f6dc2809a28c6aed884a293e67f66ac38cf685bb
[sgt/putty] / import.c
1 /*
2 * Code for PuTTY to import and export private key files in other
3 * SSH clients' formats.
4 */
5
6 #include <stdio.h>
7 #include <stdlib.h>
8 #include <assert.h>
9 #include <ctype.h>
10
11 #include "putty.h"
12 #include "ssh.h"
13 #include "misc.h"
14
15 int openssh_encrypted(const Filename *filename);
16 struct ssh2_userkey *openssh_read(const Filename *filename, char *passphrase,
17 const char **errmsg_p);
18 int openssh_write(const Filename *filename, struct ssh2_userkey *key,
19 char *passphrase);
20
21 int sshcom_encrypted(const Filename *filename, char **comment);
22 struct ssh2_userkey *sshcom_read(const Filename *filename, char *passphrase,
23 const char **errmsg_p);
24 int sshcom_write(const Filename *filename, struct ssh2_userkey *key,
25 char *passphrase);
26
27 /*
28 * Given a key type, determine whether we know how to import it.
29 */
30 int import_possible(int type)
31 {
32 if (type == SSH_KEYTYPE_OPENSSH)
33 return 1;
34 if (type == SSH_KEYTYPE_SSHCOM)
35 return 1;
36 return 0;
37 }
38
39 /*
40 * Given a key type, determine what native key type
41 * (SSH_KEYTYPE_SSH1 or SSH_KEYTYPE_SSH2) it will come out as once
42 * we've imported it.
43 */
44 int import_target_type(int type)
45 {
46 /*
47 * There are no known foreign SSH-1 key formats.
48 */
49 return SSH_KEYTYPE_SSH2;
50 }
51
52 /*
53 * Determine whether a foreign key is encrypted.
54 */
55 int import_encrypted(const Filename *filename, int type, char **comment)
56 {
57 if (type == SSH_KEYTYPE_OPENSSH) {
58 /* OpenSSH doesn't do key comments */
59 *comment = dupstr(filename_to_str(filename));
60 return openssh_encrypted(filename);
61 }
62 if (type == SSH_KEYTYPE_SSHCOM) {
63 return sshcom_encrypted(filename, comment);
64 }
65 return 0;
66 }
67
68 /*
69 * Import an SSH-1 key.
70 */
71 int import_ssh1(const Filename *filename, int type,
72 struct RSAKey *key, char *passphrase, const char **errmsg_p)
73 {
74 return 0;
75 }
76
77 /*
78 * Import an SSH-2 key.
79 */
80 struct ssh2_userkey *import_ssh2(const Filename *filename, int type,
81 char *passphrase, const char **errmsg_p)
82 {
83 if (type == SSH_KEYTYPE_OPENSSH)
84 return openssh_read(filename, passphrase, errmsg_p);
85 if (type == SSH_KEYTYPE_SSHCOM)
86 return sshcom_read(filename, passphrase, errmsg_p);
87 return NULL;
88 }
89
90 /*
91 * Export an SSH-1 key.
92 */
93 int export_ssh1(const Filename *filename, int type, struct RSAKey *key,
94 char *passphrase)
95 {
96 return 0;
97 }
98
99 /*
100 * Export an SSH-2 key.
101 */
102 int export_ssh2(const Filename *filename, int type,
103 struct ssh2_userkey *key, char *passphrase)
104 {
105 if (type == SSH_KEYTYPE_OPENSSH)
106 return openssh_write(filename, key, passphrase);
107 if (type == SSH_KEYTYPE_SSHCOM)
108 return sshcom_write(filename, key, passphrase);
109 return 0;
110 }
111
112 /*
113 * Strip trailing CRs and LFs at the end of a line of text.
114 */
115 void strip_crlf(char *str)
116 {
117 char *p = str + strlen(str);
118
119 while (p > str && (p[-1] == '\r' || p[-1] == '\n'))
120 *--p = '\0';
121 }
122
123 /* ----------------------------------------------------------------------
124 * Helper routines. (The base64 ones are defined in sshpubk.c.)
125 */
126
127 #define isbase64(c) ( ((c) >= 'A' && (c) <= 'Z') || \
128 ((c) >= 'a' && (c) <= 'z') || \
129 ((c) >= '0' && (c) <= '9') || \
130 (c) == '+' || (c) == '/' || (c) == '=' \
131 )
132
133 /*
134 * Read an ASN.1/BER identifier and length pair.
135 *
136 * Flags are a combination of the #defines listed below.
137 *
138 * Returns -1 if unsuccessful; otherwise returns the number of
139 * bytes used out of the source data.
140 */
141
142 /* ASN.1 tag classes. */
143 #define ASN1_CLASS_UNIVERSAL (0 << 6)
144 #define ASN1_CLASS_APPLICATION (1 << 6)
145 #define ASN1_CLASS_CONTEXT_SPECIFIC (2 << 6)
146 #define ASN1_CLASS_PRIVATE (3 << 6)
147 #define ASN1_CLASS_MASK (3 << 6)
148
149 /* Primitive versus constructed bit. */
150 #define ASN1_CONSTRUCTED (1 << 5)
151
152 static int ber_read_id_len(void *source, int sourcelen,
153 int *id, int *length, int *flags)
154 {
155 unsigned char *p = (unsigned char *) source;
156
157 if (sourcelen == 0)
158 return -1;
159
160 *flags = (*p & 0xE0);
161 if ((*p & 0x1F) == 0x1F) {
162 *id = 0;
163 while (*p & 0x80) {
164 p++, sourcelen--;
165 if (sourcelen == 0)
166 return -1;
167 *id = (*id << 7) | (*p & 0x7F);
168 }
169 p++, sourcelen--;
170 } else {
171 *id = *p & 0x1F;
172 p++, sourcelen--;
173 }
174
175 if (sourcelen == 0)
176 return -1;
177
178 if (*p & 0x80) {
179 int n = *p & 0x7F;
180 p++, sourcelen--;
181 if (sourcelen < n)
182 return -1;
183 *length = 0;
184 while (n--)
185 *length = (*length << 8) | (*p++);
186 sourcelen -= n;
187 } else {
188 *length = *p;
189 p++, sourcelen--;
190 }
191
192 return p - (unsigned char *) source;
193 }
194
195 /*
196 * Write an ASN.1/BER identifier and length pair. Returns the
197 * number of bytes consumed. Assumes dest contains enough space.
198 * Will avoid writing anything if dest is NULL, but still return
199 * amount of space required.
200 */
201 static int ber_write_id_len(void *dest, int id, int length, int flags)
202 {
203 unsigned char *d = (unsigned char *)dest;
204 int len = 0;
205
206 if (id <= 30) {
207 /*
208 * Identifier is one byte.
209 */
210 len++;
211 if (d) *d++ = id | flags;
212 } else {
213 int n;
214 /*
215 * Identifier is multiple bytes: the first byte is 11111
216 * plus the flags, and subsequent bytes encode the value of
217 * the identifier, 7 bits at a time, with the top bit of
218 * each byte 1 except the last one which is 0.
219 */
220 len++;
221 if (d) *d++ = 0x1F | flags;
222 for (n = 1; (id >> (7*n)) > 0; n++)
223 continue; /* count the bytes */
224 while (n--) {
225 len++;
226 if (d) *d++ = (n ? 0x80 : 0) | ((id >> (7*n)) & 0x7F);
227 }
228 }
229
230 if (length < 128) {
231 /*
232 * Length is one byte.
233 */
234 len++;
235 if (d) *d++ = length;
236 } else {
237 int n;
238 /*
239 * Length is multiple bytes. The first is 0x80 plus the
240 * number of subsequent bytes, and the subsequent bytes
241 * encode the actual length.
