Cleanup: remove the game_state parameter to game_colours(). No game
[sgt/puzzles] / flip.c
CommitLineData
f4afe206 1/*
2 * flip.c: Puzzle involving lighting up all the squares on a grid,
3 * where each click toggles an overlapping set of lights.
4 */
5
f4afe206 6#include <stdio.h>
7#include <stdlib.h>
8#include <string.h>
9#include <assert.h>
10#include <ctype.h>
11#include <math.h>
12
13#include "puzzles.h"
14#include "tree234.h"
15
16enum {
17 COL_BACKGROUND,
18 COL_WRONG,
19 COL_RIGHT,
20 COL_GRID,
21 COL_DIAG,
79cb09e9 22 COL_HINT,
ce6af7f2 23 COL_CURSOR,
f4afe206 24 NCOLOURS
25};
26
27#define PREFERRED_TILE_SIZE 48
28#define TILE_SIZE (ds->tilesize)
29#define BORDER (TILE_SIZE / 2)
30#define COORD(x) ( (x) * TILE_SIZE + BORDER )
31#define FROMCOORD(x) ( ((x) - BORDER + TILE_SIZE) / TILE_SIZE - 1 )
32
d1044751 33#define ANIM_TIME 0.25F
f4afe206 34#define FLASH_FRAME 0.07F
35
36/*
37 * Possible ways to decide which lights are toggled by each click.
38 * Essentially, each of these describes a means of inventing a
39 * matrix over GF(2).
40 */
41enum {
42 CROSSES, RANDOM
43};
44
45struct game_params {
46 int w, h;
47 int matrix_type;
48};
49
50/*
51 * This structure is shared between all the game_states describing
52 * a particular game, so it's reference-counted.
53 */
54struct matrix {
55 int refcount;
56 unsigned char *matrix; /* array of (w*h) by (w*h) */
57};
58
59struct game_state {
60 int w, h;
79cb09e9 61 int moves, completed, cheated, hints_active;
f4afe206 62 unsigned char *grid; /* array of w*h */
63 struct matrix *matrix;
64};
65
66static game_params *default_params(void)
67{
68 game_params *ret = snew(game_params);
69
70 ret->w = ret->h = 5;
71 ret->matrix_type = CROSSES;
72
73 return ret;
74}
75
76static const struct game_params flip_presets[] = {
77 {3, 3, CROSSES},
78 {4, 4, CROSSES},
79 {5, 5, CROSSES},
80 {3, 3, RANDOM},
81 {4, 4, RANDOM},
82 {5, 5, RANDOM},
83};
84
85static int game_fetch_preset(int i, char **name, game_params **params)
86{
87 game_params *ret;
88 char str[80];
89
90 if (i < 0 || i >= lenof(flip_presets))
91 return FALSE;
92
93 ret = snew(game_params);
94 *ret = flip_presets[i];
95
96 sprintf(str, "%dx%d %s", ret->w, ret->h,
97 ret->matrix_type == CROSSES ? "Crosses" : "Random");
98
99 *name = dupstr(str);
100 *params = ret;
101 return TRUE;
102}
103
104static void free_params(game_params *params)
105{
106 sfree(params);
107}
108
109static game_params *dup_params(game_params *params)
110{
111 game_params *ret = snew(game_params);
112 *ret = *params; /* structure copy */
113 return ret;
114}
115
116static void decode_params(game_params *ret, char const *string)
117{
118 ret->w = ret->h = atoi(string);
89167dad 119 while (*string && isdigit((unsigned char)*string)) string++;
f4afe206 120 if (*string == 'x') {
121 string++;
122 ret->h = atoi(string);
89167dad 123 while (*string && isdigit((unsigned char)*string)) string++;
f4afe206 124 }
125 if (*string == 'r') {
126 string++;
127 ret->matrix_type = RANDOM;
128 } else if (*string == 'c') {
129 string++;
130 ret->matrix_type = CROSSES;
131 }
132}
133
134static char *encode_params(game_params *params, int full)
135{
136 char data[256];
137
138 sprintf(data, "%dx%d%s", params->w, params->h,
139 !full ? "" : params->matrix_type == CROSSES ? "c" : "r");
140
141 return dupstr(data);
142}
143
144static config_item *game_configure(game_params *params)
145{
146 config_item *ret = snewn(4, config_item);
147 char buf[80];
148
149 ret[0].name = "Width";
150 ret[0].type = C_STRING;
151 sprintf(buf, "%d", params->w);
152 ret[0].sval = dupstr(buf);
153 ret[0].ival = 0;
154
155 ret[1].name = "Height";
156 ret[1].type = C_STRING;
157 sprintf(buf, "%d", params->h);
158 ret[1].sval = dupstr(buf);
159 ret[1].ival = 0;
160
161 ret[2].name = "Shape type";
162 ret[2].type = C_CHOICES;
163 ret[2].sval = ":Crosses:Random";
164 ret[2].ival = params->matrix_type;
165
166 ret[3].name = NULL;
167 ret[3].type = C_END;
168 ret[3].sval = NULL;
169 ret[3].ival = 0;
170
171 return ret;
172}
173
174static game_params *custom_params(config_item *cfg)
175{
176 game_params *ret = snew(game_params);
177
178 ret->w = atoi(cfg[0].sval);
179 ret->h = atoi(cfg[1].sval);
180 ret->matrix_type = cfg[2].ival;
181
182 return ret;
183}
184
3ff276f2 185static char *validate_params(game_params *params, int full)
f4afe206 186{
187 if (params->w <= 0 || params->h <= 0)
188 return "Width and height must both be greater than zero";
189 return NULL;
190}
191
192static char *encode_bitmap(unsigned char *bmp, int len)
193{
194 int slen = (len + 3) / 4;
195 char *ret;
196 int i;
197
198 ret = snewn(slen + 1, char);
199 for (i = 0; i < slen; i++) {
200 int j, v;
201 v = 0;
202 for (j = 0; j < 4; j++)
203 if (i*4+j < len && bmp[i*4+j])
204 v |= 8 >> j;
205 ret[i] = "0123456789abcdef"[v];
206 }
207 ret[slen] = '\0';
208 return ret;
209}
210
211static void decode_bitmap(unsigned char *bmp, int len, char *hex)
212{
213 int slen = (len + 3) / 4;
214 int i;
215
216 for (i = 0; i < slen; i++) {
217 int j, v, c = hex[i];
218 if (c >= '0' && c <= '9')
219 v = c - '0';
220 else if (c >= 'A' && c <= 'F')
221 v = c - 'A' + 10;
222 else if (c >= 'a' && c <= 'f')
223 v = c - 'a' + 10;
224 else
225 v = 0; /* shouldn't happen */
226 for (j = 0; j < 4; j++) {
227 if (i*4+j < len) {
228 if (v & (8 >> j))
229 bmp[i*4+j] = 1;
230 else
231 bmp[i*4+j] = 0;
232 }
233 }
234 }
235}
236
237/*
238 * Structure used during random matrix generation, and a compare
239 * function to permit storage in a tree234.
