D'oh, there's always one. Remove first-click stuff from the todo list.
[sgt/puzzles] / cube.c
CommitLineData
720a8fb7 1/*
2 * cube.c: Cube game.
3 */
1482ee76 4
5#include <stdio.h>
6#include <stdlib.h>
7#include <string.h>
8#include <assert.h>
b0e26073 9#include <ctype.h>
1482ee76 10#include <math.h>
11
12#include "puzzles.h"
13
14#define MAXVERTICES 20
15#define MAXFACES 20
16#define MAXORDER 4
17struct solid {
18 int nvertices;
19 float vertices[MAXVERTICES * 3]; /* 3*npoints coordinates */
20 int order;
21 int nfaces;
22 int faces[MAXFACES * MAXORDER]; /* order*nfaces point indices */
23 float normals[MAXFACES * 3]; /* 3*npoints vector components */
24 float shear; /* isometric shear for nice drawing */
eb2ad6f1 25 float border; /* border required around arena */
1482ee76 26};
27
19ef4855 28static const struct solid s_tetrahedron = {
1482ee76 29 4,
30 {
03f856c4 31 0.0F, -0.57735026919F, -0.20412414523F,
32 -0.5F, 0.28867513459F, -0.20412414523F,
33 0.0F, -0.0F, 0.6123724357F,
34 0.5F, 0.28867513459F, -0.20412414523F,
1482ee76 35 },
36 3, 4,
37 {
38 0,2,1, 3,1,2, 2,0,3, 1,3,0
39 },
40 {
03f856c4 41 -0.816496580928F, -0.471404520791F, 0.333333333334F,
42 0.0F, 0.942809041583F, 0.333333333333F,
43 0.816496580928F, -0.471404520791F, 0.333333333334F,
44 0.0F, 0.0F, -1.0F,
1482ee76 45 },
03f856c4 46 0.0F, 0.3F
1482ee76 47};
48
19ef4855 49static const struct solid s_cube = {
1482ee76 50 8,
51 {
03f856c4 52 -0.5F,-0.5F,-0.5F, -0.5F,-0.5F,+0.5F,
53 -0.5F,+0.5F,-0.5F, -0.5F,+0.5F,+0.5F,
54 +0.5F,-0.5F,-0.5F, +0.5F,-0.5F,+0.5F,
55 +0.5F,+0.5F,-0.5F, +0.5F,+0.5F,+0.5F,
1482ee76 56 },
57 4, 6,
58 {
59 0,1,3,2, 1,5,7,3, 5,4,6,7, 4,0,2,6, 0,4,5,1, 3,7,6,2
60 },
61 {
03f856c4 62 -1.0F,0.0F,0.0F, 0.0F,0.0F,+1.0F,
63 +1.0F,0.0F,0.0F, 0.0F,0.0F,-1.0F,
64 0.0F,-1.0F,0.0F, 0.0F,+1.0F,0.0F
1482ee76 65 },
03f856c4 66 0.3F, 0.5F
1482ee76 67};
68
19ef4855 69static const struct solid s_octahedron = {
1482ee76 70 6,
71 {
03f856c4 72 -0.5F, -0.28867513459472505F, 0.4082482904638664F,
73 0.5F, 0.28867513459472505F, -0.4082482904638664F,
74 -0.5F, 0.28867513459472505F, -0.4082482904638664F,
75 0.5F, -0.28867513459472505F, 0.4082482904638664F,
76 0.0F, -0.57735026918945009F, -0.4082482904638664F,
77 0.0F, 0.57735026918945009F, 0.4082482904638664F,
1482ee76 78 },
79 3, 8,
80 {
81 4,0,2, 0,5,2, 0,4,3, 5,0,3, 1,4,2, 5,1,2, 4,1,3, 1,5,3
82 },
83 {
03f856c4 84 -0.816496580928F, -0.471404520791F, -0.333333333334F,
85 -0.816496580928F, 0.471404520791F, 0.333333333334F,
86 0.0F, -0.942809041583F, 0.333333333333F,
87 0.0F, 0.0F, 1.0F,
88 0.0F, 0.0F, -1.0F,
89 0.0F, 0.942809041583F, -0.333333333333F,
90 0.816496580928F, -0.471404520791F, -0.333333333334F,
91 0.816496580928F, 0.471404520791F, 0.333333333334F,
1482ee76 92 },
03f856c4 93 0.0F, 0.5F
1482ee76 94};
95
19ef4855 96static const struct solid s_icosahedron = {
1482ee76 97 12,
98 {
03f856c4 99 0.0F, 0.57735026919F, 0.75576131408F,
100 0.0F, -0.93417235896F, 0.17841104489F,
101 0.0F, 0.93417235896F, -0.17841104489F,
102 0.0F, -0.57735026919F, -0.75576131408F,
103 -0.5F, -0.28867513459F, 0.75576131408F,
104 -0.5F, 0.28867513459F, -0.75576131408F,
105 0.5F, -0.28867513459F, 0.75576131408F,
106 0.5F, 0.28867513459F, -0.75576131408F,
107 -0.80901699437F, 0.46708617948F, 0.17841104489F,
108 0.80901699437F, 0.46708617948F, 0.17841104489F,
109 -0.80901699437F, -0.46708617948F, -0.17841104489F,
110 0.80901699437F, -0.46708617948F, -0.17841104489F,
1482ee76 111 },
112 3, 20,
113 {
114 8,0,2, 0,9,2, 1,10,3, 11,1,3, 0,4,6,
115 4,1,6, 5,2,7, 3,5,7, 4,8,10, 8,5,10,
116 9,6,11, 7,9,11, 0,8,4, 9,0,6, 10,1,4,
117 1,11,6, 8,2,5, 2,9,7, 3,10,5, 11,3,7,
118 },
119 {
03f856c4 120 -0.356822089773F, 0.87267799625F, 0.333333333333F,
121 0.356822089773F, 0.87267799625F, 0.333333333333F,
122 -0.356822089773F, -0.87267799625F, -0.333333333333F,
123 0.356822089773F, -0.87267799625F, -0.333333333333F,
124 -0.0F, 0.0F, 1.0F,
125 0.0F, -0.666666666667F, 0.745355992501F,
126 0.0F, 0.666666666667F, -0.745355992501F,
127 0.0F, 0.0F, -1.0F,
128 -0.934172358963F, -0.12732200375F, 0.333333333333F,
129 -0.934172358963F, 0.12732200375F, -0.333333333333F,
130 0.934172358963F, -0.12732200375F, 0.333333333333F,
131 0.934172358963F, 0.12732200375F, -0.333333333333F,
132 -0.57735026919F, 0.333333333334F, 0.745355992501F,
133 0.57735026919F, 0.333333333334F, 0.745355992501F,
134 -0.57735026919F, -0.745355992501F, 0.333333333334F,
135 0.57735026919F, -0.745355992501F, 0.333333333334F,
136 -0.57735026919F, 0.745355992501F, -0.333333333334F,
137 0.57735026919F, 0.745355992501F, -0.333333333334F,
138 -0.57735026919F, -0.333333333334F, -0.745355992501F,
139 0.57735026919F, -0.333333333334F, -0.745355992501F,
1482ee76 140 },
03f856c4 141 0.0F, 0.8F
1482ee76 142};
143
144enum {
145 TETRAHEDRON, CUBE, OCTAHEDRON, ICOSAHEDRON
146};
147static const struct solid *solids[] = {
19ef4855 148 &s_tetrahedron, &s_cube, &s_octahedron, &s_icosahedron
1482ee76 149};
150
151enum {
152 COL_BACKGROUND,
153 COL_BORDER,
154 COL_BLUE,
155 NCOLOURS
156};
157
c71454c0 158enum { LEFT, RIGHT, UP, DOWN, UP_LEFT, UP_RIGHT, DOWN_LEFT, DOWN_RIGHT };
1482ee76 159
03f856c4 160#define GRID_SCALE 48.0F
8c1fd974 161#define ROLLTIME 0.13F
1482ee76 162
163#define SQ(x) ( (x) * (x) )
164
165#define MATMUL(ra,m,a) do { \
166 float rx, ry, rz, xx = (a)[0], yy = (a)[1], zz = (a)[2], *mat = (m); \
167 rx = mat[0] * xx + mat[3] * yy + mat[6] * zz; \
168 ry = mat[1] * xx + mat[4] * yy + mat[7] * zz; \
169 rz = mat[2] * xx + mat[5] * yy + mat[8] * zz; \
170 (ra)[0] = rx; (ra)[1] = ry; (ra)[2] = rz; \
171} while (0)
172
173#define APPROXEQ(x,y) ( SQ(x-y) < 0.1 )
174
175struct grid_square {
176 float x, y;
177 int npoints;
178 float points[8]; /* maximum */
c71454c0 179 int directions[8]; /* bit masks showing point pairs */
1482ee76 180 int flip;
181 int blue;
182 int tetra_class;
183};
184
185struct game_params {
186 int solid;
187 /*
188 * Grid dimensions. For a square grid these are width and
189 * height respectively; otherwise the grid is a hexagon, with
190 * the top side and the two lower diagonals having length d1
191 * and the remaining three sides having length d2 (so that
192 * d1==d2 gives a regular hexagon, and d2==0 gives a triangle).