242 */
243 for (n = 1; (length >> (8*n)) > 0; n++)
244 continue; /* count the bytes */
245 len++;
246 if (d) *d++ = 0x80 | n;
247 while (n--) {
248 len++;
249 if (d) *d++ = (length >> (8*n)) & 0xFF;
250 }
251 }
252
253 return len;
254 }
255
256 static int put_string(void *target, void *data, int len)
257 {
258 unsigned char *d = (unsigned char *)target;
259
260 PUT_32BIT(d, len);
261 memcpy(d+4, data, len);
262 return len+4;
263 }
264
265 static int put_mp(void *target, void *data, int len)
266 {
267 unsigned char *d = (unsigned char *)target;
268 unsigned char *i = (unsigned char *)data;
269
270 if (*i & 0x80) {
271 PUT_32BIT(d, len+1);
272 d[4] = 0;
273 memcpy(d+5, data, len);
274 return len+5;
275 } else {
276 PUT_32BIT(d, len);
277 memcpy(d+4, data, len);
278 return len+4;
279 }
280 }
281
282 /* Simple structure to point to an mp-int within a blob. */
283 struct mpint_pos { void *start; int bytes; };
284
285 static int ssh2_read_mpint(void *data, int len, struct mpint_pos *ret)
286 {
287 int bytes;
288 unsigned char *d = (unsigned char *) data;
289
290 if (len < 4)
291 goto error;
292 bytes = toint(GET_32BIT(d));
293 if (bytes < 0 || len-4 < bytes)
294 goto error;
295
296 ret->start = d + 4;
297 ret->bytes = bytes;
298 return bytes+4;
299
300 error:
301 ret->start = NULL;
302 ret->bytes = -1;
303 return len; /* ensure further calls fail as well */
304 }
305
306 /* ----------------------------------------------------------------------
307 * Code to read and write OpenSSH private keys.
308 */
309
310 enum { OSSH_DSA, OSSH_RSA };
311 enum { OSSH_ENC_3DES, OSSH_ENC_AES };
312 struct openssh_key {
313 int type;
314 int encrypted, encryption;
315 char iv[32];
316 unsigned char *keyblob;
317 int keyblob_len, keyblob_size;
318 };
319
320 static struct openssh_key *load_openssh_key(const Filename *filename,
321 const char **errmsg_p)
322 {
323 struct openssh_key *ret;
324 FILE *fp = NULL;
325 char *line = NULL;
326 char *errmsg, *p;
327 int headers_done;
328 char base64_bit[4];
329 int base64_chars = 0;
330
331 ret = snew(struct openssh_key);
332 ret->keyblob = NULL;
333 ret->keyblob_len = ret->keyblob_size = 0;
334 ret->encrypted = 0;
335 memset(ret->iv, 0, sizeof(ret->iv));
336
337 fp = f_open(filename, "r", FALSE);
338 if (!fp) {
339 errmsg = "unable to open key file";
340 goto error;
341 }
342
343 if (!(line = fgetline(fp))) {
344 errmsg = "unexpected end of file";
345 goto error;
346 }
347 strip_crlf(line);
348 if (0 != strncmp(line, "-----BEGIN ", 11) ||
349 0 != strcmp(line+strlen(line)-16, "PRIVATE KEY-----")) {
350 errmsg = "file does not begin with OpenSSH key header";
351 goto error;
352 }
353 if (!strcmp(line, "-----BEGIN RSA PRIVATE KEY-----"))
354 ret->type = OSSH_RSA;
355 else if (!strcmp(line, "-----BEGIN DSA PRIVATE KEY-----"))
356 ret->type = OSSH_DSA;
357 else {
358 errmsg = "unrecognised key type";
359 goto error;
360 }
361 smemclr(line, strlen(line));
362 sfree(line);
363 line = NULL;
364
365 headers_done = 0;
366 while (1) {
367 if (!(line = fgetline(fp))) {
368 errmsg = "unexpected end of file";
369 goto error;
370 }
371 strip_crlf(line);
372 if (0 == strncmp(line, "-----END ", 9) &&
373 0 == strcmp(line+strlen(line)-16, "PRIVATE KEY-----")) {
374 sfree(line);
375 line = NULL;
376 break; /* done */
377 }
378 if ((p = strchr(line, ':')) != NULL) {
379 if (headers_done) {
380 errmsg = "header found in body of key data";
381 goto error;
382 }
383 *p++ = '\0';
384 while (*p && isspace((unsigned char)*p)) p++;
385 if (!strcmp(line, "Proc-Type")) {
386 if (p[0] != '4' || p[1] != ',') {
387 errmsg = "Proc-Type is not 4 (only 4 is supported)";
388 goto error;
389 }
390 p += 2;
391 if (!strcmp(p, "ENCRYPTED"))
392 ret->encrypted = 1;
393 } else if (!strcmp(line, "DEK-Info")) {
394 int i, j, ivlen;
395
396 if (!strncmp(p, "DES-EDE3-CBC,", 13)) {
397 ret->encryption = OSSH_ENC_3DES;
398 ivlen = 8;
399 } else if (!strncmp(p, "AES-128-CBC,", 12)) {
400 ret->encryption = OSSH_ENC_AES;
401 ivlen = 16;
402 } else {
403 errmsg = "unsupported cipher";
404 goto error;
405 }
406 p = strchr(p, ',') + 1;/* always non-NULL, by above checks */
407 for (i = 0; i < ivlen; i++) {
408 if (1 != sscanf(p, "%2x", &j)) {
409 errmsg = "expected more iv data in DEK-Info";
410 goto error;
411 }
412 ret->iv[i] = j;
413 p += 2;
414 }
415 if (*p) {
416 errmsg = "more iv data than expected in DEK-Info";
417 goto error;
418 }
419 }
420 } else {
421 headers_done = 1;
422
423 p = line;
424 while (isbase64(*p)) {
425 base64_bit[base64_chars++] = *p;
426 if (base64_chars == 4) {
427 unsigned char out[3];
428 int len;
429
430 base64_chars = 0;
431
432 len = base64_decode_atom(base64_bit, out);
433
434 if (len <= 0) {
435 errmsg = "invalid base64 encoding";
436 goto error;
437 }
438
439 if (ret->keyblob_len + len > ret->keyblob_size) {
440 ret->keyblob_size = ret->keyblob_len + len + 256;
441 ret->keyblob = sresize(ret->keyblob, ret->keyblob_size,
442 unsigned char);
443 }
444
445 memcpy(ret->keyblob + ret->keyblob_len, out, len);
446 ret->keyblob_len += len;
447
448 smemclr(out, sizeof(out));
449 }
450
451 p++;
452 }
453 }
454 smemclr(line, strlen(line));
455 sfree(line);
456 line = NULL;
457 }
458
459 fclose(fp);
460 fp = NULL;
461
462 if (ret->keyblob_len == 0 || !ret->keyblob) {
463 errmsg = "key body not present";
464 goto error;
465 }
466
467 if (ret->encrypted && ret->keyblob_len % 8 != 0) {
468 errmsg = "encrypted key blob is not a multiple of cipher block size";
469 goto error;
470 }
471
472 smemclr(base64_bit, sizeof(base64_bit));
473 if (errmsg_p) *errmsg_p = NULL;
474 return ret;
475
476 error:
477 if (line) {
478 smemclr(line, strlen(line));
479 sfree(line);
480 line = NULL;
481 }
482 smemclr(base64_bit, sizeof(base64_bit));
483 if (ret) {
484 if (ret->keyblob) {
485 smemclr(ret->keyblob, ret->keyblob_size);
486 sfree(ret->keyblob);
487 }
488 smemclr(ret, sizeof(*ret));
489 sfree(ret);
490 }
491 if (errmsg_p) *errmsg_p = errmsg;
492 if (fp) fclose(fp);
493 return NULL;
494 }
495
496 int openssh_encrypted(const Filename *filename)
497 {
498 struct openssh_key *key = load_openssh_key(filename, NULL);
499 int ret;
500
501 if (!key)
502 return 0;
503 ret = key->encrypted;
504 smemclr(key->keyblob, key->keyblob_size);
505 sfree(key->keyblob);
506 smemclr(key, sizeof(*key));
507 sfree(key);
508 return ret;
509 }
510
511 struct ssh2_userkey *openssh_read(const Filename *filename, char *passphrase,
512 const char **errmsg_p)
513 {
514 struct openssh_key *key = load_openssh_key(filename, errmsg_p);
515 struct ssh2_userkey *retkey;
516 unsigned char *p;
517 int ret, id, len, flags;
518 int i, num_integers;
519 struct ssh2_userkey *retval = NULL;
520 char *errmsg;
521 unsigned char *blob;
522 int blobsize = 0, blobptr, privptr;
523 char *modptr = NULL;
524 int modlen = 0;
525
526 blob = NULL;
527
528 if (!key)
529 return NULL;
530
531 if (key->encrypted) {
532 /*
533 * Derive encryption key from passphrase and iv/salt:
534 *
535 * - let block A equal MD5(passphrase || iv)
536 * - let block B equal MD5(A || passphrase || iv)
537 * - block C would be MD5(B || passphrase || iv) and so on
538 * - encryption key is the first N bytes of A || B
539 *
540 * (Note that only 8 bytes of the iv are used for key
541 * derivation, even when the key is encrypted with AES and
542 * hence there are 16 bytes available.)