240 */
241struct sq {
242 int cx, cy; /* coords of click square */
243 int x, y; /* coords of output square */
244 /*
245 * Number of click squares which currently affect this output
246 * square.
247 */
248 int coverage;
249 /*
250 * Number of output squares currently affected by this click
251 * square.
252 */
253 int ominosize;
254};
255#define SORT(field) do { \
256 if (a->field < b->field) \
257 return -1; \
258 else if (a->field > b->field) \
259 return +1; \
260} while (0)
261/*
262 * Compare function for choosing the next square to add. We must
263 * sort by coverage, then by omino size, then everything else.
264 */
265static int sqcmp_pick(void *av, void *bv)
266{
267 struct sq *a = (struct sq *)av;
268 struct sq *b = (struct sq *)bv;
269 SORT(coverage);
270 SORT(ominosize);
271 SORT(cy);
272 SORT(cx);
273 SORT(y);
274 SORT(x);
275 return 0;
276}
277/*
278 * Compare function for adjusting the coverage figures after a
279 * change. We sort first by coverage and output square, then by
280 * everything else.
281 */
282static int sqcmp_cov(void *av, void *bv)
283{
284 struct sq *a = (struct sq *)av;
285 struct sq *b = (struct sq *)bv;
286 SORT(coverage);
287 SORT(y);
288 SORT(x);
289 SORT(ominosize);
290 SORT(cy);
291 SORT(cx);
292 return 0;
293}
294/*
295 * Compare function for adjusting the omino sizes after a change.
296 * We sort first by omino size and input square, then by everything
297 * else.
298 */
299static int sqcmp_osize(void *av, void *bv)
300{
301 struct sq *a = (struct sq *)av;
302 struct sq *b = (struct sq *)bv;
303 SORT(ominosize);
304 SORT(cy);
305 SORT(cx);
306 SORT(coverage);
307 SORT(y);
308 SORT(x);
309 return 0;
310}
311static void addsq(tree234 *t, int w, int h, int cx, int cy,
312 int x, int y, unsigned char *matrix)
313{
314 int wh = w * h;
315 struct sq *sq;
316 int i;
317
318 if (x < 0 || x >= w || y < 0 || y >= h)
319 return;
320 if (abs(x-cx) > 1 || abs(y-cy) > 1)
321 return;
322 if (matrix[(cy*w+cx) * wh + y*w+x])
323 return;
324
325 sq = snew(struct sq);
326 sq->cx = cx;
327 sq->cy = cy;
328 sq->x = x;
329 sq->y = y;
330 sq->coverage = sq->ominosize = 0;
331 for (i = 0; i < wh; i++) {
332 if (matrix[i * wh + y*w+x])
333 sq->coverage++;
334 if (matrix[(cy*w+cx) * wh + i])
335 sq->ominosize++;
336 }
337
338 if (add234(t, sq) != sq)
339 sfree(sq); /* already there */
340}
341static void addneighbours(tree234 *t, int w, int h, int cx, int cy,
342 int x, int y, unsigned char *matrix)
343{
344 addsq(t, w, h, cx, cy, x-1, y, matrix);
345 addsq(t, w, h, cx, cy, x+1, y, matrix);
346 addsq(t, w, h, cx, cy, x, y-1, matrix);
347 addsq(t, w, h, cx, cy, x, y+1, matrix);
348}
349
350static char *new_game_desc(game_params *params, random_state *rs,
c566778e 351 char **aux, int interactive)
f4afe206 352{
353 int w = params->w, h = params->h, wh = w * h;
354 int i, j;
355 unsigned char *matrix, *grid;
356 char *mbmp, *gbmp, *ret;
357
358 matrix = snewn(wh * wh, unsigned char);
359 grid = snewn(wh, unsigned char);
360
361 /*
362 * First set up the matrix.
