Replace some 'sfree' calls of bignums with the proper 'freebn'.
[sgt/putty] / sshbn.c
1 /*
2 * Bignum routines for RSA and DH and stuff.
3 */
4
5 #include <stdio.h>
6 #include <assert.h>
7 #include <stdlib.h>
8 #include <string.h>
9
10 #include "misc.h"
11
12 /*
13 * Usage notes:
14 * * Do not call the DIVMOD_WORD macro with expressions such as array
15 * subscripts, as some implementations object to this (see below).
16 * * Note that none of the division methods below will cope if the
17 * quotient won't fit into BIGNUM_INT_BITS. Callers should be careful
18 * to avoid this case.
19 * If this condition occurs, in the case of the x86 DIV instruction,
20 * an overflow exception will occur, which (according to a correspondent)
21 * will manifest on Windows as something like
22 * 0xC0000095: Integer overflow
23 * The C variant won't give the right answer, either.
24 */
25
26 #if defined __GNUC__ && defined __i386__
27 typedef unsigned long BignumInt;
28 typedef unsigned long long BignumDblInt;
29 #define BIGNUM_INT_MASK 0xFFFFFFFFUL
30 #define BIGNUM_TOP_BIT 0x80000000UL
31 #define BIGNUM_INT_BITS 32
32 #define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2)
33 #define DIVMOD_WORD(q, r, hi, lo, w) \
34 __asm__("div %2" : \
35 "=d" (r), "=a" (q) : \
36 "r" (w), "d" (hi), "a" (lo))
37 #elif defined _MSC_VER && defined _M_IX86
38 typedef unsigned __int32 BignumInt;
39 typedef unsigned __int64 BignumDblInt;
40 #define BIGNUM_INT_MASK 0xFFFFFFFFUL
41 #define BIGNUM_TOP_BIT 0x80000000UL
42 #define BIGNUM_INT_BITS 32
43 #define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2)
44 /* Note: MASM interprets array subscripts in the macro arguments as
45 * assembler syntax, which gives the wrong answer. Don't supply them.
46 * <http://msdn2.microsoft.com/en-us/library/bf1dw62z.aspx> */
47 #define DIVMOD_WORD(q, r, hi, lo, w) do { \
48 __asm mov edx, hi \
49 __asm mov eax, lo \
50 __asm div w \
51 __asm mov r, edx \
52 __asm mov q, eax \
53 } while(0)
54 #elif defined _LP64
55 /* 64-bit architectures can do 32x32->64 chunks at a time */
56 typedef unsigned int BignumInt;
57 typedef unsigned long BignumDblInt;
58 #define BIGNUM_INT_MASK 0xFFFFFFFFU
59 #define BIGNUM_TOP_BIT 0x80000000U
60 #define BIGNUM_INT_BITS 32
61 #define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2)
62 #define DIVMOD_WORD(q, r, hi, lo, w) do { \
63 BignumDblInt n = (((BignumDblInt)hi) << BIGNUM_INT_BITS) | lo; \
64 q = n / w; \
65 r = n % w; \
66 } while (0)
67 #elif defined _LLP64
68 /* 64-bit architectures in which unsigned long is 32 bits, not 64 */
69 typedef unsigned long BignumInt;
70 typedef unsigned long long BignumDblInt;
71 #define BIGNUM_INT_MASK 0xFFFFFFFFUL
72 #define BIGNUM_TOP_BIT 0x80000000UL
73 #define BIGNUM_INT_BITS 32
74 #define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2)
75 #define DIVMOD_WORD(q, r, hi, lo, w) do { \
76 BignumDblInt n = (((BignumDblInt)hi) << BIGNUM_INT_BITS) | lo; \
77 q = n / w; \
78 r = n % w; \
79 } while (0)
80 #else
81 /* Fallback for all other cases */
82 typedef unsigned short BignumInt;
83 typedef unsigned long BignumDblInt;
84 #define BIGNUM_INT_MASK 0xFFFFU
85 #define BIGNUM_TOP_BIT 0x8000U
86 #define BIGNUM_INT_BITS 16
87 #define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2)
88 #define DIVMOD_WORD(q, r, hi, lo, w) do { \
89 BignumDblInt n = (((BignumDblInt)hi) << BIGNUM_INT_BITS) | lo; \
90 q = n / w; \
91 r = n % w; \
92 } while (0)
93 #endif
94
95 #define BIGNUM_INT_BYTES (BIGNUM_INT_BITS / 8)
96
97 #define BIGNUM_INTERNAL
98 typedef BignumInt *Bignum;
99
100 #include "ssh.h"
101
102 BignumInt bnZero[1] = { 0 };
103 BignumInt bnOne[2] = { 1, 1 };
104
105 /*
106 * The Bignum format is an array of `BignumInt'. The first
107 * element of the array counts the remaining elements. The
108 * remaining elements express the actual number, base 2^BIGNUM_INT_BITS, _least_
109 * significant digit first. (So it's trivial to extract the bit
110 * with value 2^n for any n.)
111 *
112 * All Bignums in this module are positive. Negative numbers must
113 * be dealt with outside it.
114 *
115 * INVARIANT: the most significant word of any Bignum must be
116 * nonzero.
117 */
118
119 Bignum Zero = bnZero, One = bnOne;
120
121 static Bignum newbn(int length)
122 {
123 Bignum b = snewn(length + 1, BignumInt);
124 if (!b)
125 abort(); /* FIXME */
126 memset(b, 0, (length + 1) * sizeof(*b));
127 b[0] = length;
128 return b;
129 }
130
131 void bn_restore_invariant(Bignum b)
132 {
133 while (b[0] > 1 && b[b[0]] == 0)
134 b[0]--;
135 }
136
137 Bignum copybn(Bignum orig)
138 {
139 Bignum b = snewn(orig[0] + 1, BignumInt);
140 if (!b)
141 abort(); /* FIXME */
142 memcpy(b, orig, (orig[0] + 1) * sizeof(*b));
143 return b;
144 }
145
146 void freebn(Bignum b)
147 {
148 /*
149 * Burn the evidence, just in case.
150 */
151 smemclr(b, sizeof(b[0]) * (b[0] + 1));
152 sfree(b);
153 }
154
155 Bignum bn_power_2(int n)
156 {
157 Bignum ret = newbn(n / BIGNUM_INT_BITS + 1);
158 bignum_set_bit(ret, n, 1);
159 return ret;
160 }
161
162 /*
163 * Internal addition. Sets c = a - b, where 'a', 'b' and 'c' are all
164 * big-endian arrays of 'len' BignumInts. Returns a BignumInt carried
165 * off the top.
166 */
167 static BignumInt internal_add(const BignumInt *a, const BignumInt *b,
168 BignumInt *c, int len)
169 {
170 int i;
171 BignumDblInt carry = 0;
172
173 for (i = len-1; i >= 0; i--) {
174 carry += (BignumDblInt)a[i] + b[i];
175 c[i] = (BignumInt)carry;
176 carry >>= BIGNUM_INT_BITS;
177 }
178
179 return (BignumInt)carry;
180 }
181
182 /*
183 * Internal subtraction. Sets c = a - b, where 'a', 'b' and 'c' are
184 * all big-endian arrays of 'len' BignumInts. Any borrow from the top
185 * is ignored.
186 */
187 static void internal_sub(const BignumInt *a, const BignumInt *b,
188 BignumInt *c, int len)
189 {
190 int i;
191 BignumDblInt carry = 1;
192
193 for (i = len-1; i >= 0; i--) {
194 carry += (BignumDblInt)a[i] + (b[i] ^ BIGNUM_INT_MASK);
195 c[i] = (BignumInt)carry;
196 carry >>= BIGNUM_INT_BITS;
197 }
198 }
199
200 /*
201 * Compute c = a * b.
202 * Input is in the first len words of a and b.
203 * Result is returned in the first 2*len words of c.
204 *
205 * 'scratch' must point to an array of BignumInt of size at least
206 * mul_compute_scratch(len). (This covers the needs of internal_mul
207 * and all its recursive calls to itself.)
208 */
209 #define KARATSUBA_THRESHOLD 50
210 static int mul_compute_scratch(int len)
211 {
212 int ret = 0;
213 while (len > KARATSUBA_THRESHOLD) {
214 int toplen = len/2, botlen = len - toplen; /* botlen is the bigger */
215 int midlen = botlen + 1;
216 ret += 4*midlen;
217 len = midlen;
218 }
219 return ret;
220 }
221 static void internal_mul(const BignumInt *a, const BignumInt *b,
222 BignumInt *c, int len, BignumInt *scratch)
223 {
224 if (len > KARATSUBA_THRESHOLD) {
225 int i;
226
227 /*
228 * Karatsuba divide-and-conquer algorithm. Cut each input in
229 * half, so that it's expressed as two big 'digits' in a giant
230 * base D:
231 *
232 * a = a_1 D + a_0
233 * b = b_1 D + b_0
234 *
235 * Then the product is of course
236 *
237 * ab = a_1 b_1 D^2 + (a_1 b_0 + a_0 b_1) D + a_0 b_0
238 *
239 * and we compute the three coefficients by recursively
240 * calling ourself to do half-length multiplications.