193 */
194 int d1, d2;
195};
196
197struct game_state {
198 struct game_params params;
199 const struct solid *solid;
200 int *facecolours;
201 struct grid_square *squares;
202 int nsquares;
203 int current; /* index of current grid square */
204 int sgkey[2]; /* key-point indices into grid sq */
205 int dgkey[2]; /* key-point indices into grid sq */
206 int spkey[2]; /* key-point indices into polyhedron */
207 int dpkey[2]; /* key-point indices into polyhedron */
208 int previous;
209 float angle;
210 int completed;
211 int movecount;
212};
213
be8d5aa1 214static game_params *default_params(void)
1482ee76 215{
216 game_params *ret = snew(game_params);
217
218 ret->solid = CUBE;
219 ret->d1 = 4;
220 ret->d2 = 4;
221
222 return ret;
223}
224
be8d5aa1 225static int game_fetch_preset(int i, char **name, game_params **params)
eb2ad6f1 226{
227 game_params *ret = snew(game_params);
228 char *str;
229
230 switch (i) {
231 case 0:
232 str = "Cube";
233 ret->solid = CUBE;
234 ret->d1 = 4;
235 ret->d2 = 4;
236 break;
237 case 1:
238 str = "Tetrahedron";
239 ret->solid = TETRAHEDRON;
c8230524 240 ret->d1 = 1;
241 ret->d2 = 2;
eb2ad6f1 242 break;
243 case 2:
244 str = "Octahedron";
245 ret->solid = OCTAHEDRON;
246 ret->d1 = 2;
247 ret->d2 = 2;
248 break;
249 case 3:
250 str = "Icosahedron";
251 ret->solid = ICOSAHEDRON;
252 ret->d1 = 3;
253 ret->d2 = 3;
254 break;
255 default:
256 sfree(ret);
257 return FALSE;
258 }
259
260 *name = dupstr(str);
261 *params = ret;
262 return TRUE;
263}
264
be8d5aa1 265static void free_params(game_params *params)
1482ee76 266{
267 sfree(params);
268}
269
be8d5aa1 270static game_params *dup_params(game_params *params)
eb2ad6f1 271{
272 game_params *ret = snew(game_params);
273 *ret = *params; /* structure copy */
274 return ret;
275}
276
1185e3c5 277static void decode_params(game_params *ret, char const *string)
b0e26073 278{
b0e26073 279 switch (*string) {
280 case 't': ret->solid = TETRAHEDRON; string++; break;
281 case 'c': ret->solid = CUBE; string++; break;
282 case 'o': ret->solid = OCTAHEDRON; string++; break;
283 case 'i': ret->solid = ICOSAHEDRON; string++; break;
284 default: break;
285 }
286 ret->d1 = ret->d2 = atoi(string);
287 while (*string && isdigit(*string)) string++;
288 if (*string == 'x') {
289 string++;
290 ret->d2 = atoi(string);
291 }
b0e26073 292}
293
1185e3c5 294static char *encode_params(game_params *params, int full)
b0e26073 295{
296 char data[256];
297
298 assert(params->solid >= 0 && params->solid < 4);
299 sprintf(data, "%c%dx%d", "tcoi"[params->solid], params->d1, params->d2);
300
301 return dupstr(data);
302}
303
1482ee76 304static void enum_grid_squares(game_params *params,
305 void (*callback)(void *, struct grid_square *),
306 void *ctx)
307{
308 const struct solid *solid = solids[params->solid];
309
310 if (solid->order == 4) {
311 int x, y;
312
5928817c 313 for (y = 0; y < params->d2; y++)
314 for (x = 0; x < params->d1; x++) {
1482ee76 315 struct grid_square sq;
316
03f856c4 317 sq.x = (float)x;
318 sq.y = (float)y;
319 sq.points[0] = x - 0.5F;
320 sq.points[1] = y - 0.5F;
321 sq.points[2] = x - 0.5F;
322 sq.points[3] = y + 0.5F;
323 sq.points[4] = x + 0.5F;
324 sq.points[5] = y + 0.5F;
325 sq.points[6] = x + 0.5F;
326 sq.points[7] = y - 0.5F;
1482ee76 327 sq.npoints = 4;
328
329 sq.directions[LEFT] = 0x03; /* 0,1 */
330 sq.directions[RIGHT] = 0x0C; /* 2,3 */
331 sq.directions[UP] = 0x09; /* 0,3 */
332 sq.directions[DOWN] = 0x06; /* 1,2 */
c71454c0 333 sq.directions[UP_LEFT] = 0; /* no diagonals in a square */
334 sq.directions[UP_RIGHT] = 0; /* no diagonals in a square */
335 sq.directions[DOWN_LEFT] = 0; /* no diagonals in a square */
336 sq.directions[DOWN_RIGHT] = 0; /* no diagonals in a square */
1482ee76 337
338 sq.flip = FALSE;
339
340 /*
341 * This is supremely irrelevant, but just to avoid
342 * having any uninitialised structure members...
