More consistently defend against division by zero with assertions. We
[sgt/putty] / sshdss.c
1 /*
2 * Digital Signature Standard implementation for PuTTY.
3 */
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <assert.h>
8
9 #include "ssh.h"
10 #include "misc.h"
11
12 static void sha_mpint(SHA_State * s, Bignum b)
13 {
14 unsigned char lenbuf[4];
15 int len;
16 len = (bignum_bitcount(b) + 8) / 8;
17 PUT_32BIT(lenbuf, len);
18 SHA_Bytes(s, lenbuf, 4);
19 while (len-- > 0) {
20 lenbuf[0] = bignum_byte(b, len);
21 SHA_Bytes(s, lenbuf, 1);
22 }
23 smemclr(lenbuf, sizeof(lenbuf));
24 }
25
26 static void sha512_mpint(SHA512_State * s, Bignum b)
27 {
28 unsigned char lenbuf[4];
29 int len;
30 len = (bignum_bitcount(b) + 8) / 8;
31 PUT_32BIT(lenbuf, len);
32 SHA512_Bytes(s, lenbuf, 4);
33 while (len-- > 0) {
34 lenbuf[0] = bignum_byte(b, len);
35 SHA512_Bytes(s, lenbuf, 1);
36 }
37 smemclr(lenbuf, sizeof(lenbuf));
38 }
39
40 static void getstring(char **data, int *datalen, char **p, int *length)
41 {
42 *p = NULL;
43 if (*datalen < 4)
44 return;
45 *length = toint(GET_32BIT(*data));
46 if (*length < 0)
47 return;
48 *datalen -= 4;
49 *data += 4;
50 if (*datalen < *length)
51 return;
52 *p = *data;
53 *data += *length;
54 *datalen -= *length;
55 }
56 static Bignum getmp(char **data, int *datalen)
57 {
58 char *p;
59 int length;
60 Bignum b;
61
62 getstring(data, datalen, &p, &length);
63 if (!p)
64 return NULL;
65 if (p[0] & 0x80)
66 return NULL; /* negative mp */
67 b = bignum_from_bytes((unsigned char *)p, length);
68 return b;
69 }
70
71 static Bignum get160(char **data, int *datalen)
72 {
73 Bignum b;
74
75 if (*datalen < 20)
76 return NULL;
77
78 b = bignum_from_bytes((unsigned char *)*data, 20);
79 *data += 20;
80 *datalen -= 20;
81
82 return b;
83 }
84
85 static void dss_freekey(void *key); /* forward reference */
86
87 static void *dss_newkey(char *data, int len)
88 {
89 char *p;
90 int slen;
91 struct dss_key *dss;
92
93 dss = snew(struct dss_key);
94 getstring(&data, &len, &p, &slen);
95
96 #ifdef DEBUG_DSS
97 {
98 int i;
99 printf("key:");
100 for (i = 0; i < len; i++)
101 printf(" %02x", (unsigned char) (data[i]));
102 printf("\n");
103 }
104 #endif
105
106 if (!p || slen != 7 || memcmp(p, "ssh-dss", 7)) {
107 sfree(dss);
108 return NULL;
109 }
110 dss->p = getmp(&data, &len);
111 dss->q = getmp(&data, &len);
112 dss->g = getmp(&data, &len);
113 dss->y = getmp(&data, &len);
114 dss->x = NULL;
115
116 if (!dss->p || !dss->q || !dss->g || !dss->y ||
117 !bignum_cmp(dss->q, Zero) || !bignum_cmp(dss->p, Zero)) {
118 /* Invalid key. */
119 dss_freekey(dss);
120 return NULL;
121 }
122
123 return dss;
124 }
125
126 static void dss_freekey(void *key)
127 {
128 struct dss_key *dss = (struct dss_key *) key;
