e[1], (total_parity^inv[0]^inv[2]) ?
2332 LINE_YES : LINE_NO))
2333 diff = min(diff, DIFF_EASY);
2334 }
2335 if (can[1] == can[2]) {
2336 if (solver_set_line(sstate, e[0], (total_parity^inv[1]^inv[2]) ?
2337 LINE_YES : LINE_NO))
2338 diff = min(diff, DIFF_EASY);
2339 }
2340 } else if (unknown_count == 4) {
2341 int e[4];
2342 int can[4]; /* canonical edges */
2343 int inv[4]; /* whether can[x] is inverse to e[x] */
2344 find_unknowns(state, edge_list, 4, e);
2345 can[0] = edsf_canonify(linedsf, e[0], inv);
2346 can[1] = edsf_canonify(linedsf, e[1], inv+1);
2347 can[2] = edsf_canonify(linedsf, e[2], inv+2);
2348 can[3] = edsf_canonify(linedsf, e[3], inv+3);
2349 if (can[0] == can[1]) {
2350 if (merge_lines(sstate, e[2], e[3], total_parity^inv[0]^inv[1]))
2351 diff = min(diff, DIFF_HARD);
2352 } else if (can[0] == can[2]) {
2353 if (merge_lines(sstate, e[1], e[3], total_parity^inv[0]^inv[2]))
2354 diff = min(diff, DIFF_HARD);
2355 } else if (can[0] == can[3]) {
2356 if (merge_lines(sstate, e[1], e[2], total_parity^inv[0]^inv[3]))
2357 diff = min(diff, DIFF_HARD);
2358 } else if (can[1] == can[2]) {
2359 if (merge_lines(sstate, e[0], e[3], total_parity^inv[1]^inv[2]))
2360 diff = min(diff, DIFF_HARD);
2361 } else if (can[1] == can[3]) {
2362 if (merge_lines(sstate, e[0], e[2], total_parity^inv[1]^inv[3]))
2363 diff = min(diff, DIFF_HARD);
2364 } else if (can[2] == can[3]) {
2365 if (merge_lines(sstate, e[0], e[1], total_parity^inv[2]^inv[3]))
2366 diff = min(diff, DIFF_HARD);
6193da8d 2367 }
2368 }
7c95608a 2369 return diff;
6193da8d 2370}
2371
7c95608a 2372
121aae4b 2373/*
7c95608a 2374 * These are the main solver functions.
121aae4b 2375 *
2376 * Their return values are diff values corresponding to the lowest mode solver
2377 * that would notice the work that they have done. For example if the normal
2378 * mode solver adds actual lines or crosses, it will return DIFF_EASY as the
2379 * easy mode solver might be able to make progress using that. It doesn't make
2380 * sense for one of them to return a diff value higher than that of the
7c95608a 2381 * function itself.
121aae4b 2382 *
2383 * Each function returns the lowest value it can, as early as possible, in
2384 * order to try and pass as much work as possible back to the lower level
2385 * solvers which progress more quickly.
2386 */
6193da8d 2387
121aae4b 2388/* PROPOSED NEW DESIGN:
2389 * We have a work queue consisting of 'events' notifying us that something has
2390 * happened that a particular solver mode might be interested in. For example
2391 * the hard mode solver might do something that helps the normal mode solver at
2392 * dot [x,y] in which case it will enqueue an event recording this fact. Then
2393 * we pull events off the work queue, and hand each in turn to the solver that
2394 * is interested in them. If a solver reports that it failed we pass the same
2395 * event on to progressively more advanced solvers and the loop detector. Once
2396 * we've exhausted an event, or it has helped us progress, we drop it and
2397 * continue to the next one. The events are sorted first in order of solver
2398 * complexity (easy first) then order of insertion (oldest first).
2399 * Once we run out of events we loop over each permitted solver in turn
2400 * (easiest first) until either a deduction is made (and an event therefore
2401 * emerges) or no further deductions can be made (in which case we've failed).
2402 *
7c95608a 2403 * QUESTIONS:
121aae4b 2404 * * How do we 'loop over' a solver when both dots and squares are concerned.
2405 * Answer: first all squares then all dots.
2406 */
2407
315e47b9 2408static int trivial_deductions(solver_state *sstate)
6193da8d 2409{
7c95608a 2410 int i, current_yes, current_no;
2411 game_state *state = sstate->state;
2412 grid *g = state->game_grid;
1a739e2f 2413 int diff = DIFF_MAX;
6193da8d 2414
7c95608a 2415 /* Per-face deductions */
2416 for (i = 0; i < g->num_faces; i++) {
2417 grid_face *f = g->faces + i;
2418
2419 if (sstate->face_solved[i])
121aae4b 2420 continue;
6193da8d 2421
7c95608a 2422 current_yes = sstate->face_yes_count[i];
2423 current_no = sstate->face_no_count[i];
c0eb17ce 2424
7c95608a 2425 if (current_yes + current_no == f->order) {
2426 sstate->face_solved[i] = TRUE;
121aae4b 2427 continue;
2428 }
6193da8d 2429
7c95608a 2430 if (state->clues[i] < 0)
121aae4b 2431 continue;
6193da8d 2432
dba1fdaf 2433 /*
2434 * This code checks whether the numeric clue on a face is so
2435 * large as to permit all its remaining LINE_UNKNOWNs to be
2436 * filled in as LINE_YES, or alternatively so small as to
2437 * permit them all to be filled in as LINE_NO.
2438 */
2439
7c95608a 2440 if (state->clues[i] < current_yes) {
121aae4b 2441 sstate->solver_status = SOLVER_MISTAKE;
2442 return DIFF_EASY;
2443 }
7c95608a 2444 if (state->clues[i] == current_yes) {
2445 if (face_setall(sstate, i, LINE_UNKNOWN, LINE_NO))
121aae4b 2446 diff = min(diff, DIFF_EASY);
7c95608a 2447 sstate->face_solved[i] = TRUE;
121aae4b 2448 continue;
2449 }
c0eb17ce 2450
7c95608a 2451 if (f->order - state->clues[i] < current_no) {
121aae4b 2452 sstate->solver_status = SOLVER_MISTAKE;
2453 return DIFF_EASY;
2454 }
7c95608a 2455 if (f->order - state->clues[i] == current_no) {
2456 if (face_setall(sstate, i, LINE_UNKNOWN, LINE_YES))
121aae4b 2457 diff = min(diff, DIFF_EASY);
7c95608a 2458 sstate->face_solved[i] = TRUE;
121aae4b 2459 continue;
2460 }
dba1fdaf 2461
2462 if (f->order - state->clues[i] == current_no + 1 &&
2463 f->order - current_yes - current_no > 2) {
2464 /*
2465 * One small refinement to the above: we also look for any
2466 * adjacent pair of LINE_UNKNOWNs around the face with
2467 * some LINE_YES incident on it from elsewhere. If we find
2468 * one, then we know that pair of LINE_UNKNOWNs can't
2469 * _both_ be LINE_YES, and hence that pushes us one line
2470 * closer to being able to determine all the rest.
2471 */
2472 int j, k, e1, e2, e, d;
2473
2474 for (j = 0; j < f->order; j++) {
2475 e1 = f->edges[j] - g->edges;
2476 e2 = f->edges[j+1 < f->order ? j+1 : 0] - g->edges;
2477
2478 if (g->edges[e1].dot1 == g->edges[e2].dot1 ||
2479 g->edges[e1].dot1 == g->edges[e2].dot2) {
2480 d = g->edges[e1].dot1 - g->dots;
2481 } else {
2482 assert(g->edges[e1].dot2 == g->edges[e2].dot1 ||
2483 g->edges[e1].dot2 == g->edges[e2].dot2);
2484 d = g->edges[e1].dot2 - g->dots;
2485 }
2486
2487 if (state->lines[e1] == LINE_UNKNOWN &&
2488 state->lines[e2] == LINE_UNKNOWN) {
2489 for (k = 0; k < g->dots[d].order; k++) {
2490 int e = g->dots[d].edges[k] - g->edges;
2491 if (state->lines[e] == LINE_YES)
2492 goto found; /* multi-level break */
2493 }
2494 }
2495 }
2496 continue;
2497
2498 found:
2499 /*
2500 * If we get here, we've found such a pair of edges, and
2501 * they're e1 and e2.