343 */
344 sq.tetra_class = 0;
345
346 callback(ctx, &sq);
347 }
348 } else {
349 int row, rowlen, other, i, firstix = -1;
03f856c4 350 float theight = (float)(sqrt(3) / 2.0);
1482ee76 351
352 for (row = 0; row < params->d1 + params->d2; row++) {
c8230524 353 if (row < params->d2) {
1482ee76 354 other = +1;
c8230524 355 rowlen = row + params->d1;
1482ee76 356 } else {
357 other = -1;
c8230524 358 rowlen = 2*params->d2 + params->d1 - row;
1482ee76 359 }
360
361 /*
362 * There are `rowlen' down-pointing triangles.
363 */
364 for (i = 0; i < rowlen; i++) {
365 struct grid_square sq;
366 int ix;
367 float x, y;
368
369 ix = (2 * i - (rowlen-1));
03f856c4 370 x = ix * 0.5F;
1482ee76 371 y = theight * row;
372 sq.x = x;
373 sq.y = y + theight / 3;
03f856c4 374 sq.points[0] = x - 0.5F;
1482ee76 375 sq.points[1] = y;
376 sq.points[2] = x;
377 sq.points[3] = y + theight;
03f856c4 378 sq.points[4] = x + 0.5F;
1482ee76 379 sq.points[5] = y;
380 sq.npoints = 3;
381
382 sq.directions[LEFT] = 0x03; /* 0,1 */
383 sq.directions[RIGHT] = 0x06; /* 1,2 */
384 sq.directions[UP] = 0x05; /* 0,2 */
385 sq.directions[DOWN] = 0; /* invalid move */
386
c71454c0 387 /*
388 * Down-pointing triangle: both the up diagonals go
389 * up, and the down ones go left and right.
390 */
391 sq.directions[UP_LEFT] = sq.directions[UP_RIGHT] =
392 sq.directions[UP];
393 sq.directions[DOWN_LEFT] = sq.directions[LEFT];
394 sq.directions[DOWN_RIGHT] = sq.directions[RIGHT];
395
1482ee76 396 sq.flip = TRUE;
397
398 if (firstix < 0)
399 firstix = ix & 3;
400 ix -= firstix;
401 sq.tetra_class = ((row+(ix&1)) & 2) ^ (ix & 3);
402
403 callback(ctx, &sq);
404 }
405
406 /*
407 * There are `rowlen+other' up-pointing triangles.
408 */
409 for (i = 0; i < rowlen+other; i++) {
410 struct grid_square sq;
411 int ix;
412 float x, y;
413
414 ix = (2 * i - (rowlen+other-1));
03f856c4 415 x = ix * 0.5F;
1482ee76 416 y = theight * row;
417 sq.x = x;
418 sq.y = y + 2*theight / 3;
03f856c4 419 sq.points[0] = x + 0.5F;
1482ee76 420 sq.points[1] = y + theight;
421 sq.points[2] = x;
422 sq.points[3] = y;
03f856c4 423 sq.points[4] = x - 0.5F;
1482ee76 424 sq.points[5] = y + theight;
425 sq.npoints = 3;
426
427 sq.directions[LEFT] = 0x06; /* 1,2 */
428 sq.directions[RIGHT] = 0x03; /* 0,1 */
429 sq.directions[DOWN] = 0x05; /* 0,2 */
430 sq.directions[UP] = 0; /* invalid move */
431
c71454c0 432 /*
433 * Up-pointing triangle: both the down diagonals go
434 * down, and the up ones go left and right.
435 */
436 sq.directions[DOWN_LEFT] = sq.directions[DOWN_RIGHT] =
437 sq.directions[DOWN];
438 sq.directions[UP_LEFT] = sq.directions[LEFT];
439 sq.directions[UP_RIGHT] = sq.directions[RIGHT];
440
1482ee76 441 sq.flip = FALSE;
442
443 if (firstix < 0)
c8230524 444 firstix = (ix - 1) & 3;
1482ee76 445 ix -= firstix;
446 sq.tetra_class = ((row+(ix&1)) & 2) ^ (ix & 3);
447
448 callback(ctx, &sq);
449 }
450 }
451 }
452}
453
454static int grid_area(int d1, int d2, int order)
455{
456 /*
457 * An NxM grid of squares has NM squares in it.
458 *
459 * A grid of triangles with dimensions A and B has a total of
460 * A^2 + B^2 + 4AB triangles in it. (You can divide it up into
461 * a side-A triangle containing A^2 subtriangles, a side-B
462 * triangle containing B^2, and two congruent parallelograms,
463 * each with side lengths A and B, each therefore containing AB
464 * two-triangle rhombuses.)
465 */
466 if (order == 4)
467 return d1 * d2;
468 else
469 return d1*d1 + d2*d2 + 4*d1*d2;
470}
471
be8d5aa1 472static config_item *game_configure(game_params *params)
c8230524 473{
474 config_item *ret = snewn(4, config_item);
475 char buf[80];
476
477 ret[0].name = "Type of solid";
95709966 478 ret[0].type = C_CHOICES;
c8230524 479 ret[0].sval = ":Tetrahedron:Cube:Octahedron:Icosahedron";
480 ret[0].ival = params->solid;
481
482 ret[1].name = "Width / top";
95709966 483 ret[1].type = C_STRING;
c8230524 484 sprintf(buf, "%d", params->d1);
485 ret[1].sval = dupstr(buf);
486 ret[1].ival = 0;
487
488 ret[2].name = "Height / bottom";
95709966 489 ret[2].type = C_STRING;
c8230524 490 sprintf(buf, "%d", params->d2);
491 ret[2].sval = dupstr(buf);
492 ret[2].ival = 0;
493
494 ret[3].name = NULL;
95709966 495 ret[3].type = C_END;
c8230524 496 ret[3].sval = NULL;
497 ret[3].ival = 0;
498
499 return ret;
500}
501
be8d5aa1 502static game_params *custom_params(config_item *cfg)
c8230524 503{
504 game_params *ret = snew(game_params);
505
506 ret->solid = cfg[0].ival;
507 ret->d1 = atoi(cfg[1].sval);
508 ret->d2 = atoi(cfg[2].sval);
509
510 return ret;
511}
512
513static void count_grid_square_callback(void *ctx, struct grid_square *sq)
514{
515 int *classes = (int *)ctx;
516 int thisclass;
517
518 if (classes[4] == 4)
519 thisclass = sq->tetra_class;
520 else if (classes[4] == 2)
521 thisclass = sq->flip;
522 else
523 thisclass = 0;
524
525 classes[thisclass]++;
526}
527
be8d5aa1 528static char *validate_params(game_params *params)
c8230524 529{
530 int classes[5];
531 int i;
532
533 if (params->solid < 0 || params->solid >= lenof(solids))
534 return "Unrecognised solid type";
535
536 if (solids[params->solid]->order == 4) {
537 if (params->d1 <= 0 || params->d2 <= 0)
538 return "Both grid dimensions must be greater than zero";
539 } else {
540 if (params->d1 <= 0 && params->d2 <= 0)
541 return "At least one grid dimension must be greater than zero";
542 }
543
544 for (i = 0; i < 4; i++)
545 classes[i] = 0;
546 if (params->solid == TETRAHEDRON)
547 classes[4] = 4;
548 else if (params->solid == OCTAHEDRON)
549 classes[4] = 2;
550 else
551 classes[4] = 1;
552 enum_grid_squares(params, count_grid_square_callback, classes);
553
554 for (i = 0; i < classes[4]; i++)
555 if (classes[i] < solids[params->solid]->nfaces / classes[4])
556 return "Not enough grid space to place all blue faces";
557
558 if (grid_area(params->d1, params->d2, solids[params->solid]->order) <
559 solids[params->solid]->nfaces + 1)
560 return "Not enough space to place the solid on an empty square";
561
562 return NULL;
563}
564
1482ee76 565struct grid_data {
566 int *gridptrs[4];
567 int nsquares[4];
568 int nclasses;
569 int squareindex;
570};
571
572static void classify_grid_square_callback(void *ctx, struct grid_square *sq)
573{
574 struct grid_data *data = (struct grid_data *)ctx;
575 int thisclass;
576
577 if (data->nclasses == 4)
578 thisclass = sq->tetra_class;
579 else if (data->nclasses == 2)
580 thisclass = sq->flip;
581 else
582 thisclass = 0;
583
584 data->gridptrs[thisclass][data->nsquares[thisclass]++] =
585 data->squareindex++;
586}
587
1185e3c5 588static char *new_game_desc(game_params *params, random_state *rs,
6f2d8d7c 589 game_aux_info **aux)
1482ee76 590{
591 struct grid_data data;
592 int i, j, k, m, area, facesperclass;
593 int *flags;
1185e3c5 594 char *desc, *p;
1482ee76 595
596 /*
597 * Enumerate the grid squares, dividing them into equivalence
598 * classes as appropriate. (For the tetrahedron, there is one
599 * equivalence class for each face; for the octahedron there
600 * are two classes; for the other two solids there's only one.)