129 if (dss->p)
130 freebn(dss->p);
131 if (dss->q)
132 freebn(dss->q);
133 if (dss->g)
134 freebn(dss->g);
135 if (dss->y)
136 freebn(dss->y);
137 if (dss->x)
138 freebn(dss->x);
139 sfree(dss);
140 }
141
142 static char *dss_fmtkey(void *key)
143 {
144 struct dss_key *dss = (struct dss_key *) key;
145 char *p;
146 int len, i, pos, nibbles;
147 static const char hex[] = "0123456789abcdef";
148 if (!dss->p)
149 return NULL;
150 len = 8 + 4 + 1; /* 4 x "0x", punctuation, \0 */
151 len += 4 * (bignum_bitcount(dss->p) + 15) / 16;
152 len += 4 * (bignum_bitcount(dss->q) + 15) / 16;
153 len += 4 * (bignum_bitcount(dss->g) + 15) / 16;
154 len += 4 * (bignum_bitcount(dss->y) + 15) / 16;
155 p = snewn(len, char);
156 if (!p)
157 return NULL;
158
159 pos = 0;
160 pos += sprintf(p + pos, "0x");
161 nibbles = (3 + bignum_bitcount(dss->p)) / 4;
162 if (nibbles < 1)
163 nibbles = 1;
164 for (i = nibbles; i--;)
165 p[pos++] =
166 hex[(bignum_byte(dss->p, i / 2) >> (4 * (i % 2))) & 0xF];
167 pos += sprintf(p + pos, ",0x");
168 nibbles = (3 + bignum_bitcount(dss->q)) / 4;
169 if (nibbles < 1)
170 nibbles = 1;
171 for (i = nibbles; i--;)
172 p[pos++] =
173 hex[(bignum_byte(dss->q, i / 2) >> (4 * (i % 2))) & 0xF];
174 pos += sprintf(p + pos, ",0x");
175 nibbles = (3 + bignum_bitcount(dss->g)) / 4;
176 if (nibbles < 1)
177 nibbles = 1;
178 for (i = nibbles; i--;)
179 p[pos++] =
180 hex[(bignum_byte(dss->g, i / 2) >> (4 * (i % 2))) & 0xF];
181 pos += sprintf(p + pos, ",0x");
182 nibbles = (3 + bignum_bitcount(dss->y)) / 4;
183 if (nibbles < 1)
184 nibbles = 1;
185 for (i = nibbles; i--;)
186 p[pos++] =
187 hex[(bignum_byte(dss->y, i / 2) >> (4 * (i % 2))) & 0xF];
188 p[pos] = '\0';
189 return p;
190 }
191
192 static char *dss_fingerprint(void *key)
193 {
194 struct dss_key *dss = (struct dss_key *) key;
195 struct MD5Context md5c;
196 unsigned char digest[16], lenbuf[4];
197 char buffer[16 * 3 + 40];
198 char *ret;
199 int numlen, i;
200
201 MD5Init(&md5c);
202 MD5Update(&md5c, (unsigned char *)"\0\0\0\7ssh-dss", 11);
203
204 #define ADD_BIGNUM(bignum) \
205 numlen = (bignum_bitcount(bignum)+8)/8; \
206 PUT_32BIT(lenbuf, numlen); MD5Update(&md5c, lenbuf, 4); \
207 for (i = numlen; i-- ;) { \
208 unsigned char c = bignum_byte(bignum, i); \
209 MD5Update(&md5c, &c, 1); \
210 }
211 ADD_BIGNUM(dss->p);
212 ADD_BIGNUM(dss->q);
213 ADD_BIGNUM(dss->g);
214 ADD_BIGNUM(dss->y);
215 #undef ADD_BIGNUM
216
217 MD5Final(digest, &md5c);
218
219 sprintf(buffer, "ssh-dss %d ", bignum_bitcount(dss->p));
220 for (i = 0; i < 16; i++)
221 sprintf(buffer + strlen(buffer), "%s%02x", i ? ":" : "",
222 digest[i]);
223 ret = snewn(strlen(buffer) + 1, char);
224 if (ret)
225 strcpy(ret, buffer);
226 return ret;
227 }
228
229 static int dss_verifysig(void *key, char *sig, int siglen,