543 */
544 struct MD5Context md5c;
545 unsigned char keybuf[32];
546
547 MD5Init(&md5c);
548 MD5Update(&md5c, (unsigned char *)passphrase, strlen(passphrase));
549 MD5Update(&md5c, (unsigned char *)key->iv, 8);
550 MD5Final(keybuf, &md5c);
551
552 MD5Init(&md5c);
553 MD5Update(&md5c, keybuf, 16);
554 MD5Update(&md5c, (unsigned char *)passphrase, strlen(passphrase));
555 MD5Update(&md5c, (unsigned char *)key->iv, 8);
556 MD5Final(keybuf+16, &md5c);
557
558 /*
559 * Now decrypt the key blob.
560 */
561 if (key->encryption == OSSH_ENC_3DES)
562 des3_decrypt_pubkey_ossh(keybuf, (unsigned char *)key->iv,
563 key->keyblob, key->keyblob_len);
564 else {
565 void *ctx;
566 assert(key->encryption == OSSH_ENC_AES);
567 ctx = aes_make_context();
568 aes128_key(ctx, keybuf);
569 aes_iv(ctx, (unsigned char *)key->iv);
570 aes_ssh2_decrypt_blk(ctx, key->keyblob, key->keyblob_len);
571 aes_free_context(ctx);
572 }
573
574 smemclr(&md5c, sizeof(md5c));
575 smemclr(keybuf, sizeof(keybuf));
576 }
577
578 /*
579 * Now we have a decrypted key blob, which contains an ASN.1
580 * encoded private key. We must now untangle the ASN.1.
581 *
582 * We expect the whole key blob to be formatted as a SEQUENCE
583 * (0x30 followed by a length code indicating that the rest of
584 * the blob is part of the sequence). Within that SEQUENCE we
585 * expect to see a bunch of INTEGERs. What those integers mean
586 * depends on the key type:
587 *
588 * - For RSA, we expect the integers to be 0, n, e, d, p, q,
589 * dmp1, dmq1, iqmp in that order. (The last three are d mod
590 * (p-1), d mod (q-1), inverse of q mod p respectively.)
591 *
592 * - For DSA, we expect them to be 0, p, q, g, y, x in that
593 * order.
594 */
595
596 p = key->keyblob;
597
598 /* Expect the SEQUENCE header. Take its absence as a failure to
599 * decrypt, if the key was encrypted. */
600 ret = ber_read_id_len(p, key->keyblob_len, &id, &len, &flags);
601 p += ret;
602 if (ret < 0 || id != 16) {
603 errmsg = "ASN.1 decoding failure";
604 retval = key->encrypted ? SSH2_WRONG_PASSPHRASE : NULL;
605 goto error;
606 }
607
608 /* Expect a load of INTEGERs. */
609 if (key->type == OSSH_RSA)
610 num_integers = 9;
611 else if (key->type == OSSH_DSA)
612 num_integers = 6;
613 else
614 num_integers = 0; /* placate compiler warnings */
615
616 /*
617 * Space to create key blob in.
618 */
619 blobsize = 256+key->keyblob_len;
620 blob = snewn(blobsize, unsigned char);
621 PUT_32BIT(blob, 7);
622 if (key->type == OSSH_DSA)
623 memcpy(blob+4, "ssh-dss", 7);
624 else if (key->type == OSSH_RSA)
625 memcpy(blob+4, "ssh-rsa", 7);
626 blobptr = 4+7;
627 privptr = -1;
628
629 for (i = 0; i < num_integers; i++) {
630 ret = ber_read_id_len(p, key->keyblob+key->keyblob_len-p,
631 &id, &len, &flags);
632 p += ret;
633 if (ret < 0 || id != 2 ||
634 key->keyblob+key->keyblob_len-p < len) {
635 errmsg = "ASN.1 decoding failure";
636 retval = key->encrypted ? SSH2_WRONG_PASSPHRASE : NULL;
637 goto error;
638 }
639
640 if (i == 0) {
641 /*
642 * The first integer should be zero always (I think
643 * this is some sort of version indication).
644 */
645 if (len != 1 || p[0] != 0) {
646 errmsg = "version number mismatch";
647 goto error;
648 }
649 } else if (key->type == OSSH_RSA) {
650 /*
651 * Integers 1 and 2 go into the public blob but in the
652 * opposite order; integers 3, 4, 5 and 8 go into the
653 * private blob. The other two (6 and 7) are ignored.
654 */
655 if (i == 1) {
656 /* Save the details for after we deal with number 2. */
657 modptr = (char *)p;
658 modlen = len;
659 } else if (i != 6 && i != 7) {
660 PUT_32BIT(blob+blobptr, len);
661 memcpy(blob+blobptr+4, p, len);
662 blobptr += 4+len;
663 if (i == 2) {
664 PUT_32BIT(blob+blobptr, modlen);
665 memcpy(blob+blobptr+4, modptr, modlen);
666 blobptr += 4+modlen;
667 privptr = blobptr;
668 }
669 }
670 } else if (key->type == OSSH_DSA) {
671 /*
672 * Integers 1-4 go into the public blob; integer 5 goes
673 * into the private blob.
674 */
675 PUT_32BIT(blob+blobptr, len);
676 memcpy(blob+blobptr+4, p, len);
677 blobptr += 4+len;
678 if (i == 4)
679 privptr = blobptr;
680 }
681
682 /* Skip past the number. */
683 p += len;
684 }
685
686 /*
687 * Now put together the actual key. Simplest way to do this is
688 * to assemble our own key blobs and feed them to the createkey
689 * functions; this is a bit faffy but it does mean we get all
690 * the sanity checks for free.
691 */
692 assert(privptr > 0); /* should have bombed by now if not */
693 retkey = snew(struct ssh2_userkey);
694 retkey->alg = (key->type == OSSH_RSA ? &ssh_rsa : &ssh_dss);
695 retkey->data = retkey->alg->createkey(blob, privptr,
696 blob+privptr, blobptr-privptr);
697 if (!retkey->data) {
698 sfree(retkey);
699 errmsg = "unable to create key data structure";
700 goto error;
701 }
702
703 retkey->comment = dupstr("imported-openssh-key");
704 errmsg = NULL; /* no error */
705 retval = retkey;
706
707 error:
708 if (blob) {
709 smemclr(blob, blobsize);
710 sfree(blob);
711 }
712 smemclr(key->keyblob, key->keyblob_size);
713 sfree(key->keyblob);
714 smemclr(key, sizeof(*key));
715 sfree(key);
716 if (errmsg_p) *errmsg_p = errmsg;
717 return retval;
718 }
719
720 int openssh_write(const Filename *filename, struct ssh2_userkey *key,
721 char *passphrase)
722 {
723 unsigned char *pubblob, *privblob, *spareblob;
724 int publen, privlen, sparelen = 0;
725 unsigned char *outblob;
726 int outlen;
727 struct mpint_pos numbers[9];
728 int nnumbers, pos, len, seqlen, i;
729 char *header, *footer;
730 char zero[1];
731 unsigned char iv[8];
732 int ret = 0;
733 FILE *fp;
734
735 /*
736 * Fetch the key blobs.