601 */
602
603 area = grid_area(params->d1, params->d2, solids[params->solid]->order);
604 if (params->solid == TETRAHEDRON)
605 data.nclasses = 4;
606 else if (params->solid == OCTAHEDRON)
607 data.nclasses = 2;
608 else
609 data.nclasses = 1;
610 data.gridptrs[0] = snewn(data.nclasses * area, int);
611 for (i = 0; i < data.nclasses; i++) {
612 data.gridptrs[i] = data.gridptrs[0] + i * area;
613 data.nsquares[i] = 0;
614 }
615 data.squareindex = 0;
616 enum_grid_squares(params, classify_grid_square_callback, &data);
617
618 facesperclass = solids[params->solid]->nfaces / data.nclasses;
619
620 for (i = 0; i < data.nclasses; i++)
621 assert(data.nsquares[i] >= facesperclass);
622 assert(data.squareindex == area);
623
624 /*
625 * So now we know how many faces to allocate in each class. Get
626 * on with it.
627 */
628 flags = snewn(area, int);
629 for (i = 0; i < area; i++)
630 flags[i] = FALSE;
631
632 for (i = 0; i < data.nclasses; i++) {
633 for (j = 0; j < facesperclass; j++) {
48d70ca9 634 int n = random_upto(rs, data.nsquares[i]);
1482ee76 635
636 assert(!flags[data.gridptrs[i][n]]);
637 flags[data.gridptrs[i][n]] = TRUE;
638
639 /*
640 * Move everything else up the array. I ought to use a
641 * better data structure for this, but for such small
642 * numbers it hardly seems worth the effort.
643 */
4efb3868 644 while (n < data.nsquares[i]-1) {
1482ee76 645 data.gridptrs[i][n] = data.gridptrs[i][n+1];
646 n++;
647 }
648 data.nsquares[i]--;
649 }
650 }
651
652 /*
653 * Now we know precisely which squares are blue. Encode this
654 * information in hex. While we're looping over this, collect
655 * the non-blue squares into a list in the now-unused gridptrs
656 * array.
657 */
1185e3c5 658 desc = snewn(area / 4 + 40, char);
659 p = desc;
1482ee76 660 j = 0;
661 k = 8;
662 m = 0;
663 for (i = 0; i < area; i++) {
664 if (flags[i]) {
665 j |= k;
666 } else {
667 data.gridptrs[0][m++] = i;
668 }
669 k >>= 1;
670 if (!k) {
671 *p++ = "0123456789ABCDEF"[j];
672 k = 8;
673 j = 0;
674 }
675 }
676 if (k != 8)
677 *p++ = "0123456789ABCDEF"[j];
678
679 /*
680 * Choose a non-blue square for the polyhedron.
681 */
b0e26073 682 sprintf(p, ",%d", data.gridptrs[0][random_upto(rs, m)]);
1482ee76 683
684 sfree(data.gridptrs[0]);
685 sfree(flags);
686
1185e3c5 687 return desc;
1482ee76 688}
689
6f2d8d7c 690static void game_free_aux_info(game_aux_info *aux)
691{
692 assert(!"Shouldn't happen");
693}
694
1482ee76 695static void add_grid_square_callback(void *ctx, struct grid_square *sq)
696{
697 game_state *state = (game_state *)ctx;
698
699 state->squares[state->nsquares] = *sq; /* structure copy */
700 state->squares[state->nsquares].blue = FALSE;
701 state->nsquares++;
702}
703
704static int lowest_face(const struct solid *solid)
705{
706 int i, j, best;
707 float zmin;
708
709 best = 0;
710 zmin = 0.0;
711 for (i = 0; i < solid->nfaces; i++) {
712 float z = 0;
713
714 for (j = 0; j < solid->order; j++) {
715 int f = solid->faces[i*solid->order + j];
716 z += solid->vertices[f*3+2];
717 }
718
719 if (i == 0 || zmin > z) {
720 zmin = z;
721 best = i;
722 }
723 }
724
725 return best;
726}
727
728static int align_poly(const struct solid *solid, struct grid_square *sq,
729 int *pkey)
730{
731 float zmin;
732 int i, j;
733 int flip = (sq->flip ? -1 : +1);
734
735 /*
736 * First, find the lowest z-coordinate present in the solid.
737 */
738 zmin = 0.0;
739 for (i = 0; i < solid->nvertices; i++)
740 if (zmin > solid->vertices[i*3+2])
741 zmin = solid->vertices[i*3+2];
742
743 /*
744 * Now go round the grid square. For each point in the grid
745 * square, we're looking for a point of the polyhedron with the
746 * same x- and y-coordinates (relative to the square's centre),
747 * and z-coordinate equal to zmin (near enough).
748 */
749 for (j = 0; j < sq->npoints; j++) {
750 int matches, index;
751
752 matches = 0;
753 index = -1;
754
755 for (i = 0; i < solid->nvertices; i++) {
756 float dist = 0;
757
758 dist += SQ(solid->vertices[i*3+0] * flip - sq->points[j*2+0] + sq->x);
759 dist += SQ(solid->vertices[i*3+1] * flip - sq->points[j*2+1] + sq->y);
760 dist += SQ(solid->vertices[i*3+2] - zmin);
761
762 if (dist < 0.1) {
763 matches++;
764 index = i;
765 }
766 }
767
768 if (matches != 1 || index < 0)
769 return FALSE;
770 pkey[j] = index;
771 }
772
773 return TRUE;
774}
775
776static void flip_poly(struct solid *solid, int flip)
777{
778 int i;
779
780 if (flip) {
781 for (i = 0; i < solid->nvertices; i++) {
782 solid->vertices[i*3+0] *= -1;
783 solid->vertices[i*3+1] *= -1;
784 }
785 for (i = 0; i < solid->nfaces; i++) {
786 solid->normals[i*3+0] *= -1;
787 solid->normals[i*3+1] *= -1;
788 }
789 }
790}
791
792static struct solid *transform_poly(const struct solid *solid, int flip,
793 int key0, int key1, float angle)
794{
795 struct solid *ret = snew(struct solid);
796 float vx, vy, ax, ay;
797 float vmatrix[9], amatrix[9], vmatrix2[9];
798 int i;
799
800 *ret = *solid; /* structure copy */
801
802 flip_poly(ret, flip);
803
804 /*
805 * Now rotate the polyhedron through the given angle. We must
806 * rotate about the Z-axis to bring the two vertices key0 and
807 * key1 into horizontal alignment, then rotate about the
808 * X-axis, then rotate back again.