230 char *data, int datalen)
231 {
232 struct dss_key *dss = (struct dss_key *) key;
233 char *p;
234 int slen;
235 char hash[20];
236 Bignum r, s, w, gu1p, yu2p, gu1yu2p, u1, u2, sha, v;
237 int ret;
238
239 if (!dss->p)
240 return 0;
241
242 #ifdef DEBUG_DSS
243 {
244 int i;
245 printf("sig:");
246 for (i = 0; i < siglen; i++)
247 printf(" %02x", (unsigned char) (sig[i]));
248 printf("\n");
249 }
250 #endif
251 /*
252 * Commercial SSH (2.0.13) and OpenSSH disagree over the format
253 * of a DSA signature. OpenSSH is in line with RFC 4253:
254 * it uses a string "ssh-dss", followed by a 40-byte string
255 * containing two 160-bit integers end-to-end. Commercial SSH
256 * can't be bothered with the header bit, and considers a DSA
257 * signature blob to be _just_ the 40-byte string containing
258 * the two 160-bit integers. We tell them apart by measuring
259 * the length: length 40 means the commercial-SSH bug, anything
260 * else is assumed to be RFC-compliant.
261 */
262 if (siglen != 40) { /* bug not present; read admin fields */
263 getstring(&sig, &siglen, &p, &slen);
264 if (!p || slen != 7 || memcmp(p, "ssh-dss", 7)) {
265 return 0;
266 }
267 sig += 4, siglen -= 4; /* skip yet another length field */
268 }
269 r = get160(&sig, &siglen);
270 s = get160(&sig, &siglen);
271 if (!r || !s)
272 return 0;
273
274 /*
275 * Step 1. w <- s^-1 mod q.
276 */
277 w = modinv(s, dss->q);
278
279 /*
280 * Step 2. u1 <- SHA(message) * w mod q.
281 */
282 SHA_Simple(data, datalen, (unsigned char *)hash);
283 p = hash;
284 slen = 20;
285 sha = get160(&p, &slen);
286 u1 = modmul(sha, w, dss->q);
287
288 /*
289 * Step 3. u2 <- r * w mod q.
290 */
291 u2 = modmul(r, w, dss->q);
292
293 /*
294 * Step 4. v <- (g^u1 * y^u2 mod p) mod q.
295 */
296 gu1p = modpow(dss->g, u1, dss->p);
297 yu2p = modpow(dss->y, u2, dss->p);
298 gu1yu2p = modmul(gu1p, yu2p, dss->p);
299 v = modmul(gu1yu2p, One, dss->q);
300
301 /*
302 * Step 5. v should now be equal to r.
303 */
304
305 ret = !bignum_cmp(v, r);
306
307 freebn(w);
308 freebn(sha);
309 freebn(u1);
310 freebn(u2);
311 freebn(gu1p);
312 freebn(yu2p);
313 freebn(gu1yu2p);
314 freebn(v);
315 freebn(r);
316 freebn(s);
317
318 return ret;
319 }
320
321 static unsigned char *dss_public_blob(void *key, int *len)
322 {
323 struct dss_key *dss = (struct dss_key *) key;
324 int plen, qlen, glen, ylen, bloblen;
325 int i;
326 unsigned char *blob, *p;
327
328 plen = (bignum_bitcount(dss->p) + 8) / 8;
329 qlen = (bignum_bitcount(dss->q) + 8) / 8;
330 glen = (bignum_bitcount(dss->g) + 8) / 8;
331 ylen = (bignum_bitcount(dss->y) + 8) / 8;
332
333 /*
334 * string "ssh-dss", mpint p, mpint q, mpint g, mpint y. Total
335 * 27 + sum of lengths. (five length fields, 20+7=27).
