Introduce diagonal movement keys on the numeric keypad, and use them
[sgt/puzzles] / random.c
CommitLineData
720a8fb7 1/*
2 * random.c: Internal random number generator, guaranteed to work
3 * the same way on all platforms. Used when generating an initial
4 * game state from a random game seed; required to ensure that game
5 * seeds can be exchanged between versions of a puzzle compiled for
6 * different platforms.
7 *
8 * The generator is based on SHA-1. This is almost certainly
9 * overkill, but I had the SHA-1 code kicking around and it was
10 * easier to reuse it than to do anything else!
11 */
12
13#include <assert.h>
2ef96bd6 14#include <string.h>
720a8fb7 15
16#include "puzzles.h"
17
18typedef unsigned long uint32;
19
20typedef struct {
21 uint32 h[5];
22 unsigned char block[64];
23 int blkused;
24 uint32 lenhi, lenlo;
25} SHA_State;
26
27/* ----------------------------------------------------------------------
28 * Core SHA algorithm: processes 16-word blocks into a message digest.
29 */
30
31#define rol(x,y) ( ((x) << (y)) | (((uint32)x) >> (32-y)) )
32
33static void SHA_Core_Init(uint32 h[5])
34{
35 h[0] = 0x67452301;
36 h[1] = 0xefcdab89;
37 h[2] = 0x98badcfe;
38 h[3] = 0x10325476;
39 h[4] = 0xc3d2e1f0;
40}
41
42static void SHATransform(uint32 * digest, uint32 * block)
43{
44 uint32 w[80];
45 uint32 a, b, c, d, e;
46 int t;
47
48 for (t = 0; t < 16; t++)
49 w[t] = block[t];
50
51 for (t = 16; t < 80; t++) {
52 uint32 tmp = w[t - 3] ^ w[t - 8] ^ w[t - 14] ^ w[t - 16];
53 w[t] = rol(tmp, 1);
54 }
55
56 a = digest[0];
57 b = digest[1];
58 c = digest[2];
59 d = digest[3];
60 e = digest[4];
61
62 for (t = 0; t < 20; t++) {
63 uint32 tmp =
64 rol(a, 5) + ((b & c) | (d & ~b)) + e + w[t] + 0x5a827999;
65 e = d;
66 d = c;
67 c = rol(b, 30);
68 b = a;
69 a = tmp;
70 }
71 for (t = 20; t < 40; t++) {
72 uint32 tmp = rol(a, 5) + (b ^ c ^ d) + e + w[t] + 0x6ed9eba1;
73 e = d;
74 d = c;
75 c = rol(b, 30);
76 b = a;
77 a = tmp;
78 }
79 for (t = 40; t < 60; t++) {
80 uint32 tmp = rol(a,
81 5) + ((b & c) | (b & d) | (c & d)) + e + w[t] +
82 0x8f1bbcdc;
83 e = d;
84 d = c;
85 c = rol(b, 30);
86 b = a;
87 a = tmp;
88 }
89 for (t = 60; t < 80; t++) {
90 uint32 tmp = rol(a, 5) + (b ^ c ^ d) + e + w[t] + 0xca62c1d6;
91 e = d;
92 d = c;
93 c = rol(b, 30);
94 b = a;
95 a = tmp;
96 }
97
98 digest[0] += a;
99 digest[1] += b;
100 digest[2] += c;
101 digest[3] += d;
102 digest[4] += e;
103}
104
105/* ----------------------------------------------------------------------
106 * Outer SHA algorithm: take an arbitrary length byte string,
107 * convert it into 16-word blocks with the prescribed padding at
108 * the end, and pass those blocks to the core SHA algorithm.
109 */
110
111static void SHA_Init(SHA_State * s)
112{
113 SHA_Core_Init(s->h);
114 s->blkused = 0;
115 s->lenhi = s->lenlo = 0;
116}
117
118static void SHA_Bytes(SHA_State * s, void *p, int len)
119{
120 unsigned char *q = (unsigned char *) p;
121 uint32 wordblock[16];
122 uint32 lenw = len;
123 int i;
124
125 /*
126 * Update the length field.
127 */
128 s->lenlo += lenw;
129 s->lenhi += (s->lenlo < lenw);
130
131 if (s->blkused && s->blkused + len < 64) {
132 /*
133 * Trivial case: just add to the block.
134 */
135 memcpy(s->block + s->blkused, q, len);
136 s->blkused += len;
137 } else {
138 /*
139 * We must complete and process at least one block.