737 */
738 pubblob = key->alg->public_blob(key->data, &publen);
739 privblob = key->alg->private_blob(key->data, &privlen);
740 spareblob = outblob = NULL;
741
742 /*
743 * Find the sequence of integers to be encoded into the OpenSSH
744 * key blob, and also decide on the header line.
745 */
746 if (key->alg == &ssh_rsa) {
747 int pos;
748 struct mpint_pos n, e, d, p, q, iqmp, dmp1, dmq1;
749 Bignum bd, bp, bq, bdmp1, bdmq1;
750
751 /*
752 * These blobs were generated from inside PuTTY, so we needn't
753 * treat them as untrusted.
754 */
755 pos = 4 + GET_32BIT(pubblob);
756 pos += ssh2_read_mpint(pubblob+pos, publen-pos, &e);
757 pos += ssh2_read_mpint(pubblob+pos, publen-pos, &n);
758 pos = 0;
759 pos += ssh2_read_mpint(privblob+pos, privlen-pos, &d);
760 pos += ssh2_read_mpint(privblob+pos, privlen-pos, &p);
761 pos += ssh2_read_mpint(privblob+pos, privlen-pos, &q);
762 pos += ssh2_read_mpint(privblob+pos, privlen-pos, &iqmp);
763
764 assert(e.start && iqmp.start); /* can't go wrong */
765
766 /* We also need d mod (p-1) and d mod (q-1). */
767 bd = bignum_from_bytes(d.start, d.bytes);
768 bp = bignum_from_bytes(p.start, p.bytes);
769 bq = bignum_from_bytes(q.start, q.bytes);
770 decbn(bp);
771 decbn(bq);
772 bdmp1 = bigmod(bd, bp);
773 bdmq1 = bigmod(bd, bq);
774 freebn(bd);
775 freebn(bp);
776 freebn(bq);
777
778 dmp1.bytes = (bignum_bitcount(bdmp1)+8)/8;
779 dmq1.bytes = (bignum_bitcount(bdmq1)+8)/8;
780 sparelen = dmp1.bytes + dmq1.bytes;
781 spareblob = snewn(sparelen, unsigned char);
782 dmp1.start = spareblob;
783 dmq1.start = spareblob + dmp1.bytes;
784 for (i = 0; i < dmp1.bytes; i++)
785 spareblob[i] = bignum_byte(bdmp1, dmp1.bytes-1 - i);
786 for (i = 0; i < dmq1.bytes; i++)
787 spareblob[i+dmp1.bytes] = bignum_byte(bdmq1, dmq1.bytes-1 - i);
788 freebn(bdmp1);
789 freebn(bdmq1);
790
791 numbers[0].start = zero; numbers[0].bytes = 1; zero[0] = '\0';
792 numbers[1] = n;
793 numbers[2] = e;
794 numbers[3] = d;
795 numbers[4] = p;
796 numbers[5] = q;
797 numbers[6] = dmp1;
798 numbers[7] = dmq1;
799 numbers[8] = iqmp;
800
801 nnumbers = 9;
802 header = "-----BEGIN RSA PRIVATE KEY-----\n";
803 footer = "-----END RSA PRIVATE KEY-----\n";
804 } else if (key->alg == &ssh_dss) {
805 int pos;
806 struct mpint_pos p, q, g, y, x;
807
808 /*
809 * These blobs were generated from inside PuTTY, so we needn't
810 * treat them as untrusted.
811 */
812 pos = 4 + GET_32BIT(pubblob);
813 pos += ssh2_read_mpint(pubblob+pos, publen-pos, &p);
814 pos += ssh2_read_mpint(pubblob+pos, publen-pos, &q);
815 pos += ssh2_read_mpint(pubblob+pos, publen-pos, &g);
816 pos += ssh2_read_mpint(pubblob+pos, publen-pos, &y);
817 pos = 0;
818 pos += ssh2_read_mpint(privblob+pos, privlen-pos, &x);
819
820 assert(y.start && x.start); /* can't go wrong */
821
822 numbers[0].start = zero; numbers[0].bytes = 1; zero[0] = '\0';
823 numbers[1] = p;
824 numbers[2] = q;
825 numbers[3] = g;
826 numbers[4] = y;
827 numbers[5] = x;
828
829 nnumbers = 6;
830 header = "-----BEGIN DSA PRIVATE KEY-----\n";
831 footer = "-----END DSA PRIVATE KEY-----\n";
832 } else {
833 assert(0); /* zoinks! */
834 exit(1); /* XXX: GCC doesn't understand assert() on some systems. */
835 }
836
837 /*
838 * Now count up the total size of the ASN.1 encoded integers,
839 * so as to determine the length of the containing SEQUENCE.
840 */
841 len = 0;
842 for (i = 0; i < nnumbers; i++) {
843 len += ber_write_id_len(NULL, 2, numbers[i].bytes, 0);
844 len += numbers[i].bytes;
845 }
846 seqlen = len;
847 /* Now add on the SEQUENCE header. */
848 len += ber_write_id_len(NULL, 16, seqlen, ASN1_CONSTRUCTED);
849 /* Round up to the cipher block size, ensuring we have at least one
850 * byte of padding (see below). */
851 outlen = len;
852 if (passphrase)
853 outlen = (outlen+8) &~ 7;
854
855 /*
856 * Now we know how big outblob needs to be. Allocate it.
857 */
858 outblob = snewn(outlen, unsigned char);
859
860 /*
861 * And write the data into it.
862 */
863 pos = 0;
864 pos += ber_write_id_len(outblob+pos, 16, seqlen, ASN1_CONSTRUCTED);
865 for (i = 0; i < nnumbers; i++) {
866 pos += ber_write_id_len(outblob+pos, 2, numbers[i].bytes, 0);
867 memcpy(outblob+pos, numbers[i].start, numbers[i].bytes);
868 pos += numbers[i].bytes;
869 }
870
871 /*
872 * Padding on OpenSSH keys is deterministic. The number of
873 * padding bytes is always more than zero, and always at most
874 * the cipher block length. The value of each padding byte is
875 * equal to the number of padding bytes. So a plaintext that's
876 * an exact multiple of the block size will be padded with 08
877 * 08 08 08 08 08 08 08 (assuming a 64-bit block cipher); a
878 * plaintext one byte less than a multiple of the block size
879 * will be padded with just 01.
880 *
881 * This enables the OpenSSL key decryption function to strip
882 * off the padding algorithmically and return the unpadded
883 * plaintext to the next layer: it looks at the final byte, and
884 * then expects to find that many bytes at the end of the data
885 * with the same value. Those are all removed and the rest is
886 * returned.
887 */
888 assert(pos == len);
889 while (pos < outlen) {
890 outblob[pos++] = outlen - len;
891 }
892
893 /*
894 * Encrypt the key.
895 *
896 * For the moment, we still encrypt our OpenSSH keys using
897 * old-style 3DES.