336 */
337 bloblen = 27 + plen + qlen + glen + ylen;
338 blob = snewn(bloblen, unsigned char);
339 p = blob;
340 PUT_32BIT(p, 7);
341 p += 4;
342 memcpy(p, "ssh-dss", 7);
343 p += 7;
344 PUT_32BIT(p, plen);
345 p += 4;
346 for (i = plen; i--;)
347 *p++ = bignum_byte(dss->p, i);
348 PUT_32BIT(p, qlen);
349 p += 4;
350 for (i = qlen; i--;)
351 *p++ = bignum_byte(dss->q, i);
352 PUT_32BIT(p, glen);
353 p += 4;
354 for (i = glen; i--;)
355 *p++ = bignum_byte(dss->g, i);
356 PUT_32BIT(p, ylen);
357 p += 4;
358 for (i = ylen; i--;)
359 *p++ = bignum_byte(dss->y, i);
360 assert(p == blob + bloblen);
361 *len = bloblen;
362 return blob;
363 }
364
365 static unsigned char *dss_private_blob(void *key, int *len)
366 {
367 struct dss_key *dss = (struct dss_key *) key;
368 int xlen, bloblen;
369 int i;
370 unsigned char *blob, *p;
371
372 xlen = (bignum_bitcount(dss->x) + 8) / 8;
373
374 /*
375 * mpint x, string[20] the SHA of p||q||g. Total 4 + xlen.
376 */
377 bloblen = 4 + xlen;
378 blob = snewn(bloblen, unsigned char);
379 p = blob;
380 PUT_32BIT(p, xlen);
381 p += 4;
382 for (i = xlen; i--;)
383 *p++ = bignum_byte(dss->x, i);
384 assert(p == blob + bloblen);
385 *len = bloblen;
386 return blob;
387 }
388
389 static void *dss_createkey(unsigned char *pub_blob, int pub_len,
390 unsigned char *priv_blob, int priv_len)
391 {
392 struct dss_key *dss;
393 char *pb = (char *) priv_blob;
394 char *hash;
395 int hashlen;
396 SHA_State s;
397 unsigned char digest[20];
398 Bignum ytest;
399
400 dss = dss_newkey((char *) pub_blob, pub_len);
401 if (!dss)
402 return NULL;
403 dss->x = getmp(&pb, &priv_len);
404 if (!dss->x) {
405 dss_freekey(dss);
406 return NULL;
407 }
408
409 /*
410 * Check the obsolete hash in the old DSS key format.
411 */
412 hashlen = -1;
413 getstring(&pb, &priv_len, &hash, &hashlen);
414 if (hashlen == 20) {
415 SHA_Init(&s);
416 sha_mpint(&s, dss->p);
417 sha_mpint(&s, dss->q);
418 sha_mpint(&s, dss->g);
419 SHA_Final(&s, digest);
420 if (0 != memcmp(hash, digest, 20)) {
421 dss_freekey(dss);
422 return NULL;
423 }
424 }
425
426 /*
427 * Now ensure g^x mod p really is y.