241 *
242 * The clever bit that makes this worth doing is that we only
243 * need _one_ half-length multiplication for the central
244 * coefficient rather than the two that it obviouly looks
245 * like, because we can use a single multiplication to compute
246 *
247 * (a_1 + a_0) (b_1 + b_0) = a_1 b_1 + a_1 b_0 + a_0 b_1 + a_0 b_0
248 *
249 * and then we subtract the other two coefficients (a_1 b_1
250 * and a_0 b_0) which we were computing anyway.
251 *
252 * Hence we get to multiply two numbers of length N in about
253 * three times as much work as it takes to multiply numbers of
254 * length N/2, which is obviously better than the four times
255 * as much work it would take if we just did a long
256 * conventional multiply.
257 */
258
259 int toplen = len/2, botlen = len - toplen; /* botlen is the bigger */
260 int midlen = botlen + 1;
261 BignumDblInt carry;
262 #ifdef KARA_DEBUG
263 int i;
264 #endif
265
266 /*
267 * The coefficients a_1 b_1 and a_0 b_0 just avoid overlapping
268 * in the output array, so we can compute them immediately in
269 * place.
270 */
271
272 #ifdef KARA_DEBUG
273 printf("a1,a0 = 0x");
274 for (i = 0; i < len; i++) {
275 if (i == toplen) printf(", 0x");
276 printf("%0*x", BIGNUM_INT_BITS/4, a[i]);
277 }
278 printf("\n");
279 printf("b1,b0 = 0x");
280 for (i = 0; i < len; i++) {
281 if (i == toplen) printf(", 0x");
282 printf("%0*x", BIGNUM_INT_BITS/4, b[i]);
283 }
284 printf("\n");
285 #endif
286
287 /* a_1 b_1 */
288 internal_mul(a, b, c, toplen, scratch);
289 #ifdef KARA_DEBUG
290 printf("a1b1 = 0x");
291 for (i = 0; i < 2*toplen; i++) {
292 printf("%0*x", BIGNUM_INT_BITS/4, c[i]);
293 }
294 printf("\n");
295 #endif
296
297 /* a_0 b_0 */
298 internal_mul(a + toplen, b + toplen, c + 2*toplen, botlen, scratch);
299 #ifdef KARA_DEBUG
300 printf("a0b0 = 0x");
301 for (i = 0; i < 2*botlen; i++) {
302 printf("%0*x", BIGNUM_INT_BITS/4, c[2*toplen+i]);
303 }
304 printf("\n");
305 #endif
306
307 /* Zero padding. midlen exceeds toplen by at most 2, so just
308 * zero the first two words of each input and the rest will be
309 * copied over. */
310 scratch[0] = scratch[1] = scratch[midlen] = scratch[midlen+1] = 0;
311
312 for (i = 0; i < toplen; i++) {
313 scratch[midlen - toplen + i] = a[i]; /* a_1 */
314 scratch[2*midlen - toplen + i] = b[i]; /* b_1 */
315 }
316
317 /* compute a_1 + a_0 */
318 scratch[0] = internal_add(scratch+1, a+toplen, scratch+1, botlen);
319 #ifdef KARA_DEBUG
320 printf("a1plusa0 = 0x");
321 for (i = 0; i < midlen; i++) {
322 printf("%0*x", BIGNUM_INT_BITS/4, scratch[i]);
323 }
324 printf("\n");
325 #endif
326 /* compute b_1 + b_0 */
327 scratch[midlen] = internal_add(scratch+midlen+1, b+toplen,
328 scratch+midlen+1, botlen);
329 #ifdef KARA_DEBUG
330 printf("b1plusb0 = 0x");
331 for (i = 0; i < midlen; i++) {
332 printf("%0*x", BIGNUM_INT_BITS/4, scratch[midlen+i]);
333 }
334 printf("\n");
335 #endif
336
337 /*
338 * Now we can do the third multiplication.
339 */
340 internal_mul(scratch, scratch + midlen, scratch + 2*midlen, midlen,
341 scratch + 4*midlen);
342 #ifdef KARA_DEBUG
343 printf("a1plusa0timesb1plusb0 = 0x");
344 for (i = 0; i < 2*midlen; i++) {
345 printf("%0*x", BIGNUM_INT_BITS/4, scratch[2*midlen+i]);
346 }
347 printf("\n");
348 #endif
349
350 /*
351 * Now we can reuse the first half of 'scratch' to compute the
352 * sum of the outer two coefficients, to subtract from that
353 * product to obtain the middle one.
354 */
355 scratch[0] = scratch[1] = scratch[2] = scratch[3] = 0;
356 for (i = 0; i < 2*toplen; i++)
357 scratch[2*midlen - 2*toplen + i] = c[i];
358 scratch[1] = internal_add(scratch+2, c + 2*toplen,
359 scratch+2, 2*botlen);
360 #ifdef KARA_DEBUG
361 printf("a1b1plusa0b0 = 0x");
362 for (i = 0; i < 2*midlen; i++) {
363 printf("%0*x", BIGNUM_INT_BITS/4, scratch[i]);
364 }
365 printf("\n");
366 #endif
367
368 internal_sub(scratch + 2*midlen, scratch,
369 scratch + 2*midlen, 2*midlen);
370 #ifdef KARA_DEBUG
371 printf("a1b0plusa0b1 = 0x");
372 for (i = 0; i < 2*midlen; i++) {
373 printf("%0*x", BIGNUM_INT_BITS/4, scratch[2*midlen+i]);
374 }
375 printf("\n");
376 #endif
377
378 /*
379 * And now all we need to do is to add that middle coefficient
380 * back into the output. We may have to propagate a carry
381 * further up the output, but we can be sure it won't
382 * propagate right the way off the top.
383 */
384 carry = internal_add(c + 2*len - botlen - 2*midlen,
385 scratch + 2*midlen,
386 c + 2*len - botlen - 2*midlen, 2*midlen);
387 i = 2*len - botlen - 2*midlen - 1;
388 while (carry) {
389 assert(i >= 0);
390 carry += c[i];
391 c[i] = (BignumInt)carry;
392 carry >>= BIGNUM_INT_BITS;
393 i--;
394 }
395 #ifdef KARA_DEBUG
396 printf("ab = 0x");
397 for (i = 0; i < 2*len; i++) {
398 printf("%0*x", BIGNUM_INT_BITS/4, c[i]);
399 }
400 printf("\n");
401 #endif
402
403 } else {
404 int i;
405 BignumInt carry;
406 BignumDblInt t;
407 const BignumInt *ap, *bp;
408 BignumInt *cp, *cps;
409
410 /*
411 * Multiply in the ordinary O(N^2) way.
412 */
413
414 for (i = 0; i < 2 * len; i++)
415 c[i] = 0;
416
417 for (cps = c + 2*len, ap = a + len; ap-- > a; cps--) {
418 carry = 0;
419 for (cp = cps, bp = b + len; cp--, bp-- > b ;) {
420 t = (MUL_WORD(*ap, *bp) + carry) + *cp;
421 *cp = (BignumInt) t;
422 carry = (BignumInt)(t >> BIGNUM_INT_BITS);
423 }
424 *cp = carry;
425 }
426 }
427 }
428
429 /*
430 * Variant form of internal_mul used for the initial step of
431 * Montgomery reduction. Only bothers outputting 'len' words
432 * (everything above that is thrown away).
433 */
434 static void internal_mul_low(const BignumInt *a, const BignumInt *b,
435 BignumInt *c, int len, BignumInt *scratch)
436 {
437 if (len > KARATSUBA_THRESHOLD) {
438 int i;
439
440 /*
441 * Karatsuba-aware version of internal_mul_low. As before, we
442 * express each input value as a shifted combination of two
443 * halves:
444 *
445 * a = a_1 D + a_0
446 * b = b_1 D + b_0
447 *
448 * Then the full product is, as before,
449 *
450 * ab = a_1 b_1 D^2 + (a_1 b_0 + a_0 b_1) D + a_0 b_0
451 *
452 * Provided we choose D on the large side (so that a_0 and b_0
453 * are _at least_ as long as a_1 and b_1), we don't need the
454 * topmost term at all, and we only need half of the middle
455 * term. So there's no point in doing the proper Karatsuba
456 * optimisation which computes the middle term using the top
457 * one, because we'd take as long computing the top one as
458 * just computing the middle one directly.
459 *
460 * So instead, we do a much more obvious thing: we call the
461 * fully optimised internal_mul to compute a_0 b_0, and we
462 * recursively call ourself to compute the _bottom halves_ of
463 * a_1 b_0 and a_0 b_1, each of which we add into the result
464 * in the obvious way.
465 *
466 * In other words, there's no actual Karatsuba _optimisation_
467 * in this function; the only benefit in doing it this way is
468 * that we call internal_mul proper for a large part of the
469 * work, and _that_ can optimise its operation.