140 */
141 while (s->blkused + len >= 64) {
142 memcpy(s->block + s->blkused, q, 64 - s->blkused);
143 q += 64 - s->blkused;
144 len -= 64 - s->blkused;
145 /* Now process the block. Gather bytes big-endian into words */
146 for (i = 0; i < 16; i++) {
147 wordblock[i] =
148 (((uint32) s->block[i * 4 + 0]) << 24) |
149 (((uint32) s->block[i * 4 + 1]) << 16) |
150 (((uint32) s->block[i * 4 + 2]) << 8) |
151 (((uint32) s->block[i * 4 + 3]) << 0);
152 }
153 SHATransform(s->h, wordblock);
154 s->blkused = 0;
155 }
156 memcpy(s->block, q, len);
157 s->blkused = len;
158 }
159}
160
161static void SHA_Final(SHA_State * s, unsigned char *output)
162{
163 int i;
164 int pad;
165 unsigned char c[64];
166 uint32 lenhi, lenlo;
167
168 if (s->blkused >= 56)
169 pad = 56 + 64 - s->blkused;
170 else
171 pad = 56 - s->blkused;
172
173 lenhi = (s->lenhi << 3) | (s->lenlo >> (32 - 3));
174 lenlo = (s->lenlo << 3);
175
176 memset(c, 0, pad);
177 c[0] = 0x80;
178 SHA_Bytes(s, &c, pad);
179
180 c[0] = (lenhi >> 24) & 0xFF;
181 c[1] = (lenhi >> 16) & 0xFF;
182 c[2] = (lenhi >> 8) & 0xFF;
183 c[3] = (lenhi >> 0) & 0xFF;
184 c[4] = (lenlo >> 24) & 0xFF;
185 c[5] = (lenlo >> 16) & 0xFF;
186 c[6] = (lenlo >> 8) & 0xFF;
187 c[7] = (lenlo >> 0) & 0xFF;
188
189 SHA_Bytes(s, &c, 8);
190
191 for (i = 0; i < 5; i++) {
192 output[i * 4] = (s->h[i] >> 24) & 0xFF;
193 output[i * 4 + 1] = (s->h[i] >> 16) & 0xFF;
194 output[i * 4 + 2] = (s->h[i] >> 8) & 0xFF;
195 output[i * 4 + 3] = (s->h[i]) & 0xFF;
196 }
197}
198
199static void SHA_Simple(void *p, int len, unsigned char *output)
200{
201 SHA_State s;
202
203 SHA_Init(&s);
204 SHA_Bytes(&s, p, len);
205 SHA_Final(&s, output);
206}
207
208/* ----------------------------------------------------------------------
209 * The random number generator.
210 */
211
212struct random_state {
213 unsigned char seedbuf[40];
214 unsigned char databuf[20];
215 int pos;
216};
217
218random_state *random_init(char *seed, int len)
219{
220 random_state *state;
221
222 state = snew(random_state);
223
224 SHA_Simple(seed, len, state->seedbuf);
225 SHA_Simple(state->seedbuf, 20, state->seedbuf + 20);
226 SHA_Simple(state->seedbuf, 40, state->databuf);
227 state->pos = 0;
228
229 return state;
230}
231
232unsigned long random_bits(random_state *state, int bits)
233{
234 int ret = 0;
235 int n;
236
237 for (n = 0; n < bits; n += 8) {
238 if (state->pos >= 20) {
239 int i;
240
241 for (i = 0; i < 20; i++) {
242 if (state->seedbuf[i] != 0xFF) {
243 state->seedbuf[i]++;
244 break;
245 } else
246 state->seedbuf[i] = 0;
247 }
248 SHA_Simple(state->seedbuf, 40, state->databuf);
249 state->pos = 0;
250 }
251 ret = (ret << 8) | state->databuf[state->pos++];
252 }
253
254 ret &= (1 << bits) - 1;
255 return ret;
256}
257
258unsigned long random_upto(random_state *state, unsigned long limit)
259{
260 int bits = 0;
261 unsigned long max, divisor, data;
262
263 while ((limit >> bits) != 0)
264 bits++;
265
266 bits += 3;
267 assert(bits < 32);
268
269 max = 1 << bits;
270 divisor = max / limit;
271 max = limit * divisor;
272
273 do {
274 data = random_bits(state, bits);
275 } while (data >= max);
276
277 return data / divisor;
278}
279
280void random_free(random_state *state)
281{
282 sfree(state);
283}