363 */
364 switch (params->matrix_type) {
365 case CROSSES:
366 for (i = 0; i < wh; i++) {
367 int ix = i % w, iy = i / w;
368 for (j = 0; j < wh; j++) {
369 int jx = j % w, jy = j / w;
370 if (abs(jx - ix) + abs(jy - iy) <= 1)
371 matrix[i*wh+j] = 1;
372 else
373 matrix[i*wh+j] = 0;
374 }
375 }
376 break;
377 case RANDOM:
378 while (1) {
379 tree234 *pick, *cov, *osize;
380 int limit;
381
382 pick = newtree234(sqcmp_pick);
383 cov = newtree234(sqcmp_cov);
384 osize = newtree234(sqcmp_osize);
385
386 memset(matrix, 0, wh * wh);
387 for (i = 0; i < wh; i++) {
388 matrix[i*wh+i] = 1;
389 }
390
391 for (i = 0; i < wh; i++) {
392 int ix = i % w, iy = i / w;
393 addneighbours(pick, w, h, ix, iy, ix, iy, matrix);
394 addneighbours(cov, w, h, ix, iy, ix, iy, matrix);
395 addneighbours(osize, w, h, ix, iy, ix, iy, matrix);
396 }
397
398 /*
399 * Repeatedly choose a square to add to the matrix,
400 * until we have enough. I'll arbitrarily choose our
401 * limit to be the same as the total number of set bits
402 * in the crosses matrix.
403 */
404 limit = 4*wh - 2*(w+h); /* centre squares already present */
405
406 while (limit-- > 0) {
407 struct sq *sq, *sq2, sqlocal;
408 int k;
409
410 /*
411 * Find the lowest element in the pick tree.
412 */
413 sq = index234(pick, 0);
414
415 /*
416 * Find the highest element with the same coverage
417 * and omino size, by setting all other elements to
418 * lots.
419 */
420 sqlocal = *sq;
421 sqlocal.cx = sqlocal.cy = sqlocal.x = sqlocal.y = wh;
422 sq = findrelpos234(pick, &sqlocal, NULL, REL234_LT, &k);
423 assert(sq != 0);
424
425 /*
426 * Pick at random from all elements up to k of the
427 * pick tree.
428 */
429 k = random_upto(rs, k+1);
430 sq = delpos234(pick, k);
431 del234(cov, sq);
432 del234(osize, sq);
433
434 /*
435 * Add this square to the matrix.
436 */
437 matrix[(sq->cy * w + sq->cx) * wh + (sq->y * w + sq->x)] = 1;
438
439 /*
440 * Correct the matrix coverage field of any sq
441 * which points at this output square.
442 */
443 sqlocal = *sq;
444 sqlocal.cx = sqlocal.cy = sqlocal.ominosize = -1;
445 while ((sq2 = findrel234(cov, &sqlocal, NULL,
446 REL234_GT)) != NULL &&
447 sq2->coverage == sq->coverage &&
448 sq2->x == sq->x && sq2->y == sq->y) {
449 del234(pick, sq2);
450 del234(cov, sq2);
451 del234(osize, sq2);
452 sq2->coverage++;
453 add234(pick, sq2);
454 add234(cov, sq2);
455 add234(osize, sq2);
456 }
457
458 /*
459 * Correct the omino size field of any sq which
460 * points at this input square.
461 */
462 sqlocal = *sq;
463 sqlocal.x = sqlocal.y = sqlocal.coverage = -1;
464 while ((sq2 = findrel234(osize, &sqlocal, NULL,
465 REL234_GT)) != NULL &&
466 sq2->ominosize == sq->ominosize &&
467 sq2->cx == sq->cx && sq2->cy == sq->cy) {
468 del234(pick, sq2);
469 del234(cov, sq2);
470 del234(osize, sq2);
471 sq2->ominosize++;
472 add234(pick, sq2);
473 add234(cov, sq2);
474 add234(osize, sq2);
475 }
476
477 /*
478 * The sq we actually picked out of the tree is
479 * finished with; but its neighbours now need to
480 * appear.
481 */
482 addneighbours(pick, w,h, sq->cx,sq->cy, sq->x,sq->y, matrix);
483 addneighbours(cov, w,h, sq->cx,sq->cy, sq->x,sq->y, matrix);
484 addneighbours(osize, w,h, sq->cx,sq->cy, sq->x,sq->y, matrix);
485 sfree(sq);
486 }
487
488 /*
489 * Free all remaining sq structures.
490 */
491 {
492 struct sq *sq;
493 while ((sq = delpos234(pick, 0)) != NULL)
494 sfree(sq);
495 }
496 freetree234(pick);
497 freetree234(cov);
498 freetree234(osize);
499
500 /*
501 * Finally, check to see if any two matrix rows are
502 * exactly identical. If so, this is not an acceptable
503 * matrix, and we give up and go round again.
504 *
505 * I haven't been immediately able to think of a
506 * plausible means of algorithmically avoiding this
507 * situation (by, say, making a small perturbation to
508 * an offending matrix), so for the moment I'm just
509 * going to deal with it by throwing the whole thing
510 * away. I suspect this will lead to scalability
511 * problems (since most of the things happening in
512 * these matrices are local, the chance of _some_
513 * neighbourhood having two identical regions will
514 * increase with the grid area), but so far this puzzle
515 * seems to be really hard at large sizes so I'm not
516 * massively worried yet. Anyone needs this done
517 * better, they're welcome to submit a patch.
518 */
519 for (i = 0; i < wh; i++) {
520 for (j = 0; j < wh; j++)
521 if (i != j &&
522 !memcmp(matrix + i * wh, matrix + j * wh, wh))
523 break;
524 if (j < wh)
525 break;
526 }
527 if (i == wh)
528 break; /* no matches found */
529 }
530 break;
531 }
532
533 /*
534 * Now invent a random initial set of lights.
535 *
536 * At first glance it looks as if it might be quite difficult
537 * to choose equiprobably from all soluble light sets. After
538 * all, soluble light sets are those in the image space of the
539 * transformation matrix; so first we'd have to identify that
540 * space and its dimension, then pick a random coordinate for
541 * each basis vector and recombine. Lot of fiddly matrix
542 * algebra there.