470 */
471
472 int toplen = len/2, botlen = len - toplen; /* botlen is the bigger */
473
474 /*
475 * Scratch space for the various bits and pieces we're going
476 * to be adding together: we need botlen*2 words for a_0 b_0
477 * (though we may end up throwing away its topmost word), and
478 * toplen words for each of a_1 b_0 and a_0 b_1. That adds up
479 * to exactly 2*len.
480 */
481
482 /* a_0 b_0 */
483 internal_mul(a + toplen, b + toplen, scratch + 2*toplen, botlen,
484 scratch + 2*len);
485
486 /* a_1 b_0 */
487 internal_mul_low(a, b + len - toplen, scratch + toplen, toplen,
488 scratch + 2*len);
489
490 /* a_0 b_1 */
491 internal_mul_low(a + len - toplen, b, scratch, toplen,
492 scratch + 2*len);
493
494 /* Copy the bottom half of the big coefficient into place */
495 for (i = 0; i < botlen; i++)
496 c[toplen + i] = scratch[2*toplen + botlen + i];
497
498 /* Add the two small coefficients, throwing away the returned carry */
499 internal_add(scratch, scratch + toplen, scratch, toplen);
500
501 /* And add that to the large coefficient, leaving the result in c. */
502 internal_add(scratch, scratch + 2*toplen + botlen - toplen,
503 c, toplen);
504
505 } else {
506 int i;
507 BignumInt carry;
508 BignumDblInt t;
509 const BignumInt *ap, *bp;
510 BignumInt *cp, *cps;
511
512 /*
513 * Multiply in the ordinary O(N^2) way.
514 */
515
516 for (i = 0; i < len; i++)
517 c[i] = 0;
518
519 for (cps = c + len, ap = a + len; ap-- > a; cps--) {
520 carry = 0;
521 for (cp = cps, bp = b + len; bp--, cp-- > c ;) {
522 t = (MUL_WORD(*ap, *bp) + carry) + *cp;
523 *cp = (BignumInt) t;
524 carry = (BignumInt)(t >> BIGNUM_INT_BITS);
525 }
526 }
527 }
528 }
529
530 /*
531 * Montgomery reduction. Expects x to be a big-endian array of 2*len
532 * BignumInts whose value satisfies 0 <= x < rn (where r = 2^(len *
533 * BIGNUM_INT_BITS) is the Montgomery base). Returns in the same array
534 * a value x' which is congruent to xr^{-1} mod n, and satisfies 0 <=
535 * x' < n.
536 *
537 * 'n' and 'mninv' should be big-endian arrays of 'len' BignumInts
538 * each, containing respectively n and the multiplicative inverse of
539 * -n mod r.
540 *
541 * 'tmp' is an array of BignumInt used as scratch space, of length at
542 * least 3*len + mul_compute_scratch(len).
543 */
544 static void monty_reduce(BignumInt *x, const BignumInt *n,
545 const BignumInt *mninv, BignumInt *tmp, int len)
546 {
547 int i;
548 BignumInt carry;
549
550 /*
551 * Multiply x by (-n)^{-1} mod r. This gives us a value m such
552 * that mn is congruent to -x mod r. Hence, mn+x is an exact
553 * multiple of r, and is also (obviously) congruent to x mod n.
554 */
555 internal_mul_low(x + len, mninv, tmp, len, tmp + 3*len);
556
557 /*
558 * Compute t = (mn+x)/r in ordinary, non-modular, integer
559 * arithmetic. By construction this is exact, and is congruent mod
560 * n to x * r^{-1}, i.e. the answer we want.
561 *
562 * The following multiply leaves that answer in the _most_
563 * significant half of the 'x' array, so then we must shift it
564 * down.
565 */
566 internal_mul(tmp, n, tmp+len, len, tmp + 3*len);
567 carry = internal_add(x, tmp+len, x, 2*len);
568 for (i = 0; i < len; i++)
569 x[len + i] = x[i], x[i] = 0;
570
571 /*
572 * Reduce t mod n. This doesn't require a full-on division by n,
573 * but merely a test and single optional subtraction, since we can
574 * show that 0 <= t < 2n.
575 *
576 * Proof:
577 * + we computed m mod r, so 0 <= m < r.
578 * + so 0 <= mn < rn, obviously
579 * + hence we only need 0 <= x < rn to guarantee that 0 <= mn+x < 2rn
580 * + yielding 0 <= (mn+x)/r < 2n as required.
581 */
582 if (!carry) {
583 for (i = 0; i < len; i++)
584 if (x[len + i] != n[i])
585 break;
586 }
587 if (carry || i >= len || x[len + i] > n[i])
588 internal_sub(x+len, n, x+len, len);
589 }
590
591 static void internal_add_shifted(BignumInt *number,
592 unsigned n, int shift)
593 {
594 int word = 1 + (shift / BIGNUM_INT_BITS);
595 int bshift = shift % BIGNUM_INT_BITS;
596 BignumDblInt addend;
597
598 addend = (BignumDblInt)n << bshift;
599
600 while (addend) {
601 addend += number[word];
602 number[word] = (BignumInt) addend & BIGNUM_INT_MASK;
603 addend >>= BIGNUM_INT_BITS;
604 word++;
605 }
606 }
607
608 /*
609 * Compute a = a % m.
610 * Input in first alen words of a and first mlen words of m.
611 * Output in first alen words of a
612 * (of which first alen-mlen words will be zero).
613 * The MSW of m MUST have its high bit set.
614 * Quotient is accumulated in the `quotient' array, which is a Bignum
615 * rather than the internal bigendian format. Quotient parts are shifted
616 * left by `qshift' before adding into quot.
617 */
618 static void internal_mod(BignumInt *a, int alen,
619 BignumInt *m, int mlen,
620 BignumInt *quot, int qshift)
621 {
622 BignumInt m0, m1;
623 unsigned int h;
624 int i, k;
625
626 m0 = m[0];
627 if (mlen > 1)
628 m1 = m[1];
629 else
630 m1 = 0;
631
632 for (i = 0; i <= alen - mlen; i++) {
633 BignumDblInt t;
634 unsigned int q, r, c, ai1;
635
636 if (i == 0) {
637 h = 0;
638 } else {
639 h = a[i - 1];
640 a[i - 1] = 0;
641 }
642
643 if (i == alen - 1)
644 ai1 = 0;
645 else
646 ai1 = a[i + 1];
647
648 /* Find q = h:a[i] / m0 */
649 if (h >= m0) {
650 /*
651 * Special case.
652 *
653 * To illustrate it, suppose a BignumInt is 8 bits, and
654 * we are dividing (say) A1:23:45:67 by A1:B2:C3. Then
655 * our initial division will be 0xA123 / 0xA1, which
656 * will give a quotient of 0x100 and a divide overflow.
657 * However, the invariants in this division algorithm
658 * are not violated, since the full number A1:23:... is
659 * _less_ than the quotient prefix A1:B2:... and so the
660 * following correction loop would have sorted it out.
661 *
662 * In this situation we set q to be the largest
663 * quotient we _can_ stomach (0xFF, of course).
664 */
665 q = BIGNUM_INT_MASK;
666 } else {
667 /* Macro doesn't want an array subscript expression passed
668 * into it (see definition), so use a temporary. */
669 BignumInt tmplo = a[i];
670 DIVMOD_WORD(q, r, h, tmplo, m0);
671
672 /* Refine our estimate of q by looking at
673 h:a[i]:a[i+1] / m0:m1 */
674 t = MUL_WORD(m1, q);
675 if (t > ((BignumDblInt) r << BIGNUM_INT_BITS) + ai1) {
676 q--;
677 t -= m1;
678 r = (r + m0) & BIGNUM_INT_MASK; /* overflow? */
679 if (r >= (BignumDblInt) m0 &&
680 t > ((BignumDblInt) r << BIGNUM_INT_BITS) + ai1) q--;
681 }
682 }
683
684 /* Subtract q * m from a[i...] */
685 c = 0;
686 for (k = mlen - 1; k >= 0; k--) {
687 t = MUL_WORD(q, m[k]);
688 t += c;
689 c = (unsigned)(t >> BIGNUM_INT_BITS);
690 if ((BignumInt) t > a[i + k])
691 c++;
692 a[i + k] -= (BignumInt) t;
693 }
694
695 /* Add back m in case of borrow */
696 if (c != h) {
697 t = 0;
698 for (k = mlen - 1; k >= 0; k--) {
699 t += m[k];
700 t += a[i + k];
701 a[i + k] = (BignumInt) t;
702 t = t >> BIGNUM_INT_BITS;
703 }
704 q--;
705 }
706 if (quot)
707 internal_add_shifted(quot, q, qshift + BIGNUM_INT_BITS * (alen - mlen - i));
708 }
709 }
710
711 /*
712 * Compute (base ^ exp) % mod, the pedestrian way.
713 */
714 Bignum modpow_simple(Bignum base_in, Bignum exp, Bignum mod)
715 {
716 BignumInt *a, *b, *n, *m, *scratch;
717 int mshift;
718 int mlen, scratchlen, i, j;
719 Bignum base, result;
720
721 /*
722 * The most significant word of mod needs to be non-zero. It
723 * should already be, but let's make sure.