898 */
899 if (passphrase) {
900 /*
901 * Invent an iv. Then derive encryption key from passphrase
902 * and iv/salt:
903 *
904 * - let block A equal MD5(passphrase || iv)
905 * - let block B equal MD5(A || passphrase || iv)
906 * - block C would be MD5(B || passphrase || iv) and so on
907 * - encryption key is the first N bytes of A || B
908 */
909 struct MD5Context md5c;
910 unsigned char keybuf[32];
911
912 for (i = 0; i < 8; i++) iv[i] = random_byte();
913
914 MD5Init(&md5c);
915 MD5Update(&md5c, (unsigned char *)passphrase, strlen(passphrase));
916 MD5Update(&md5c, iv, 8);
917 MD5Final(keybuf, &md5c);
918
919 MD5Init(&md5c);
920 MD5Update(&md5c, keybuf, 16);
921 MD5Update(&md5c, (unsigned char *)passphrase, strlen(passphrase));
922 MD5Update(&md5c, iv, 8);
923 MD5Final(keybuf+16, &md5c);
924
925 /*
926 * Now encrypt the key blob.
927 */
928 des3_encrypt_pubkey_ossh(keybuf, iv, outblob, outlen);
929
930 smemclr(&md5c, sizeof(md5c));
931 smemclr(keybuf, sizeof(keybuf));
932 }
933
934 /*
935 * And save it. We'll use Unix line endings just in case it's
936 * subsequently transferred in binary mode.
937 */
938 fp = f_open(filename, "wb", TRUE); /* ensure Unix line endings */
939 if (!fp)
940 goto error;
941 fputs(header, fp);
942 if (passphrase) {
943 fprintf(fp, "Proc-Type: 4,ENCRYPTED\nDEK-Info: DES-EDE3-CBC,");
944 for (i = 0; i < 8; i++)
945 fprintf(fp, "%02X", iv[i]);
946 fprintf(fp, "\n\n");
947 }
948 base64_encode(fp, outblob, outlen, 64);
949 fputs(footer, fp);
950 fclose(fp);
951 ret = 1;
952
953 error:
954 if (outblob) {
955 smemclr(outblob, outlen);
956 sfree(outblob);
957 }
958 if (spareblob) {
959 smemclr(spareblob, sparelen);
960 sfree(spareblob);
961 }
962 if (privblob) {
963 smemclr(privblob, privlen);
964 sfree(privblob);
965 }
966 if (pubblob) {
967 smemclr(pubblob, publen);
968 sfree(pubblob);
969 }
970 return ret;
971 }
972
973 /* ----------------------------------------------------------------------
974 * Code to read ssh.com private keys.
975 */
976
977 /*
978 * The format of the base64 blob is largely SSH-2-packet-formatted,
979 * except that mpints are a bit different: they're more like the
980 * old SSH-1 mpint. You have a 32-bit bit count N, followed by
981 * (N+7)/8 bytes of data.
982 *
983 * So. The blob contains:
984 *
985 * - uint32 0x3f6ff9eb (magic number)
986 * - uint32 size (total blob size)
987 * - string key-type (see below)
988 * - string cipher-type (tells you if key is encrypted)
989 * - string encrypted-blob
990 *
991 * (The first size field includes the size field itself and the
992 * magic number before it. All other size fields are ordinary SSH-2
993 * strings, so the size field indicates how much data is to
994 * _follow_.)
995 *
996 * The encrypted blob, once decrypted, contains a single string
997 * which in turn contains the payload. (This allows padding to be
998 * added after that string while still making it clear where the
999 * real payload ends. Also it probably makes for a reasonable
1000 * decryption check.)
1001 *
1002 * The payload blob, for an RSA key, contains:
1003 * - mpint e
1004 * - mpint d
1005 * - mpint n (yes, the public and private stuff is intermixed)
1006 * - mpint u (presumably inverse of p mod q)
1007 * - mpint p (p is the smaller prime)
1008 * - mpint q (q is the larger)
1009 *
1010 * For a DSA key, the payload blob contains:
1011 * - uint32 0
1012 * - mpint p
1013 * - mpint g
1014 * - mpint q
1015 * - mpint y
1016 * - mpint x
1017 *
1018 * Alternatively, if the parameters are `predefined', that
1019 * (0,p,g,q) sequence can be replaced by a uint32 1 and a string
1020 * containing some predefined parameter specification. *shudder*,
1021 * but I doubt we'll encounter this in real life.
1022 *
1023 * The key type strings are ghastly. The RSA key I looked at had a
1024 * type string of
1025 *
1026 * `if-modn{sign{rsa-pkcs1-sha1},encrypt{rsa-pkcs1v2-oaep}}'
1027 *
1028 * and the DSA key wasn't much better:
1029 *
1030 * `dl-modp{sign{dsa-nist-sha1},dh{plain}}'
1031 *
1032 * It isn't clear that these will always be the same. I think it
1033 * might be wise just to look at the `if-modn{sign{rsa' and
1034 * `dl-modp{sign{dsa' prefixes.
1035 *
1036 * Finally, the encryption. The cipher-type string appears to be
1037 * either `none' or `3des-cbc'. Looks as if this is SSH-2-style
1038 * 3des-cbc (i.e. outer cbc rather than inner). The key is created
1039 * from the passphrase by means of yet another hashing faff:
1040 *
1041 * - first 16 bytes are MD5(passphrase)
1042 * - next 16 bytes are MD5(passphrase || first 16 bytes)
1043 * - if there were more, they'd be MD5(passphrase || first 32),
1044 * and so on.
1045 */
1046
1047 #define SSHCOM_MAGIC_NUMBER 0x3f6ff9eb
1048
1049 struct sshcom_key {
1050 char comment[256]; /* allowing any length is overkill */
1051 unsigned char *keyblob;
1052 int keyblob_len, keyblob_size;
1053 };
1054
1055 static struct sshcom_key *load_sshcom_key(const Filename *filename,
1056 const char **errmsg_p)
1057 {
1058 struct sshcom_key *ret;
1059 FILE *fp;
1060 char *line = NULL;
1061 int hdrstart, len;
1062 char *errmsg, *p;
1063 int headers_done;
1064 char base64_bit[4];
1065 int base64_chars = 0;
1066
1067 ret = snew(struct sshcom_key);
1068 ret->comment[0] = '\0';
1069 ret->keyblob = NULL;
1070 ret->keyblob_len = ret->keyblob_size = 0;
1071
1072 fp = f_open(filename, "r", FALSE);
1073 if (!fp) {
1074 errmsg = "unable to open key file";
1075 goto error;
1076 }
1077 if (!(line = fgetline(fp))) {
1078 errmsg = "unexpected end of file";
1079 goto error;
1080 }
1081 strip_crlf(line);
1082 if (0 != strcmp(line, "---- BEGIN SSH2 ENCRYPTED PRIVATE KEY ----")) {
1083 errmsg = "file does not begin with ssh.com key header";
1084 goto error;
1085 }
1086 smemclr(line, strlen(line));
1087 sfree(line);
1088 line = NULL;
1089
1090 headers_done = 0;
1091 while (1) {
1092 if (!(line = fgetline(fp))) {
1093 errmsg = "unexpected end of file";
1094 goto error;
1095 }
1096 strip_crlf(line);
1097 if (!strcmp(line, "---- END SSH2 ENCRYPTED PRIVATE KEY ----")) {
1098 sfree(line);
1099 line = NULL;
1100 break; /* done */
1101 }
1102 if ((p = strchr(line, ':')) != NULL) {
1103 if (headers_done) {
1104 errmsg = "header found in body of key data";
1105 goto error;
1106 }
1107 *p++ = '\0';
1108 while (*p && isspace((unsigned char)*p)) p++;
1109 hdrstart = p - line;
1110
1111 /*
1112 * Header lines can end in a trailing backslash for
1113 * continuation.