2502 */
2503 for (j = 0; j < f->order; j++) {
2504 e = f->edges[j] - g->edges;
2505 if (state->lines[e] == LINE_UNKNOWN && e != e1 && e != e2) {
2506 int r = solver_set_line(sstate, e, LINE_YES);
2507 assert(r);
2508 diff = min(diff, DIFF_EASY);
2509 }
2510 }
2511 }
121aae4b 2512 }
6193da8d 2513
121aae4b 2514 check_caches(sstate);
6193da8d 2515
121aae4b 2516 /* Per-dot deductions */
7c95608a 2517 for (i = 0; i < g->num_dots; i++) {
2518 grid_dot *d = g->dots + i;
2519 int yes, no, unknown;
2520
2521 if (sstate->dot_solved[i])
121aae4b 2522 continue;
c0eb17ce 2523
7c95608a 2524 yes = sstate->dot_yes_count[i];
2525 no = sstate->dot_no_count[i];
2526 unknown = d->order - yes - no;
2527
2528 if (yes == 0) {
2529 if (unknown == 0) {
2530 sstate->dot_solved[i] = TRUE;
2531 } else if (unknown == 1) {
2532 dot_setall(sstate, i, LINE_UNKNOWN, LINE_NO);
121aae4b 2533 diff = min(diff, DIFF_EASY);
7c95608a 2534 sstate->dot_solved[i] = TRUE;
2535 }
2536 } else if (yes == 1) {
2537 if (unknown == 0) {
121aae4b 2538 sstate->solver_status = SOLVER_MISTAKE;
2539 return DIFF_EASY;
7c95608a 2540 } else if (unknown == 1) {
2541 dot_setall(sstate, i, LINE_UNKNOWN, LINE_YES);
2542 diff = min(diff, DIFF_EASY);
2543 }
2544 } else if (yes == 2) {
2545 if (unknown > 0) {
2546 dot_setall(sstate, i, LINE_UNKNOWN, LINE_NO);
2547 diff = min(diff, DIFF_EASY);
2548 }
2549 sstate->dot_solved[i] = TRUE;
2550 } else {
2551 sstate->solver_status = SOLVER_MISTAKE;
2552 return DIFF_EASY;
6193da8d 2553 }
2554 }
6193da8d 2555
121aae4b 2556 check_caches(sstate);
6193da8d 2557
121aae4b 2558 return diff;
6193da8d 2559}
2560
315e47b9 2561static int dline_deductions(solver_state *sstate)
6193da8d 2562{
121aae4b 2563 game_state *state = sstate->state;
7c95608a 2564 grid *g = state->game_grid;
315e47b9 2565 char *dlines = sstate->dlines;
7c95608a 2566 int i;
1a739e2f 2567 int diff = DIFF_MAX;
6193da8d 2568
7c95608a 2569 /* ------ Face deductions ------ */
2570
2571 /* Given a set of dline atmostone/atleastone constraints, need to figure
2572 * out if we can deduce any further info. For more general faces than
2573 * squares, this turns out to be a tricky problem.
2574 * The approach taken here is to define (per face) NxN matrices:
2575 * "maxs" and "mins".
2576 * The entries maxs(j,k) and mins(j,k) define the upper and lower limits
2577 * for the possible number of edges that are YES between positions j and k
2578 * going clockwise around the face. Can think of j and k as marking dots
2579 * around the face (recall the labelling scheme: edge0 joins dot0 to dot1,
2580 * edge1 joins dot1 to dot2 etc).
2581 * Trivially, mins(j,j) = maxs(j,j) = 0, and we don't even bother storing
2582 * these. mins(j,j+1) and maxs(j,j+1) are determined by whether edge{j}
2583 * is YES, NO or UNKNOWN. mins(j,j+2) and maxs(j,j+2) are related to
2584 * the dline atmostone/atleastone status for edges j and j+1.
2585 *
2586 * Then we calculate the remaining entries recursively. We definitely
2587 * know that
2588 * mins(j,k) >= { mins(j,u) + mins(u,k) } for any u between j and k.
2589 * This is because any valid placement of YESs between j and k must give
2590 * a valid placement between j and u, and also between u and k.
2591 * I believe it's sufficient to use just the two values of u:
2592 * j+1 and j+2. Seems to work well in practice - the bounds we compute
2593 * are rigorous, even if they might not be best-possible.
2594 *
2595 * Once we have maxs and mins calculated, we can make inferences about
2596 * each dline{j,j+1} by looking at the possible complementary edge-counts
2597 * mins(j+2,j) and maxs(j+2,j) and comparing these with the face clue.
2598 * As well as dlines, we can make similar inferences about single edges.
2599 * For example, consider a pentagon with clue 3, and we know at most one
2600 * of (edge0, edge1) is YES, and at most one of (edge2, edge3) is YES.
2601 * We could then deduce edge4 is YES, because maxs(0,4) would be 2, so
2602 * that final edge would have to be YES to make the count up to 3.
2603 */
121aae4b 2604
7c95608a 2605 /* Much quicker to allocate arrays on the stack than the heap, so
2606 * define the largest possible face size, and base our array allocations
2607 * on that. We check this with an assertion, in case someone decides to
2608 * make a grid which has larger faces than this. Note, this algorithm
2609 * could get quite expensive if there are many large faces. */
918a098a 2610#define MAX_FACE_SIZE 12
7c95608a 2611
2612 for (i = 0; i < g->num_faces; i++) {
2613 int maxs[MAX_FACE_SIZE][MAX_FACE_SIZE];
2614 int mins[MAX_FACE_SIZE][MAX_FACE_SIZE];
2615 grid_face *f = g->faces + i;
2616 int N = f->order;
2617 int j,m;
2618 int clue = state->clues[i];
2619 assert(N <= MAX_FACE_SIZE);
2620 if (sstate->face_solved[i])
6193da8d 2621 continue;
7c95608a 2622 if (clue < 0) continue;
2623
2624 /* Calculate the (j,j+1) entries */
2625 for (j = 0; j < N; j++) {
2626 int edge_index = f->edges[j] - g->edges;
2627 int dline_index;
2628 enum line_state line1 = state->lines[edge_index];
2629 enum line_state line2;
2630 int tmp;
2631 int k = j + 1;
2632 if (k >= N) k = 0;
2633 maxs[j][k] = (line1 == LINE_NO) ? 0 : 1;
2634 mins[j][k] = (line1 == LINE_YES) ? 1 : 0;
2635 /* Calculate the (j,j+2) entries */
2636 dline_index = dline_index_from_face(g, f, k);
2637 edge_index = f->edges[k] - g->edges;
2638 line2 = state->lines[edge_index];
2639 k++;
2640 if (k >= N) k = 0;
2641
2642 /* max */
2643 tmp = 2;
2644 if (line1 == LINE_NO) tmp--;
2645 if (line2 == LINE_NO) tmp--;
2646 if (tmp == 2 && is_atmostone(dlines, dline_index))
2647 tmp = 1;
2648 maxs[j][k] = tmp;
2649
2650 /* min */
2651 tmp = 0;
2652 if (line1 == LINE_YES) tmp++;
2653 if (line2 == LINE_YES) tmp++;
2654 if (tmp == 0 && is_atleastone(dlines, dline_index))
2655 tmp = 1;
2656 mins[j][k] = tmp;
2657 }
121aae4b 2658
7c95608a 2659 /* Calculate the (j,j+m) entries for m between 3 and N-1 */
2660 for (m = 3; m < N; m++) {
2661 for (j = 0; j < N; j++) {
2662 int k = j + m;
2663 int u = j + 1;
2664 int v = j + 2;
2665 int tmp;
2666 if (k >= N) k -= N;
2667 if (u >= N) u -= N;
2668 if (v >= N) v -= N;
2669 maxs[j][k] = maxs[j][u] + maxs[u][k];
2670 mins[j][k] = mins[j][u] + mins[u][k];
2671 tmp = maxs[j][v] + maxs[v][k];
2672 maxs[j][k] = min(maxs[j][k], tmp);
2673 tmp = mins[j][v] + mins[v][k];
2674 mins[j][k] = max(mins[j][k], tmp);
2675 }
2676 }
121aae4b 2677
7c95608a 2678 /* See if we can make any deductions */
2679 for (j = 0; j < N; j++) {
2680 int k;
2681 grid_edge *e = f->edges[j];
2682 int line_index = e - g->edges;
2683 int dline_index;
121aae4b 2684
7c95608a 2685 if (state->lines[line_index] != LINE_UNKNOWN)
2686 continue;
2687 k = j + 1;
2688 if (k >= N) k = 0;
121aae4b 2689
7c95608a 2690 /* minimum YESs in the complement of this edge */
2691 if (mins[k][j] > clue) {
2692 sstate->solver_status = SOLVER_MISTAKE;
2693 return DIFF_EASY;
2694 }
2695 if (mins[k][j] == clue) {
2696 /* setting this edge to YES would make at least
2697 * (clue+1) edges - contradiction */
2698 solver_set_line(sstate, line_index, LINE_NO);
2699 diff = min(diff, DIFF_EASY);
2700 }
2701 if (maxs[k][j] < clue - 1) {
2702 sstate->solver_status = SOLVER_MISTAKE;
2703 return DIFF_EASY;
2704 }
2705 if (maxs[k][j] == clue - 1) {
2706 /* Only way to satisfy the clue is to set edge{j} as YES */
2707 solver_set_line(sstate, line_index, LINE_YES);
2708 diff = min(diff, DIFF_EASY);
2709 }
2710
315e47b9 2711 /* More advanced deduction that allows propagation along diagonal
2712 * chains of faces connected by dots, for example, 3-2-...-2-3
2713 * in square grids. */
2714 if (sstate->diff >= DIFF_TRICKY) {
2715 /* Now see if we can make dline deduction for edges{j,j+1} */
2716 e = f->edges[k];
2717 if (state->lines[e - g->edges] != LINE_UNKNOWN)
2718 /* Only worth doing this for an UNKNOWN,UNKNOWN pair.