543 *
544 * However, vector spaces are nicely orthogonal and relieve us
545 * of all that difficulty. For every point in the image space,
546 * there are precisely as many points in the input space that
547 * map to it as there are elements in the kernel of the
548 * transformation matrix (because adding any kernel element to
549 * the input does not change the output, and because any two
550 * inputs mapping to the same output must differ by an element
551 * of the kernel because that's what the kernel _is_); and
552 * these cosets are all disjoint (obviously, since no input
553 * point can map to more than one output point) and cover the
554 * whole space (equally obviously, because no input point can
555 * map to fewer than one output point!).
556 *
557 * So the input space contains the same number of points for
558 * each point in the output space; thus, we can simply choose
559 * equiprobably from elements of the _input_ space, and filter
560 * the result through the transformation matrix in the obvious
561 * way, and we thereby guarantee to choose equiprobably from
562 * all the output points. Phew!
563 */
564 while (1) {
565 memset(grid, 0, wh);
566 for (i = 0; i < wh; i++) {
567 int v = random_upto(rs, 2);
568 if (v) {
569 for (j = 0; j < wh; j++)
570 grid[j] ^= matrix[i*wh+j];
571 }
572 }
573 /*
574 * Ensure we don't have the starting state already!
575 */
576 for (i = 0; i < wh; i++)
577 if (grid[i])
578 break;
579 if (i < wh)
580 break;
581 }
582
583 /*
584 * Now encode the matrix and the starting grid as a game
585 * description. We'll do this by concatenating two great big
586 * hex bitmaps.
587 */
588 mbmp = encode_bitmap(matrix, wh*wh);
589 gbmp = encode_bitmap(grid, wh);
590 ret = snewn(strlen(mbmp) + strlen(gbmp) + 2, char);
591 sprintf(ret, "%s,%s", mbmp, gbmp);
592 sfree(mbmp);
593 sfree(gbmp);
5d83d8f3 594 sfree(matrix);
595 sfree(grid);
f4afe206 596 return ret;
597}
598
f4afe206 599static char *validate_desc(game_params *params, char *desc)
600{
601 int w = params->w, h = params->h, wh = w * h;
602 int mlen = (wh*wh+3)/4, glen = (wh+3)/4;
603
604 if (strspn(desc, "0123456789abcdefABCDEF") != mlen)
605 return "Matrix description is wrong length";
606 if (desc[mlen] != ',')
607 return "Expected comma after matrix description";
608 if (strspn(desc+mlen+1, "0123456789abcdefABCDEF") != glen)
609 return "Grid description is wrong length";
610 if (desc[mlen+1+glen])
611 return "Unexpected data after grid description";
612
613 return NULL;
614}
615
dafd6cf6 616static game_state *new_game(midend *me, game_params *params, char *desc)
f4afe206 617{
618 int w = params->w, h = params->h, wh = w * h;
619 int mlen = (wh*wh+3)/4;
620
621 game_state *state = snew(game_state);
622
623 state->w = w;
624 state->h = h;
625 state->completed = FALSE;
79cb09e9 626 state->cheated = FALSE;
627 state->hints_active = FALSE;
f4afe206 628 state->moves = 0;
629 state->matrix = snew(struct matrix);
630 state->matrix->refcount = 1;
631 state->matrix->matrix = snewn(wh*wh, unsigned char);
632 decode_bitmap(state->matrix->matrix, wh*wh, desc);
633 state->grid = snewn(wh, unsigned char);
634 decode_bitmap(state->grid, wh, desc + mlen + 1);
635
636 return state;
637}
638
639static game_state *dup_game(game_state *state)
640{
641 game_state *ret = snew(game_state);
642
643 ret->w = state->w;
644 ret->h = state->h;
645 ret->completed = state->completed;
79cb09e9 646 ret->cheated = state->cheated;
647 ret->hints_active = state->hints_active;
f4afe206 648 ret->moves = state->moves;
649 ret->matrix = state->matrix;
650 state->matrix->refcount++;
651 ret->grid = snewn(ret->w * ret->h, unsigned char);
652 memcpy(ret->grid, state->grid, ret->w * ret->h);
653
654 return ret;
655}
656
657static void free_game(game_state *state)
658{
659 sfree(state->grid);
660 if (--state->matrix->refcount <= 0) {
661 sfree(state->matrix->matrix);
662 sfree(state->matrix);
663 }
664 sfree(state);
665}
666
79cb09e9 667static void rowxor(unsigned char *row1, unsigned char *row2, int len)
668{
669 int i;
670 for (i = 0; i < len; i++)
671 row1[i] ^= row2[i];
672}
673
df11cd4e 674static char *solve_game(game_state *state, game_state *currstate,
c566778e 675 char *aux, char **error)
f4afe206 676{
79cb09e9 677 int w = state->w, h = state->h, wh = w * h;
678 unsigned char *equations, *solution, *shortest;
679 int *und, nund;
680 int rowsdone, colsdone;
681 int i, j, k, len, bestlen;
df11cd4e 682 char *ret;
79cb09e9 683
684 /*
685 * Set up a list of simultaneous equations. Each one is of
686 * length (wh+1) and has wh coefficients followed by a value.
687 */
688 equations = snewn((wh + 1) * wh, unsigned char);
689 for (i = 0; i < wh; i++) {
690 for (j = 0; j < wh; j++)
691 equations[i * (wh+1) + j] = currstate->matrix->matrix[j*wh+i];
692 equations[i * (wh+1) + wh] = currstate->grid[i] & 1;
693 }
694
695 /*
696 * Perform Gaussian elimination over GF(2).
697 */
698 rowsdone = colsdone = 0;
699 nund = 0;
700 und = snewn(wh, int);
701 do {
702 /*
703 * Find the leftmost column which has a 1 in it somewhere
704 * outside the first `rowsdone' rows.
