Remove some redundant null-pointer checks from code that must have
[sgt/putty] / sshdss.c
1 /*
2 * Digital Signature Standard implementation for PuTTY.
3 */
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <assert.h>
8
9 #include "ssh.h"
10 #include "misc.h"
11
12 static void sha_mpint(SHA_State * s, Bignum b)
13 {
14 unsigned char lenbuf[4];
15 int len;
16 len = (bignum_bitcount(b) + 8) / 8;
17 PUT_32BIT(lenbuf, len);
18 SHA_Bytes(s, lenbuf, 4);
19 while (len-- > 0) {
20 lenbuf[0] = bignum_byte(b, len);
21 SHA_Bytes(s, lenbuf, 1);
22 }
23 smemclr(lenbuf, sizeof(lenbuf));
24 }
25
26 static void sha512_mpint(SHA512_State * s, Bignum b)
27 {
28 unsigned char lenbuf[4];
29 int len;
30 len = (bignum_bitcount(b) + 8) / 8;
31 PUT_32BIT(lenbuf, len);
32 SHA512_Bytes(s, lenbuf, 4);
33 while (len-- > 0) {
34 lenbuf[0] = bignum_byte(b, len);
35 SHA512_Bytes(s, lenbuf, 1);
36 }
37 smemclr(lenbuf, sizeof(lenbuf));
38 }
39
40 static void getstring(char **data, int *datalen, char **p, int *length)
41 {
42 *p = NULL;
43 if (*datalen < 4)
44 return;
45 *length = toint(GET_32BIT(*data));
46 if (*length < 0)
47 return;
48 *datalen -= 4;
49 *data += 4;
50 if (*datalen < *length)
51 return;
52 *p = *data;
53 *data += *length;
54 *datalen -= *length;
55 }
56 static Bignum getmp(char **data, int *datalen)
57 {
58 char *p;
59 int length;
60 Bignum b;
61
62 getstring(data, datalen, &p, &length);
63 if (!p)
64 return NULL;
65 if (p[0] & 0x80)
66 return NULL; /* negative mp */
67 b = bignum_from_bytes((unsigned char *)p, length);
68 return b;
69 }
70
71 static Bignum get160(char **data, int *datalen)
72 {
73 Bignum b;
74
75 if (*datalen < 20)
76 return NULL;
77
78 b = bignum_from_bytes((unsigned char *)*data, 20);
79 *data += 20;
80 *datalen -= 20;
81
82 return b;
83 }
84
85 static void *dss_newkey(char *data, int len)
86 {
87 char *p;
88 int slen;
89 struct dss_key *dss;
90
91 dss = snew(struct dss_key);
92 getstring(&data, &len, &p, &slen);
93
94 #ifdef DEBUG_DSS
95 {
96 int i;
97 printf("key:");
98 for (i = 0; i < len; i++)
99 printf(" %02x", (unsigned char) (data[i]));
100 printf("\n");
101 }
102 #endif
103
104 if (!p || slen != 7 || memcmp(p, "ssh-dss", 7)) {
105 sfree(dss);
106 return NULL;
107 }
108 dss->p = getmp(&data, &len);
109 dss->q = getmp(&data, &len);
110 dss->g = getmp(&data, &len);
111 dss->y = getmp(&data, &len);
112 dss->x = NULL;
113
114 return dss;
115 }
116
117 static void dss_freekey(void *key)
118 {
119 struct dss_key *dss = (struct dss_key *) key;
120 if (dss->p)
121 freebn(dss->p);
122 if (dss->q)
123 freebn(dss->q);
124 if (dss->g)
125 freebn(dss->g);
126 if (dss->y)
127 freebn(dss->y);
128 if (dss->x)
129 freebn(dss->x);
130 sfree(dss);
131 }
132
133 static char *dss_fmtkey(void *key)
134 {
135 struct dss_key *dss = (struct dss_key *) key;
136 char *p;
137 int len, i, pos, nibbles;
138 static const char hex[] = "0123456789abcdef";
139 if (!dss->p)
140 return NULL;
141 len = 8 + 4 + 1; /* 4 x "0x", punctuation, \0 */
142 len += 4 * (bignum_bitcount(dss->p) + 15) / 16;
143 len += 4 * (bignum_bitcount(dss->q) + 15) / 16;
144 len += 4 * (bignum_bitcount(dss->g) + 15) / 16;
145 len += 4 * (bignum_bitcount(dss->y) + 15) / 16;
146 p = snewn(len, char);
147 if (!p)
148 return NULL;
149
150 pos = 0;
151 pos += sprintf(p + pos, "0x");
152 nibbles = (3 + bignum_bitcount(dss->p)) / 4;