724 */
725 assert(mod[mod[0]] != 0);
726
727 /*
728 * Make sure the base is smaller than the modulus, by reducing
729 * it modulo the modulus if not.
730 */
731 base = bigmod(base_in, mod);
732
733 /* Allocate m of size mlen, copy mod to m */
734 /* We use big endian internally */
735 mlen = mod[0];
736 m = snewn(mlen, BignumInt);
737 for (j = 0; j < mlen; j++)
738 m[j] = mod[mod[0] - j];
739
740 /* Shift m left to make msb bit set */
741 for (mshift = 0; mshift < BIGNUM_INT_BITS-1; mshift++)
742 if ((m[0] << mshift) & BIGNUM_TOP_BIT)
743 break;
744 if (mshift) {
745 for (i = 0; i < mlen - 1; i++)
746 m[i] = (m[i] << mshift) | (m[i + 1] >> (BIGNUM_INT_BITS - mshift));
747 m[mlen - 1] = m[mlen - 1] << mshift;
748 }
749
750 /* Allocate n of size mlen, copy base to n */
751 n = snewn(mlen, BignumInt);
752 i = mlen - base[0];
753 for (j = 0; j < i; j++)
754 n[j] = 0;
755 for (j = 0; j < (int)base[0]; j++)
756 n[i + j] = base[base[0] - j];
757
758 /* Allocate a and b of size 2*mlen. Set a = 1 */
759 a = snewn(2 * mlen, BignumInt);
760 b = snewn(2 * mlen, BignumInt);
761 for (i = 0; i < 2 * mlen; i++)
762 a[i] = 0;
763 a[2 * mlen - 1] = 1;
764
765 /* Scratch space for multiplies */
766 scratchlen = mul_compute_scratch(mlen);
767 scratch = snewn(scratchlen, BignumInt);
768
769 /* Skip leading zero bits of exp. */
770 i = 0;
771 j = BIGNUM_INT_BITS-1;
772 while (i < (int)exp[0] && (exp[exp[0] - i] & (1 << j)) == 0) {
773 j--;
774 if (j < 0) {
775 i++;
776 j = BIGNUM_INT_BITS-1;
777 }
778 }
779
780 /* Main computation */
781 while (i < (int)exp[0]) {
782 while (j >= 0) {
783 internal_mul(a + mlen, a + mlen, b, mlen, scratch);
784 internal_mod(b, mlen * 2, m, mlen, NULL, 0);
785 if ((exp[exp[0] - i] & (1 << j)) != 0) {
786 internal_mul(b + mlen, n, a, mlen, scratch);
787 internal_mod(a, mlen * 2, m, mlen, NULL, 0);
788 } else {
789 BignumInt *t;
790 t = a;
791 a = b;
792 b = t;
793 }
794 j--;
795 }
796 i++;
797 j = BIGNUM_INT_BITS-1;
798 }
799
800 /* Fixup result in case the modulus was shifted */
801 if (mshift) {
802 for (i = mlen - 1; i < 2 * mlen - 1; i++)
803 a[i] = (a[i] << mshift) | (a[i + 1] >> (BIGNUM_INT_BITS - mshift));
804 a[2 * mlen - 1] = a[2 * mlen - 1] << mshift;
805 internal_mod(a, mlen * 2, m, mlen, NULL, 0);
806 for (i = 2 * mlen - 1; i >= mlen; i--)
807 a[i] = (a[i] >> mshift) | (a[i - 1] << (BIGNUM_INT_BITS - mshift));
808 }
809
810 /* Copy result to buffer */
811 result = newbn(mod[0]);
812 for (i = 0; i < mlen; i++)
813 result[result[0] - i] = a[i + mlen];
814 while (result[0] > 1 && result[result[0]] == 0)
815 result[0]--;
816
817 /* Free temporary arrays */
818 for (i = 0; i < 2 * mlen; i++)
819 a[i] = 0;
820 sfree(a);
821 for (i = 0; i < scratchlen; i++)
822 scratch[i] = 0;
823 sfree(scratch);
824 for (i = 0; i < 2 * mlen; i++)
825 b[i] = 0;
826 sfree(b);
827 for (i = 0; i < mlen; i++)
828 m[i] = 0;
829 sfree(m);
830 for (i = 0; i < mlen; i++)
831 n[i] = 0;
832 sfree(n);
833
834 freebn(base);
835
836 return result;
837 }
838
839 /*
840 * Compute (base ^ exp) % mod. Uses the Montgomery multiplication
841 * technique where possible, falling back to modpow_simple otherwise.
842 */
843 Bignum modpow(Bignum base_in, Bignum exp, Bignum mod)
844 {
845 BignumInt *a, *b, *x, *n, *mninv, *scratch;
846 int len, scratchlen, i, j;
847 Bignum base, base2, r, rn, inv, result;
848
849 /*
850 * The most significant word of mod needs to be non-zero. It
851 * should already be, but let's make sure.
852 */
853 assert(mod[mod[0]] != 0);
854
855 /*
856 * mod had better be odd, or we can't do Montgomery multiplication
857 * using a power of two at all.
858 */
859 if (!(mod[1] & 1))
860 return modpow_simple(base_in, exp, mod);
861
862 /*
863 * Make sure the base is smaller than the modulus, by reducing
864 * it modulo the modulus if not.
865 */
866 base = bigmod(base_in, mod);
867
868 /*
869 * Compute the inverse of n mod r, for monty_reduce. (In fact we
870 * want the inverse of _minus_ n mod r, but we'll sort that out
871 * below.)
872 */
873 len = mod[0];
874 r = bn_power_2(BIGNUM_INT_BITS * len);
875 inv = modinv(mod, r);
876
877 /*
878 * Multiply the base by r mod n, to get it into Montgomery
879 * representation.
880 */
881 base2 = modmul(base, r, mod);
882 freebn(base);
883 base = base2;
884
885 rn = bigmod(r, mod); /* r mod n, i.e. Montgomerified 1 */
886
887 freebn(r); /* won't need this any more */
888
889 /*
890 * Set up internal arrays of the right lengths, in big-endian
891 * format, containing the base, the modulus, and the modulus's
892 * inverse.
893 */
894 n = snewn(len, BignumInt);
895 for (j = 0; j < len; j++)
896 n[len - 1 - j] = mod[j + 1];
897
898 mninv = snewn(len, BignumInt);
899 for (j = 0; j < len; j++)
900 mninv[len - 1 - j] = (j < (int)inv[0] ? inv[j + 1] : 0);
901 freebn(inv); /* we don't need this copy of it any more */
902 /* Now negate mninv mod r, so it's the inverse of -n rather than +n. */
903 x = snewn(len, BignumInt);
904 for (j = 0; j < len; j++)
905 x[j] = 0;
906 internal_sub(x, mninv, mninv, len);
907
908 /* x = snewn(len, BignumInt); */ /* already done above */
909 for (j = 0; j < len; j++)
910 x[len - 1 - j] = (j < (int)base[0] ? base[j + 1] : 0);
911 freebn(base); /* we don't need this copy of it any more */
912
913 a = snewn(2*len, BignumInt);
914 b = snewn(2*len, BignumInt);
915 for (j = 0; j < len; j++)
916 a[2*len - 1 - j] = (j < (int)rn[0] ? rn[j + 1] : 0);
917 freebn(rn);
918
919 /* Scratch space for multiplies */
920 scratchlen = 3*len + mul_compute_scratch(len);
921 scratch = snewn(scratchlen, BignumInt);
922
923 /* Skip leading zero bits of exp. */
924 i = 0;
925 j = BIGNUM_INT_BITS-1;
926 while (i < (int)exp[0] && (exp[exp[0] - i] & (1 << j)) == 0) {
927 j--;
928 if (j < 0) {
929 i++;
930 j = BIGNUM_INT_BITS-1;
931 }
932 }
933
934 /* Main computation */
935 while (i < (int)exp[0]) {
936 while (j >= 0) {
937 internal_mul(a + len, a + len, b, len, scratch);
938 monty_reduce(b, n, mninv, scratch, len);
939 if ((exp[exp[0] - i] & (1 << j)) != 0) {
940 internal_mul(b + len, x, a, len, scratch);
941 monty_reduce(a, n, mninv, scratch, len);
942 } else {
943 BignumInt *t;
944 t = a;
945 a = b;
946 b = t;
947 }
948 j--;
949 }
950 i++;
951 j = BIGNUM_INT_BITS-1;
952 }
953
954 /*
955 * Final monty_reduce to get back from the adjusted Montgomery
956 * representation.