809 */
810 vx = ret->vertices[key1*3+0] - ret->vertices[key0*3+0];
811 vy = ret->vertices[key1*3+1] - ret->vertices[key0*3+1];
812 assert(APPROXEQ(vx*vx + vy*vy, 1.0));
813
814 vmatrix[0] = vx; vmatrix[3] = vy; vmatrix[6] = 0;
815 vmatrix[1] = -vy; vmatrix[4] = vx; vmatrix[7] = 0;
816 vmatrix[2] = 0; vmatrix[5] = 0; vmatrix[8] = 1;
817
03f856c4 818 ax = (float)cos(angle);
819 ay = (float)sin(angle);
1482ee76 820
821 amatrix[0] = 1; amatrix[3] = 0; amatrix[6] = 0;
822 amatrix[1] = 0; amatrix[4] = ax; amatrix[7] = ay;
823 amatrix[2] = 0; amatrix[5] = -ay; amatrix[8] = ax;
824
825 memcpy(vmatrix2, vmatrix, sizeof(vmatrix));
826 vmatrix2[1] = vy;
827 vmatrix2[3] = -vy;
828
829 for (i = 0; i < ret->nvertices; i++) {
830 MATMUL(ret->vertices + 3*i, vmatrix, ret->vertices + 3*i);
831 MATMUL(ret->vertices + 3*i, amatrix, ret->vertices + 3*i);
832 MATMUL(ret->vertices + 3*i, vmatrix2, ret->vertices + 3*i);
833 }
834 for (i = 0; i < ret->nfaces; i++) {
835 MATMUL(ret->normals + 3*i, vmatrix, ret->normals + 3*i);
836 MATMUL(ret->normals + 3*i, amatrix, ret->normals + 3*i);
837 MATMUL(ret->normals + 3*i, vmatrix2, ret->normals + 3*i);
838 }
839
840 return ret;
841}
842
1185e3c5 843static char *validate_desc(game_params *params, char *desc)
5928817c 844{
845 int area = grid_area(params->d1, params->d2, solids[params->solid]->order);
846 int i, j;
847
848 i = (area + 3) / 4;
849 for (j = 0; j < i; j++) {
1185e3c5 850 int c = desc[j];
5928817c 851 if (c >= '0' && c <= '9') continue;
852 if (c >= 'A' && c <= 'F') continue;
853 if (c >= 'a' && c <= 'f') continue;
854 return "Not enough hex digits at start of string";
1185e3c5 855 /* NB if desc[j]=='\0' that will also be caught here, so we're safe */
5928817c 856 }
857
1185e3c5 858 if (desc[i] != ',')
b0e26073 859 return "Expected ',' after hex digits";
5928817c 860
861 i++;
862 do {
1185e3c5 863 if (desc[i] < '0' || desc[i] > '9')
b0e26073 864 return "Expected decimal integer after ','";
5928817c 865 i++;
1185e3c5 866 } while (desc[i]);
5928817c 867
868 return NULL;
869}
870
c380832d 871static game_state *new_game(midend_data *me, game_params *params, char *desc)
1482ee76 872{
873 game_state *state = snew(game_state);
874 int area;
875
876 state->params = *params; /* structure copy */
877 state->solid = solids[params->solid];
878
879 area = grid_area(params->d1, params->d2, state->solid->order);
880 state->squares = snewn(area, struct grid_square);
881 state->nsquares = 0;
882 enum_grid_squares(params, add_grid_square_callback, state);
883 assert(state->nsquares == area);
884
885 state->facecolours = snewn(state->solid->nfaces, int);
886 memset(state->facecolours, 0, state->solid->nfaces * sizeof(int));
887
888 /*
889 * Set up the blue squares and polyhedron position according to
1185e3c5 890 * the game description.
1482ee76 891 */
892 {
1185e3c5 893 char *p = desc;
1482ee76 894 int i, j, v;
895
896 j = 8;
897 v = 0;
898 for (i = 0; i < state->nsquares; i++) {
899 if (j == 8) {
900 v = *p++;
901 if (v >= '0' && v <= '9')
902 v -= '0';
903 else if (v >= 'A' && v <= 'F')
904 v -= 'A' - 10;
905 else if (v >= 'a' && v <= 'f')
906 v -= 'a' - 10;
907 else
908 break;
909 }
910 if (v & j)
911 state->squares[i].blue = TRUE;
912 j >>= 1;
913 if (j == 0)
914 j = 8;
915 }
916
b0e26073 917 if (*p == ',')
1482ee76 918 p++;
919
920 state->current = atoi(p);
921 if (state->current < 0 || state->current >= state->nsquares)
922 state->current = 0; /* got to do _something_ */
923 }
924
925 /*
926 * Align the polyhedron with its grid square and determine
927 * initial key points.
928 */
929 {
930 int pkey[4];
931 int ret;
932
933 ret = align_poly(state->solid, &state->squares[state->current], pkey);
934 assert(ret);
935
936 state->dpkey[0] = state->spkey[0] = pkey[0];
937 state->dpkey[1] = state->spkey[0] = pkey[1];
938 state->dgkey[0] = state->sgkey[0] = 0;
939 state->dgkey[1] = state->sgkey[0] = 1;
940 }
941
942 state->previous = state->current;
943 state->angle = 0.0;
fd1a1a2b 944 state->completed = 0;
1482ee76 945 state->movecount = 0;
946
947 return state;
948}
949
be8d5aa1 950static game_state *dup_game(game_state *state)
1482ee76 951{
952 game_state *ret = snew(game_state);
953
954 ret->params = state->params; /* structure copy */
955 ret->solid = state->solid;
956 ret->facecolours = snewn(ret->solid->nfaces, int);
957 memcpy(ret->facecolours, state->facecolours,
958 ret->solid->nfaces * sizeof(int));
959 ret->nsquares = state->nsquares;
2c93e23b 960 ret->current = state->current;
1482ee76 961 ret->squares = snewn(ret->nsquares, struct grid_square);
962 memcpy(ret->squares, state->squares,
963 ret->nsquares * sizeof(struct grid_square));
964 ret->dpkey[0] = state->dpkey[0];
965 ret->dpkey[1] = state->dpkey[1];
966 ret->dgkey[0] = state->dgkey[0];
967 ret->dgkey[1] = state->dgkey[1];
968 ret->spkey[0] = state->spkey[0];
969 ret->spkey[1] = state->spkey[1];
970 ret->sgkey[0] = state->sgkey[0];
971 ret->sgkey[1] = state->sgkey[1];
972 ret->previous = state->previous;
973 ret->angle = state->angle;
974 ret->completed = state->completed;
975 ret->movecount = state->movecount;
976
977 return ret;
978}
979
be8d5aa1 980static void free_game(game_state *state)
1482ee76 981{
982 sfree(state);
983}
984
2ac6d24e 985static game_state *solve_game(game_state *state, game_aux_info *aux,
986 char **error)
987{
988 return NULL;
989}
990
9b4b03d3 991static char *game_text_format(game_state *state)
992{
993 return NULL;
994}
995
be8d5aa1 996static game_ui *new_ui(game_state *state)
74a4e547 997{
998 return NULL;
999}
1000
be8d5aa1 1001static void free_ui(game_ui *ui)
74a4e547 1002{
1003}
1004
be8d5aa1 1005static game_state *make_move(game_state *from, game_ui *ui,
1006 int x, int y, int button)
1482ee76 1007{
1008 int direction;
1009 int pkey[2], skey[2], dkey[2];
1010 float points[4];
1011 game_state *ret;
1012 float angle;
1013 int i, j, dest, mask;
1014 struct solid *poly;
1015
f0ee053c 1016 button = button & (~MOD_MASK | MOD_NUM_KEYPAD);
1017
1482ee76 1018 /*
3c833d45 1019 * All moves are made with the cursor keys or numeric keypad.