153 if (nibbles < 1)
154 nibbles = 1;
155 for (i = nibbles; i--;)
156 p[pos++] =
157 hex[(bignum_byte(dss->p, i / 2) >> (4 * (i % 2))) & 0xF];
158 pos += sprintf(p + pos, ",0x");
159 nibbles = (3 + bignum_bitcount(dss->q)) / 4;
160 if (nibbles < 1)
161 nibbles = 1;
162 for (i = nibbles; i--;)
163 p[pos++] =
164 hex[(bignum_byte(dss->q, i / 2) >> (4 * (i % 2))) & 0xF];
165 pos += sprintf(p + pos, ",0x");
166 nibbles = (3 + bignum_bitcount(dss->g)) / 4;
167 if (nibbles < 1)
168 nibbles = 1;
169 for (i = nibbles; i--;)
170 p[pos++] =
171 hex[(bignum_byte(dss->g, i / 2) >> (4 * (i % 2))) & 0xF];
172 pos += sprintf(p + pos, ",0x");
173 nibbles = (3 + bignum_bitcount(dss->y)) / 4;
174 if (nibbles < 1)
175 nibbles = 1;
176 for (i = nibbles; i--;)
177 p[pos++] =
178 hex[(bignum_byte(dss->y, i / 2) >> (4 * (i % 2))) & 0xF];
179 p[pos] = '\0';
180 return p;
181 }
182
183 static char *dss_fingerprint(void *key)
184 {
185 struct dss_key *dss = (struct dss_key *) key;
186 struct MD5Context md5c;
187 unsigned char digest[16], lenbuf[4];
188 char buffer[16 * 3 + 40];
189 char *ret;
190 int numlen, i;
191
192 MD5Init(&md5c);
193 MD5Update(&md5c, (unsigned char *)"\0\0\0\7ssh-dss", 11);
194
195 #define ADD_BIGNUM(bignum) \
196 numlen = (bignum_bitcount(bignum)+8)/8; \
197 PUT_32BIT(lenbuf, numlen); MD5Update(&md5c, lenbuf, 4); \
198 for (i = numlen; i-- ;) { \
199 unsigned char c = bignum_byte(bignum, i); \
200 MD5Update(&md5c, &c, 1); \
201 }
202 ADD_BIGNUM(dss->p);
203 ADD_BIGNUM(dss->q);
204 ADD_BIGNUM(dss->g);
205 ADD_BIGNUM(dss->y);
206 #undef ADD_BIGNUM
207
208 MD5Final(digest, &md5c);
209
210 sprintf(buffer, "ssh-dss %d ", bignum_bitcount(dss->p));
211 for (i = 0; i < 16; i++)
212 sprintf(buffer + strlen(buffer), "%s%02x", i ? ":" : "",
213 digest[i]);
214 ret = snewn(strlen(buffer) + 1, char);
215 if (ret)
216 strcpy(ret, buffer);
217 return ret;
218 }
219
220 static int dss_verifysig(void *key, char *sig, int siglen,
221 char *data, int datalen)
222 {
223 struct dss_key *dss = (struct dss_key *) key;
224 char *p;
225 int slen;
226 char hash[20];
227 Bignum r, s, w, gu1p, yu2p, gu1yu2p, u1, u2, sha, v;
228 int ret;
229
230 if (!dss->p)
231 return 0;
232
233 #ifdef DEBUG_DSS
234 {
235 int i;
236 printf("sig:");
237 for (i = 0; i < siglen; i++)
238 printf(" %02x", (unsigned char) (sig[i]));
239 printf("\n");
240 }
241 #endif
242 /*
243 * Commercial SSH (2.0.13) and OpenSSH disagree over the format
244 * of a DSA signature. OpenSSH is in line with RFC 4253:
245 * it uses a string "ssh-dss", followed by a 40-byte string
246 * containing two 160-bit integers end-to-end. Commercial SSH
247 * can't be bothered with the header bit, and considers a DSA
248 * signature blob to be _just_ the 40-byte string containing
249 * the two 160-bit integers. We tell them apart by measuring
250 * the length: length 40 means the commercial-SSH bug, anything
251 * else is assumed to be RFC-compliant.
252 */
253 if (siglen != 40) { /* bug not present; read admin fields */
254 getstring(&sig, &siglen, &p, &slen);
255 if (!p || slen != 7 || memcmp(p, "ssh-dss", 7)) {
256 return 0;
257 }
258 sig += 4, siglen -= 4; /* skip yet another length field */
259 }
260 r = get160(&sig, &siglen);
261 s = get160(&sig, &siglen);
262 if (!r || !s)
263 return 0;
264
265 /*
266 * Step 1. w <- s^-1 mod q.