957 */
958 monty_reduce(a, n, mninv, scratch, len);
959
960 /* Copy result to buffer */
961 result = newbn(mod[0]);
962 for (i = 0; i < len; i++)
963 result[result[0] - i] = a[i + len];
964 while (result[0] > 1 && result[result[0]] == 0)
965 result[0]--;
966
967 /* Free temporary arrays */
968 for (i = 0; i < scratchlen; i++)
969 scratch[i] = 0;
970 sfree(scratch);
971 for (i = 0; i < 2 * len; i++)
972 a[i] = 0;
973 sfree(a);
974 for (i = 0; i < 2 * len; i++)
975 b[i] = 0;
976 sfree(b);
977 for (i = 0; i < len; i++)
978 mninv[i] = 0;
979 sfree(mninv);
980 for (i = 0; i < len; i++)
981 n[i] = 0;
982 sfree(n);
983 for (i = 0; i < len; i++)
984 x[i] = 0;
985 sfree(x);
986
987 return result;
988 }
989
990 /*
991 * Compute (p * q) % mod.
992 * The most significant word of mod MUST be non-zero.
993 * We assume that the result array is the same size as the mod array.
994 */
995 Bignum modmul(Bignum p, Bignum q, Bignum mod)
996 {
997 BignumInt *a, *n, *m, *o, *scratch;
998 int mshift, scratchlen;
999 int pqlen, mlen, rlen, i, j;
1000 Bignum result;
1001
1002 /* Allocate m of size mlen, copy mod to m */
1003 /* We use big endian internally */
1004 mlen = mod[0];
1005 m = snewn(mlen, BignumInt);
1006 for (j = 0; j < mlen; j++)
1007 m[j] = mod[mod[0] - j];
1008
1009 /* Shift m left to make msb bit set */
1010 for (mshift = 0; mshift < BIGNUM_INT_BITS-1; mshift++)
1011 if ((m[0] << mshift) & BIGNUM_TOP_BIT)
1012 break;
1013 if (mshift) {
1014 for (i = 0; i < mlen - 1; i++)
1015 m[i] = (m[i] << mshift) | (m[i + 1] >> (BIGNUM_INT_BITS - mshift));
1016 m[mlen - 1] = m[mlen - 1] << mshift;
1017 }
1018
1019 pqlen = (p[0] > q[0] ? p[0] : q[0]);
1020
1021 /*
1022 * Make sure that we're allowing enough space. The shifting below
1023 * will underflow the vectors we allocate if pqlen is too small.
1024 */
1025 if (2*pqlen <= mlen)
1026 pqlen = mlen/2 + 1;
1027
1028 /* Allocate n of size pqlen, copy p to n */
1029 n = snewn(pqlen, BignumInt);
1030 i = pqlen - p[0];
1031 for (j = 0; j < i; j++)
1032 n[j] = 0;
1033 for (j = 0; j < (int)p[0]; j++)
1034 n[i + j] = p[p[0] - j];
1035
1036 /* Allocate o of size pqlen, copy q to o */
1037 o = snewn(pqlen, BignumInt);
1038 i = pqlen - q[0];
1039 for (j = 0; j < i; j++)
1040 o[j] = 0;
1041 for (j = 0; j < (int)q[0]; j++)
1042 o[i + j] = q[q[0] - j];
1043
1044 /* Allocate a of size 2*pqlen for result */
1045 a = snewn(2 * pqlen, BignumInt);
1046
1047 /* Scratch space for multiplies */
1048 scratchlen = mul_compute_scratch(pqlen);
1049 scratch = snewn(scratchlen, BignumInt);
1050
1051 /* Main computation */
1052 internal_mul(n, o, a, pqlen, scratch);
1053 internal_mod(a, pqlen * 2, m, mlen, NULL, 0);
1054
1055 /* Fixup result in case the modulus was shifted */
1056 if (mshift) {
1057 for (i = 2 * pqlen - mlen - 1; i < 2 * pqlen - 1; i++)
1058 a[i] = (a[i] << mshift) | (a[i + 1] >> (BIGNUM_INT_BITS - mshift));
1059 a[2 * pqlen - 1] = a[2 * pqlen - 1] << mshift;
1060 internal_mod(a, pqlen * 2, m, mlen, NULL, 0);
1061 for (i = 2 * pqlen - 1; i >= 2 * pqlen - mlen; i--)
1062 a[i] = (a[i] >> mshift) | (a[i - 1] << (BIGNUM_INT_BITS - mshift));
1063 }
1064
1065 /* Copy result to buffer */
1066 rlen = (mlen < pqlen * 2 ? mlen : pqlen * 2);
1067 result = newbn(rlen);
1068 for (i = 0; i < rlen; i++)
1069 result[result[0] - i] = a[i + 2 * pqlen - rlen];
1070 while (result[0] > 1 && result[result[0]] == 0)
1071 result[0]--;
1072
1073 /* Free temporary arrays */
1074 for (i = 0; i < scratchlen; i++)
1075 scratch[i] = 0;
1076 sfree(scratch);
1077 for (i = 0; i < 2 * pqlen; i++)
1078 a[i] = 0;
1079 sfree(a);
1080 for (i = 0; i < mlen; i++)
1081 m[i] = 0;
1082 sfree(m);
1083 for (i = 0; i < pqlen; i++)
1084 n[i] = 0;
1085 sfree(n);
1086 for (i = 0; i < pqlen; i++)
1087 o[i] = 0;
1088 sfree(o);
1089
1090 return result;
1091 }
1092
1093 /*
1094 * Compute p % mod.
1095 * The most significant word of mod MUST be non-zero.
1096 * We assume that the result array is the same size as the mod array.
1097 * We optionally write out a quotient if `quotient' is non-NULL.
1098 * We can avoid writing out the result if `result' is NULL.
1099 */
1100 static void bigdivmod(Bignum p, Bignum mod, Bignum result, Bignum quotient)
1101 {
1102 BignumInt *n, *m;
1103 int mshift;
1104 int plen, mlen, i, j;
1105
1106 /* Allocate m of size mlen, copy mod to m */
1107 /* We use big endian internally */
1108 mlen = mod[0];
1109 m = snewn(mlen, BignumInt);
1110 for (j = 0; j < mlen; j++)
1111 m[j] = mod[mod[0] - j];
1112
1113 /* Shift m left to make msb bit set */
1114 for (mshift = 0; mshift < BIGNUM_INT_BITS-1; mshift++)
1115 if ((m[0] << mshift) & BIGNUM_TOP_BIT)
1116 break;
1117 if (mshift) {
1118 for (i = 0; i < mlen - 1; i++)
1119 m[i] = (m[i] << mshift) | (m[i + 1] >> (BIGNUM_INT_BITS - mshift));
1120 m[mlen - 1] = m[mlen - 1] << mshift;
1121 }
1122
1123 plen = p[0];
1124 /* Ensure plen > mlen */
1125 if (plen <= mlen)
1126 plen = mlen + 1;
1127
1128 /* Allocate n of size plen, copy p to n */
1129 n = snewn(plen, BignumInt);
1130 for (j = 0; j < plen; j++)
1131 n[j] = 0;
1132 for (j = 1; j <= (int)p[0]; j++)
1133 n[plen - j] = p[j];
1134
1135 /* Main computation */
1136 internal_mod(n, plen, m, mlen, quotient, mshift);
1137
1138 /* Fixup result in case the modulus was shifted */
1139 if (mshift) {
1140 for (i = plen - mlen - 1; i < plen - 1; i++)
1141 n[i] = (n[i] << mshift) | (n[i + 1] >> (BIGNUM_INT_BITS - mshift));
1142 n[plen - 1] = n[plen - 1] << mshift;
1143 internal_mod(n, plen, m, mlen, quotient, 0);
1144 for (i = plen - 1; i >= plen - mlen; i--)
1145 n[i] = (n[i] >> mshift) | (n[i - 1] << (BIGNUM_INT_BITS - mshift));
1146 }
1147
1148 /* Copy result to buffer */
1149 if (result) {
1150 for (i = 1; i <= (int)result[0]; i++) {
1151 int j = plen - i;
1152 result[i] = j >= 0 ? n[j] : 0;
1153 }
1154 }
1155
1156 /* Free temporary arrays */
1157 for (i = 0; i < mlen; i++)
1158 m[i] = 0;
1159 sfree(m);
1160 for (i = 0; i < plen; i++)
1161 n[i] = 0;
1162 sfree(n);
1163 }
1164
1165 /*
1166 * Decrement a number.
1167 */
1168 void decbn(Bignum bn)
1169 {
1170 int i = 1;
1171 while (i < (int)bn[0] && bn[i] == 0)
1172 bn[i++] = BIGNUM_INT_MASK;
1173 bn[i]--;
1174 }
1175
1176 Bignum bignum_from_bytes(const unsigned char *data, int nbytes)
1177 {
1178 Bignum result;
1179 int w, i;
1180
1181 w = (nbytes + BIGNUM_INT_BYTES - 1) / BIGNUM_INT_BYTES; /* bytes->words */
1182
1183 result = newbn(w);
1184 for (i = 1; i <= w; i++)
1185 result[i] = 0;
1186 for (i = nbytes; i--;) {
1187 unsigned char byte = *data++;
1188 result[1 + i / BIGNUM_INT_BYTES] |= byte << (8*i % BIGNUM_INT_BITS);
1189 }
1190
1191 while (result[0] > 1 && result[result[0]] == 0)
1192 result[0]--;
1193 return result;
1194 }
1195
1196 /*
1197 * Read an SSH-1-format bignum from a data buffer. Return the number
1198 * of bytes consumed, or -1 if there wasn't enough data.