2719 * Dlines where one of the edges is known, are handled in the
2720 * dot-deductions */
2721 continue;
2722
2723 dline_index = dline_index_from_face(g, f, k);
2724 k++;
2725 if (k >= N) k = 0;
2726
2727 /* minimum YESs in the complement of this dline */
2728 if (mins[k][j] > clue - 2) {
2729 /* Adding 2 YESs would break the clue */
2730 if (set_atmostone(dlines, dline_index))
2731 diff = min(diff, DIFF_NORMAL);
2732 }
2733 /* maximum YESs in the complement of this dline */
2734 if (maxs[k][j] < clue) {
2735 /* Adding 2 NOs would mean not enough YESs */
2736 if (set_atleastone(dlines, dline_index))
2737 diff = min(diff, DIFF_NORMAL);
2738 }
7c95608a 2739 }
6193da8d 2740 }
6193da8d 2741 }
2742
121aae4b 2743 if (diff < DIFF_NORMAL)
2744 return diff;
6193da8d 2745
7c95608a 2746 /* ------ Dot deductions ------ */
6193da8d 2747
7c95608a 2748 for (i = 0; i < g->num_dots; i++) {
2749 grid_dot *d = g->dots + i;
2750 int N = d->order;
2751 int yes, no, unknown;
2752 int j;
2753 if (sstate->dot_solved[i])
2754 continue;
2755 yes = sstate->dot_yes_count[i];
2756 no = sstate->dot_no_count[i];
2757 unknown = N - yes - no;
2758
2759 for (j = 0; j < N; j++) {
2760 int k;
2761 int dline_index;
2762 int line1_index, line2_index;
2763 enum line_state line1, line2;
2764 k = j + 1;
2765 if (k >= N) k = 0;
2766 dline_index = dline_index_from_dot(g, d, j);
2767 line1_index = d->edges[j] - g->edges;
2768 line2_index = d->edges[k] - g->edges;
2769 line1 = state->lines[line1_index];
2770 line2 = state->lines[line2_index];
2771
2772 /* Infer dline state from line state */
2773 if (line1 == LINE_NO || line2 == LINE_NO) {
2774 if (set_atmostone(dlines, dline_index))
2775 diff = min(diff, DIFF_NORMAL);
2776 }
2777 if (line1 == LINE_YES || line2 == LINE_YES) {
2778 if (set_atleastone(dlines, dline_index))
2779 diff = min(diff, DIFF_NORMAL);
2780 }
2781 /* Infer line state from dline state */
2782 if (is_atmostone(dlines, dline_index)) {
2783 if (line1 == LINE_YES && line2 == LINE_UNKNOWN) {
2784 solver_set_line(sstate, line2_index, LINE_NO);
2785 diff = min(diff, DIFF_EASY);
2786 }
2787 if (line2 == LINE_YES && line1 == LINE_UNKNOWN) {
2788 solver_set_line(sstate, line1_index, LINE_NO);
2789 diff = min(diff, DIFF_EASY);
2790 }
2791 }
2792 if (is_atleastone(dlines, dline_index)) {
2793 if (line1 == LINE_NO && line2 == LINE_UNKNOWN) {
2794 solver_set_line(sstate, line2_index, LINE_YES);
2795 diff = min(diff, DIFF_EASY);
2796 }
2797 if (line2 == LINE_NO && line1 == LINE_UNKNOWN) {
2798 solver_set_line(sstate, line1_index, LINE_YES);
2799 diff = min(diff, DIFF_EASY);
2800 }
2801 }
2802 /* Deductions that depend on the numbers of lines.
2803 * Only bother if both lines are UNKNOWN, otherwise the
2804 * easy-mode solver (or deductions above) would have taken
2805 * care of it. */
2806 if (line1 != LINE_UNKNOWN || line2 != LINE_UNKNOWN)
2807 continue;
6193da8d 2808
7c95608a 2809 if (yes == 0 && unknown == 2) {
2810 /* Both these unknowns must be identical. If we know
2811 * atmostone or atleastone, we can make progress. */
2812 if (is_atmostone(dlines, dline_index)) {
2813 solver_set_line(sstate, line1_index, LINE_NO);
2814 solver_set_line(sstate, line2_index, LINE_NO);
2815 diff = min(diff, DIFF_EASY);
2816 }
2817 if (is_atleastone(dlines, dline_index)) {
2818 solver_set_line(sstate, line1_index, LINE_YES);
2819 solver_set_line(sstate, line2_index, LINE_YES);
2820 diff = min(diff, DIFF_EASY);
2821 }
2822 }
2823 if (yes == 1) {
2824 if (set_atmostone(dlines, dline_index))
2825 diff = min(diff, DIFF_NORMAL);
2826 if (unknown == 2) {
2827 if (set_atleastone(dlines, dline_index))
2828 diff = min(diff, DIFF_NORMAL);
2829 }
121aae4b 2830 }
6193da8d 2831
315e47b9 2832 /* More advanced deduction that allows propagation along diagonal
2833 * chains of faces connected by dots, for example: 3-2-...-2-3
2834 * in square grids. */
2835 if (sstate->diff >= DIFF_TRICKY) {
2836 /* If we have atleastone set for this dline, infer
2837 * atmostone for each "opposite" dline (that is, each
2838 * dline without edges in common with this one).
2839 * Again, this test is only worth doing if both these
2840 * lines are UNKNOWN. For if one of these lines were YES,
2841 * the (yes == 1) test above would kick in instead. */
2842 if (is_atleastone(dlines, dline_index)) {
2843 int opp;
2844 for (opp = 0; opp < N; opp++) {
2845 int opp_dline_index;
2846 if (opp == j || opp == j+1 || opp == j-1)
2847 continue;
2848 if (j == 0 && opp == N-1)
2849 continue;
2850 if (j == N-1 && opp == 0)
2851 continue;
2852 opp_dline_index = dline_index_from_dot(g, d, opp);
2853 if (set_atmostone(dlines, opp_dline_index))
2854 diff = min(diff, DIFF_NORMAL);
2855 }
2856 if (yes == 0 && is_atmostone(dlines, dline_index)) {
2857 /* This dline has *exactly* one YES and there are no
2858 * other YESs. This allows more deductions. */
2859 if (unknown == 3) {
2860 /* Third unknown must be YES */
2861 for (opp = 0; opp < N; opp++) {
2862 int opp_index;
2863 if (opp == j || opp == k)
2864 continue;
2865 opp_index = d->edges[opp] - g->edges;
2866 if (state->lines[opp_index] == LINE_UNKNOWN) {
2867 solver_set_line(sstate, opp_index,
2868 LINE_YES);
2869 diff = min(diff, DIFF_EASY);
2870 }
121aae4b 2871 }
315e47b9 2872 } else if (unknown == 4) {
2873 /* Exactly one of opposite UNKNOWNS is YES. We've
2874 * already set atmostone, so set atleastone as
2875 * well.
2876 */
2877 if (dline_set_opp_atleastone(sstate, d, j))
2878 diff = min(diff, DIFF_NORMAL);
121aae4b 2879 }
2880 }
121aae4b 2881 }
6193da8d 2882 }
6193da8d 2883 }
121aae4b 2884 }
121aae4b 2885 return diff;
6193da8d 2886}
2887
315e47b9 2888static int linedsf_deductions(solver_state *sstate)
6193da8d 2889{
121aae4b 2890 game_state *state = sstate->state;
7c95608a 2891 grid *g = state->game_grid;
315e47b9 2892 char *dlines = sstate->dlines;
7c95608a 2893 int i;
1a739e2f 2894 int diff = DIFF_MAX;
7c95608a 2895 int diff_tmp;
121aae4b 2896
7c95608a 2897 /* ------ Face deductions ------ */
6193da8d 2898
7c95608a 2899 /* A fully-general linedsf deduction seems overly complicated
2900 * (I suspect the problem is NP-complete, though in practice it might just
2901 * be doable because faces are limited in size).