705 */
706 j = -1;
707 for (i = colsdone; i < wh; i++) {
708 for (j = rowsdone; j < wh; j++)
709 if (equations[j * (wh+1) + i])
710 break;
711 if (j < wh)
712 break; /* found one */
713 /*
714 * This is a column which will not have an equation
715 * controlling it. Mark it as undetermined.
716 */
717 und[nund++] = i;
718 }
719
720 /*
721 * If there wasn't one, then we've finished: all remaining
722 * equations are of the form 0 = constant. Check to see if
723 * any of them wants 0 to be equal to 1; this is the
724 * condition which indicates an insoluble problem
725 * (therefore _hopefully_ one typed in by a user!).
726 */
727 if (i == wh) {
728 for (j = rowsdone; j < wh; j++)
729 if (equations[j * (wh+1) + wh]) {
730 *error = "No solution exists for this position";
731 sfree(equations);
5d83d8f3 732 sfree(und);
79cb09e9 733 return NULL;
734 }
735 break;
736 }
737
738 /*
739 * We've found a 1. It's in column i, and the topmost 1 in
740 * that column is in row j. Do a row-XOR to move it up to
741 * the topmost row if it isn't already there.
742 */
743 assert(j != -1);
744 if (j > rowsdone)
745 rowxor(equations + rowsdone*(wh+1), equations + j*(wh+1), wh+1);
746
747 /*
748 * Do row-XORs to eliminate that 1 from all rows below the
749 * topmost row.
750 */
751 for (j = rowsdone + 1; j < wh; j++)
752 if (equations[j*(wh+1) + i])
753 rowxor(equations + j*(wh+1),
754 equations + rowsdone*(wh+1), wh+1);
755
756 /*
757 * Mark this row and column as done.
758 */
759 rowsdone++;
760 colsdone = i+1;
761
762 /*
763 * If we've done all the rows, terminate.
764 */
765 } while (rowsdone < wh);
766
767 /*
768 * If we reach here, we have the ability to produce a solution.
769 * So we go through _all_ possible solutions (each
770 * corresponding to a set of arbitrary choices of those
771 * components not directly determined by an equation), and pick
772 * one requiring the smallest number of flips.
773 */
774 solution = snewn(wh, unsigned char);
775 shortest = snewn(wh, unsigned char);
776 memset(solution, 0, wh);
777 bestlen = wh + 1;
778 while (1) {
779 /*
780 * Find a solution based on the current values of the
781 * undetermined variables.
782 */
783 for (j = rowsdone; j-- ;) {
784 int v;
785
786 /*
787 * Find the leftmost set bit in this equation.
788 */
789 for (i = 0; i < wh; i++)
790 if (equations[j * (wh+1) + i])
791 break;
792 assert(i < wh); /* there must have been one! */
793
794 /*
795 * Compute this variable using the rest.
796 */
797 v = equations[j * (wh+1) + wh];
798 for (k = i+1; k < wh; k++)
799 if (equations[j * (wh+1) + k])
800 v ^= solution[k];
801
802 solution[i] = v;
803 }
804
805 /*
806 * Compare this solution to the current best one, and
807 * replace the best one if this one is shorter.
808 */
809 len = 0;
810 for (i = 0; i < wh; i++)
811 if (solution[i])
812 len++;
813 if (len < bestlen) {
814 bestlen = len;
815 memcpy(shortest, solution, wh);
816 }
817
818 /*
819 * Now increment the binary number given by the
820 * undetermined variables: turn all 1s into 0s until we see
821 * a 0, at which point we turn it into a 1.
822 */
823 for (i = 0; i < nund; i++) {
824 solution[und[i]] = !solution[und[i]];
825 if (solution[und[i]])
826 break;
827 }
828
829 /*
830 * If we didn't find a 0 at any point, we have wrapped
831 * round and are back at the start, i.e. we have enumerated
832 * all solutions.
833 */
834 if (i == nund)
835 break;
836 }
837
838 /*
df11cd4e 839 * We have a solution. Produce a move string encoding the
840 * solution.
79cb09e9 841 */
df11cd4e 842 ret = snewn(wh + 2, char);
843 ret[0] = 'S';
844 for (i = 0; i < wh; i++)
845 ret[i+1] = shortest[i] ? '1' : '0';
846 ret[wh+1] = '\0';
79cb09e9 847
848 sfree(shortest);
849 sfree(solution);
850 sfree(equations);
5d83d8f3 851 sfree(und);
79cb09e9 852
853 return ret;
f4afe206 854}
855
856static char *game_text_format(game_state *state)
857{
858 return NULL;
859}
860
ce6af7f2 861struct game_ui {
862 int cx, cy, cdraw;
863};
864
f4afe206 865static game_ui *new_ui(game_state *state)
866{
ce6af7f2 867 game_ui *ui = snew(game_ui);
868 ui->cx = ui->cy = ui->cdraw = 0;
869 return ui;
f4afe206 870}
871
872static void free_ui(game_ui *ui)
873{
ce6af7f2 874 sfree(ui);
f4afe206 875}
876
844f605f 877static char *encode_ui(game_ui *ui)
ae8290c6 878{
879 return NULL;
880}
881
844f605f 882static void decode_ui(game_ui *ui, char *encoding)
ae8290c6 883{
884}
885
f4afe206 886static void game_changed_state(game_ui *ui, game_state *oldstate,
887 game_state *newstate)
888{
889}
890
891struct game_drawstate {
892 int w, h, started;
893 unsigned char *tiles;
894 int tilesize;
895};
896
df11cd4e 897static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
898 int x, int y, int button)
f4afe206 899{
8a23df4e 900 int w = state->w, h = state->h, wh = w * h;
ce6af7f2 901 char buf[80], *nullret = NULL;
902
903 if (button == LEFT_BUTTON || button == CURSOR_SELECT ||
904 button == ' ' || button == '\r' || button == '\n') {
905 int tx, ty;
906 if (button == LEFT_BUTTON) {
907 tx = FROMCOORD(x), ty = FROMCOORD(y);
908 ui->cdraw = 0;
909 } else {
910 tx = ui->cx; ty = ui->cy;
911 ui->cdraw = 1;
912 }
913 nullret = "";
f4afe206 914
f4afe206 915 if (tx >= 0 && tx < w && ty >= 0 && ty < h) {
8a23df4e 916 /*
917 * It's just possible that a manually entered game ID
918 * will have at least one square do nothing whatsoever.