1482ee76 1020 */
3c833d45 1021 if (button == CURSOR_UP || button == (MOD_NUM_KEYPAD | '8'))
1482ee76 1022 direction = UP;
3c833d45 1023 else if (button == CURSOR_DOWN || button == (MOD_NUM_KEYPAD | '2'))
1482ee76 1024 direction = DOWN;
3c833d45 1025 else if (button == CURSOR_LEFT || button == (MOD_NUM_KEYPAD | '4'))
1482ee76 1026 direction = LEFT;
3c833d45 1027 else if (button == CURSOR_RIGHT || button == (MOD_NUM_KEYPAD | '6'))
1482ee76 1028 direction = RIGHT;
3c833d45 1029 else if (button == (MOD_NUM_KEYPAD | '7'))
c71454c0 1030 direction = UP_LEFT;
3c833d45 1031 else if (button == (MOD_NUM_KEYPAD | '1'))
c71454c0 1032 direction = DOWN_LEFT;
3c833d45 1033 else if (button == (MOD_NUM_KEYPAD | '9'))
c71454c0 1034 direction = UP_RIGHT;
3c833d45 1035 else if (button == (MOD_NUM_KEYPAD | '3'))
c71454c0 1036 direction = DOWN_RIGHT;
1482ee76 1037 else
1038 return NULL;
1039
1040 /*
1041 * Find the two points in the current grid square which
1042 * correspond to this move.
1043 */
1044 mask = from->squares[from->current].directions[direction];
1045 if (mask == 0)
1046 return NULL;
1047 for (i = j = 0; i < from->squares[from->current].npoints; i++)
1048 if (mask & (1 << i)) {
1049 points[j*2] = from->squares[from->current].points[i*2];
1050 points[j*2+1] = from->squares[from->current].points[i*2+1];
1051 skey[j] = i;
1052 j++;
1053 }
1054 assert(j == 2);
1055
1056 /*
1057 * Now find the other grid square which shares those points.
1058 * This is our move destination.
1059 */
1060 dest = -1;
1061 for (i = 0; i < from->nsquares; i++)
1062 if (i != from->current) {
1063 int match = 0;
1064 float dist;
1065
1066 for (j = 0; j < from->squares[i].npoints; j++) {
1067 dist = (SQ(from->squares[i].points[j*2] - points[0]) +
1068 SQ(from->squares[i].points[j*2+1] - points[1]));
1069 if (dist < 0.1)
1070 dkey[match++] = j;
1071 dist = (SQ(from->squares[i].points[j*2] - points[2]) +
1072 SQ(from->squares[i].points[j*2+1] - points[3]));
1073 if (dist < 0.1)
1074 dkey[match++] = j;
1075 }
1076
1077 if (match == 2) {
1078 dest = i;
1079 break;
1080 }
1081 }
1082
1083 if (dest < 0)
1084 return NULL;
1085
1086 ret = dup_game(from);
1087 ret->current = i;
1088
1089 /*
1090 * So we know what grid square we're aiming for, and we also
1091 * know the two key points (as indices in both the source and
1092 * destination grid squares) which are invariant between source
1093 * and destination.
1094 *
1095 * Next we must roll the polyhedron on to that square. So we
1096 * find the indices of the key points within the polyhedron's
1097 * vertex array, then use those in a call to transform_poly,
1098 * and align the result on the new grid square.
1099 */
1100 {
1101 int all_pkey[4];
1102 align_poly(from->solid, &from->squares[from->current], all_pkey);
1103 pkey[0] = all_pkey[skey[0]];
1104 pkey[1] = all_pkey[skey[1]];
1105 /*
1106 * Now pkey[0] corresponds to skey[0] and dkey[0], and
1107 * likewise [1].
1108 */
1109 }
1110
1111 /*
1112 * Now find the angle through which to rotate the polyhedron.
1113 * Do this by finding the two faces that share the two vertices
1114 * we've found, and taking the dot product of their normals.
1115 */
1116 {
1117 int f[2], nf = 0;
1118 float dp;
1119
1120 for (i = 0; i < from->solid->nfaces; i++) {
1121 int match = 0;
1122 for (j = 0; j < from->solid->order; j++)
1123 if (from->solid->faces[i*from->solid->order + j] == pkey[0] ||
1124 from->solid->faces[i*from->solid->order + j] == pkey[1])
1125 match++;
1126 if (match == 2) {
1127 assert(nf < 2);
1128 f[nf++] = i;
1129 }
1130 }
1131
1132 assert(nf == 2);
1133
1134 dp = 0;
1135 for (i = 0; i < 3; i++)
1136 dp += (from->solid->normals[f[0]*3+i] *
1137 from->solid->normals[f[1]*3+i]);
03f856c4 1138 angle = (float)acos(dp);
1482ee76 1139 }
1140
1141 /*
1142 * Now transform the polyhedron. We aren't entirely sure
1143 * whether we need to rotate through angle or -angle, and the
1144 * simplest way round this is to try both and see which one
1145 * aligns successfully!
1146 *
1147 * Unfortunately, _both_ will align successfully if this is a
1148 * cube, which won't tell us anything much. So for that
1149 * particular case, I resort to gross hackery: I simply negate
1150 * the angle before trying the alignment, depending on the
1151 * direction. Which directions work which way is determined by
1152 * pure trial and error. I said it was gross :-/
1153 */
1154 {
1155 int all_pkey[4];
1156 int success;
1157
1158 if (from->solid->order == 4 && direction == UP)
1159 angle = -angle; /* HACK */
1160
1161 poly = transform_poly(from->solid,
1162 from->squares[from->current].flip,
1163 pkey[0], pkey[1], angle);
1164 flip_poly(poly, from->squares[ret->current].flip);
1165 success = align_poly(poly, &from->squares[ret->current], all_pkey);
1166
1167 if (!success) {
1168 angle = -angle;
1169 poly = transform_poly(from->solid,
1170 from->squares[from->current].flip,
1171 pkey[0], pkey[1], angle);
1172 flip_poly(poly, from->squares[ret->current].flip);
1173 success = align_poly(poly, &from->squares[ret->current], all_pkey);
1174 }
1175
1176 assert(success);
1177 }
1178
1179 /*
1180 * Now we have our rotated polyhedron, which we expect to be
1181 * exactly congruent to the one we started with - but with the
1182 * faces permuted. So we map that congruence and thereby figure
1183 * out how to permute the faces as a result of the polyhedron
1184 * having rolled.