2902 * For simplicity, we only consider *pairs* of LINE_UNKNOWNS that are
2903 * known to be identical. If setting them both to YES (or NO) would break
2904 * the clue, set them to NO (or YES). */
121aae4b 2905
7c95608a 2906 for (i = 0; i < g->num_faces; i++) {
2907 int N, yes, no, unknown;
2908 int clue;
6193da8d 2909
7c95608a 2910 if (sstate->face_solved[i])
121aae4b 2911 continue;
7c95608a 2912 clue = state->clues[i];
2913 if (clue < 0)
121aae4b 2914 continue;
6193da8d 2915
7c95608a 2916 N = g->faces[i].order;
2917 yes = sstate->face_yes_count[i];
2918 if (yes + 1 == clue) {
2919 if (face_setall_identical(sstate, i, LINE_NO))
2920 diff = min(diff, DIFF_EASY);
121aae4b 2921 }
7c95608a 2922 no = sstate->face_no_count[i];
2923 if (no + 1 == N - clue) {
2924 if (face_setall_identical(sstate, i, LINE_YES))
2925 diff = min(diff, DIFF_EASY);
6193da8d 2926 }
6193da8d 2927
7c95608a 2928 /* Reload YES count, it might have changed */
2929 yes = sstate->face_yes_count[i];
2930 unknown = N - no - yes;
2931
2932 /* Deductions with small number of LINE_UNKNOWNs, based on overall
2933 * parity of lines. */
2934 diff_tmp = parity_deductions(sstate, g->faces[i].edges,
2935 (clue - yes) % 2, unknown);
2936 diff = min(diff, diff_tmp);
2937 }
2938
2939 /* ------ Dot deductions ------ */
2940 for (i = 0; i < g->num_dots; i++) {
2941 grid_dot *d = g->dots + i;
2942 int N = d->order;
2943 int j;
2944 int yes, no, unknown;
2945 /* Go through dlines, and do any dline<->linedsf deductions wherever
2946 * we find two UNKNOWNS. */
2947 for (j = 0; j < N; j++) {
2948 int dline_index = dline_index_from_dot(g, d, j);
2949 int line1_index;
2950 int line2_index;
2951 int can1, can2, inv1, inv2;
2952 int j2;
2953 line1_index = d->edges[j] - g->edges;
2954 if (state->lines[line1_index] != LINE_UNKNOWN)
121aae4b 2955 continue;
7c95608a 2956 j2 = j + 1;
2957 if (j2 == N) j2 = 0;
2958 line2_index = d->edges[j2] - g->edges;
2959 if (state->lines[line2_index] != LINE_UNKNOWN)
121aae4b 2960 continue;
7c95608a 2961 /* Infer dline flags from linedsf */
315e47b9 2962 can1 = edsf_canonify(sstate->linedsf, line1_index, &inv1);
2963 can2 = edsf_canonify(sstate->linedsf, line2_index, &inv2);
7c95608a 2964 if (can1 == can2 && inv1 != inv2) {
2965 /* These are opposites, so set dline atmostone/atleastone */
2966 if (set_atmostone(dlines, dline_index))
2967 diff = min(diff, DIFF_NORMAL);
2968 if (set_atleastone(dlines, dline_index))
2969 diff = min(diff, DIFF_NORMAL);
121aae4b 2970 continue;
7c95608a 2971 }
2972 /* Infer linedsf from dline flags */
2973 if (is_atmostone(dlines, dline_index)
2974 && is_atleastone(dlines, dline_index)) {
2975 if (merge_lines(sstate, line1_index, line2_index, 1))
121aae4b 2976 diff = min(diff, DIFF_HARD);
121aae4b 2977 }
2978 }
7c95608a 2979
2980 /* Deductions with small number of LINE_UNKNOWNs, based on overall
2981 * parity of lines. */
2982 yes = sstate->dot_yes_count[i];
2983 no = sstate->dot_no_count[i];
2984 unknown = N - yes - no;
2985 diff_tmp = parity_deductions(sstate, d->edges,
2986 yes % 2, unknown);
2987 diff = min(diff, diff_tmp);
121aae4b 2988 }
6193da8d 2989
7c95608a 2990 /* ------ Edge dsf deductions ------ */
2991
2992 /* If the state of a line is known, deduce the state of its canonical line
2993 * too, and vice versa. */
2994 for (i = 0; i < g->num_edges; i++) {
2995 int can, inv;
2996 enum line_state s;
315e47b9 2997 can = edsf_canonify(sstate->linedsf, i, &inv);
7c95608a 2998 if (can == i)
2999 continue;
3000 s = sstate->state->lines[can];
3001 if (s != LINE_UNKNOWN) {
3002 if (solver_set_line(sstate, i, inv ? OPP(s) : s))
3003 diff = min(diff, DIFF_EASY);
3004 } else {
3005 s = sstate->state->lines[i];
3006 if (s != LINE_UNKNOWN) {
3007 if (solver_set_line(sstate, can, inv ? OPP(s) : s))
121aae4b 3008 diff = min(diff, DIFF_EASY);
3009 }
3010 }
3011 }
6193da8d 3012
121aae4b 3013 return diff;
3014}
6193da8d 3015
121aae4b 3016static int loop_deductions(solver_state *sstate)
3017{
3018 int edgecount = 0, clues = 0, satclues = 0, sm1clues = 0;
3019 game_state *state = sstate->state;
7c95608a 3020 grid *g = state->game_grid;
3021 int shortest_chainlen = g->num_dots;
121aae4b 3022 int loop_found = FALSE;
121aae4b 3023 int dots_connected;
3024 int progress = FALSE;
7c95608a 3025 int i;
6193da8d 3026
121aae4b 3027 /*
3028 * Go through the grid and update for all the new edges.
3029 * Since merge_dots() is idempotent, the simplest way to
3030 * do this is just to update for _all_ the edges.
7c95608a 3031 * Also, while we're here, we count the edges.
121aae4b 3032 */
7c95608a 3033 for (i = 0; i < g->num_edges; i++) {
3034 if (state->lines[i] == LINE_YES) {
3035 loop_found |= merge_dots(sstate, i);
121aae4b 3036 edgecount++;
3037 }
7c95608a 3038 }
6193da8d 3039
7c95608a 3040 /*
3041 * Count the clues, count the satisfied clues, and count the
3042 * satisfied-minus-one clues.
3043 */
3044 for (i = 0; i < g->num_faces; i++) {
3045 int c = state->clues[i];
3046 if (c >= 0) {
3047 int o = sstate->face_yes_count[i];
121aae4b 3048 if (o == c)
3049 satclues++;
3050 else if (o == c-1)
3051 sm1clues++;
3052 clues++;
3053 }
3054 }
6193da8d 3055
7c95608a 3056 for (i = 0; i < g->num_dots; ++i) {
3057 dots_connected =
121aae4b 3058 sstate->looplen[dsf_canonify(sstate->dotdsf, i)];
3059 if (dots_connected > 1)
3060 shortest_chainlen = min(shortest_chainlen, dots_connected);
6193da8d 3061 }
6193da8d 3062
121aae4b 3063 assert(sstate->solver_status == SOLVER_INCOMPLETE);
6c42c563 3064
121aae4b 3065 if (satclues == clues && shortest_chainlen == edgecount) {
3066 sstate->solver_status = SOLVER_SOLVED;
3067 /* This discovery clearly counts as progress, even if we haven't
3068 * just added any lines or anything */
7c95608a 3069 progress = TRUE;
121aae4b 3070 goto finished_loop_deductionsing;
3071 }
6193da8d 3072
121aae4b 3073 /*
3074 * Now go through looking for LINE_UNKNOWN edges which
3075 * connect two dots that are already in the same
3076 * equivalence class. If we find one, test to see if the
3077 * loop it would create is a solution.
3078 */
7c95608a 3079 for (i = 0; i < g->num_edges; i++) {
3080 grid_edge *e = g->edges + i;
3081 int d1 = e->dot1 - g->dots;
3082 int d2 = e->dot2 - g->dots;
3083 int eqclass, val;
3084 if (state->lines[i] != LINE_UNKNOWN)
3085 continue;
121aae4b 3086
7c95608a 3087 eqclass = dsf_canonify(sstate->dotdsf, d1);
3088 if (eqclass != dsf_canonify(sstate->dotdsf, d2))
3089 continue;
121aae4b 3090
7c95608a 3091 val = LINE_NO; /* loop is bad until proven otherwise */
6193da8d 3092
7c95608a 3093 /*
3094 * This edge would form a loop. Next
3095 * question: how long would the loop be?
3096 * Would it equal the total number of edges
3097 * (plus the one we'd be adding if we added
3098 * it)?
3099 */
3100 if (sstate->looplen[eqclass] == edgecount + 1) {
3101 int sm1_nearby;
121aae4b 3102
3103 /*
7c95608a 3104 * This edge would form a loop which
3105 * took in all the edges in the entire
3106 * grid. So now we need to work out
3107 * whether it would be a valid solution
3108 * to the puzzle, which means we have to
3109 * check if it satisfies all the clues.
3110 * This means that every clue must be
3111 * either satisfied or satisfied-minus-
3112 * 1, and also that the number of
3113 * satisfied-minus-1 clues must be at
3114 * most two and they must lie on either
3115 * side of this edge.
121aae4b 3116 */
7c95608a 3117 sm1_nearby = 0;
3118 if (e->face1) {
3119 int f = e->face1 - g->faces;
3120 int c = state->clues[f];
3121 if (c >= 0 && sstate->face_yes_count[f] == c - 1)
121aae4b 3122 sm1_nearby++;
6c42c563 3123 }
7c95608a 3124 if (e->face2) {
3125 int f = e->face2 - g->faces;
3126 int c = state->clues[f];
3127 if (c >= 0 && sstate->face_yes_count[f] == c - 1)
3128 sm1_nearby++;
6c42c563 3129 }
7c95608a 3130 if (sm1clues == sm1_nearby &&
3131 sm1clues + satclues == clues) {
3132 val = LINE_YES; /* loop is good! */
6c42c563 3133 }
121aae4b 3134 }
7c95608a 3135
3136 /*
3137 * Right. Now we know that adding this edge
3138 * would form a loop, and we know whether
3139 * that loop would be a viable solution or
3140 * not.
3141 *
3142 * If adding this edge produces a solution,
3143 * then we know we've found _a_ solution but
3144 * we don't know that it's _the_ solution -
3145 * if it were provably the solution then
3146 * we'd have deduced this edge some time ago
3147 * without the need to do loop detection. So
3148 * in this state we return SOLVER_AMBIGUOUS,
3149 * which has the effect that hitting Solve
3150 * on a user-provided puzzle will fill in a
3151 * solution but using the solver to
3152 * construct new puzzles won't consider this
3153 * a reasonable deduction for the user to
3154 * make.
3155 */
3156 progress = solver_set_line(sstate, i, val);
3157 assert(progress == TRUE);
3158 if (val == LINE_YES) {
3159 sstate->solver_status = SOLVER_AMBIGUOUS;
3160 goto finished_loop_deductionsing;
3161 }
6193da8d 3162 }
6193da8d 3163
7c95608a 3164 finished_loop_deductionsing:
121aae4b 3165 return progress ? DIFF_EASY : DIFF_MAX;
c0eb17ce 3166}
6193da8d 3167
3168/* This will return a dynamically allocated solver_state containing the (more)
3169 * solved grid */
315e47b9 3170static solver_state *solve_game_rec(const solver_state *sstate_start)
121aae4b 3171{
315e47b9 3172 solver_state *sstate;
6193da8d 3173
315e47b9 3174 /* Index of the solver we should call next. */
3175 int i = 0;
3176
3177 /* As a speed-optimisation, we avoid re-running solvers that we know
3178 * won't make any progress. This happens when a high-difficulty
3179 * solver makes a deduction that can only help other high-difficulty
3180 * solvers.