919 * If so, we avoid encoding a move at all.
920 */
921 int i = ty*w+tx, j, makemove = FALSE;
922 for (j = 0; j < wh; j++) {
923 if (state->matrix->matrix[i*wh+j])
924 makemove = TRUE;
925 }
926 if (makemove) {
927 sprintf(buf, "M%d,%d", tx, ty);
928 return dupstr(buf);
929 } else {
930 return NULL;
931 }
df11cd4e 932 }
933 }
ce6af7f2 934 else if (button == CURSOR_UP || button == CURSOR_DOWN ||
935 button == CURSOR_RIGHT || button == CURSOR_LEFT) {
936 int dx = 0, dy = 0;
937 switch (button) {
938 case CURSOR_UP: dy = -1; break;
939 case CURSOR_DOWN: dy = 1; break;
940 case CURSOR_RIGHT: dx = 1; break;
941 case CURSOR_LEFT: dx = -1; break;
942 default: assert(!"shouldn't get here");
943 }
944 ui->cx += dx; ui->cy += dy;
8d6149b6 945 ui->cx = min(max(ui->cx, 0), state->w - 1);
946 ui->cy = min(max(ui->cy, 0), state->h - 1);
ce6af7f2 947 ui->cdraw = 1;
948 nullret = "";
949 }
df11cd4e 950
ce6af7f2 951 return nullret;
df11cd4e 952}
f4afe206 953
df11cd4e 954static game_state *execute_move(game_state *from, char *move)
955{
956 int w = from->w, h = from->h, wh = w * h;
957 game_state *ret;
958 int x, y;
959
960 if (move[0] == 'S' && strlen(move) == wh+1) {
961 int i;
962
963 ret = dup_game(from);
964 ret->hints_active = TRUE;
965 ret->cheated = TRUE;
966 for (i = 0; i < wh; i++) {
967 ret->grid[i] &= ~2;
968 if (move[i+1] != '0')
969 ret->grid[i] |= 2;
970 }
971 return ret;
972 } else if (move[0] == 'M' &&
973 sscanf(move+1, "%d,%d", &x, &y) == 2 &&
974 x >= 0 && x < w && y >= 0 && y < h) {
975 int i, j, done;
f4afe206 976
df11cd4e 977 ret = dup_game(from);
f4afe206 978
df11cd4e 979 if (!ret->completed)
980 ret->moves++;
f4afe206 981
df11cd4e 982 i = y * w + x;
f4afe206 983
df11cd4e 984 done = TRUE;
985 for (j = 0; j < wh; j++) {
986 ret->grid[j] ^= ret->matrix->matrix[i*wh+j];
987 if (ret->grid[j] & 1)
988 done = FALSE;
989 }
990 ret->grid[i] ^= 2; /* toggle hint */
991 if (done) {
992 ret->completed = TRUE;
993 ret->hints_active = FALSE;
994 }
f4afe206 995
df11cd4e 996 return ret;
997 } else
998 return NULL; /* can't parse move string */
f4afe206 999}
1000
1001/* ----------------------------------------------------------------------
1002 * Drawing routines.
1003 */
1004
1f3ee4ee 1005static void game_compute_size(game_params *params, int tilesize,
1006 int *x, int *y)
f4afe206 1007{
1f3ee4ee 1008 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
1009 struct { int tilesize; } ads, *ds = &ads;
1010 ads.tilesize = tilesize;
f4afe206 1011
1012 *x = TILE_SIZE * params->w + 2 * BORDER;
1013 *y = TILE_SIZE * params->h + 2 * BORDER;
1014}
1015
dafd6cf6 1016static void game_set_size(drawing *dr, game_drawstate *ds,
1017 game_params *params, int tilesize)
1f3ee4ee 1018{
1019 ds->tilesize = tilesize;
1020}
1021
8266f3fc 1022static float *game_colours(frontend *fe, int *ncolours)
f4afe206 1023{
1024 float *ret = snewn(3 * NCOLOURS, float);
1025
1026 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
1027
1028 ret[COL_WRONG * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] / 3;
1029 ret[COL_WRONG * 3 + 1] = ret[COL_BACKGROUND * 3 + 1] / 3;
1030 ret[COL_WRONG * 3 + 2] = ret[COL_BACKGROUND * 3 + 2] / 3;
1031
1032 ret[COL_RIGHT * 3 + 0] = 1.0F;
1033 ret[COL_RIGHT * 3 + 1] = 1.0F;
1034 ret[COL_RIGHT * 3 + 2] = 1.0F;
1035
1036 ret[COL_GRID * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] / 1.5F;
1037 ret[COL_GRID * 3 + 1] = ret[COL_BACKGROUND * 3 + 1] / 1.5F;
1038 ret[COL_GRID * 3 + 2] = ret[COL_BACKGROUND * 3 + 2] / 1.5F;
1039
1040 ret[COL_DIAG * 3 + 0] = ret[COL_GRID * 3 + 0];
1041 ret[COL_DIAG * 3 + 1] = ret[COL_GRID * 3 + 1];
1042 ret[COL_DIAG * 3 + 2] = ret[COL_GRID * 3 + 2];
1043
79cb09e9 1044 ret[COL_HINT * 3 + 0] = 1.0F;
1045 ret[COL_HINT * 3 + 1] = 0.0F;
1046 ret[COL_HINT * 3 + 2] = 0.0F;
1047
ce6af7f2 1048 ret[COL_CURSOR * 3 + 0] = 0.8F;
1049 ret[COL_CURSOR * 3 + 1] = 0.0F;