1185 */
1186 {
1187 int *newcolours = snewn(from->solid->nfaces, int);
1188
1189 for (i = 0; i < from->solid->nfaces; i++)
1190 newcolours[i] = -1;
1191
1192 for (i = 0; i < from->solid->nfaces; i++) {
1193 int nmatch = 0;
1194
1195 /*
1196 * Now go through the transformed polyhedron's faces
1197 * and figure out which one's normal is approximately
1198 * equal to this one.
1199 */
1200 for (j = 0; j < poly->nfaces; j++) {
1201 float dist;
1202 int k;
1203
1204 dist = 0;
1205
1206 for (k = 0; k < 3; k++)
1207 dist += SQ(poly->normals[j*3+k] -
1208 from->solid->normals[i*3+k]);
1209
1210 if (APPROXEQ(dist, 0)) {
1211 nmatch++;
1212 newcolours[i] = ret->facecolours[j];
1213 }
1214 }
1215
1216 assert(nmatch == 1);
1217 }
1218
1219 for (i = 0; i < from->solid->nfaces; i++)
1220 assert(newcolours[i] != -1);
1221
1222 sfree(ret->facecolours);
1223 ret->facecolours = newcolours;
1224 }
1225
ccd4e210 1226 ret->movecount++;
1227
1482ee76 1228 /*
1229 * And finally, swap the colour between the bottom face of the
1230 * polyhedron and the face we've just landed on.
1231 *
1232 * We don't do this if the game is already complete, since we
1233 * allow the user to roll the fully blue polyhedron around the
1234 * grid as a feeble reward.
1235 */
1236 if (!ret->completed) {
1237 i = lowest_face(from->solid);
1238 j = ret->facecolours[i];
1239 ret->facecolours[i] = ret->squares[ret->current].blue;
1240 ret->squares[ret->current].blue = j;
1241
1242 /*
1243 * Detect game completion.
1244 */
1245 j = 0;
1246 for (i = 0; i < ret->solid->nfaces; i++)
1247 if (ret->facecolours[i])
1248 j++;
1249 if (j == ret->solid->nfaces)
fd1a1a2b 1250 ret->completed = ret->movecount;
1482ee76 1251 }
1252
1253 sfree(poly);
1254
1255 /*
1256 * Align the normal polyhedron with its grid square, to get key
1257 * points for non-animated display.
1258 */
1259 {
1260 int pkey[4];
1261 int success;
1262
1263 success = align_poly(ret->solid, &ret->squares[ret->current], pkey);
1264 assert(success);
1265
1266 ret->dpkey[0] = pkey[0];
1267 ret->dpkey[1] = pkey[1];
1268 ret->dgkey[0] = 0;
1269 ret->dgkey[1] = 1;
1270 }
1271
1272
1273 ret->spkey[0] = pkey[0];
1274 ret->spkey[1] = pkey[1];
1275 ret->sgkey[0] = skey[0];
1276 ret->sgkey[1] = skey[1];
1277 ret->previous = from->current;
1278 ret->angle = angle;
1482ee76 1279
1280 return ret;
1281}
1282
1283/* ----------------------------------------------------------------------
1284 * Drawing routines.
1285 */
1286
1287struct bbox {
1288 float l, r, u, d;
1289};
1290
1291struct game_drawstate {
1292 int ox, oy; /* pixel position of float origin */
1293};
1294
1295static void find_bbox_callback(void *ctx, struct grid_square *sq)
1296{
1297 struct bbox *bb = (struct bbox *)ctx;
1298 int i;
1299
1300 for (i = 0; i < sq->npoints; i++) {
1301 if (bb->l > sq->points[i*2]) bb->l = sq->points[i*2];
1302 if (bb->r < sq->points[i*2]) bb->r = sq->points[i*2];
1303 if (bb->u > sq->points[i*2+1]) bb->u = sq->points[i*2+1];
1304 if (bb->d < sq->points[i*2+1]) bb->d = sq->points[i*2+1];
1305 }
1306}
1307
1308static struct bbox find_bbox(game_params *params)
1309{
1310 struct bbox bb;
1311
1312 /*
1313 * These should be hugely more than the real bounding box will
1314 * be.
1315 */
03f856c4 1316 bb.l = 2.0F * (params->d1 + params->d2);
1317 bb.r = -2.0F * (params->d1 + params->d2);
1318 bb.u = 2.0F * (params->d1 + params->d2);
1319 bb.d = -2.0F * (params->d1 + params->d2);
1482ee76 1320 enum_grid_squares(params, find_bbox_callback, &bb);
1321
1322 return bb;
1323}
1324
be8d5aa1 1325static void game_size(game_params *params, int *x, int *y)
1482ee76 1326{
1327 struct bbox bb = find_bbox(params);
03f856c4 1328 *x = (int)((bb.r - bb.l + 2*solids[params->solid]->border) * GRID_SCALE);
1329 *y = (int)((bb.d - bb.u + 2*solids[params->solid]->border) * GRID_SCALE);
1482ee76 1330}
1331
be8d5aa1 1332static float *game_colours(frontend *fe, game_state *state, int *ncolours)
1482ee76 1333{
1334 float *ret = snewn(3 * NCOLOURS, float);
1335
1336 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
1337
1338 ret[COL_BORDER * 3 + 0] = 0.0;
1339 ret[COL_BORDER * 3 + 1] = 0.0;
1340 ret[COL_BORDER * 3 + 2] = 0.0;
1341
1342 ret[COL_BLUE * 3 + 0] = 0.0;
1343 ret[COL_BLUE * 3 + 1] = 0.0;
1344 ret[COL_BLUE * 3 + 2] = 1.0;
1345
1346 *ncolours = NCOLOURS;
1347 return ret;
1348}
1349
be8d5aa1 1350static game_drawstate *game_new_drawstate(game_state *state)
1482ee76 1351{
1352 struct game_drawstate *ds = snew(struct game_drawstate);
1353 struct bbox bb = find_bbox(&state->params);
1354
03f856c4 1355 ds->ox = (int)(-(bb.l - state->solid->border) * GRID_SCALE);
1356 ds->oy = (int)(-(bb.u - state->solid->border) * GRID_SCALE);
1482ee76 1357
1358 return ds;
1359}
1360
be8d5aa1 1361static void game_free_drawstate(game_drawstate *ds)
1482ee76 1362{
1363 sfree(ds);
1364}
1365
be8d5aa1 1366static void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate,
c822de4a 1367 game_state *state, int dir, game_ui *ui,
74a4e547 1368 float animtime, float flashtime)
1482ee76 1369{
1370 int i, j;
1371 struct bbox bb = find_bbox(&state->params);
1372 struct solid *poly;
1373 int *pkey, *gkey;
1374 float t[3];
1375 float angle;
1376 game_state *newstate;
1377 int square;
1378
03f856c4 1379 draw_rect(fe, 0, 0, (int)((bb.r-bb.l+2.0F) * GRID_SCALE),
1380 (int)((bb.d-bb.u+2.0F) * GRID_SCALE), COL_BACKGROUND);
1482ee76 1381
5b5c6b12 1382 if (dir < 0) {
1482ee76 1383 game_state *t;
1384
1385 /*
1386 * This is an Undo. So reverse the order of the states, and
1387 * run the roll timer backwards.