3181 * For example: if a new 'dline' flag is set by dline_deductions, the
3182 * trivial_deductions solver cannot do anything with this information.
3183 * If we've already run the trivial_deductions solver (because it's
3184 * earlier in the list), there's no point running it again.
3185 *
3186 * Therefore: if a solver is earlier in the list than "threshold_index",
3187 * we don't bother running it if it's difficulty level is less than
3188 * "threshold_diff".
3189 */
3190 int threshold_diff = 0;
3191 int threshold_index = 0;
3192
121aae4b 3193 sstate = dup_solver_state(sstate_start);
7c95608a 3194
121aae4b 3195 check_caches(sstate);
6193da8d 3196
315e47b9 3197 while (i < NUM_SOLVERS) {
121aae4b 3198 if (sstate->solver_status == SOLVER_MISTAKE)
3199 return sstate;
7c95608a 3200 if (sstate->solver_status == SOLVER_SOLVED ||
121aae4b 3201 sstate->solver_status == SOLVER_AMBIGUOUS) {
315e47b9 3202 /* solver finished */
121aae4b 3203 break;
3204 }
99dd160e 3205
315e47b9 3206 if ((solver_diffs[i] >= threshold_diff || i >= threshold_index)
3207 && solver_diffs[i] <= sstate->diff) {
3208 /* current_solver is eligible, so use it */
3209 int next_diff = solver_fns[i](sstate);
3210 if (next_diff != DIFF_MAX) {
3211 /* solver made progress, so use new thresholds and
3212 * start again at top of list. */
3213 threshold_diff = next_diff;
3214 threshold_index = i;
3215 i = 0;
3216 continue;
3217 }
3218 }
3219 /* current_solver is ineligible, or failed to make progress, so
3220 * go to the next solver in the list */
3221 i++;
3222 }
121aae4b 3223
3224 if (sstate->solver_status == SOLVER_SOLVED ||
3225 sstate->solver_status == SOLVER_AMBIGUOUS) {
3226 /* s/LINE_UNKNOWN/LINE_NO/g */
7c95608a 3227 array_setall(sstate->state->lines, LINE_UNKNOWN, LINE_NO,
3228 sstate->state->game_grid->num_edges);
121aae4b 3229 return sstate;
3230 }
6193da8d 3231
121aae4b 3232 return sstate;
6193da8d 3233}
3234
6193da8d 3235static char *solve_game(game_state *state, game_state *currstate,
3236 char *aux, char **error)
3237{
3238 char *soln = NULL;
3239 solver_state *sstate, *new_sstate;
3240
121aae4b 3241 sstate = new_solver_state(state, DIFF_MAX);
315e47b9 3242 new_sstate = solve_game_rec(sstate);
6193da8d 3243
3244 if (new_sstate->solver_status == SOLVER_SOLVED) {
3245 soln = encode_solve_move(new_sstate->state);
3246 } else if (new_sstate->solver_status == SOLVER_AMBIGUOUS) {
3247 soln = encode_solve_move(new_sstate->state);
3248 /**error = "Solver found ambiguous solutions"; */
3249 } else {
3250 soln = encode_solve_move(new_sstate->state);
3251 /**error = "Solver failed"; */
3252 }
3253
3254 free_solver_state(new_sstate);
3255 free_solver_state(sstate);
3256
3257 return soln;
3258}
3259
121aae4b 3260/* ----------------------------------------------------------------------
3261 * Drawing and mouse-handling
3262 */
6193da8d 3263
3264static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
3265 int x, int y, int button)
3266{
7c95608a 3267 grid *g = state->game_grid;
3268 grid_edge *e;
3269 int i;
6193da8d 3270 char *ret, buf[80];
3271 char button_char = ' ';
3272 enum line_state old_state;
3273
3274 button &= ~MOD_MASK;
3275
7c95608a 3276 /* Convert mouse-click (x,y) to grid coordinates */
3277 x -= BORDER(ds->tilesize);
3278 y -= BORDER(ds->tilesize);
3279 x = x * g->tilesize / ds->tilesize;
3280 y = y * g->tilesize / ds->tilesize;
3281 x += g->lowest_x;
3282 y += g->lowest_y;
6193da8d 3283
7c95608a 3284 e = grid_nearest_edge(g, x, y);
3285 if (e == NULL)
6193da8d 3286 return NULL;
3287
7c95608a 3288 i = e - g->edges;
6193da8d 3289
3290 /* I think it's only possible to play this game with mouse clicks, sorry */
3291 /* Maybe will add mouse drag support some time */
7c95608a 3292 old_state = state->lines[i];
6193da8d 3293
3294 switch (button) {
7c95608a 3295 case LEFT_BUTTON:
3296 switch (old_state) {
3297 case LINE_UNKNOWN:
3298 button_char = 'y';
3299 break;
3300 case LINE_YES:
80e7e37c 3301#ifdef STYLUS_BASED
3302 button_char = 'n';
3303 break;
3304#endif
7c95608a 3305 case LINE_NO:
3306 button_char = 'u';
3307 break;
3308 }
3309 break;
3310 case MIDDLE_BUTTON:
3311 button_char = 'u';
3312 break;
3313 case RIGHT_BUTTON:
3314 switch (old_state) {
3315 case LINE_UNKNOWN:
3316 button_char = 'n';
3317 break;
3318 case LINE_NO:
80e7e37c 3319#ifdef STYLUS_BASED
3320 button_char = 'y';
3321 break;
3322#endif
7c95608a 3323 case LINE_YES:
3324 button_char = 'u';
3325 break;
3326 }
3327 break;
3328 default:
3329 return NULL;
3330 }
3331
3332
3333 sprintf(buf, "%d%c", i, (int)button_char);
6193da8d 3334 ret = dupstr(buf);
3335
3336 return ret;
3337}
3338
3339static game_state *execute_move(game_state *state, char *move)
3340{
7c95608a 3341 int i;
6193da8d 3342 game_state *newstate = dup_game(state);
3343
3344 if (move[0] == 'S') {
3345 move++;
3346 newstate->cheated = TRUE;
3347 }
3348
3349 while (*move) {
3350 i = atoi(move);
8719c2e7 3351 if (i < 0 || i >= newstate->game_grid->num_edges)
3352 goto fail;
6193da8d 3353 move += strspn(move, "1234567890");
3354 switch (*(move++)) {
7c95608a 3355 case 'y':
3356 newstate->lines[i] = LINE_YES;
3357 break;
3358 case 'n':
3359 newstate->lines[i] = LINE_NO;
3360 break;
3361 case 'u':
3362 newstate->lines[i] = LINE_UNKNOWN;
3363 break;
3364 default:
3365 goto fail;
6193da8d 3366 }
3367 }
3368
3369 /*
3370 * Check for completion.
3371 */
b6bf0adc 3372 if (check_completion(newstate))
121aae4b 3373 newstate->solved = TRUE;
6193da8d 3374
6193da8d 3375 return newstate;
3376
7c95608a 3377 fail:
6193da8d 3378 free_game(newstate);
3379 return NULL;
3380}
3381
3382/* ----------------------------------------------------------------------
3383 * Drawing routines.
3384 */
7c95608a 3385
3386/* Convert from grid coordinates to screen coordinates */
3387static void grid_to_screen(const game_drawstate *ds, const grid *g,
3388 int grid_x, int grid_y, int *x, int *y)
3389{
3390 *x = grid_x - g->lowest_x;
3391 *y = grid_y - g->lowest_y;
3392 *x = *x * ds->tilesize / g->tilesize;
3393 *y = *y * ds->tilesize / g->tilesize;
3394 *x += BORDER(ds->tilesize);
3395 *y += BORDER(ds->tilesize);
3396}
3397
3398/* Returns (into x,y) position of centre of face for rendering the text clue.
3399 */
3400static void face_text_pos(const game_drawstate *ds, const grid *g,
e0936bbd 3401 const grid_face *f, int *xret, int *yret)
7c95608a 3402{
e0936bbd 3403 int x, y, x0, y0, x1, y1, xbest, ybest, i, shift;
3404 long bestdist;
3405 int faceindex = f - g->faces;
7c95608a 3406
e0936bbd 3407 /*
3408 * Return the cached position for this face, if we've already
3409 * worked it out.
3410 */
3411 if (ds->textx[faceindex] >= 0) {
3412 *xret = ds->textx[faceindex];
3413 *yret = ds->texty[faceindex];
3414 return;
3415 }
7c95608a 3416
e0936bbd 3417 /*
3418 * Otherwise, try to find the point in the polygon with the
3419 * maximum distance to any edge or corner.
3420 *
3421 * Start by working out the face's bounding box, in grid
3422 * coordinates.
3423 */
3424 x0 = x1 = f->dots[0]->x;
3425 y0 = y1 = f->dots[0]->y;
3426 for (i = 1; i < f->order; i++) {
3427 if (x0 > f->dots[i]->x) x0 = f->dots[i]->x;
3428 if (x1 < f->dots[i]->x) x1 = f->dots[i]->x;
3429 if (y0 > f->dots[i]->y) y0 = f->dots[i]->y;
3430 if (y1 < f->dots[i]->y) y1 = f->dots[i]->y;
3431 }
7c95608a 3432
e0936bbd 3433 /*
3434 * If the grid is at excessive resolution, decide on a scaling
3435 * factor to bring it within reasonable bounds so we don't have to
3436 * think too hard or suffer integer overflow.