267 */
268 w = modinv(s, dss->q);
269
270 /*
271 * Step 2. u1 <- SHA(message) * w mod q.
272 */
273 SHA_Simple(data, datalen, (unsigned char *)hash);
274 p = hash;
275 slen = 20;
276 sha = get160(&p, &slen);
277 u1 = modmul(sha, w, dss->q);
278
279 /*
280 * Step 3. u2 <- r * w mod q.
281 */
282 u2 = modmul(r, w, dss->q);
283
284 /*
285 * Step 4. v <- (g^u1 * y^u2 mod p) mod q.
286 */
287 gu1p = modpow(dss->g, u1, dss->p);
288 yu2p = modpow(dss->y, u2, dss->p);
289 gu1yu2p = modmul(gu1p, yu2p, dss->p);
290 v = modmul(gu1yu2p, One, dss->q);
291
292 /*
293 * Step 5. v should now be equal to r.
294 */
295
296 ret = !bignum_cmp(v, r);
297
298 freebn(w);
299 freebn(sha);
300 freebn(u1);
301 freebn(u2);
302 freebn(gu1p);
303 freebn(yu2p);
304 freebn(gu1yu2p);
305 freebn(v);
306 freebn(r);
307 freebn(s);
308
309 return ret;
310 }
311
312 static unsigned char *dss_public_blob(void *key, int *len)
313 {
314 struct dss_key *dss = (struct dss_key *) key;
315 int plen, qlen, glen, ylen, bloblen;
316 int i;
317 unsigned char *blob, *p;
318
319 plen = (bignum_bitcount(dss->p) + 8) / 8;
320 qlen = (bignum_bitcount(dss->q) + 8) / 8;
321 glen = (bignum_bitcount(dss->g) + 8) / 8;
322 ylen = (bignum_bitcount(dss->y) + 8) / 8;
323
324 /*
325 * string "ssh-dss", mpint p, mpint q, mpint g, mpint y. Total
326 * 27 + sum of lengths. (five length fields, 20+7=27).
327 */
328 bloblen = 27 + plen + qlen + glen + ylen;
329 blob = snewn(bloblen, unsigned char);
330 p = blob;
331 PUT_32BIT(p, 7);
332 p += 4;
333 memcpy(p, "ssh-dss", 7);
334 p += 7;
335 PUT_32BIT(p, plen);
336 p += 4;
337 for (i = plen; i--;)
338 *p++ = bignum_byte(dss->p, i);
339 PUT_32BIT(p, qlen);
340 p += 4;
341 for (i = qlen; i--;)
342 *p++ = bignum_byte(dss->q, i);
343 PUT_32BIT(p, glen);
344 p += 4;
345 for (i = glen; i--;)
346 *p++ = bignum_byte(dss->g, i);
347 PUT_32BIT(p, ylen);
348 p += 4;
349 for (i = ylen; i--;)
350 *p++ = bignum_byte(dss->y, i);
351 assert(p == blob + bloblen);
352 *len = bloblen;
353 return blob;
354 }
355
356 static unsigned char *dss_private_blob(void *key, int *len)
357 {
358 struct dss_key *dss = (struct dss_key *) key;
359 int xlen, bloblen;
360 int i;
361 unsigned char *blob, *p;
362
363 xlen = (bignum_bitcount(dss->x) + 8) / 8;
364
365 /*
366 * mpint x, string[20] the SHA of p||q||g. Total 4 + xlen.
367 */
368 bloblen = 4 + xlen;
369 blob = snewn(bloblen, unsigned char);
370 p = blob;
371 PUT_32BIT(p, xlen);
372 p += 4;
373 for (i = xlen; i--;)
374 *p++ = bignum_byte(dss->x, i);
375 assert(p == blob + bloblen);
376 *len = bloblen;
377 return blob;
378 }
379
380 static void *dss_createkey(unsigned char *pub_blob, int pub_len,
381 unsigned char *priv_blob, int priv_len)
382 {
383 struct dss_key *dss;
384 char *pb = (char *) priv_blob;
385 char *hash;
386 int hashlen;
387 SHA_State s;
388 unsigned char digest[20];
389 Bignum ytest;
390
391 dss = dss_newkey((char *) pub_blob, pub_len);
392 dss->x = getmp(&pb, &priv_len);
393
394 /*
395 * Check the obsolete hash in the old DSS key format.