1050 ret[COL_CURSOR * 3 + 2] = 0.0F;
1051
f4afe206 1052 *ncolours = NCOLOURS;
1053 return ret;
1054}
1055
dafd6cf6 1056static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
f4afe206 1057{
1058 struct game_drawstate *ds = snew(struct game_drawstate);
1059 int i;
1060
1061 ds->started = FALSE;
1062 ds->w = state->w;
1063 ds->h = state->h;
1064 ds->tiles = snewn(ds->w*ds->h, unsigned char);
1065 ds->tilesize = 0; /* haven't decided yet */
1066 for (i = 0; i < ds->w*ds->h; i++)
1067 ds->tiles[i] = -1;
1068
1069 return ds;
1070}
1071
dafd6cf6 1072static void game_free_drawstate(drawing *dr, game_drawstate *ds)
f4afe206 1073{
1074 sfree(ds->tiles);
1075 sfree(ds);
1076}
1077
dafd6cf6 1078static void draw_tile(drawing *dr, game_drawstate *ds,
d1044751 1079 game_state *state, int x, int y, int tile, int anim,
1080 float animtime)
f4afe206 1081{
1082 int w = ds->w, h = ds->h, wh = w * h;
1083 int bx = x * TILE_SIZE + BORDER, by = y * TILE_SIZE + BORDER;
ce6af7f2 1084 int i, j, dcol = (tile & 4) ? COL_CURSOR : COL_DIAG;
f4afe206 1085
dafd6cf6 1086 clip(dr, bx+1, by+1, TILE_SIZE-1, TILE_SIZE-1);
f4afe206 1087
dafd6cf6 1088 draw_rect(dr, bx+1, by+1, TILE_SIZE-1, TILE_SIZE-1,
d1044751 1089 anim ? COL_BACKGROUND : tile & 1 ? COL_WRONG : COL_RIGHT);
1090 if (anim) {
1091 /*
1092 * Draw a polygon indicating that the square is diagonally
1093 * flipping over.
1094 */
1095 int coords[8], colour;
1096
1097 coords[0] = bx + TILE_SIZE;
1098 coords[1] = by;
1099 coords[2] = bx + TILE_SIZE * animtime;
1100 coords[3] = by + TILE_SIZE * animtime;
1101 coords[4] = bx;
1102 coords[5] = by + TILE_SIZE;
1103 coords[6] = bx + TILE_SIZE - TILE_SIZE * animtime;
1104 coords[7] = by + TILE_SIZE - TILE_SIZE * animtime;
1105
1106 colour = (tile & 1 ? COL_WRONG : COL_RIGHT);
1107 if (animtime < 0.5)
1108 colour = COL_WRONG + COL_RIGHT - colour;
1109
dafd6cf6 1110 draw_polygon(dr, coords, 4, colour, COL_GRID);
d1044751 1111 }
f4afe206 1112
1113 /*
1114 * Draw a little diagram in the tile which indicates which
1115 * surrounding tiles flip when this one is clicked.
1116 */
1117 for (i = 0; i < h; i++)
1118 for (j = 0; j < w; j++)
1119 if (state->matrix->matrix[(y*w+x)*wh + i*w+j]) {
1120 int ox = j - x, oy = i - y;
1121 int td = TILE_SIZE / 16;
1122 int cx = (bx + TILE_SIZE/2) + (2 * ox - 1) * td;
1123 int cy = (by + TILE_SIZE/2) + (2 * oy - 1) * td;
1124 if (ox == 0 && oy == 0)
dafd6cf6 1125 draw_rect(dr, cx, cy, 2*td+1, 2*td+1, dcol);
f4afe206 1126 else {
dafd6cf6 1127 draw_line(dr, cx, cy, cx+2*td, cy, dcol);
1128 draw_line(dr, cx, cy+2*td, cx+2*td, cy+2*td, dcol);
1129 draw_line(dr, cx, cy, cx, cy+2*td, dcol);
1130 draw_line(dr, cx+2*td, cy, cx+2*td, cy+2*td, dcol);
f4afe206 1131 }
1132 }
1133
79cb09e9 1134 /*
5f6050b4 1135 * Draw a hint rectangle if required.
79cb09e9 1136 */
1137 if (tile & 2) {
5f6050b4 1138 int x1 = bx + TILE_SIZE / 20, x2 = bx + TILE_SIZE - TILE_SIZE / 20;
1139 int y1 = by + TILE_SIZE / 20, y2 = by + TILE_SIZE - TILE_SIZE / 20;
1140 int i = 3;
1141 while (i--) {
dafd6cf6 1142 draw_line(dr, x1, y1, x2, y1, COL_HINT);
1143 draw_line(dr, x1, y2, x2, y2, COL_HINT);
1144 draw_line(dr, x1, y1, x1, y2, COL_HINT);
1145 draw_line(dr, x2, y1, x2, y2, COL_HINT);
5f6050b4 1146 x1++, y1++, x2--, y2--;
1147 }
79cb09e9 1148 }
1149
dafd6cf6 1150 unclip(dr);
f4afe206 1151
dafd6cf6 1152 draw_update(dr, bx+1, by+1, TILE_SIZE-1, TILE_SIZE-1);
f4afe206 1153}
1154
dafd6cf6 1155static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
f4afe206 1156 game_state *state, int dir, game_ui *ui,
1157 float animtime, float flashtime)
1158{
1159 int w = ds->w, h = ds->h, wh = w * h;
1160 int i, flashframe;
1161
1162 if (!ds->started) {
dafd6cf6 1163 draw_rect(dr, 0, 0, TILE_SIZE * w + 2 * BORDER,
f4afe206 1164 TILE_SIZE * h + 2 * BORDER, COL_BACKGROUND);
1165
1166 /*
1167 * Draw the grid lines.