3437 */
3438 shift = 0;
3439 while (x1 - x0 > 128 || y1 - y0 > 128) {
3440 shift++;
3441 x0 >>= 1;
3442 x1 >>= 1;
3443 y0 >>= 1;
3444 y1 >>= 1;
3445 }
7c95608a 3446
e0936bbd 3447 /*
3448 * Now iterate over every point in that bounding box.
3449 */
3450 xbest = ybest = -1;
3451 bestdist = -1;
3452 for (y = y0; y <= y1; y++) {
3453 for (x = x0; x <= x1; x++) {
3454 /*
3455 * First, disqualify the point if it's not inside the
3456 * polygon, which we work out by counting the edges to the
3457 * right of the point. (For tiebreaking purposes when
3458 * edges start or end on our y-coordinate or go right
3459 * through it, we consider our point to be offset by a
3460 * small _positive_ epsilon in both the x- and
3461 * y-direction.)
3462 */
3463 int in = 0;
3464 for (i = 0; i < f->order; i++) {
3465 int xs = f->edges[i]->dot1->x >> shift;
3466 int xe = f->edges[i]->dot2->x >> shift;
3467 int ys = f->edges[i]->dot1->y >> shift;
3468 int ye = f->edges[i]->dot2->y >> shift;
3469 if ((y >= ys && y < ye) || (y >= ye && y < ys)) {
3470 /*
3471 * The line goes past our y-position. Now we need
3472 * to know if its x-coordinate when it does so is
3473 * to our right.
3474 *
3475 * The x-coordinate in question is mathematically
3476 * (y - ys) * (xe - xs) / (ye - ys), and we want
3477 * to know whether (x - xs) >= that. Of course we
3478 * avoid the division, so we can work in integers;
3479 * to do this we must multiply both sides of the
3480 * inequality by ye - ys, which means we must
3481 * first check that's not negative.
3482 */
3483 int num = xe - xs, denom = ye - ys;
3484 if (denom < 0) {
3485 num = -num;
3486 denom = -denom;
3487 }
3488 if ((x - xs) * denom >= (y - ys) * num)
3489 in ^= 1;
3490 }
3491 }
3492
3493 if (in) {
3494 long mindist = LONG_MAX;
3495
3496 /*
3497 * This point is inside the polygon, so now we check
3498 * its minimum distance to every edge and corner.
3499 * First the corners ...
3500 */
3501 for (i = 0; i < f->order; i++) {
3502 int xp = f->dots[i]->x >> shift;
3503 int yp = f->dots[i]->y >> shift;
3504 int dx = x - xp, dy = y - yp;
3505 long dist = (long)dx*dx + (long)dy*dy;
3506 if (mindist > dist)
3507 mindist = dist;
3508 }
3509
3510 /*
3511 * ... and now also check the perpendicular distance
3512 * to every edge, if the perpendicular lies between
3513 * the edge's endpoints.
3514 */
3515 for (i = 0; i < f->order; i++) {
3516 int xs = f->edges[i]->dot1->x >> shift;
3517 int xe = f->edges[i]->dot2->x >> shift;
3518 int ys = f->edges[i]->dot1->y >> shift;
3519 int ye = f->edges[i]->dot2->y >> shift;
3520
3521 /*
3522 * If s and e are our endpoints, and p our
3523 * candidate circle centre, the foot of a
3524 * perpendicular from p to the line se lies
3525 * between s and e if and only if (p-s).(e-s) lies
3526 * strictly between 0 and (e-s).(e-s).
3527 */
3528 int edx = xe - xs, edy = ye - ys;
3529 int pdx = x - xs, pdy = y - ys;
3530 long pde = (long)pdx * edx + (long)pdy * edy;
3531 long ede = (long)edx * edx + (long)edy * edy;
3532 if (0 < pde && pde < ede) {
3533 /*
3534 * Yes, the nearest point on this edge is
3535 * closer than either endpoint, so we must
3536 * take it into account by measuring the
3537 * perpendicular distance to the edge and
3538 * checking its square against mindist.
3539 */
3540
3541 long pdre = (long)pdx * edy - (long)pdy * edx;
3542 long sqlen = pdre * pdre / ede;
3543
3544 if (mindist > sqlen)
3545 mindist = sqlen;
3546 }
3547 }
3548
3549 /*
3550 * Right. Now we know the biggest circle around this
3551 * point, so we can check it against bestdist.
3552 */
3553 if (bestdist < mindist) {
3554 bestdist = mindist;
3555 xbest = x;
3556 ybest = y;
3557 }
3558 }
3559 }
7c95608a 3560 }
e0936bbd 3561
3562 assert(bestdist >= 0);
7c95608a 3563
3564 /* convert to screen coordinates */
e0936bbd 3565 grid_to_screen(ds, g, xbest << shift, ybest << shift,
3566 &ds->textx[faceindex], &ds->texty[faceindex]);
3567
3568 *xret = ds->textx[faceindex];
3569 *yret = ds->texty[faceindex];
7c95608a 3570}
3571
1463f9f1 3572static void face_text_bbox(game_drawstate *ds, grid *g, grid_face *f,
3573 int *x, int *y, int *w, int *h)
3574{
3575 int xx, yy;
3576 face_text_pos(ds, g, f, &xx, &yy);
3577
3578 /* There seems to be a certain amount of trial-and-error involved
3579 * in working out the correct bounding-box for the text. */
3580
3581 *x = xx - ds->tilesize/4 - 1;
3582 *y = yy - ds->tilesize/4 - 3;
3583 *w = ds->tilesize/2 + 2;
3584 *h = ds->tilesize/2 + 5;
3585}
3586
d68b2c10 3587static void game_redraw_clue(drawing *dr, game_drawstate *ds,
3588 game_state *state, int i)
3589{
3590 grid *g = state->game_grid;
3591 grid_face *f = g->faces + i;
3592 int x, y;
918a098a 3593 char c[3];
d68b2c10 3594
918a098a 3595 if (state->clues[i] < 10) {
3596 c[0] = CLUE2CHAR(state->clues[i]);
3597 c[1] = '\0';
3598 } else {
3599 sprintf(c, "%d", state->clues[i]);
3600 }
d68b2c10 3601
3602 face_text_pos(ds, g, f, &x, &y);
3603 draw_text(dr, x, y,
3604 FONT_VARIABLE, ds->tilesize/2,
3605 ALIGN_VCENTRE | ALIGN_HCENTRE,
3606 ds->clue_error[i] ? COL_MISTAKE :
3607 ds->clue_satisfied[i] ? COL_SATISFIED : COL_FOREGROUND, c);
3608}
3609
1463f9f1 3610static void edge_bbox(game_drawstate *ds, grid *g, grid_edge *e,
3611 int *x, int *y, int *w, int *h)
3612{
3613 int x1 = e->dot1->x;
3614 int y1 = e->dot1->y;
3615 int x2 = e->dot2->x;
3616 int y2 = e->dot2->y;
3617 int xmin, xmax, ymin, ymax;
3618
3619 grid_to_screen(ds, g, x1, y1, &x1, &y1);
3620 grid_to_screen(ds, g, x2, y2, &x2, &y2);
3621 /* Allow extra margin for dots, and thickness of lines */
3622 xmin = min(x1, x2) - 2;
3623 xmax = max(x1, x2) + 2;
3624 ymin = min(y1, y2) - 2;
3625 ymax = max(y1, y2) + 2;
3626
3627 *x = xmin;
3628 *y = ymin;
3629 *w = xmax - xmin + 1;
3630 *h = ymax - ymin + 1;
3631}
3632
3633static void dot_bbox(game_drawstate *ds, grid *g, grid_dot *d,
3634 int *x, int *y, int *w, int *h)
3635{
3636 int x1, y1;
3637
3638 grid_to_screen(ds, g, d->x, d->y, &x1, &y1);
3639
3640 *x = x1 - 2;
3641 *y = y1 - 2;
3642 *w = 5;
3643 *h = 5;
3644}
3645
b0a2ee96 3646static const int loopy_line_redraw_phases[] = {
3647 COL_FAINT, COL_LINEUNKNOWN, COL_FOREGROUND, COL_HIGHLIGHT, COL_MISTAKE
3648};
3649#define NPHASES lenof(loopy_line_redraw_phases)
3650
d68b2c10 3651static void game_redraw_line(drawing *dr, game_drawstate *ds,
b0a2ee96 3652 game_state *state, int i, int phase)
d68b2c10 3653{
3654 grid *g = state->game_grid;
3655 grid_edge *e = g->edges + i;
3656 int x1, x2, y1, y2;
3657 int xmin, ymin, xmax, ymax;
3658 int line_colour;
3659
3660 if (state->line_errors[i])
3661 line_colour = COL_MISTAKE;
3662 else if (state->lines[i] == LINE_UNKNOWN)
3663 line_colour = COL_LINEUNKNOWN;
3664 else if (state->lines[i] == LINE_NO)
3665 line_colour = COL_FAINT;
3666 else if (ds->flashing)
3667 line_colour = COL_HIGHLIGHT;
3668 else
3669 line_colour = COL_FOREGROUND;
b0a2ee96 3670 if (line_colour != loopy_line_redraw_phases[phase])
3671 return;
d68b2c10 3672
3673 /* Convert from grid to screen coordinates */
3674 grid_to_screen(ds, g, e->dot1->x, e->dot1->y, &x1, &y1);
3675 grid_to_screen(ds, g, e->dot2->x, e->dot2->y, &x2, &y2);
3676
3677 xmin = min(x1, x2);
3678 xmax = max(x1, x2);
3679 ymin = min(y1, y2);
3680 ymax = max(y1, y2);
3681
3682 if (line_colour == COL_FAINT) {
3683 static int draw_faint_lines = -1;
3684 if (draw_faint_lines < 0) {
3685 char *env = getenv("LOOPY_FAINT_LINES");
3686 draw_faint_lines = (!env || (env[0] == 'y' ||
3687 env[0] == 'Y'));
3688 }
3689 if (draw_faint_lines)
3690 draw_line(dr, x1, y1, x2, y2, line_colour);
3691 } else {
3692 draw_thick_line(dr, 3.0,
3693 x1 + 0.5, y1 + 0.5,
3694 x2 + 0.5, y2 + 0.5,
3695 line_colour);
3696 }
3697}
3698
3699static void game_redraw_dot(drawing *dr, game_drawstate *ds,
3700 game_state *state, int i)
3701{
3702 grid *g = state->game_grid;
3703 grid_dot *d = g->dots + i;
3704 int x, y;
3705
3706 grid_to_screen(ds, g, d->x, d->y, &x, &y);
3707 draw_circle(dr, x, y, 2, COL_FOREGROUND, COL_FOREGROUND);
3708}
3709
1463f9f1 3710static int boxes_intersect(int x0, int y0, int w0, int h0,
3711 int x1, int y1, int w1, int h1)
3712{
3713 /*
3714 * Two intervals intersect iff neither is wholly on one side of
3715 * the other. Two boxes intersect iff their horizontal and
3716 * vertical intervals both intersect.