1114 */
1115 len = hdrstart + strlen(line+hdrstart);
1116 assert(!line[len]);
1117 while (line[len-1] == '\\') {
1118 char *line2;
1119 int line2len;
1120
1121 line2 = fgetline(fp);
1122 if (!line2) {
1123 errmsg = "unexpected end of file";
1124 goto error;
1125 }
1126 strip_crlf(line2);
1127
1128 line2len = strlen(line2);
1129 line = sresize(line, len + line2len + 1, char);
1130 strcpy(line + len - 1, line2);
1131 len += line2len - 1;
1132 assert(!line[len]);
1133
1134 smemclr(line2, strlen(line2));
1135 sfree(line2);
1136 line2 = NULL;
1137 }
1138 p = line + hdrstart;
1139 strip_crlf(p);
1140 if (!strcmp(line, "Comment")) {
1141 /* Strip quotes in comment if present. */
1142 if (p[0] == '"' && p[strlen(p)-1] == '"') {
1143 p++;
1144 p[strlen(p)-1] = '\0';
1145 }
1146 strncpy(ret->comment, p, sizeof(ret->comment));
1147 ret->comment[sizeof(ret->comment)-1] = '\0';
1148 }
1149 } else {
1150 headers_done = 1;
1151
1152 p = line;
1153 while (isbase64(*p)) {
1154 base64_bit[base64_chars++] = *p;
1155 if (base64_chars == 4) {
1156 unsigned char out[3];
1157
1158 base64_chars = 0;
1159
1160 len = base64_decode_atom(base64_bit, out);
1161
1162 if (len <= 0) {
1163 errmsg = "invalid base64 encoding";
1164 goto error;
1165 }
1166
1167 if (ret->keyblob_len + len > ret->keyblob_size) {
1168 ret->keyblob_size = ret->keyblob_len + len + 256;
1169 ret->keyblob = sresize(ret->keyblob, ret->keyblob_size,
1170 unsigned char);
1171 }
1172
1173 memcpy(ret->keyblob + ret->keyblob_len, out, len);
1174 ret->keyblob_len += len;
1175 }
1176
1177 p++;
1178 }
1179 }
1180 smemclr(line, strlen(line));
1181 sfree(line);
1182 line = NULL;
1183 }
1184
1185 if (ret->keyblob_len == 0 || !ret->keyblob) {
1186 errmsg = "key body not present";
1187 goto error;
1188 }
1189
1190 fclose(fp);
1191 if (errmsg_p) *errmsg_p = NULL;
1192 return ret;
1193
1194 error:
1195 if (fp)
1196 fclose(fp);
1197
1198 if (line) {
1199 smemclr(line, strlen(line));
1200 sfree(line);
1201 line = NULL;
1202 }
1203 if (ret) {
1204 if (ret->keyblob) {
1205 smemclr(ret->keyblob, ret->keyblob_size);
1206 sfree(ret->keyblob);
1207 }
1208 smemclr(ret, sizeof(*ret));
1209 sfree(ret);
1210 }
1211 if (errmsg_p) *errmsg_p = errmsg;
1212 return NULL;
1213 }
1214
1215 int sshcom_encrypted(const Filename *filename, char **comment)
1216 {
1217 struct sshcom_key *key = load_sshcom_key(filename, NULL);
1218 int pos, len, answer;
1219
1220 answer = 0;
1221
1222 *comment = NULL;
1223 if (!key)
1224 goto done;
1225
1226 /*
1227 * Check magic number.
1228 */
1229 if (GET_32BIT(key->keyblob) != 0x3f6ff9eb) {
1230 goto done; /* key is invalid */
1231 }
1232
1233 /*
1234 * Find the cipher-type string.
1235 */
1236 pos = 8;
1237 if (key->keyblob_len < pos+4)
1238 goto done; /* key is far too short */
1239 len = toint(GET_32BIT(key->keyblob + pos));
1240 if (len < 0 || len > key->keyblob_len - pos - 4)
1241 goto done; /* key is far too short */
1242 pos += 4 + len; /* skip key type */
1243 len = toint(GET_32BIT(key->keyblob + pos)); /* find cipher-type length */
1244 if (len < 0 || len > key->keyblob_len - pos - 4)
1245 goto done; /* cipher type string is incomplete */
1246 if (len != 4 || 0 != memcmp(key->keyblob + pos + 4, "none", 4))
1247 answer = 1;
1248
1249 done:
1250 *comment = dupstr(key ? key->comment : "");
1251 smemclr(key->keyblob, key->keyblob_size);
1252 sfree(key->keyblob);
1253 smemclr(key, sizeof(*key));
1254 sfree(key);
1255 return answer;
1256 }
1257
1258 static int sshcom_read_mpint(void *data, int len, struct mpint_pos *ret)
1259 {
1260 unsigned bits, bytes;
1261 unsigned char *d = (unsigned char *) data;
1262
1263 if (len < 4)
1264 goto error;
1265 bits = GET_32BIT(d);
1266
1267 bytes = (bits + 7) / 8;
1268 if (len < 4+bytes)
1269 goto error;
1270
1271 ret->start = d + 4;
1272 ret->bytes = bytes;
1273 return bytes+4;
1274
1275 error:
1276 ret->start = NULL;
1277 ret->bytes = -1;
1278 return len; /* ensure further calls fail as well */
1279 }
1280
1281 static int sshcom_put_mpint(void *target, void *data, int len)
1282 {
1283 unsigned char *d = (unsigned char *)target;
1284 unsigned char *i = (unsigned char *)data;
1285 int bits = len * 8 - 1;
1286
1287 while (bits > 0) {
1288 if (*i & (1 << (bits & 7)))
1289 break;
1290 if (!(bits-- & 7))
1291 i++, len--;
1292 }
1293
1294 PUT_32BIT(d, bits+1);
1295 memcpy(d+4, i, len);
1296 return len+4;
1297 }
1298
1299 struct ssh2_userkey *sshcom_read(const Filename *filename, char *passphrase,
1300 const char **errmsg_p)
1301 {
1302 struct sshcom_key *key = load_sshcom_key(filename, errmsg_p);
1303 char *errmsg;
1304 int pos, len;
1305 const char prefix_rsa[] = "if-modn{sign{rsa";
1306 const char prefix_dsa[] = "dl-modp{sign{dsa";
1307 enum { RSA, DSA } type;
1308 int encrypted;
1309 char *ciphertext;
1310 int cipherlen;
1311 struct ssh2_userkey *ret = NULL, *retkey;
1312 const struct ssh_signkey *alg;
1313 unsigned char *blob = NULL;
1314 int blobsize = 0, publen, privlen;
1315
1316 if (!key)
1317 return NULL;
1318
1319 /*
1320 * Check magic number.
1321 */
1322 if (GET_32BIT(key->keyblob) != SSHCOM_MAGIC_NUMBER) {
1323 errmsg = "key does not begin with magic number";
1324 goto error;
1325 }
1326
1327 /*
1328 * Determine the key type.
1329 */
1330 pos = 8;
1331 if (key->keyblob_len < pos+4 ||
1332 (len = toint(GET_32BIT(key->keyblob + pos))) < 0 ||
1333 len > key->keyblob_len - pos - 4) {
1334 errmsg = "key blob does not contain a key type string";
1335 goto error;
1336 }
1337 if (len > sizeof(prefix_rsa) - 1 &&
1338 !memcmp(key->keyblob+pos+4, prefix_rsa, sizeof(prefix_rsa) - 1)) {
1339 type = RSA;
1340 } else if (len > sizeof(prefix_dsa) - 1 &&
1341 !memcmp(key->keyblob+pos+4, prefix_dsa, sizeof(prefix_dsa) - 1)) {
1342 type = DSA;
1343 } else {
1344 errmsg = "key is of unknown type";
1345 goto error;
1346 }
1347 pos += 4+len;
1348
1349 /*
1350 * Determine the cipher type.
1351 */
1352 if (key->keyblob_len < pos+4 ||
1353 (len = toint(GET_32BIT(key->keyblob + pos))) < 0 ||
1354 len > key->keyblob_len - pos - 4) {
1355 errmsg = "key blob does not contain a cipher type string";
1356 goto error;
1357 }
1358 if (len == 4 && !memcmp(key->keyblob+pos+4, "none", 4))
1359 encrypted = 0;
1360 else if (len == 8 && !memcmp(key->keyblob+pos+4, "3des-cbc", 8))
1361 encrypted = 1;
1362 else {
1363 errmsg = "key encryption is of unknown type";
1364 goto error;
1365 }
1366 pos += 4+len;
1367
1368 /*
1369 * Get hold of the encrypted part of the key.