1168 */
1169 for (i = 0; i <= w; i++)
dafd6cf6 1170 draw_line(dr, i * TILE_SIZE + BORDER, BORDER,
f4afe206 1171 i * TILE_SIZE + BORDER, h * TILE_SIZE + BORDER,
1172 COL_GRID);
1173 for (i = 0; i <= h; i++)
dafd6cf6 1174 draw_line(dr, BORDER, i * TILE_SIZE + BORDER,
f4afe206 1175 w * TILE_SIZE + BORDER, i * TILE_SIZE + BORDER,
1176 COL_GRID);
1177
dafd6cf6 1178 draw_update(dr, 0, 0, TILE_SIZE * w + 2 * BORDER,
f4afe206 1179 TILE_SIZE * h + 2 * BORDER);
1180
1181 ds->started = TRUE;
1182 }
1183
1184 if (flashtime)
1185 flashframe = flashtime / FLASH_FRAME;
1186 else
1187 flashframe = -1;
1188
d1044751 1189 animtime /= ANIM_TIME; /* scale it so it goes from 0 to 1 */
1190
f4afe206 1191 for (i = 0; i < wh; i++) {
1192 int x = i % w, y = i / w;
1193 int fx, fy, fd;
1194 int v = state->grid[i];
d1044751 1195 int vv;
f4afe206 1196
1197 if (flashframe >= 0) {
1198 fx = (w+1)/2 - min(x+1, w-x);
1199 fy = (h+1)/2 - min(y+1, h-y);
1200 fd = max(fx, fy);
1201 if (fd == flashframe)
1202 v |= 1;
1203 else if (fd == flashframe - 1)
1204 v &= ~1;
1205 }
d1044751 1206
3473ad8f 1207 if (!state->hints_active)
1208 v &= ~2;
ce6af7f2 1209 if (ui->cdraw && ui->cx == x && ui->cy == y)
1210 v |= 4;
79cb09e9 1211
3473ad8f 1212 if (oldstate && ((state->grid[i] ^ oldstate->grid[i]) &~ 2))
d1044751 1213 vv = 255; /* means `animated' */
1214 else
1215 vv = v;
1216
1217 if (ds->tiles[i] == 255 || vv == 255 || ds->tiles[i] != vv) {
dafd6cf6 1218 draw_tile(dr, ds, state, x, y, v, vv == 255, animtime);
d1044751 1219 ds->tiles[i] = vv;
f4afe206 1220 }
1221 }
1222
1223 {
1224 char buf[256];
1225
79cb09e9 1226 sprintf(buf, "%sMoves: %d",
1227 (state->completed ?
1228 (state->cheated ? "Auto-solved. " : "COMPLETED! ") :
1229 (state->cheated ? "Auto-solver used. " : "")),
f4afe206 1230 state->moves);
1231
dafd6cf6 1232 status_bar(dr, buf);
f4afe206 1233 }
1234}
1235
1236static float game_anim_length(game_state *oldstate, game_state *newstate,
1237 int dir, game_ui *ui)
1238{
d1044751 1239 return ANIM_TIME;
f4afe206 1240}
1241
1242static float game_flash_length(game_state *oldstate, game_state *newstate,
1243 int dir, game_ui *ui)
1244{
1245 if (!oldstate->completed && newstate->completed)
1246 return FLASH_FRAME * (max((newstate->w+1)/2, (newstate->h+1)/2)+1);
1247
1248 return 0.0F;
1249}
1250
1251static int game_wants_statusbar(void)
1252{
1253 return TRUE;
1254}
1255
4d08de49 1256static int game_timing_state(game_state *state, game_ui *ui)
f4afe206 1257{
1258 return TRUE;
1259}
1260
ca58cbd1 1261static void game_print_size(game_params *params, float *x, float *y)
1262{
1263}
1264
1265static void game_print(drawing *dr, game_state *state, int tilesize)
1266{
1267}
1268
f4afe206 1269#ifdef COMBINED
1270#define thegame flip
1271#endif
1272
1273const struct game thegame = {
5d8c6c55 1274 "Flip", "games.flip",
f4afe206 1275 default_params,
1276 game_fetch_preset,
1277 decode_params,
1278 encode_params,
1279 free_params,
1280 dup_params,
1281 TRUE, game_configure, custom_params,
1282 validate_params,
1283 new_game_desc,
f4afe206 1284 validate_desc,
1285 new_game,
1286 dup_game,
1287 free_game,
79cb09e9 1288 TRUE, solve_game,
f4afe206 1289 FALSE, game_text_format,
1290 new_ui,
1291 free_ui,
ae8290c6 1292 encode_ui,
1293 decode_ui,
f4afe206 1294 game_changed_state,
df11cd4e 1295 interpret_move,
1296 execute_move,
1f3ee4ee 1297 PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
f4afe206 1298 game_colours,
1299 game_new_drawstate,
1300 game_free_drawstate,
1301 game_redraw,
1302 game_anim_length,
1303 game_flash_length,
dafd6cf6 1304 FALSE, FALSE, game_print_size, game_print,
f4afe206 1305 game_wants_statusbar,
1306 FALSE, game_timing_state,
2705d374 1307 0, /* flags */
f4afe206 1308};