3717 */
3718 return (x0 < x1+w1 && x1 < x0+w0 && y0 < y1+h1 && y1 < y0+h0);
3719}
3720
3721static void game_redraw_in_rect(drawing *dr, game_drawstate *ds,
3722 game_state *state, int x, int y, int w, int h)
3723{
3724 grid *g = state->game_grid;
3725 int i, phase;
3726 int bx, by, bw, bh;
3727
3728 clip(dr, x, y, w, h);
3729 draw_rect(dr, x, y, w, h, COL_BACKGROUND);
3730
3731 for (i = 0; i < g->num_faces; i++) {
3732 face_text_bbox(ds, g, &g->faces[i], &bx, &by, &bw, &bh);
3733 if (boxes_intersect(x, y, w, h, bx, by, bw, bh))
3734 game_redraw_clue(dr, ds, state, i);
3735 }
3736 for (phase = 0; phase < NPHASES; phase++) {
3737 for (i = 0; i < g->num_edges; i++) {
3738 edge_bbox(ds, g, &g->edges[i], &bx, &by, &bw, &bh);
3739 if (boxes_intersect(x, y, w, h, bx, by, bw, bh))
3740 game_redraw_line(dr, ds, state, i, phase);
3741 }
3742 }
3743 for (i = 0; i < g->num_dots; i++) {
3744 dot_bbox(ds, g, &g->dots[i], &bx, &by, &bw, &bh);
3745 if (boxes_intersect(x, y, w, h, bx, by, bw, bh))
3746 game_redraw_dot(dr, ds, state, i);
3747 }
3748
3749 unclip(dr);
3750 draw_update(dr, x, y, w, h);
3751}
3752
6193da8d 3753static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
3754 game_state *state, int dir, game_ui *ui,
3755 float animtime, float flashtime)
3756{
d68b2c10 3757#define REDRAW_OBJECTS_LIMIT 16 /* Somewhat arbitrary tradeoff */
3758
7c95608a 3759 grid *g = state->game_grid;
3760 int border = BORDER(ds->tilesize);
1463f9f1 3761 int i;
d68b2c10 3762 int flash_changed;
3763 int redraw_everything = FALSE;
3764
3765 int edges[REDRAW_OBJECTS_LIMIT], nedges = 0;
3766 int faces[REDRAW_OBJECTS_LIMIT], nfaces = 0;
3767
3768 /* Redrawing is somewhat involved.
3769 *
3770 * An update can theoretically affect an arbitrary number of edges
3771 * (consider, for example, completing or breaking a cycle which doesn't
3772 * satisfy all the clues -- we'll switch many edges between error and
3773 * normal states). On the other hand, redrawing the whole grid takes a
3774 * while, making the game feel sluggish, and many updates are actually
3775 * quite well localized.
3776 *
3777 * This redraw algorithm attempts to cope with both situations gracefully
3778 * and correctly. For localized changes, we set a clip rectangle, fill
3779 * it with background, and then redraw (a plausible but conservative
3780 * guess at) the objects which intersect the rectangle; if several
3781 * objects need redrawing, we'll do them individually. However, if lots
3782 * of objects are affected, we'll just redraw everything.
3783 *
3784 * The reason for all of this is that it's just not safe to do the redraw
3785 * piecemeal. If you try to draw an antialiased diagonal line over
3786 * itself, you get a slightly thicker antialiased diagonal line, which
3787 * looks rather ugly after a while.
3788 *
3789 * So, we take two passes over the grid. The first attempts to work out
3790 * what needs doing, and the second actually does it.
3791 */
3792
3793 if (!ds->started)
3794 redraw_everything = TRUE;
3795 else {
3796
3797 /* First, trundle through the faces. */
3798 for (i = 0; i < g->num_faces; i++) {
3799 grid_face *f = g->faces + i;
3800 int sides = f->order;
3801 int clue_mistake;
3802 int clue_satisfied;
3803 int n = state->clues[i];
3804 if (n < 0)
3805 continue;
3806
3807 clue_mistake = (face_order(state, i, LINE_YES) > n ||
3808 face_order(state, i, LINE_NO ) > (sides-n));
3809 clue_satisfied = (face_order(state, i, LINE_YES) == n &&
3810 face_order(state, i, LINE_NO ) == (sides-n));
3811
3812 if (clue_mistake != ds->clue_error[i] ||
3813 clue_satisfied != ds->clue_satisfied[i]) {
3814 ds->clue_error[i] = clue_mistake;
3815 ds->clue_satisfied[i] = clue_satisfied;
3816 if (nfaces == REDRAW_OBJECTS_LIMIT)
3817 redraw_everything = TRUE;
3818 else
3819 faces[nfaces++] = i;
3820 }
3821 }
3822
3823 /* Work out what the flash state needs to be. */
3824 if (flashtime > 0 &&
3825 (flashtime <= FLASH_TIME/3 ||
3826 flashtime >= FLASH_TIME*2/3)) {
3827 flash_changed = !ds->flashing;
3828 ds->flashing = TRUE;
3829 } else {
3830 flash_changed = ds->flashing;
3831 ds->flashing = FALSE;
3832 }
3833
3834 /* Now, trundle through the edges. */
3835 for (i = 0; i < g->num_edges; i++) {
3836 char new_ds =
3837 state->line_errors[i] ? DS_LINE_ERROR : state->lines[i];
3838 if (new_ds != ds->lines[i] ||
3839 (flash_changed && state->lines[i] == LINE_YES)) {
3840 ds->lines[i] = new_ds;
3841 if (nedges == REDRAW_OBJECTS_LIMIT)
3842 redraw_everything = TRUE;
3843 else
3844 edges[nedges++] = i;
3845 }
3846 }
3847 }
3848
3849 /* Pass one is now done. Now we do the actual drawing. */
3850 if (redraw_everything) {
7c95608a 3851 int grid_width = g->highest_x - g->lowest_x;
3852 int grid_height = g->highest_y - g->lowest_y;
3853 int w = grid_width * ds->tilesize / g->tilesize;
3854 int h = grid_height * ds->tilesize / g->tilesize;
6193da8d 3855
1463f9f1 3856 game_redraw_in_rect(dr, ds, state,
3857 0, 0, w + 2*border + 1, h + 2*border + 1);
d68b2c10 3858 } else {
c0eb17ce 3859
d68b2c10 3860 /* Right. Now we roll up our sleeves. */
3861
3862 for (i = 0; i < nfaces; i++) {
3863 grid_face *f = g->faces + faces[i];
d68b2c10 3864 int x, y, w, h;
1463f9f1 3865
3866 face_text_bbox(ds, g, f, &x, &y, &w, &h);
3867 game_redraw_in_rect(dr, ds, state, x, y, w, h);
d68b2c10 3868 }
c0eb17ce 3869
d68b2c10 3870 for (i = 0; i < nedges; i++) {
1463f9f1 3871 grid_edge *e = g->edges + edges[i];
3872 int x, y, w, h;
6193da8d 3873
1463f9f1 3874 edge_bbox(ds, g, e, &x, &y, &w, &h);
3875 game_redraw_in_rect(dr, ds, state, x, y, w, h);
d68b2c10 3876 }
6193da8d 3877 }
d68b2c10 3878
7c95608a 3879 ds->started = TRUE;
6193da8d 3880}
3881
6193da8d 3882static float game_flash_length(game_state *oldstate, game_state *newstate,
3883 int dir, game_ui *ui)
3884{
3885 if (!oldstate->solved && newstate->solved &&
3886 !oldstate->cheated && !newstate->cheated) {
3887 return FLASH_TIME;
3888 }
3889
3890 return 0.0F;
3891}
3892
4496362f 3893static int game_is_solved(game_state *state)
3894{
3895 return state->solved;
3896}
3897
6193da8d 3898static void game_print_size(game_params *params, float *x, float *y)
3899{
3900 int pw, ph;
3901
3902 /*
7c95608a 3903 * I'll use 7mm "squares" by default.