1199 */
1200 int ssh1_read_bignum(const unsigned char *data, int len, Bignum * result)
1201 {
1202 const unsigned char *p = data;
1203 int i;
1204 int w, b;
1205
1206 if (len < 2)
1207 return -1;
1208
1209 w = 0;
1210 for (i = 0; i < 2; i++)
1211 w = (w << 8) + *p++;
1212 b = (w + 7) / 8; /* bits -> bytes */
1213
1214 if (len < b+2)
1215 return -1;
1216
1217 if (!result) /* just return length */
1218 return b + 2;
1219
1220 *result = bignum_from_bytes(p, b);
1221
1222 return p + b - data;
1223 }
1224
1225 /*
1226 * Return the bit count of a bignum, for SSH-1 encoding.
1227 */
1228 int bignum_bitcount(Bignum bn)
1229 {
1230 int bitcount = bn[0] * BIGNUM_INT_BITS - 1;
1231 while (bitcount >= 0
1232 && (bn[bitcount / BIGNUM_INT_BITS + 1] >> (bitcount % BIGNUM_INT_BITS)) == 0) bitcount--;
1233 return bitcount + 1;
1234 }
1235
1236 /*
1237 * Return the byte length of a bignum when SSH-1 encoded.
1238 */
1239 int ssh1_bignum_length(Bignum bn)
1240 {
1241 return 2 + (bignum_bitcount(bn) + 7) / 8;
1242 }
1243
1244 /*
1245 * Return the byte length of a bignum when SSH-2 encoded.
1246 */
1247 int ssh2_bignum_length(Bignum bn)
1248 {
1249 return 4 + (bignum_bitcount(bn) + 8) / 8;
1250 }
1251
1252 /*
1253 * Return a byte from a bignum; 0 is least significant, etc.
1254 */
1255 int bignum_byte(Bignum bn, int i)
1256 {
1257 if (i >= (int)(BIGNUM_INT_BYTES * bn[0]))
1258 return 0; /* beyond the end */
1259 else
1260 return (bn[i / BIGNUM_INT_BYTES + 1] >>
1261 ((i % BIGNUM_INT_BYTES)*8)) & 0xFF;
1262 }
1263
1264 /*
1265 * Return a bit from a bignum; 0 is least significant, etc.
1266 */
1267 int bignum_bit(Bignum bn, int i)
1268 {
1269 if (i >= (int)(BIGNUM_INT_BITS * bn[0]))
1270 return 0; /* beyond the end */
1271 else
1272 return (bn[i / BIGNUM_INT_BITS + 1] >> (i % BIGNUM_INT_BITS)) & 1;
1273 }
1274
1275 /*
1276 * Set a bit in a bignum; 0 is least significant, etc.
1277 */
1278 void bignum_set_bit(Bignum bn, int bitnum, int value)
1279 {
1280 if (bitnum >= (int)(BIGNUM_INT_BITS * bn[0]))
1281 abort(); /* beyond the end */
1282 else {
1283 int v = bitnum / BIGNUM_INT_BITS + 1;
1284 int mask = 1 << (bitnum % BIGNUM_INT_BITS);
1285 if (value)
1286 bn[v] |= mask;
1287 else
1288 bn[v] &= ~mask;
1289 }
1290 }
1291
1292 /*
1293 * Write a SSH-1-format bignum into a buffer. It is assumed the
1294 * buffer is big enough. Returns the number of bytes used.
1295 */
1296 int ssh1_write_bignum(void *data, Bignum bn)
1297 {
1298 unsigned char *p = data;
1299 int len = ssh1_bignum_length(bn);
1300 int i;
1301 int bitc = bignum_bitcount(bn);
1302
1303 *p++ = (bitc >> 8) & 0xFF;
1304 *p++ = (bitc) & 0xFF;
1305 for (i = len - 2; i--;)
1306 *p++ = bignum_byte(bn, i);
1307 return len;
1308 }
1309
1310 /*
1311 * Compare two bignums. Returns like strcmp.
1312 */
1313 int bignum_cmp(Bignum a, Bignum b)
1314 {
1315 int amax = a[0], bmax = b[0];
1316 int i = (amax > bmax ? amax : bmax);
1317 while (i) {
1318 BignumInt aval = (i > amax ? 0 : a[i]);
1319 BignumInt bval = (i > bmax ? 0 : b[i]);
1320 if (aval < bval)
1321 return -1;
1322 if (aval > bval)
1323 return +1;
1324 i--;
1325 }
1326 return 0;
1327 }
1328
1329 /*
1330 * Right-shift one bignum to form another.
1331 */
1332 Bignum bignum_rshift(Bignum a, int shift)
1333 {
1334 Bignum ret;
1335 int i, shiftw, shiftb, shiftbb, bits;
1336 BignumInt ai, ai1;
1337
1338 bits = bignum_bitcount(a) - shift;
1339 ret = newbn((bits + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS);
1340
1341 if (ret) {
1342 shiftw = shift / BIGNUM_INT_BITS;
1343 shiftb = shift % BIGNUM_INT_BITS;
1344 shiftbb = BIGNUM_INT_BITS - shiftb;
1345
1346 ai1 = a[shiftw + 1];
1347 for (i = 1; i <= (int)ret[0]; i++) {
1348 ai = ai1;
1349 ai1 = (i + shiftw + 1 <= (int)a[0] ? a[i + shiftw + 1] : 0);
1350 ret[i] = ((ai >> shiftb) | (ai1 << shiftbb)) & BIGNUM_INT_MASK;
1351 }
1352 }
1353
1354 return ret;
1355 }
1356
1357 /*
1358 * Non-modular multiplication and addition.
1359 */
1360 Bignum bigmuladd(Bignum a, Bignum b, Bignum addend)
1361 {
1362 int alen = a[0], blen = b[0];
1363 int mlen = (alen > blen ? alen : blen);
1364 int rlen, i, maxspot;
1365 int wslen;
1366 BignumInt *workspace;
1367 Bignum ret;
1368
1369 /* mlen space for a, mlen space for b, 2*mlen for result,
1370 * plus scratch space for multiplication */
1371 wslen = mlen * 4 + mul_compute_scratch(mlen);
1372 workspace = snewn(wslen, BignumInt);
1373 for (i = 0; i < mlen; i++) {
1374 workspace[0 * mlen + i] = (mlen - i <= (int)a[0] ? a[mlen - i] : 0);
1375 workspace[1 * mlen + i] = (mlen - i <= (int)b[0] ? b[mlen - i] : 0);
1376 }
1377
1378 internal_mul(workspace + 0 * mlen, workspace + 1 * mlen,
1379 workspace + 2 * mlen, mlen, workspace + 4 * mlen);
1380
1381 /* now just copy the result back */
1382 rlen = alen + blen + 1;
1383 if (addend && rlen <= (int)addend[0])
1384 rlen = addend[0] + 1;
1385 ret = newbn(rlen);
1386 maxspot = 0;
1387 for (i = 1; i <= (int)ret[0]; i++) {
1388 ret[i] = (i <= 2 * mlen ? workspace[4 * mlen - i] : 0);
1389 if (ret[i] != 0)
1390 maxspot = i;
1391 }
1392 ret[0] = maxspot;
1393
1394 /* now add in the addend, if any */
1395 if (addend) {
1396 BignumDblInt carry = 0;
1397 for (i = 1; i <= rlen; i++) {
1398 carry += (i <= (int)ret[0] ? ret[i] : 0);
1399 carry += (i <= (int)addend[0] ? addend[i] : 0);
1400 ret[i] = (BignumInt) carry & BIGNUM_INT_MASK;
1401 carry >>= BIGNUM_INT_BITS;
1402 if (ret[i] != 0 && i > maxspot)
1403 maxspot = i;
1404 }
1405 }
1406 ret[0] = maxspot;
1407
1408 for (i = 0; i < wslen; i++)
1409 workspace[i] = 0;
1410 sfree(workspace);
1411 return ret;
1412 }
1413
1414 /*
1415 * Non-modular multiplication.
1416 */
1417 Bignum bigmul(Bignum a, Bignum b)
1418 {
1419 return bigmuladd(a, b, NULL);
1420 }
1421
1422 /*
1423 * Simple addition.
1424 */
1425 Bignum bigadd(Bignum a, Bignum b)
1426 {
1427 int alen = a[0], blen = b[0];
1428 int rlen = (alen > blen ? alen : blen) + 1;
1429 int i, maxspot;
1430 Bignum ret;
1431 BignumDblInt carry;
1432
1433 ret = newbn(rlen);
1434
1435 carry = 0;
1436 maxspot = 0;
1437 for (i = 1; i <= rlen; i++) {
1438 carry += (i <= (int)a[0] ? a[i] : 0);
1439 carry += (i <= (int)b[0] ? b[i] : 0);
1440 ret[i] = (BignumInt) carry & BIGNUM_INT_MASK;
1441 carry >>= BIGNUM_INT_BITS;
1442 if (ret[i] != 0 && i > maxspot)
1443 maxspot = i;
1444 }
1445 ret[0] = maxspot;
1446
1447 return ret;
1448 }
1449
1450 /*
1451 * Subtraction. Returns a-b, or NULL if the result would come out
1452 * negative (recall that this entire bignum module only handles
1453 * positive numbers).