1388 */
5b5c6b12 1389 assert(oldstate);
1390
1482ee76 1391 t = oldstate;
1392 oldstate = state;
1393 state = t;
1394
1395 animtime = ROLLTIME - animtime;
1396 }
1397
1398 if (!oldstate) {
1399 oldstate = state;
1400 angle = 0.0;
1401 square = state->current;
1402 pkey = state->dpkey;
1403 gkey = state->dgkey;
1404 } else {
1405 angle = state->angle * animtime / ROLLTIME;
1406 square = state->previous;
1407 pkey = state->spkey;
1408 gkey = state->sgkey;
1409 }
1410 newstate = state;
1411 state = oldstate;
1412
1413 for (i = 0; i < state->nsquares; i++) {
1414 int coords[8];
1415
1416 for (j = 0; j < state->squares[i].npoints; j++) {
03f856c4 1417 coords[2*j] = ((int)(state->squares[i].points[2*j] * GRID_SCALE)
1418 + ds->ox);
1419 coords[2*j+1] = ((int)(state->squares[i].points[2*j+1]*GRID_SCALE)
1420 + ds->oy);
1482ee76 1421 }
1422
1423 draw_polygon(fe, coords, state->squares[i].npoints, TRUE,
1424 state->squares[i].blue ? COL_BLUE : COL_BACKGROUND);
1425 draw_polygon(fe, coords, state->squares[i].npoints, FALSE, COL_BORDER);
1426 }
1427
1428 /*
1429 * Now compute and draw the polyhedron.
1430 */
1431 poly = transform_poly(state->solid, state->squares[square].flip,
1432 pkey[0], pkey[1], angle);
1433
1434 /*
1435 * Compute the translation required to align the two key points
1436 * on the polyhedron with the same key points on the current
1437 * face.
1438 */
1439 for (i = 0; i < 3; i++) {
1440 float tc = 0.0;
1441
1442 for (j = 0; j < 2; j++) {
1443 float grid_coord;
1444
1445 if (i < 2) {
1446 grid_coord =
1447 state->squares[square].points[gkey[j]*2+i];
1448 } else {
1449 grid_coord = 0.0;
1450 }
1451
1452 tc += (grid_coord - poly->vertices[pkey[j]*3+i]);
1453 }
1454
1455 t[i] = tc / 2;
1456 }
1457 for (i = 0; i < poly->nvertices; i++)
1458 for (j = 0; j < 3; j++)
1459 poly->vertices[i*3+j] += t[j];
1460
1461 /*
1462 * Now actually draw each face.
1463 */
1464 for (i = 0; i < poly->nfaces; i++) {
1465 float points[8];
1466 int coords[8];
1467
1468 for (j = 0; j < poly->order; j++) {
1469 int f = poly->faces[i*poly->order + j];
1470 points[j*2] = (poly->vertices[f*3+0] -
1471 poly->vertices[f*3+2] * poly->shear);
1472 points[j*2+1] = (poly->vertices[f*3+1] -
1473 poly->vertices[f*3+2] * poly->shear);
1474 }
1475
1476 for (j = 0; j < poly->order; j++) {
962dcf9a 1477 coords[j*2] = (int)floor(points[j*2] * GRID_SCALE) + ds->ox;
1478 coords[j*2+1] = (int)floor(points[j*2+1] * GRID_SCALE) + ds->oy;
1482ee76 1479 }
1480
1481 /*
1482 * Find out whether these points are in a clockwise or
1483 * anticlockwise arrangement. If the latter, discard the
1484 * face because it's facing away from the viewer.
1485 *
1486 * This would involve fiddly winding-number stuff for a
1487 * general polygon, but for the simple parallelograms we'll
1488 * be seeing here, all we have to do is check whether the
1489 * corners turn right or left. So we'll take the vector
1490 * from point 0 to point 1, turn it right 90 degrees,
1491 * and check the sign of the dot product with that and the
1492 * next vector (point 1 to point 2).
1493 */
1494 {
1495 float v1x = points[2]-points[0];
1496 float v1y = points[3]-points[1];
1497 float v2x = points[4]-points[2];
1498 float v2y = points[5]-points[3];
1499 float dp = v1x * v2y - v1y * v2x;
1500
1501 if (dp <= 0)
1502 continue;
1503 }
1504
1505 draw_polygon(fe, coords, poly->order, TRUE,
1506 state->facecolours[i] ? COL_BLUE : COL_BACKGROUND);
1507 draw_polygon(fe, coords, poly->order, FALSE, COL_BORDER);
1508 }
1509 sfree(poly);
1510
03f856c4 1511 draw_update(fe, 0, 0, (int)((bb.r-bb.l+2.0F) * GRID_SCALE),
1512 (int)((bb.d-bb.u+2.0F) * GRID_SCALE));
fd1a1a2b 1513
1514 /*
1515 * Update the status bar.
1516 */
1517 {
1518 char statusbuf[256];
1519
1520 sprintf(statusbuf, "%sMoves: %d",
1521 (state->completed ? "COMPLETED! " : ""),
1522 (state->completed ? state->completed : state->movecount));
1523
1524 status_bar(fe, statusbuf);
1525 }
1482ee76 1526}
1527
be8d5aa1 1528static float game_anim_length(game_state *oldstate,
e3f21163 1529 game_state *newstate, int dir, game_ui *ui)
1482ee76 1530{
1531 return ROLLTIME;
1532}
87ed82be 1533
be8d5aa1 1534static float game_flash_length(game_state *oldstate,
e3f21163 1535 game_state *newstate, int dir, game_ui *ui)
87ed82be 1536{
1537 return 0.0F;
1538}
fd1a1a2b 1539
be8d5aa1 1540static int game_wants_statusbar(void)
fd1a1a2b 1541{
1542 return TRUE;
1543}
be8d5aa1 1544
1545#ifdef COMBINED
1546#define thegame cube
1547#endif
1548
1549const struct game thegame = {
1d228b10 1550 "Cube", "games.cube",
be8d5aa1 1551 default_params,
1552 game_fetch_preset,
1553 decode_params,
1554 encode_params,
1555 free_params,
1556 dup_params,
1d228b10 1557 TRUE, game_configure, custom_params,
be8d5aa1 1558 validate_params,
1185e3c5 1559 new_game_desc,
6f2d8d7c 1560 game_free_aux_info,
1185e3c5 1561 validate_desc,
be8d5aa1 1562 new_game,
1563 dup_game,
1564 free_game,
2ac6d24e 1565 FALSE, solve_game,
b8e03d27 1566 FALSE, game_text_format,
be8d5aa1 1567 new_ui,
1568 free_ui,
1569 make_move,
1570 game_size,
1571 game_colours,
1572 game_new_drawstate,
1573 game_free_drawstate,
1574 game_redraw,
1575 game_anim_length,
1576 game_flash_length,
1577 game_wants_statusbar,
1578};