1370 */
1371 if (key->keyblob_len < pos+4 ||
1372 (len = toint(GET_32BIT(key->keyblob + pos))) < 0 ||
1373 len > key->keyblob_len - pos - 4) {
1374 errmsg = "key blob does not contain actual key data";
1375 goto error;
1376 }
1377 ciphertext = (char *)key->keyblob + pos + 4;
1378 cipherlen = len;
1379 if (cipherlen == 0) {
1380 errmsg = "length of key data is zero";
1381 goto error;
1382 }
1383
1384 /*
1385 * Decrypt it if necessary.
1386 */
1387 if (encrypted) {
1388 /*
1389 * Derive encryption key from passphrase and iv/salt:
1390 *
1391 * - let block A equal MD5(passphrase)
1392 * - let block B equal MD5(passphrase || A)
1393 * - block C would be MD5(passphrase || A || B) and so on
1394 * - encryption key is the first N bytes of A || B
1395 */
1396 struct MD5Context md5c;
1397 unsigned char keybuf[32], iv[8];
1398
1399 if (cipherlen % 8 != 0) {
1400 errmsg = "encrypted part of key is not a multiple of cipher block"
1401 " size";
1402 goto error;
1403 }
1404
1405 MD5Init(&md5c);
1406 MD5Update(&md5c, (unsigned char *)passphrase, strlen(passphrase));
1407 MD5Final(keybuf, &md5c);
1408
1409 MD5Init(&md5c);
1410 MD5Update(&md5c, (unsigned char *)passphrase, strlen(passphrase));
1411 MD5Update(&md5c, keybuf, 16);
1412 MD5Final(keybuf+16, &md5c);
1413
1414 /*
1415 * Now decrypt the key blob.
1416 */
1417 memset(iv, 0, sizeof(iv));
1418 des3_decrypt_pubkey_ossh(keybuf, iv, (unsigned char *)ciphertext,
1419 cipherlen);
1420
1421 smemclr(&md5c, sizeof(md5c));
1422 smemclr(keybuf, sizeof(keybuf));
1423
1424 /*
1425 * Hereafter we return WRONG_PASSPHRASE for any parsing
1426 * error. (But only if we've just tried to decrypt it!
1427 * Returning WRONG_PASSPHRASE for an unencrypted key is
1428 * automatic doom.)
1429 */
1430 if (encrypted)
1431 ret = SSH2_WRONG_PASSPHRASE;
1432 }
1433
1434 /*
1435 * Strip away the containing string to get to the real meat.
1436 */
1437 len = toint(GET_32BIT(ciphertext));
1438 if (len < 0 || len > cipherlen-4) {
1439 errmsg = "containing string was ill-formed";
1440 goto error;
1441 }
1442 ciphertext += 4;
1443 cipherlen = len;
1444
1445 /*
1446 * Now we break down into RSA versus DSA. In either case we'll
1447 * construct public and private blobs in our own format, and
1448 * end up feeding them to alg->createkey().
1449 */
1450 blobsize = cipherlen + 256;
1451 blob = snewn(blobsize, unsigned char);
1452 privlen = 0;
1453 if (type == RSA) {
1454 struct mpint_pos n, e, d, u, p, q;
1455 int pos = 0;
1456 pos += sshcom_read_mpint(ciphertext+pos, cipherlen-pos, &e);
1457 pos += sshcom_read_mpint(ciphertext+pos, cipherlen-pos, &d);
1458 pos += sshcom_read_mpint(ciphertext+pos, cipherlen-pos, &n);
1459 pos += sshcom_read_mpint(ciphertext+pos, cipherlen-pos, &u);
1460 pos += sshcom_read_mpint(ciphertext+pos, cipherlen-pos, &p);
1461 pos += sshcom_read_mpint(ciphertext+pos, cipherlen-pos, &q);
1462 if (!q.start) {
1463 errmsg = "key data did not contain six integers";
1464 goto error;
1465 }
1466
1467 alg = &ssh_rsa;
1468 pos = 0;
1469 pos += put_string(blob+pos, "ssh-rsa", 7);
1470 pos += put_mp(blob+pos, e.start, e.bytes);
1471 pos += put_mp(blob+pos, n.start, n.bytes);
1472 publen = pos;
1473 pos += put_string(blob+pos, d.start, d.bytes);
1474 pos += put_mp(blob+pos, q.start, q.bytes);
1475 pos += put_mp(blob+pos, p.start, p.bytes);
1476 pos += put_mp(blob+pos, u.start, u.bytes);
1477 privlen = pos - publen;
1478 } else {
1479 struct mpint_pos p, q, g, x, y;
1480 int pos = 4;
1481
1482 assert(type == DSA); /* the only other option from the if above */
1483
1484 if (GET_32BIT(ciphertext) != 0) {
1485 errmsg = "predefined DSA parameters not supported";
1486 goto error;
1487 }
1488 pos += sshcom_read_mpint(ciphertext+pos, cipherlen-pos, &p);
1489 pos += sshcom_read_mpint(ciphertext+pos, cipherlen-pos, &g);
1490 pos += sshcom_read_mpint(ciphertext+pos, cipherlen-pos, &q);
1491 pos += sshcom_read_mpint(ciphertext+pos, cipherlen-pos, &y);
1492 pos += sshcom_read_mpint(ciphertext+pos, cipherlen-pos, &x);
1493 if (!x.start) {
1494 errmsg = "key data did not contain five integers";
1495 goto error;
1496 }
1497
1498 alg = &ssh_dss;
1499 pos = 0;
1500 pos += put_string(blob+pos, "ssh-dss", 7);
1501 pos += put_mp(blob+pos, p.start, p.bytes);
1502 pos += put_mp(blob+pos, q.start, q.bytes);
1503 pos += put_mp(blob+pos, g.start, g.bytes);
1504 pos += put_mp(blob+pos, y.start, y.bytes);
1505 publen = pos;
1506 pos += put_mp(blob+pos, x.start, x.bytes);
1507 privlen = pos - publen;
1508 }
1509
1510 assert(privlen > 0); /* should have bombed by now if not */
1511
1512 retkey = snew(struct ssh2_userkey);
1513 retkey->alg = alg;
1514 retkey->data = alg->createkey(blob, publen, blob+publen, privlen);
1515 if (!retkey->data) {
1516 sfree(retkey);
1517 errmsg = "unable to create key data structure";
1518 goto error;
1519 }
1520 retkey->comment = dupstr(key->comment);
1521
1522 errmsg = NULL; /* no error */
1523 ret = retkey;
1524
1525 error:
1526 if (blob) {
1527 smemclr(blob, blobsize);
1528 sfree(blob);
1529 }
1530 smemclr(key->keyblob, key->keyblob_size);
1531 sfree(key->keyblob);
1532 smemclr(key, sizeof(*key));
1533 sfree(key);
1534 if (errmsg_p) *errmsg_p = errmsg;
1535 return ret;
1536 }
1537
1538 int sshcom_write(const Filename *filename, struct ssh2_userkey *key,
1539 char *passphrase)
1540 {
1541 unsigned char *pubblob, *privblob;
1542 int publen, privlen;
1543 unsigned char *outblob;
1544 int outlen;
1545 struct mpint_pos numbers[6];
1546 int nnumbers, initial_zero, pos, lenpos, i;
1547 char *type;
1548 char *ciphertext;
1549 int cipherlen;
1550 int ret = 0;
1551 FILE *fp;
1552
1553 /*
1554 * Fetch the key blobs.
1555 */
1556 pubblob = key->alg->public_blob(key->data, &publen);
1557 privblob = key->alg->private_blob(key->data, &privlen);
1558 outblob = NULL;
1559
1560 /*
1561 * Find the sequence of integers to be encoded into the OpenSSH
1562 * key blob, and also decide on the header line.