1454 */
1455 Bignum bigsub(Bignum a, Bignum b)
1456 {
1457 int alen = a[0], blen = b[0];
1458 int rlen = (alen > blen ? alen : blen);
1459 int i, maxspot;
1460 Bignum ret;
1461 BignumDblInt carry;
1462
1463 ret = newbn(rlen);
1464
1465 carry = 1;
1466 maxspot = 0;
1467 for (i = 1; i <= rlen; i++) {
1468 carry += (i <= (int)a[0] ? a[i] : 0);
1469 carry += (i <= (int)b[0] ? b[i] ^ BIGNUM_INT_MASK : BIGNUM_INT_MASK);
1470 ret[i] = (BignumInt) carry & BIGNUM_INT_MASK;
1471 carry >>= BIGNUM_INT_BITS;
1472 if (ret[i] != 0 && i > maxspot)
1473 maxspot = i;
1474 }
1475 ret[0] = maxspot;
1476
1477 if (!carry) {
1478 freebn(ret);
1479 return NULL;
1480 }
1481
1482 return ret;
1483 }
1484
1485 /*
1486 * Create a bignum which is the bitmask covering another one. That
1487 * is, the smallest integer which is >= N and is also one less than
1488 * a power of two.
1489 */
1490 Bignum bignum_bitmask(Bignum n)
1491 {
1492 Bignum ret = copybn(n);
1493 int i;
1494 BignumInt j;
1495
1496 i = ret[0];
1497 while (n[i] == 0 && i > 0)
1498 i--;
1499 if (i <= 0)
1500 return ret; /* input was zero */
1501 j = 1;
1502 while (j < n[i])
1503 j = 2 * j + 1;
1504 ret[i] = j;
1505 while (--i > 0)
1506 ret[i] = BIGNUM_INT_MASK;
1507 return ret;
1508 }
1509
1510 /*
1511 * Convert a (max 32-bit) long into a bignum.
1512 */
1513 Bignum bignum_from_long(unsigned long nn)
1514 {
1515 Bignum ret;
1516 BignumDblInt n = nn;
1517
1518 ret = newbn(3);
1519 ret[1] = (BignumInt)(n & BIGNUM_INT_MASK);
1520 ret[2] = (BignumInt)((n >> BIGNUM_INT_BITS) & BIGNUM_INT_MASK);
1521 ret[3] = 0;
1522 ret[0] = (ret[2] ? 2 : 1);
1523 return ret;
1524 }
1525
1526 /*
1527 * Add a long to a bignum.
1528 */
1529 Bignum bignum_add_long(Bignum number, unsigned long addendx)
1530 {
1531 Bignum ret = newbn(number[0] + 1);
1532 int i, maxspot = 0;
1533 BignumDblInt carry = 0, addend = addendx;
1534
1535 for (i = 1; i <= (int)ret[0]; i++) {
1536 carry += addend & BIGNUM_INT_MASK;
1537 carry += (i <= (int)number[0] ? number[i] : 0);
1538 addend >>= BIGNUM_INT_BITS;
1539 ret[i] = (BignumInt) carry & BIGNUM_INT_MASK;
1540 carry >>= BIGNUM_INT_BITS;
1541 if (ret[i] != 0)
1542 maxspot = i;
1543 }
1544 ret[0] = maxspot;
1545 return ret;
1546 }
1547
1548 /*
1549 * Compute the residue of a bignum, modulo a (max 16-bit) short.
1550 */
1551 unsigned short bignum_mod_short(Bignum number, unsigned short modulus)
1552 {
1553 BignumDblInt mod, r;
1554 int i;
1555
1556 r = 0;
1557 mod = modulus;
1558 for (i = number[0]; i > 0; i--)
1559 r = (r * (BIGNUM_TOP_BIT % mod) * 2 + number[i] % mod) % mod;
1560 return (unsigned short) r;
1561 }
1562
1563 #ifdef DEBUG
1564 void diagbn(char *prefix, Bignum md)
1565 {
1566 int i, nibbles, morenibbles;
1567 static const char hex[] = "0123456789ABCDEF";
1568
1569 debug(("%s0x", prefix ? prefix : ""));
1570
1571 nibbles = (3 + bignum_bitcount(md)) / 4;
1572 if (nibbles < 1)
1573 nibbles = 1;
1574 morenibbles = 4 * md[0] - nibbles;
1575 for (i = 0; i < morenibbles; i++)
1576 debug(("-"));
1577 for (i = nibbles; i--;)
1578 debug(("%c",
1579 hex[(bignum_byte(md, i / 2) >> (4 * (i % 2))) & 0xF]));
1580
1581 if (prefix)
1582 debug(("\n"));
1583 }
1584 #endif
1585
1586 /*
1587 * Simple division.
1588 */
1589 Bignum bigdiv(Bignum a, Bignum b)
1590 {
1591 Bignum q = newbn(a[0]);
1592 bigdivmod(a, b, NULL, q);
1593 return q;
1594 }
1595
1596 /*
1597 * Simple remainder.
1598 */
1599 Bignum bigmod(Bignum a, Bignum b)
1600 {
1601 Bignum r = newbn(b[0]);
1602 bigdivmod(a, b, r, NULL);
1603 return r;
1604 }
1605
1606 /*
1607 * Greatest common divisor.
1608 */
1609 Bignum biggcd(Bignum av, Bignum bv)
1610 {
1611 Bignum a = copybn(av);
1612 Bignum b = copybn(bv);
1613
1614 while (bignum_cmp(b, Zero) != 0) {
1615 Bignum t = newbn(b[0]);
1616 bigdivmod(a, b, t, NULL);
1617 while (t[0] > 1 && t[t[0]] == 0)
1618 t[0]--;
1619 freebn(a);
1620 a = b;
1621 b = t;
1622 }
1623
1624 freebn(b);
1625 return a;
1626 }
1627
1628 /*
1629 * Modular inverse, using Euclid's extended algorithm.
1630 */
1631 Bignum modinv(Bignum number, Bignum modulus)
1632 {
1633 Bignum a = copybn(modulus);
1634 Bignum b = copybn(number);
1635 Bignum xp = copybn(Zero);
1636 Bignum x = copybn(One);
1637 int sign = +1;
1638
1639 while (bignum_cmp(b, One) != 0) {
1640 Bignum t = newbn(b[0]);
1641 Bignum q = newbn(a[0]);
1642 bigdivmod(a, b, t, q);
1643 while (t[0] > 1 && t[t[0]] == 0)
1644 t[0]--;
1645 freebn(a);
1646 a = b;
1647 b = t;
1648 t = xp;
1649 xp = x;
1650 x = bigmuladd(q, xp, t);
1651 sign = -sign;
1652 freebn(t);
1653 freebn(q);
1654 }
1655
1656 freebn(b);
1657 freebn(a);
1658 freebn(xp);
1659
1660 /* now we know that sign * x == 1, and that x < modulus */
1661 if (sign < 0) {
1662 /* set a new x to be modulus - x */
1663 Bignum newx = newbn(modulus[0]);
1664 BignumInt carry = 0;
1665 int maxspot = 1;
1666 int i;
1667
1668 for (i = 1; i <= (int)newx[0]; i++) {
1669 BignumInt aword = (i <= (int)modulus[0] ? modulus[i] : 0);
1670 BignumInt bword = (i <= (int)x[0] ? x[i] : 0);
1671 newx[i] = aword - bword - carry;
1672 bword = ~bword;
1673 carry = carry ? (newx[i] >= bword) : (newx[i] > bword);
1674 if (newx[i] != 0)
1675 maxspot = i;
1676 }
1677 newx[0] = maxspot;
1678 freebn(x);
1679 x = newx;
1680 }
1681
1682 /* and return. */
1683 return x;
1684 }
1685
1686 /*
1687 * Render a bignum into decimal. Return a malloced string holding
1688 * the decimal representation.
1689 */
1690 char *bignum_decimal(Bignum x)
1691 {
1692 int ndigits, ndigit;
1693 int i, iszero;
1694 BignumDblInt carry;
1695 char *ret;
1696 BignumInt *workspace;
1697
1698 /*
1699 * First, estimate the number of digits. Since log(10)/log(2)
1700 * is just greater than 93/28 (the joys of continued fraction
1701 * approximations...) we know that for every 93 bits, we need
1702 * at most 28 digits. This will tell us how much to malloc.
1703 *
1704 * Formally: if x has i bits, that means x is strictly less
1705 * than 2^i. Since 2 is less than 10^(28/93), this is less than
1706 * 10^(28i/93). We need an integer power of ten, so we must
1707 * round up (rounding down might make it less than x again).