428 */
429 ytest = modpow(dss->g, dss->x, dss->p);
430 if (0 != bignum_cmp(ytest, dss->y)) {
431 dss_freekey(dss);
432 freebn(ytest);
433 return NULL;
434 }
435 freebn(ytest);
436
437 return dss;
438 }
439
440 static void *dss_openssh_createkey(unsigned char **blob, int *len)
441 {
442 char **b = (char **) blob;
443 struct dss_key *dss;
444
445 dss = snew(struct dss_key);
446
447 dss->p = getmp(b, len);
448 dss->q = getmp(b, len);
449 dss->g = getmp(b, len);
450 dss->y = getmp(b, len);
451 dss->x = getmp(b, len);
452
453 if (!dss->p || !dss->q || !dss->g || !dss->y || !dss->x ||
454 !bignum_cmp(dss->q, Zero) || !bignum_cmp(dss->p, Zero)) {
455 /* Invalid key. */
456 dss_freekey(dss);
457 return NULL;
458 }
459
460 return dss;
461 }
462
463 static int dss_openssh_fmtkey(void *key, unsigned char *blob, int len)
464 {
465 struct dss_key *dss = (struct dss_key *) key;
466 int bloblen, i;
467
468 bloblen =
469 ssh2_bignum_length(dss->p) +
470 ssh2_bignum_length(dss->q) +
471 ssh2_bignum_length(dss->g) +
472 ssh2_bignum_length(dss->y) +
473 ssh2_bignum_length(dss->x);
474
475 if (bloblen > len)
476 return bloblen;
477
478 bloblen = 0;
479 #define ENC(x) \
480 PUT_32BIT(blob+bloblen, ssh2_bignum_length((x))-4); bloblen += 4; \
481 for (i = ssh2_bignum_length((x))-4; i-- ;) blob[bloblen++]=bignum_byte((x),i);
482 ENC(dss->p);
483 ENC(dss->q);
484 ENC(dss->g);
485 ENC(dss->y);
486 ENC(dss->x);
487
488 return bloblen;
489 }
490
491 static int dss_pubkey_bits(void *blob, int len)
492 {
493 struct dss_key *dss;
494 int ret;
495
496 dss = dss_newkey((char *) blob, len);
497 if (!dss)
498 return -1;
499 ret = bignum_bitcount(dss->p);
500 dss_freekey(dss);
501
502 return ret;
503 }
504
505 static unsigned char *dss_sign(void *key, char *data, int datalen, int *siglen)
506 {
507 /*
508 * The basic DSS signing algorithm is:
509 *
510 * - invent a random k between 1 and q-1 (exclusive).
511 * - Compute r = (g^k mod p) mod q.
512 * - Compute s = k^-1 * (hash + x*r) mod q.
513 *
514 * This has the dangerous properties that:
515 *
516 * - if an attacker in possession of the public key _and_ the
517 * signature (for example, the host you just authenticated
518 * to) can guess your k, he can reverse the computation of s
519 * and work out x = r^-1 * (s*k - hash) mod q. That is, he
520 * can deduce the private half of your key, and masquerade
521 * as you for as long as the key is still valid.
522 *
523 * - since r is a function purely of k and the public key, if
524 * the attacker only has a _range of possibilities_ for k
525 * it's easy for him to work through them all and check each
526 * one against r; he'll never be unsure of whether he's got
527 * the right one.
528 *
529 * - if you ever sign two different hashes with the same k, it
530 * will be immediately obvious because the two signatures
531 * will have the same r, and moreover an attacker in
532 * possession of both signatures (and the public key of
533 * course) can compute k = (hash1-hash2) * (s1-s2)^-1 mod q,
534 * and from there deduce x as before.
535 *
536 * - the Bleichenbacher attack on DSA makes use of methods of
537 * generating k which are significantly non-uniformly
538 * distributed; in particular, generating a 160-bit random
539 * number and reducing it mod q is right out.
540 *
541 * For this reason we must be pretty careful about how we
542 * generate our k. Since this code runs on Windows, with no
543 * particularly good system entropy sources, we can't trust our
544 * RNG itself to produce properly unpredictable data. Hence, we
545 * use a totally different scheme instead.
546 *
547 * What we do is to take a SHA-512 (_big_) hash of the private
548 * key x, and then feed this into another SHA-512 hash that
549 * also includes the message hash being signed. That is:
550 *
551 * proto_k = SHA512 ( SHA512(x) || SHA160(message) )
552 *
553 * This number is 512 bits long, so reducing it mod q won't be
554 * noticeably non-uniform. So
555 *
556 * k = proto_k mod q
557 *
558 * This has the interesting property that it's _deterministic_:
559 * signing the same hash twice with the same key yields the
560 * same signature.