396 */
397 hashlen = -1;
398 getstring(&pb, &priv_len, &hash, &hashlen);
399 if (hashlen == 20) {
400 SHA_Init(&s);
401 sha_mpint(&s, dss->p);
402 sha_mpint(&s, dss->q);
403 sha_mpint(&s, dss->g);
404 SHA_Final(&s, digest);
405 if (0 != memcmp(hash, digest, 20)) {
406 dss_freekey(dss);
407 return NULL;
408 }
409 }
410
411 /*
412 * Now ensure g^x mod p really is y.
413 */
414 ytest = modpow(dss->g, dss->x, dss->p);
415 if (0 != bignum_cmp(ytest, dss->y)) {
416 dss_freekey(dss);
417 freebn(ytest);
418 return NULL;
419 }
420 freebn(ytest);
421
422 return dss;
423 }
424
425 static void *dss_openssh_createkey(unsigned char **blob, int *len)
426 {
427 char **b = (char **) blob;
428 struct dss_key *dss;
429
430 dss = snew(struct dss_key);
431
432 dss->p = getmp(b, len);
433 dss->q = getmp(b, len);
434 dss->g = getmp(b, len);
435 dss->y = getmp(b, len);
436 dss->x = getmp(b, len);
437
438 if (!dss->p || !dss->q || !dss->g || !dss->y || !dss->x) {
439 freebn(dss->p);
440 freebn(dss->q);
441 freebn(dss->g);
442 freebn(dss->y);
443 freebn(dss->x);
444 sfree(dss);
445 return NULL;
446 }
447
448 return dss;
449 }
450
451 static int dss_openssh_fmtkey(void *key, unsigned char *blob, int len)
452 {
453 struct dss_key *dss = (struct dss_key *) key;
454 int bloblen, i;
455
456 bloblen =
457 ssh2_bignum_length(dss->p) +
458 ssh2_bignum_length(dss->q) +
459 ssh2_bignum_length(dss->g) +
460 ssh2_bignum_length(dss->y) +
461 ssh2_bignum_length(dss->x);
462
463 if (bloblen > len)
464 return bloblen;
465
466 bloblen = 0;
467 #define ENC(x) \
468 PUT_32BIT(blob+bloblen, ssh2_bignum_length((x))-4); bloblen += 4; \
469 for (i = ssh2_bignum_length((x))-4; i-- ;) blob[bloblen++]=bignum_byte((x),i);
470 ENC(dss->p);
471 ENC(dss->q);
472 ENC(dss->g);
473 ENC(dss->y);
474 ENC(dss->x);
475
476 return bloblen;
477 }
478
479 static int dss_pubkey_bits(void *blob, int len)
480 {
481 struct dss_key *dss;
482 int ret;
483
484 dss = dss_newkey((char *) blob, len);
485 ret = bignum_bitcount(dss->p);
486 dss_freekey(dss);
487
488 return ret;
489 }
490
491 static unsigned char *dss_sign(void *key, char *data, int datalen, int *siglen)
492 {
493 /*
494 * The basic DSS signing algorithm is:
495 *
496 * - invent a random k between 1 and q-1 (exclusive).
497 * - Compute r = (g^k mod p) mod q.
498 * - Compute s = k^-1 * (hash + x*r) mod q.
499 *
500 * This has the dangerous properties that:
501 *
502 * - if an attacker in possession of the public key _and_ the
503 * signature (for example, the host you just authenticated
504 * to) can guess your k, he can reverse the computation of s
505 * and work out x = r^-1 * (s*k - hash) mod q. That is, he
506 * can deduce the private half of your key, and masquerade
507 * as you for as long as the key is still valid.
508 *
509 * - since r is a function purely of k and the public key, if
510 * the attacker only has a _range of possibilities_ for k
511 * it's easy for him to work through them all and check each
512 * one against r; he'll never be unsure of whether he's got
513 * the right one.
514 *
515 * - if you ever sign two different hashes with the same k, it
516 * will be immediately obvious because the two signatures
517 * will have the same r, and moreover an attacker in
518 * possession of both signatures (and the public key of
519 * course) can compute k = (hash1-hash2) * (s1-s2)^-1 mod q,
520 * and from there deduce x as before.
521 *
522 * - the Bleichenbacher attack on DSA makes use of methods of
523 * generating k which are significantly non-uniformly
524 * distributed; in particular, generating a 160-bit random
525 * number and reducing it mod q is right out.
526 *
527 * For this reason we must be pretty careful about how we
528 * generate our k. Since this code runs on Windows, with no
529 * particularly good system entropy sources, we can't trust our
530 * RNG itself to produce properly unpredictable data. Hence, we
531 * use a totally different scheme instead.