1563 */
1564 if (key->alg == &ssh_rsa) {
1565 int pos;
1566 struct mpint_pos n, e, d, p, q, iqmp;
1567
1568 /*
1569 * These blobs were generated from inside PuTTY, so we needn't
1570 * treat them as untrusted.
1571 */
1572 pos = 4 + GET_32BIT(pubblob);
1573 pos += ssh2_read_mpint(pubblob+pos, publen-pos, &e);
1574 pos += ssh2_read_mpint(pubblob+pos, publen-pos, &n);
1575 pos = 0;
1576 pos += ssh2_read_mpint(privblob+pos, privlen-pos, &d);
1577 pos += ssh2_read_mpint(privblob+pos, privlen-pos, &p);
1578 pos += ssh2_read_mpint(privblob+pos, privlen-pos, &q);
1579 pos += ssh2_read_mpint(privblob+pos, privlen-pos, &iqmp);
1580
1581 assert(e.start && iqmp.start); /* can't go wrong */
1582
1583 numbers[0] = e;
1584 numbers[1] = d;
1585 numbers[2] = n;
1586 numbers[3] = iqmp;
1587 numbers[4] = q;
1588 numbers[5] = p;
1589
1590 nnumbers = 6;
1591 initial_zero = 0;
1592 type = "if-modn{sign{rsa-pkcs1-sha1},encrypt{rsa-pkcs1v2-oaep}}";
1593 } else if (key->alg == &ssh_dss) {
1594 int pos;
1595 struct mpint_pos p, q, g, y, x;
1596
1597 /*
1598 * These blobs were generated from inside PuTTY, so we needn't
1599 * treat them as untrusted.
1600 */
1601 pos = 4 + GET_32BIT(pubblob);
1602 pos += ssh2_read_mpint(pubblob+pos, publen-pos, &p);
1603 pos += ssh2_read_mpint(pubblob+pos, publen-pos, &q);
1604 pos += ssh2_read_mpint(pubblob+pos, publen-pos, &g);
1605 pos += ssh2_read_mpint(pubblob+pos, publen-pos, &y);
1606 pos = 0;
1607 pos += ssh2_read_mpint(privblob+pos, privlen-pos, &x);
1608
1609 assert(y.start && x.start); /* can't go wrong */
1610
1611 numbers[0] = p;
1612 numbers[1] = g;
1613 numbers[2] = q;
1614 numbers[3] = y;
1615 numbers[4] = x;
1616
1617 nnumbers = 5;
1618 initial_zero = 1;
1619 type = "dl-modp{sign{dsa-nist-sha1},dh{plain}}";
1620 } else {
1621 assert(0); /* zoinks! */
1622 exit(1); /* XXX: GCC doesn't understand assert() on some systems. */
1623 }
1624
1625 /*
1626 * Total size of key blob will be somewhere under 512 plus
1627 * combined length of integers. We'll calculate the more
1628 * precise size as we construct the blob.
1629 */
1630 outlen = 512;
1631 for (i = 0; i < nnumbers; i++)
1632 outlen += 4 + numbers[i].bytes;
1633 outblob = snewn(outlen, unsigned char);
1634
1635 /*
1636 * Create the unencrypted key blob.
1637 */
1638 pos = 0;
1639 PUT_32BIT(outblob+pos, SSHCOM_MAGIC_NUMBER); pos += 4;
1640 pos += 4; /* length field, fill in later */
1641 pos += put_string(outblob+pos, type, strlen(type));
1642 {
1643 char *ciphertype = passphrase ? "3des-cbc" : "none";
1644 pos += put_string(outblob+pos, ciphertype, strlen(ciphertype));
1645 }
1646 lenpos = pos; /* remember this position */
1647 pos += 4; /* encrypted-blob size */
1648 pos += 4; /* encrypted-payload size */
1649 if (initial_zero) {
1650 PUT_32BIT(outblob+pos, 0);
1651 pos += 4;
1652 }
1653 for (i = 0; i < nnumbers; i++)
1654 pos += sshcom_put_mpint(outblob+pos,
1655 numbers[i].start, numbers[i].bytes);
1656 /* Now wrap up the encrypted payload. */
1657 PUT_32BIT(outblob+lenpos+4, pos - (lenpos+8));
1658 /* Pad encrypted blob to a multiple of cipher block size. */
1659 if (passphrase) {
1660 int padding = -(pos - (lenpos+4)) & 7;
1661 while (padding--)
1662 outblob[pos++] = random_byte();
1663 }
1664 ciphertext = (char *)outblob+lenpos+4;
1665 cipherlen = pos - (lenpos+4);
1666 assert(!passphrase || cipherlen % 8 == 0);
1667 /* Wrap up the encrypted blob string. */
1668 PUT_32BIT(outblob+lenpos, cipherlen);
1669 /* And finally fill in the total length field. */
1670 PUT_32BIT(outblob+4, pos);
1671
1672 assert(pos < outlen);
1673
1674 /*
1675 * Encrypt the key.
1676 */
1677 if (passphrase) {
1678 /*
1679 * Derive encryption key from passphrase and iv/salt:
1680 *
1681 * - let block A equal MD5(passphrase)
1682 * - let block B equal MD5(passphrase || A)
1683 * - block C would be MD5(passphrase || A || B) and so on
1684 * - encryption key is the first N bytes of A || B
1685 */
1686 struct MD5Context md5c;
1687 unsigned char keybuf[32], iv[8];
1688
1689 MD5Init(&md5c);
1690 MD5Update(&md5c, (unsigned char *)passphrase, strlen(passphrase));
1691 MD5Final(keybuf, &md5c);
1692
1693 MD5Init(&md5c);
1694 MD5Update(&md5c, (unsigned char *)passphrase, strlen(passphrase));
1695 MD5Update(&md5c, keybuf, 16);
1696 MD5Final(keybuf+16, &md5c);
1697
1698 /*
1699 * Now decrypt the key blob.
1700 */
1701 memset(iv, 0, sizeof(iv));
1702 des3_encrypt_pubkey_ossh(keybuf, iv, (unsigned char *)ciphertext,
1703 cipherlen);
1704
1705 smemclr(&md5c, sizeof(md5c));
1706 smemclr(keybuf, sizeof(keybuf));
1707 }
1708
1709 /*
1710 * And save it. We'll use Unix line endings just in case it's
1711 * subsequently transferred in binary mode.
1712 */
1713 fp = f_open(filename, "wb", TRUE); /* ensure Unix line endings */
1714 if (!fp)
1715 goto error;
1716 fputs("---- BEGIN SSH2 ENCRYPTED PRIVATE KEY ----\n", fp);
1717 fprintf(fp, "Comment: \"");
1718 /*
1719 * Comment header is broken with backslash-newline if it goes
1720 * over 70 chars. Although it's surrounded by quotes, it
1721 * _doesn't_ escape backslashes or quotes within the string.
1722 * Don't ask me, I didn't design it.
1723 */
1724 {
1725 int slen = 60; /* starts at 60 due to "Comment: " */
1726 char *c = key->comment;
1727 while ((int)strlen(c) > slen) {
1728 fprintf(fp, "%.*s\\\n", slen, c);
1729 c += slen;
1730 slen = 70; /* allow 70 chars on subsequent lines */
1731 }
1732 fprintf(fp, "%s\"\n", c);
1733 }
1734 base64_encode(fp, outblob, pos, 70);
1735 fputs("---- END SSH2 ENCRYPTED PRIVATE KEY ----\n", fp);
1736 fclose(fp);
1737 ret = 1;
1738
1739 error:
1740 if (outblob) {
1741 smemclr(outblob, outlen);
1742 sfree(outblob);
1743 }
1744 if (privblob) {
1745 smemclr(privblob, privlen);
1746 sfree(privblob);
1747 }
1748 if (pubblob) {
1749 smemclr(pubblob, publen);
1750 sfree(pubblob);
1751 }
1752 return ret;
1753 }