561 *
562 * Despite this determinism, it's still not predictable to an
563 * attacker, because in order to repeat the SHA-512
564 * construction that created it, the attacker would have to
565 * know the private key value x - and by assumption he doesn't,
566 * because if he knew that he wouldn't be attacking k!
567 *
568 * (This trick doesn't, _per se_, protect against reuse of k.
569 * Reuse of k is left to chance; all it does is prevent
570 * _excessively high_ chances of reuse of k due to entropy
571 * problems.)
572 *
573 * Thanks to Colin Plumb for the general idea of using x to
574 * ensure k is hard to guess, and to the Cambridge University
575 * Computer Security Group for helping to argue out all the
576 * fine details.
577 */
578 struct dss_key *dss = (struct dss_key *) key;
579 SHA512_State ss;
580 unsigned char digest[20], digest512[64];
581 Bignum proto_k, k, gkp, hash, kinv, hxr, r, s;
582 unsigned char *bytes;
583 int nbytes, i;
584
585 SHA_Simple(data, datalen, digest);
586
587 /*
588 * Hash some identifying text plus x.
589 */
590 SHA512_Init(&ss);
591 SHA512_Bytes(&ss, "DSA deterministic k generator", 30);
592 sha512_mpint(&ss, dss->x);
593 SHA512_Final(&ss, digest512);
594
595 /*
596 * Now hash that digest plus the message hash.
597 */
598 SHA512_Init(&ss);
599 SHA512_Bytes(&ss, digest512, sizeof(digest512));
600 SHA512_Bytes(&ss, digest, sizeof(digest));
601 SHA512_Final(&ss, digest512);
602
603 smemclr(&ss, sizeof(ss));
604
605 /*
606 * Now convert the result into a bignum, and reduce it mod q.
607 */
608 proto_k = bignum_from_bytes(digest512, 64);
609 k = bigmod(proto_k, dss->q);
610 freebn(proto_k);
611
612 smemclr(digest512, sizeof(digest512));
613
614 /*
615 * Now we have k, so just go ahead and compute the signature.
616 */
617 gkp = modpow(dss->g, k, dss->p); /* g^k mod p */
618 r = bigmod(gkp, dss->q); /* r = (g^k mod p) mod q */
619 freebn(gkp);
620
621 hash = bignum_from_bytes(digest, 20);
622 kinv = modinv(k, dss->q); /* k^-1 mod q */
623 hxr = bigmuladd(dss->x, r, hash); /* hash + x*r */
624 s = modmul(kinv, hxr, dss->q); /* s = k^-1 * (hash + x*r) mod q */
625 freebn(hxr);
626 freebn(kinv);
627 freebn(hash);
628
629 /*
630 * Signature blob is
631 *
632 * string "ssh-dss"
633 * string two 20-byte numbers r and s, end to end
634 *
635 * i.e. 4+7 + 4+40 bytes.
636 */
637 nbytes = 4 + 7 + 4 + 40;
638 bytes = snewn(nbytes, unsigned char);
639 PUT_32BIT(bytes, 7);
640 memcpy(bytes + 4, "ssh-dss", 7);
641 PUT_32BIT(bytes + 4 + 7, 40);
642 for (i = 0; i < 20; i++) {
643 bytes[4 + 7 + 4 + i] = bignum_byte(r, 19 - i);
644 bytes[4 + 7 + 4 + 20 + i] = bignum_byte(s, 19 - i);
645 }
646 freebn(r);
647 freebn(s);
648
649 *siglen = nbytes;
650 return bytes;
651 }
652
653 const struct ssh_signkey ssh_dss = {
654 dss_newkey,
655 dss_freekey,
656 dss_fmtkey,
657 dss_public_blob,
658 dss_private_blob,
659 dss_createkey,
660 dss_openssh_createkey,
661 dss_openssh_fmtkey,
662 dss_pubkey_bits,
663 dss_fingerprint,
664 dss_verifysig,
665 dss_sign,
666 "ssh-dss",
667 "dss"
668 };