532 *
533 * What we do is to take a SHA-512 (_big_) hash of the private
534 * key x, and then feed this into another SHA-512 hash that
535 * also includes the message hash being signed. That is:
536 *
537 * proto_k = SHA512 ( SHA512(x) || SHA160(message) )
538 *
539 * This number is 512 bits long, so reducing it mod q won't be
540 * noticeably non-uniform. So
541 *
542 * k = proto_k mod q
543 *
544 * This has the interesting property that it's _deterministic_:
545 * signing the same hash twice with the same key yields the
546 * same signature.
547 *
548 * Despite this determinism, it's still not predictable to an
549 * attacker, because in order to repeat the SHA-512
550 * construction that created it, the attacker would have to
551 * know the private key value x - and by assumption he doesn't,
552 * because if he knew that he wouldn't be attacking k!
553 *
554 * (This trick doesn't, _per se_, protect against reuse of k.
555 * Reuse of k is left to chance; all it does is prevent
556 * _excessively high_ chances of reuse of k due to entropy
557 * problems.)
558 *
559 * Thanks to Colin Plumb for the general idea of using x to
560 * ensure k is hard to guess, and to the Cambridge University
561 * Computer Security Group for helping to argue out all the
562 * fine details.
563 */
564 struct dss_key *dss = (struct dss_key *) key;
565 SHA512_State ss;
566 unsigned char digest[20], digest512[64];
567 Bignum proto_k, k, gkp, hash, kinv, hxr, r, s;
568 unsigned char *bytes;
569 int nbytes, i;
570
571 SHA_Simple(data, datalen, digest);
572
573 /*
574 * Hash some identifying text plus x.
575 */
576 SHA512_Init(&ss);
577 SHA512_Bytes(&ss, "DSA deterministic k generator", 30);
578 sha512_mpint(&ss, dss->x);
579 SHA512_Final(&ss, digest512);
580
581 /*
582 * Now hash that digest plus the message hash.
583 */
584 SHA512_Init(&ss);
585 SHA512_Bytes(&ss, digest512, sizeof(digest512));
586 SHA512_Bytes(&ss, digest, sizeof(digest));
587 SHA512_Final(&ss, digest512);
588
589 smemclr(&ss, sizeof(ss));
590
591 /*
592 * Now convert the result into a bignum, and reduce it mod q.
593 */
594 proto_k = bignum_from_bytes(digest512, 64);
595 k = bigmod(proto_k, dss->q);
596 freebn(proto_k);
597
598 smemclr(digest512, sizeof(digest512));
599
600 /*
601 * Now we have k, so just go ahead and compute the signature.
602 */
603 gkp = modpow(dss->g, k, dss->p); /* g^k mod p */
604 r = bigmod(gkp, dss->q); /* r = (g^k mod p) mod q */
605 freebn(gkp);
606
607 hash = bignum_from_bytes(digest, 20);
608 kinv = modinv(k, dss->q); /* k^-1 mod q */
609 hxr = bigmuladd(dss->x, r, hash); /* hash + x*r */
610 s = modmul(kinv, hxr, dss->q); /* s = k^-1 * (hash + x*r) mod q */
611 freebn(hxr);
612 freebn(kinv);
613 freebn(hash);
614
615 /*
616 * Signature blob is
617 *
618 * string "ssh-dss"
619 * string two 20-byte numbers r and s, end to end
620 *
621 * i.e. 4+7 + 4+40 bytes.
622 */
623 nbytes = 4 + 7 + 4 + 40;
624 bytes = snewn(nbytes, unsigned char);
625 PUT_32BIT(bytes, 7);
626 memcpy(bytes + 4, "ssh-dss", 7);
627 PUT_32BIT(bytes + 4 + 7, 40);
628 for (i = 0; i < 20; i++) {
629 bytes[4 + 7 + 4 + i] = bignum_byte(r, 19 - i);
630 bytes[4 + 7 + 4 + 20 + i] = bignum_byte(s, 19 - i);
631 }
632 freebn(r);
633 freebn(s);
634
635 *siglen = nbytes;
636 return bytes;
637 }
638
639 const struct ssh_signkey ssh_dss = {
640 dss_newkey,
641 dss_freekey,
642 dss_fmtkey,
643 dss_public_blob,
644 dss_private_blob,
645 dss_createkey,
646 dss_openssh_createkey,
647 dss_openssh_fmtkey,
648 dss_pubkey_bits,
649 dss_fingerprint,
650 dss_verifysig,
651 dss_sign,
652 "ssh-dss",
653 "dss"
654 };