1708 * Therefore if we multiply the bit count by 28/93, rounding
1709 * up, we will have enough digits.
1710 *
1711 * i=0 (i.e., x=0) is an irritating special case.
1712 */
1713 i = bignum_bitcount(x);
1714 if (!i)
1715 ndigits = 1; /* x = 0 */
1716 else
1717 ndigits = (28 * i + 92) / 93; /* multiply by 28/93 and round up */
1718 ndigits++; /* allow for trailing \0 */
1719 ret = snewn(ndigits, char);
1720
1721 /*
1722 * Now allocate some workspace to hold the binary form as we
1723 * repeatedly divide it by ten. Initialise this to the
1724 * big-endian form of the number.
1725 */
1726 workspace = snewn(x[0], BignumInt);
1727 for (i = 0; i < (int)x[0]; i++)
1728 workspace[i] = x[x[0] - i];
1729
1730 /*
1731 * Next, write the decimal number starting with the last digit.
1732 * We use ordinary short division, dividing 10 into the
1733 * workspace.
1734 */
1735 ndigit = ndigits - 1;
1736 ret[ndigit] = '\0';
1737 do {
1738 iszero = 1;
1739 carry = 0;
1740 for (i = 0; i < (int)x[0]; i++) {
1741 carry = (carry << BIGNUM_INT_BITS) + workspace[i];
1742 workspace[i] = (BignumInt) (carry / 10);
1743 if (workspace[i])
1744 iszero = 0;
1745 carry %= 10;
1746 }
1747 ret[--ndigit] = (char) (carry + '0');
1748 } while (!iszero);
1749
1750 /*
1751 * There's a chance we've fallen short of the start of the
1752 * string. Correct if so.
1753 */
1754 if (ndigit > 0)
1755 memmove(ret, ret + ndigit, ndigits - ndigit);
1756
1757 /*
1758 * Done.
1759 */
1760 sfree(workspace);
1761 return ret;
1762 }
1763
1764 #ifdef TESTBN
1765
1766 #include <stdio.h>
1767 #include <stdlib.h>
1768 #include <ctype.h>
1769
1770 /*
1771 * gcc -Wall -g -O0 -DTESTBN -o testbn sshbn.c misc.c conf.c tree234.c unix/uxmisc.c -I. -I unix -I charset
1772 *
1773 * Then feed to this program's standard input the output of
1774 * testdata/bignum.py .
1775 */
1776
1777 void modalfatalbox(char *p, ...)
1778 {
1779 va_list ap;
1780 fprintf(stderr, "FATAL ERROR: ");
1781 va_start(ap, p);
1782 vfprintf(stderr, p, ap);
1783 va_end(ap);
1784 fputc('\n', stderr);
1785 exit(1);
1786 }
1787
1788 #define fromxdigit(c) ( (c)>'9' ? ((c)&0xDF) - 'A' + 10 : (c) - '0' )
1789
1790 int main(int argc, char **argv)
1791 {
1792 char *buf;
1793 int line = 0;
1794 int passes = 0, fails = 0;
1795
1796 while ((buf = fgetline(stdin)) != NULL) {
1797 int maxlen = strlen(buf);
1798 unsigned char *data = snewn(maxlen, unsigned char);
1799 unsigned char *ptrs[5], *q;
1800 int ptrnum;
1801 char *bufp = buf;
1802
1803 line++;
1804
1805 q = data;
1806 ptrnum = 0;
1807
1808 while (*bufp && !isspace((unsigned char)*bufp))
1809 bufp++;
1810 if (bufp)
1811 *bufp++ = '\0';
1812
1813 while (*bufp) {
1814 char *start, *end;
1815 int i;
1816
1817 while (*bufp && !isxdigit((unsigned char)*bufp))
1818 bufp++;
1819 start = bufp;
1820
1821 if (!*bufp)
1822 break;
1823
1824 while (*bufp && isxdigit((unsigned char)*bufp))
1825 bufp++;
1826 end = bufp;
1827
1828 if (ptrnum >= lenof(ptrs))
1829 break;
1830 ptrs[ptrnum++] = q;
1831
1832 for (i = -((end - start) & 1); i < end-start; i += 2) {
1833 unsigned char val = (i < 0 ? 0 : fromxdigit(start[i]));
1834 val = val * 16 + fromxdigit(start[i+1]);
1835 *q++ = val;
1836 }
1837
1838 ptrs[ptrnum] = q;
1839 }
1840
1841 if (!strcmp(buf, "mul")) {
1842 Bignum a, b, c, p;
1843
1844 if (ptrnum != 3) {
1845 printf("%d: mul with %d parameters, expected 3\n", line, ptrnum);
1846 exit(1);
1847 }
1848 a = bignum_from_bytes(ptrs[0], ptrs[1]-ptrs[0]);
1849 b = bignum_from_bytes(ptrs[1], ptrs[2]-ptrs[1]);
1850 c = bignum_from_bytes(ptrs[2], ptrs[3]-ptrs[2]);
1851 p = bigmul(a, b);
1852
1853 if (bignum_cmp(c, p) == 0) {
1854 passes++;
1855 } else {
1856 char *as = bignum_decimal(a);
1857 char *bs = bignum_decimal(b);
1858 char *cs = bignum_decimal(c);
1859 char *ps = bignum_decimal(p);
1860
1861 printf("%d: fail: %s * %s gave %s expected %s\n",
1862 line, as, bs, ps, cs);
1863 fails++;
1864
1865 sfree(as);
1866 sfree(bs);
1867 sfree(cs);
1868 sfree(ps);
1869 }
1870 freebn(a);
1871 freebn(b);
1872 freebn(c);
1873 freebn(p);
1874 } else if (!strcmp(buf, "modmul")) {
1875 Bignum a, b, m, c, p;
1876
1877 if (ptrnum != 4) {
1878 printf("%d: modmul with %d parameters, expected 4\n",
1879 line, ptrnum);
1880 exit(1);
1881 }
1882 a = bignum_from_bytes(ptrs[0], ptrs[1]-ptrs[0]);
1883 b = bignum_from_bytes(ptrs[1], ptrs[2]-ptrs[1]);
1884 m = bignum_from_bytes(ptrs[2], ptrs[3]-ptrs[2]);
1885 c = bignum_from_bytes(ptrs[3], ptrs[4]-ptrs[3]);
1886 p = modmul(a, b, m);
1887
1888 if (bignum_cmp(c, p) == 0) {
1889 passes++;
1890 } else {
1891 char *as = bignum_decimal(a);
1892 char *bs = bignum_decimal(b);
1893 char *ms = bignum_decimal(m);
1894 char *cs = bignum_decimal(c);
1895 char *ps = bignum_decimal(p);
1896
1897 printf("%d: fail: %s * %s mod %s gave %s expected %s\n",
1898 line, as, bs, ms, ps, cs);
1899 fails++;
1900
1901 sfree(as);
1902 sfree(bs);
1903 sfree(ms);
1904 sfree(cs);
1905 sfree(ps);
1906 }
1907 freebn(a);
1908 freebn(b);
1909 freebn(m);
1910 freebn(c);
1911 freebn(p);
1912 } else if (!strcmp(buf, "pow")) {
1913 Bignum base, expt, modulus, expected, answer;
1914
1915 if (ptrnum != 4) {
1916 printf("%d: mul with %d parameters, expected 4\n", line, ptrnum);
1917 exit(1);
1918 }
1919
1920 base = bignum_from_bytes(ptrs[0], ptrs[1]-ptrs[0]);
1921 expt = bignum_from_bytes(ptrs[1], ptrs[2]-ptrs[1]);
1922 modulus = bignum_from_bytes(ptrs[2], ptrs[3]-ptrs[2]);
1923 expected = bignum_from_bytes(ptrs[3], ptrs[4]-ptrs[3]);
1924 answer = modpow(base, expt, modulus);
1925
1926 if (bignum_cmp(expected, answer) == 0) {
1927 passes++;
1928 } else {
1929 char *as = bignum_decimal(base);
1930 char *bs = bignum_decimal(expt);
1931 char *cs = bignum_decimal(modulus);
1932 char *ds = bignum_decimal(answer);
1933 char *ps = bignum_decimal(expected);
1934
1935 printf("%d: fail: %s ^ %s mod %s gave %s expected %s\n",
1936 line, as, bs, cs, ds, ps);
1937 fails++;
1938
1939 sfree(as);
1940 sfree(bs);
1941 sfree(cs);
1942 sfree(ds);
1943 sfree(ps);
1944 }
1945 freebn(base);
1946 freebn(expt);
1947 freebn(modulus);
1948 freebn(expected);
1949 freebn(answer);
1950 } else {
1951 printf("%d: unrecognised test keyword: '%s'\n", line, buf);
1952 exit(1);
1953 }
1954
1955 sfree(buf);
1956 sfree(data);
1957 }
1958
1959 printf("passed %d failed %d total %d\n", passes, fails, passes+fails);
1960 return fails != 0;
1961 }
1962
1963 #endif