6193da8d 3904 */
3905 game_compute_size(params, 700, &pw, &ph);
3906 *x = pw / 100.0F;
3907 *y = ph / 100.0F;
3908}
3909
3910static void game_print(drawing *dr, game_state *state, int tilesize)
3911{
6193da8d 3912 int ink = print_mono_colour(dr, 0);
7c95608a 3913 int i;
6193da8d 3914 game_drawstate ads, *ds = &ads;
7c95608a 3915 grid *g = state->game_grid;
4413ef0f 3916
092e9395 3917 ds->tilesize = tilesize;
6193da8d 3918
7c95608a 3919 for (i = 0; i < g->num_dots; i++) {
3920 int x, y;
3921 grid_to_screen(ds, g, g->dots[i].x, g->dots[i].y, &x, &y);
3922 draw_circle(dr, x, y, ds->tilesize / 15, ink, ink);
121aae4b 3923 }
6193da8d 3924
3925 /*
3926 * Clues.
3927 */
7c95608a 3928 for (i = 0; i < g->num_faces; i++) {
3929 grid_face *f = g->faces + i;
3930 int clue = state->clues[i];
3931 if (clue >= 0) {
121aae4b 3932 char c[2];
7c95608a 3933 int x, y;
3934 c[0] = CLUE2CHAR(clue);
121aae4b 3935 c[1] = '\0';
7c95608a 3936 face_text_pos(ds, g, f, &x, &y);
3937 draw_text(dr, x, y,
3938 FONT_VARIABLE, ds->tilesize / 2,
121aae4b 3939 ALIGN_VCENTRE | ALIGN_HCENTRE, ink, c);
3940 }
3941 }
6193da8d 3942
3943 /*
7c95608a 3944 * Lines.
6193da8d 3945 */
7c95608a 3946 for (i = 0; i < g->num_edges; i++) {
3947 int thickness = (state->lines[i] == LINE_YES) ? 30 : 150;
3948 grid_edge *e = g->edges + i;
3949 int x1, y1, x2, y2;
3950 grid_to_screen(ds, g, e->dot1->x, e->dot1->y, &x1, &y1);
3951 grid_to_screen(ds, g, e->dot2->x, e->dot2->y, &x2, &y2);
3952 if (state->lines[i] == LINE_YES)
3953 {
3954 /* (dx, dy) points from (x1, y1) to (x2, y2).
3955 * The line is then "fattened" in a perpendicular
3956 * direction to create a thin rectangle. */
3957 double d = sqrt(SQ((double)x1 - x2) + SQ((double)y1 - y2));
3958 double dx = (x2 - x1) / d;
3959 double dy = (y2 - y1) / d;
1515b973 3960 int points[8];
3961
7c95608a 3962 dx = (dx * ds->tilesize) / thickness;
3963 dy = (dy * ds->tilesize) / thickness;
b1535c90 3964 points[0] = x1 + (int)dy;
3965 points[1] = y1 - (int)dx;
3966 points[2] = x1 - (int)dy;
3967 points[3] = y1 + (int)dx;
3968 points[4] = x2 - (int)dy;
3969 points[5] = y2 + (int)dx;
3970 points[6] = x2 + (int)dy;
3971 points[7] = y2 - (int)dx;
7c95608a 3972 draw_polygon(dr, points, 4, ink, ink);
3973 }
3974 else
3975 {
3976 /* Draw a dotted line */
3977 int divisions = 6;
3978 int j;
3979 for (j = 1; j < divisions; j++) {
3980 /* Weighted average */
3981 int x = (x1 * (divisions -j) + x2 * j) / divisions;
3982 int y = (y1 * (divisions -j) + y2 * j) / divisions;
3983 draw_circle(dr, x, y, ds->tilesize / thickness, ink, ink);
3984 }
3985 }
121aae4b 3986 }
6193da8d 3987}
3988
3989#ifdef COMBINED
3990#define thegame loopy
3991#endif
3992
3993const struct game thegame = {
750037d7 3994 "Loopy", "games.loopy", "loopy",
6193da8d 3995 default_params,
3996 game_fetch_preset,
3997 decode_params,
3998 encode_params,
3999 free_params,
4000 dup_params,
4001 TRUE, game_configure, custom_params,
4002 validate_params,
4003 new_game_desc,
4004 validate_desc,
4005 new_game,
4006 dup_game,
4007 free_game,
4008 1, solve_game,
fa3abef5 4009 TRUE, game_can_format_as_text_now, game_text_format,
6193da8d 4010 new_ui,
4011 free_ui,
4012 encode_ui,
4013 decode_ui,
4014 game_changed_state,
4015 interpret_move,
4016 execute_move,
4017 PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
4018 game_colours,
4019 game_new_drawstate,
4020 game_free_drawstate,
4021 game_redraw,
4022 game_anim_length,
4023 game_flash_length,
4496362f 4024 game_is_solved,
6193da8d 4025 TRUE, FALSE, game_print_size, game_print,
121aae4b 4026 FALSE /* wants_statusbar */,
6193da8d 4027 FALSE, game_timing_state,
121aae4b 4028 0, /* mouse_priorities */
6193da8d 4029};
5ca89681 4030
4031#ifdef STANDALONE_SOLVER
4032
4033/*
4034 * Half-hearted standalone solver. It can't output the solution to
4035 * anything but a square puzzle, and it can't log the deductions
4036 * it makes either. But it can solve square puzzles, and more
4037 * importantly it can use its solver to grade the difficulty of
4038 * any puzzle you give it.
4039 */
4040
4041#include <stdarg.h>
4042
4043int main(int argc, char **argv)
4044{
4045 game_params *p;
4046 game_state *s;
4047 char *id = NULL, *desc, *err;
4048 int grade = FALSE;
4049 int ret, diff;
4050#if 0 /* verbose solver not supported here (yet) */
4051 int really_verbose = FALSE;
4052#endif
4053
4054 while (--argc > 0) {
4055 char *p = *++argv;
4056#if 0 /* verbose solver not supported here (yet) */
4057 if (!strcmp(p, "-v")) {
4058 really_verbose = TRUE;
4059 } else
4060#endif
4061 if (!strcmp(p, "-g")) {
4062 grade = TRUE;
4063 } else if (*p == '-') {
4064 fprintf(stderr, "%s: unrecognised option `%s'\n", argv[0], p);
4065 return 1;
4066 } else {
4067 id = p;
4068 }
4069 }
4070
4071 if (!id) {
4072 fprintf(stderr, "usage: %s [-g | -v] <game_id>\n", argv[0]);
4073 return 1;
4074 }
4075
4076 desc = strchr(id, ':');
4077 if (!desc) {
4078 fprintf(stderr, "%s: game id expects a colon in it\n", argv[0]);
4079 return 1;
4080 }
4081 *desc++ = '\0';
4082
4083 p = default_params();
4084 decode_params(p, id);
4085 err = validate_desc(p, desc);
4086 if (err) {
4087 fprintf(stderr, "%s: %s\n", argv[0], err);
4088 return 1;
4089 }
4090 s = new_game(NULL, p, desc);
4091
4092 /*
4093 * When solving an Easy puzzle, we don't want to bother the
4094 * user with Hard-level deductions. For this reason, we grade
4095 * the puzzle internally before doing anything else.
4096 */
4097 ret = -1; /* placate optimiser */
4098 for (diff = 0; diff < DIFF_MAX; diff++) {
4099 solver_state *sstate_new;
4100 solver_state *sstate = new_solver_state((game_state *)s, diff);
4101
315e47b9 4102 sstate_new = solve_game_rec(sstate);
5ca89681 4103
4104 if (sstate_new->solver_status == SOLVER_MISTAKE)
4105 ret = 0;
4106 else if (sstate_new->solver_status == SOLVER_SOLVED)
4107 ret = 1;
4108 else
4109 ret = 2;
4110
4111 free_solver_state(sstate_new);
4112 free_solver_state(sstate);
4113
4114 if (ret < 2)
4115 break;
4116 }
4117
4118 if (diff == DIFF_MAX) {
4119 if (grade)
4120 printf("Difficulty rating: harder than Hard, or ambiguous\n");
4121 else
4122 printf("Unable to find a unique solution\n");
4123 } else {
4124 if (grade) {
4125 if (ret == 0)
4126 printf("Difficulty rating: impossible (no solution exists)\n");
4127 else if (ret == 1)
4128 printf("Difficulty rating: %s\n", diffnames[diff]);
4129 } else {
4130 solver_state *sstate_new;
4131 solver_state *sstate = new_solver_state((game_state *)s, diff);
4132
4133 /* If we supported a verbose solver, we'd set verbosity here */
4134
315e47b9 4135 sstate_new = solve_game_rec(sstate);
5ca89681 4136
4137 if (sstate_new->solver_status == SOLVER_MISTAKE)
4138 printf("Puzzle is inconsistent\n");
4139 else {
4140 assert(sstate_new->solver_status == SOLVER_SOLVED);
4141 if (s->grid_type == 0) {
4142 fputs(game_text_format(sstate_new->state), stdout);
4143 } else {
4144 printf("Unable to output non-square grids\n");
4145 }
4146 }
4147
4148 free_solver_state(sstate_new);
4149 free_solver_state(sstate);
4150 }
4151 }
4152
4153 return 0;
4154}
4155
4156#endif